Space-efficient construction variants of
dynamic programming

Hans L. Bodlaender
Jan Arne Telle

institute of information and computing sciences, utrecht university

technical report UU-CS-2004-030

www.cs.uu.nl

Space-efficient construction variants of dynamic
programming

Hans L. Bodlaender* Jan Arne Tellef

Abstract

Many dynamic programming algorithms that solve a decision problem can be
modified to one that solves the construction variant of the problem by additional
bookkeeping and going backwards through stored answers to subproblems. It is also
well known that for many dynamic programming algorithms, one can save memory
space by throwing away tables of information that is no longer needed, thus reusing
the memory. Somewhat surprisingly, the observation that these two modifications
cannot be combined is frequently not made. In this paper we consider the case of dy-
namic programming algorithms on graphs of bounded treewidth. We give algorithms
to solve the construction variants of such problems that use only twice the amount
of memory space of the decision versions, with only a logarithmic factor increase in
running time. Using the concept of strong directed treewidth we then discuss how
these algorithms can be applied to dynamic programming in general.

Keywords: Algorithms and data structures; dynamic programming; memory use
of algorithms; treewidth.

1 Introduction

Dynamic Programming (DP) is one of the most common algorithmic techniques. Tt is
well known that many dynamic programming algorithms that solve a decision problem
can be modified to one that solves the construction variant of the problem by additional
bookkeeping and going backwards through stored answers to subproblems. It is also well
known that for many dynamic programming algorithms, one can save memory space by
throwing away tables of information that is no longer needed, thus reusing the memory.
Somewhat surprisingly, the observation that these two modifications cannot be combined
is frequently not made: when the ‘text-book’ modification to save memory is made to a
dynamic programming algorithm, the information to construct solutions is deleted, and

*Institute of Information and Computing Sciences, Utrecht University, Padualaan 14, 3584 CH Utrecht,
The Netherlands. hansb@cs.uu.nl
"Department of Informatics, University of Bergen, N-5020 Bergen, Norway. telle®@ii.uib.no

the ‘text-book’ modification to obtain an algorithm for the construction problem cannot
be applied.

When the data for an algorithm do not fit into the main memory, but must be written
to or obtained from secondary memory (e.g., a hard disk), then this has a severe impact on
the time spent by the algorithm. Modern computers have large amounts of memory. Still,
there are cases where the use of memory indeed still is an issue. For instance, if we allow
a dynamic programming algorithm to run for several days, then the borderline between
instances that can and cannot be handled often is determined by whether the data for the
program fit into main memory. This happens for example for algorithms that use dynamic
programming on graphs of bounded treewidth. These observations were the starting point
for our investigations.

In this paper, we view DP as an algorithmic method applicable to a problem whose
optimal solution for an input of size n can be found by combining optimal solutions to
various subproblems. We associate with such a DP algorithm a directed acyclic graph D
that will be central in our discussion. Each relevant subproblem is a node s of D, and
represents a storage location for the solution value to this subproblem, which is typically
a boolean value for a decision problem or a positive integer for an optimization problem.
The solution value v(s) stored at s is computed, as specified by the DP algorithm, by
v(s) == f(v(s1),v(s2),...,v(sk)), for some specified function f and subproblems s, so, ...,
sg. In many cases the function f is a simple minimization or maximization, for example
over sums of certain pairs of these values. The digraph D will have a directed edge s;s
for each 1 <1 < k representing the fact that the value stored at s; is needed to compute
the value stored at s. In a DP algorithm the resulting digraph D should have no directed
cycles, i.e. it should be a dag, and it should have only a single sink, representing the full
problem instance. In many formulations of DP the sink appears as a last maximization or
minimization step over all entries in a certain range.

For the optimization (and decision) version of the problem, where we are simply asking
for the solution value for the overall problem, we simply return v(¢), the value stored in the
sink t of D. We define the space usage of this version of DP to be the maximum number of
subproblem solution values kept in memory in course of the algorithm. The solution value
to a subproblem s; must therefore remain in memory until solutions to all subproblems s
with an edge s;s have been computed. To arrive at the optimum space usage for a given DP
algorithm on an input giving a digraph D we thus define Space,,:(D) as the minimization of
space usage over all topological sorts of D. Since we throw out the solution to a subproblem
from memory as soon as allowed, the maximum number of storage locations, i.e. the space
usage, for a particular topological sort vy, vy, ..., v, is the maximum over all 1 <7 < m of
{v; : j < iAJvju, € E(D)Nk > i}|. Most textbooks on DP will mention this space-saving
technique for a DP optimization problem.

We now turn to the construction version of DP, which is the subject of the current
paper. In this version we need to find not only the value of an optimal solution, but also
some object that achieves this value. Most textbooks mentioning DP will describe the
following scheme for the construction version: first solve the optimization version, and
then retrace from the sink of the dag D back through nodes that gave rise to this optimal

value. However, hardly any of these textbooks will mention that this requires us to store
solutions to all subproblems, in case this subproblem is hit by the retracing, thus requiring
|V (D)| storage locations which is usually orders of magnitude higher than the Space,p (D)
required for the optimization version.

The only fast space efficient construction versions of a DP application that we have
found in the literature are for alignment problems in computational biology. Notably, a
1975 CACM-paper by Hirschberg [9] addresses this issue for the problem known as 'longest
common subsequence’, strongly related to ’string alignment’. The construction version is in
this case solved with the same asymptotic time and space complexity as the optimization
version. This result is based on a property of the problem which says that it can be
broken into two parts where one corresponds to viewing the strings in reverse order. By
combining the solutions to these two problems one finds a 'mid-way’ alignment point, and
can subsequently recurse on two sub-problems whose two digraphs have combined size half
of the original digraph. This technique has become famous in the field of computational
biology, and mentioned in textbooks, see e.g. [7], but is based on the problem-specific
property mentioned above, and cannot be surmised from the digraph D.

This explains why a discussion of space-efficient construction versions for DP is difficult
to carry out in a general setting, precisely because problem-specific properties may be
necessary to get the best results. In this paper we primarily discuss two DP case studies in
the field of graph problems: DP on a path decomposition and DP on a tree decomposition.
For a graph with small treewidth the DP on its associated tree decomposition will allow the
solution of various otherwise intractable graph problems, see e.g. [2, 6]. Various classes of
graphs have small treewidth, for example the control-flow graphs of goto-free C programs
have treewidth at most 6 [14, 5, 8]. Experiments and applications show that this is also
useful in a practical setting. The algorithm of Lauritzen et al [11] to solve the probabilistic
inference problem on probabilistic networks is the most commonly used algorithm for
this problem and uses DP on a tree decomposition. Koster et al [10] used DP on tree
decompositions to solve instances of frequency assignment problems. We show how to solve
the construction variants of these problems while using only a negligible (twice) amount
of more memory than for the optimization version, with a logarithmic factor increase in
running time. The following list compares our result to the trade-off between time and
space achievable by the previously best-known results.

pre-1998 | post-1998 | Our result
Time | O(n) O(n?) O(nlog,n)
Space n p <2logn 2p

Here Space is measured as the number of tables, each of size exponential in the treewidth
but independent of n, that need to be stored simultaneously in memory for construction
versions of dynamic programming on bounded treewidth graphs of n vertices. Since memory
use in turn influences the wall-clock runtime of the programs, Space is the more important
factor that we primarily focus on. The results quoted as pre-1998 and post-1998 are based
on taking the fastest and most space-efficient optimization algorithms available at these
dates, using the result of [3] that was presented in 1998, and turning these into construction

3

versions in a sensible way. The result of [3] provides us the minimum p such that one never
needs to store more than p tables in memory. Our algorithm uses only p tables but the size
of each table is doubled so Space is listed as 2p. Notice that the logarithmic factor log, n
in the time use of our result grows smaller as p grows larger.

In the last section of the paper we discuss how our observations can be applied to the
general case.

2 First Case Study: Dynamic Programming Using
Path Decompositions

We start our exposition by an example of performing dynamic programming on a graph of
bounded pathwidth, and describe our improved method in detail to ease its implementation
for a particular application. A path decomposition of a graph G = (V, E) is a sequence
X1, ..., X of subsets of V, called bags, such that forall 1 <4y < iy < i3 <t, X;;NX;, C X,,;
for all {v,w} € E, thereisan i, 1 <i <t, v,w € X;, and Uj<;<; X; = V. The width of a
path decomposition X7, ..., X; is maxj<;<;|X;| — 1, and the pathwidth of a graph is the
minimum width of a path decomposition.

It is well known that many problems have a linear or polynomial time algorithm when
restricted to graphs that have their pathwidth bounded by a constant, including many fa-
mous NP-complete graph problems. These algorithms use the DP paradigm. Going through
the path decomposition from bag 1 to bag t, a table for the current bag is computed, using
some ‘local information’, and the table for the preceding bag. The entries in a table for bag
1 generally express answers to subproblems for the graph induced by X; U---U X;, with
special attention to what happens with the vertices in X; in the solution at hand. Let us
mention that correctness of these algorithms rely on the fact that any bag X; is a separator
of the graph, but the specific details of these algorithms are not of great importance to the
exposition here.

We have a path decomposition X7, X5, ..., X; of an undirected graph G of pathwidth
k, where t is linear in |V(G)|. For simplicity we assume that | X;| = k41 foreach 1 <i <,
and that the tables to be filled are T1[1..p(k)], T3[1..p(k)], ..., T[1..p(k)]. Thus, T;[j] should
store the optimal value to a solution of the problem restricted to the graph induced by
nodes X7 U Xy U ---U X;, where the subgraph on nodes X; are restricted to behave in a
specified fashion as indicated by the table index j. The size p(k) of the tables depends on
the particular problem at hand, but for any problem which in general is NP-hard, it will
be exponential in k. In the optimization version of the dynamic programming algorithm
we keep only 2 tables in memory at any time, starting with tables 77 and 75, then T, and
T3, etc. In Figure 1 is a very simple example of a weighted graph G on n = 6 vertices
and its path decomposition of width 2, for which we want to solve the maximum weighted
independent set problem: In the 2-dimensional array below each column represents a table
associated with a bag X; of the path decomposition. In each bag we have ordered the
vertices it contains. The leftmost column indicates the 8 indices of each table, e.g. index

a/4 c/8 f/7

b/7 e/5 g/9

Figure 1: Example: graph G with tree decomposition

101 represents partial solutions where the first and third, but not the second, vertex in the
bag should belong to the independent set. Thus, the 101 row has the entry —oo whenever
the first and third vertex are adjacent, such as for the bag efg, since an independent set
cannot contain two neighboring nodes. Vertices have been ordered so that they maintain
the property of being first/second/third in every bag, note that this is always possible for
a path decomposition where every bag has the same size, but not always possible for a tree
decomposition. We have filled the tables with values as would be done by the optimization
version of dynamic programming, storing also for each value the index of the previous
column that gave rise to this value. If several such indices give the same value we just
picked one arbitrarily. After solving the optimization version (the forward direction), the
standard algorithm for the construction variant would then trace these pointers from the
optimal entry at index 110 in the last table, back to the first, hitting the entries indicated
by the * in those cells, giving the optimal solution {a,d, e, f} with weight 19. Note that
the sequence of dependency pointers, py, ps, ..., p; (100, 100, 100, 110, 110 in the example)
where T;[p;] contains an optimal value for the overall solution on input graph G, and the
value in T}[p;] was computed based on T;_1[p;_1], suffices to solve the construction variant.
However, the backwards tracing as described here requires that all 5 tables, with pointers,
are stored simultaneously.

abc dbc ebc efc efg efg w/ pointer to abc
000 | O 4/100 | 7/100 7/000 7/000 7/100
001 | 8 8/001 8/001 8/001 17/001 17/001
010 | 7 7/010 | 7/010 14/000 | 14/010 14/100
011 | —o0 —00 —00 —00 —00 —00
100 | 4* | 7/100* | 12/100* | 12/100 | 12/100 12/100
101 | —o0 | —00 13/001 | 13/101 —0 —00
110 | —o0 | —00 —00 19/100* | 19/110* 19/100
111 | —o0 —00 —00 —00 —00 —00

We now describe an improved construction version which is space efficient at the expense of

a logarithmic increase in running time. We will find pq, po, . ..

, p¢ while storing only 2 tables

with pointers at any time, as follows: first find p; and p, by computing in the forwards
direction while storing pointers to the table T} only, i.e. computing 7; with its pointers to
T7 based only on T;_; and its pointers to T;. The final table will then be as in the rightmost
column above, and we find p; = 100 and p5 = 110.

Subsequently, we call subroutine FIND-INDEX(1,t), where FIND-INDEX(q,r) for 1 <
q < r < t, based on the knowledge of p, and p,, computes p,4(—q)/2, the dependency
pointer for the table halfway between Tj, and T,. Since the only entry of table T}, needed
to compute an optimal solution is the one with index p,, and we do not need the actual
value of an optimal solution, it will suffice to initialize T,[p,] to 0 and all other entries of
T, to —oo (or +o0o for a minimization problem). We then perform the forward direction of
dynamic programming in the standard manner from 7; up to the halfway table T, _g) 2,
and from here on to 7, storing pointers to this halfway table.

In the array below we have illustrated this procedure for the call FIND-INDEX(1,5) for
the example, based on the knowledge that p; = 100 and p5 = 110. The result of this call is
the value p3 = 100 which we find in T5[ps]. For this example the 2 calls FIND-INDEX(1,3)
and FIND-INDEX(3,5) would subsequently compute the two remaining values p, and py.

abc | dbc | ebc efc efg

000 | —oco | O 3 3/000 | 3/000
001 | —oc0 | —00 | —c0 | —oo | 12/000
010 | —oco | —o0 | —oo | 10/000 | 10/000

011 | —o0 | —00 | —00 —00 —00
100 0 3 8 8/100 | 8/100
101 | —o0 | —00 | —00 —00 —00
110 | —o0 | —o0 | —oo | 15/100 | 15/100
111 | —oc0 | —00 | —00 —00 —00

In general, the call FIND-INDEX(q,r) takes time O(r — ¢) while storing 2 tables with
pointers, and computes a single optimal pointer. A balanced divide-and-conquer strategy
will therefore compute all pointers in time O(nlog, n) while storing 2 tables.

This technique works with many problems restricted to graphs with bounded pathwidth,
for instance for the construction variants of problems that can be formulated in (extended)
monadic second order logic.

Lemma 1 Let k be a constant, and let Q(S) be a monadic second order logic formula
with S a free vertexr or edge set variable. Each of the following problems can be solved
in O(nlogn) time with O(1) additional memory for graphs G, given together with a path
decomposition of width at most k: find a (vertex or edge) set S such that Q(S) holds in G;
find a set S such that |S| is minimum (maximum) over all sets such that Q(S) holds in G.

Similar results can be obtained for other types of problems, e.g., for cases where vertices
and/or edges have weights. The result can be strengthened however, as we will do in the
next section.

3 Second Case Study: Dynamic Programming Using
Tree Decompositions

The essence of the technique applied in the previous example, viewed in terms of the
directed path Xy, Xs,..., X; of bags, was that we found a ’small and good’ separator of
this directed path (consisting of the table at the half-point). We thus managed to solve the
construction version by breaking this problem in two halves recursively. In our next case
study, DP on graphs of bounded treewidth, the situation is generalized to graphs with a
tree structure, but the general idea remains the same, find a small and good separator,
and break the problem into the parts that result from removing the separator.

A tree decomposition of a graph G = (V, E) is a pair (T, X) with T' = (I, F) a tree,
and X = {X; | i € I} a family of subsets of V, such that for all nodes iy, iy, i3 € I, if
iy is on the path from 4y to i3 in 7', then X; N X;, C X,,; for all {v,w} € E, there is
an ¢ € [with v,w € X;, and U;c; X; = V. We call the sets X; the bags. The width of
(T, X) is max;es | X;| — 1, and the treewidth of a graph G is the minimum width of a tree
decomposition of GG. Like pathwidth, treewidth has nice algorithmic properties, and allows
many problems that are hard on general graphs to be solved in linear or polynomial time
when restricted to graphs of bounded treewidth; see e.g., [2, 6, 10]. These algorithms are
again usually of dynamic programming type and have the following form. A node of T is
chosen as root. For each node 7, we compute a table. These tables are computed in bottom
up order: to compute a table, we use the information of the tables of the children, plus some
‘local information’ about the subgraph induced by bag X;. The decision problem can be
solved once the table of the root is known. For the construction problem, a corresponding
solution can be constructed by going downwards from root to leaves using the information
in the tables. We consider now one illustrative example.

Assume we have a tree decomposition (7, X) of a graph G of treewidth k. For an
optimization version of DP, for example answering the question "What is the size of the
largest independent set in G7’, the information contained in the table at a child node of
T is superfluous once the table of its parent has been updated. Since the size of tables
is exponential in k, it is in practice very important to carefully re-utilize these memory
locations in order to minimize time-consuming I/O to external memory. A simple linear-
time algorithm will in a pre-processing step find a bottom-up traversal of T" that minimizes
the number of tables stored at any time during the dynamic programming. This number
lies between the pathwidth of 7" and twice the pathwidth of 7" [3].

The construction variant of DP on tree decompositions, of the form 'Find a largest
independent set in G’, can be solved in the standard manner, by first performing the
forward’ direction that finds an optimal value, and then tracing an optimal entry in the
final table (the root) back through those entries in earlier tables that gave rise to it (down
to the leaves). However, since tables are no longer superfluous, the number of tables to
be stored under this scheme is linear in the size of GG. This idea forms the pre-1998 entry
in the comparison given in the Introduction and is clearly impractical. The post-1998
entry is based on the result of [3] (presented first at SWAT’98) which showed that the

optimization version could be solved using at most p < 2logn tables, and repeats this
optimization version once for each of the n bags. Our current aim is to solve the construction
variant as fast as possible under the practically oriented constraint that we store only an
asymptotically optimal number of tables, i.e. linear in the pathwidth of T'.

We use a method similar to that of the previous section. For the best tradeoft, we split
the tree in several parts, using the following simple lemma.

Lemma 2 For any q > 0 and every tree T on n vertices there is a set S C V(T') with
|S| < 2971 — 1 such that every connected component of T — S is of size at most [n/27].

Proof. We proceed by induction on q. It is well known that every tree T on n vertices has a
centroid, i.e. a vertex v such that each connected component of T'—v is of size < [n/2]. Let
g > 1 and suppose that for all [< ¢ the lemma holds. Then there is a set S containing at
most 2971 — 1 vertices such that every connected component of T'— S has size < [n/27]. At
most 277! of these components have size > [n/27"!]. Each of these large components has
size < [n/27] and they have themselves a centroid. Thus by removing at most 27" such
centroid vertices one can split all large components into components of size < [n/29%1].
The number of vertices one needs to remove is < |S]+ 29T < 29+ 4 241 1 =202 _] u

This result allows us to choose the factor ¢ specifying the size of components in the
recursive step. This means that we can choose a function f : N — N that will guide
the running time of the divide-and-conquer strategy, as follows. Find the smallest ¢ such
that f(n) < 27. Pick the O(27) special vertices guaranteed by Lemma 2, do the dynamic
programming starting from the leaves of 1" and when reaching a special vertex x start
recording pointers to the table of z until reaching the next special vertex y on the path
to the root. Store all pointers from y to x until done with this round, and start recording
pointers now to y. When done with this round the stored pointers will give the optimal
indices for all these special vertices. In the recursion all components are small, and simply
use the trick of pre-initializing the optimal indices in the old special vertices to 0 and its
other indices to +/- 0o. Note that the old special vertices are now leaves and the process
can be repeated. This gives us the following result.

Theorem 1 Let k be a constant, let f : N — N be a function, and let Q(S) be a monadic
second order logic formula with S a free vertex or edge set variable. Each of the following
problems can be solved in O(nlogy) n) time with O(f(n)+p) additional memory for graphs
G, given together with a tree decomposition (T, X) of width at most k, with p the pathwidth
of T: find a (vertex or edge) set S such that Q(S) holds in G; find a set S such that |S| is

minimum (mazimum) over all sets such that Q(S) holds in G.

We remark that the result also holds for other problems, as long as the algorithm on
the tree decomposition has the form sketched above. If the maximum table size is g(k,n),
k the treewidth and n the number of vertices, then the time for the construction version is
O(nlogy(, n), and the memory use is O(g(k,n) - (f(n) + p)), p the pathwidth of the tree
T.

Note that by the results from [3], the maximum number of tables that the decision
algorithm needs to have stored in memory is ©(p).

Corollary 3 Setting f(n) to the pathwidth p of T, we solve the construction version in
time O(nlog,n), using about twice as much memory as for the optimization version.

The factor two for the memory derives from the need to store the indices to previous
tables, so in fact the number of tables remain the same, but each table index stores now two
pieces of information instead of just one. This corollary is nice since when we need much
memory for the optimization/decision version, due to the tree in the tree decomposition
having high pathwidth, we get a smaller extra factor log,n for the construction version.

4 Generalizing from the Case Studies

Let us now look at the general case of DP. Described intuitively, the construction version
of DP is usually solved by first solving the optimization version by moving in a forward
direction in the associated DP dag D, and then retracing from the sink of the dag D
back through nodes that gave rise to the optimal value. We give an inductive definition
of the nodes in the ’optimal subgraph’ retraced in this second step: It contains the sink
node t of D. Inductively, if it contains a non-source node whose value was computed by
f(v(s1),v(s2), ..., v(sk)), then it will also contain at least one of sq, s, ..., Sg, but precisely
how many of them it contains depends on f. For example, if f is simply a minimization
then we may choose arbitrarily one of sy, s, ..., ;. whose solution is smallest, or if f is min-
imization over sums of certain pairs, then we choose a corresponding pair from sy, s9, ..., S
with smallest sum and include both of them. We note that in the DP solutions to longest
common subsequence and other sequence alignment problems, a single node from s, ..., s
is chosen at each step, and the nodes in the 'optimal subgraph’ thus form a path.

In the path decomposition example, there would be a node of the dag D for each
entry T;[j] of a table, with an arc from T;[j] to T;;1[j'] for some j° > j if the entry at
j" was computed by an optimization over a range of entries that included j. Usually, the
optimization is a maximization or minimization over single entries, and not e.g. sums of
pairs of entries, but the specific arcs will vary from problem to problem. In addition we
would have a sink node ¢ with incoming arcs from each node associated with the last table.
In the case that the optimization for every table entry is over single entries, the optimal
subgraph is again a path. But of course, the digraph D itself is not a path. However,
the path decomposition imposed a path structure on D, of width k, and our technique
for achieving space usage of 2 tables at the expense of an extra logarithmic factor in the
runtime relied heavily on this path structure. In the tree decomposition example, we had a
similar situation where although the DP dag D is not a tree it had tree-structure imposed
on it by a tree decomposition, and our space-efficient technique relied on this tree-structure.

What can we learn in general from the two case studies? The core of the general
technique is to find a small and good separator of the dag D, and break the problem
into the parts that result from removing the separator. The path decomposition (and

9

tree decomposition) (7, X) of G was computed from the graph G, and the resulting DP
dag D1 x) was then defined, based on the problem at hand and on (7, .X). The clue to
our space-saving techniques was that D(r xy inherited the path (or tree) structure. In the
general DP case we are handed the dag D without recourse to a path or tree decomposition.
How then to apply the same technique of imposing a path (or tree) structure on the dag
D?

The right theoretical tool here is the concept of strong directed treewidth. Strong
treewidth, as defined by Seese in [12], is related to a strong tree decomposition. These
differ from a tree decomposition in that each vertex appears in exactly one bag (the bags
are thus a partitioning of the graph vertices), and edges of the graph are now allowed to
go between vertices in adjacent bags, and not necessarily in the same bag. Since our dag
is directed we do not allow the bag containing ¢ to be the child of the bag containing s if
we have an edge from vertex s to ¢, thus no edges point downwards. As usual, the goal is
to minimize the size of the largest bag. With this definition, the tree structure naturally
induced by T on the digraph D1 x) is a strong tree decomposition of D7 x). Thus, to
generalize our technique we use a good strong directed tree decomposition of the digraph
D.

The digraph D is oftentimes too large to be kept in memory, and the practical approach
to finding fast construction variants in this case must rely on problem-specific properties.
Here it is helpful to note that the digraph D for a DP algorithm is not some arbitrary
digraph, but arises from some fairly clear structural aspects of the problem at hand, by
defining the value of an optimal solution recursively in terms of the optimal solutions to
subproblems. This (simple) recursive definition will also define the structure of the digraph
D, and a starting point is to look for separator theorems like our Lemma 2 for graphs with
this structure. Such separator theorems are well-known for various classes of graphs, like
planar graphs, and in particular for most graph classes with a recursive structural definition.
On a case-by-case basis one can then, depending on the separator theorems available for
the particular digraph, develop fast and space-efficient construction algorithms similar to
the ones given here.

Acknowledgement

Thanks to Fedor Fomin for fruitful discussions on this topic.

References

[1] J. Alber, H. L. Bodlaender, H. Fernau, T.Kloks, R. Niedermeier: Fixed Parameter
Algorithms for Dominating Set and related problems on Planar Graphs. Algorithmica
Vol. 33, 2002, 461-493.

[2] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable graphs.
J. Algorithms, 12, 308-340 (1991).

10

[3] B. Aspvall, A. Proskurowski, J. A. Telle, Memory requirements for table computations
in partial k-tree algorithms, Algorithmica, Special issue on Treewidth, Graph Minors
and Algorithms, H. Bodlaender eds., Vol. 27, Number 3, 2000, 382-394.

[4] H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput., 25, 1305-1317 (1996).

[5] H. Bodlaender, J. Gustedt, J. A. Telle, Linear-time register allocation for a fixed number
of registers, Proceedings SODA’98, 574-583, San Fransisco, USA.

6] H. L. Bodlaender, Treewidth: Algorithmic Techniques and Results. Proceedings
MFCS’97, LNCS 1295:29-36.

[7] D. Gusfield, Algorithms on strings, trees, and sequences, Cambridge University Press
(1997).

[8] J. Gustedt, O. Mehle, J. A. Telle, The Treewidth of Java Programs, Proceedings
ALENEX’02 — 4th Workshop on Algorithm Engineering and Experiments, San Fran-
cisco, January 4-5, 2002, LNCS 2409: 86-97.

[9] D.S. Hirschberg, A linear space algorithm for computing longest common subsequences,
Commun. Assoc. Comput.Mach., 18, 341-343 (1975).

[10] A. M. C. A. Koster, S. P. M. van Hoesel, and A. W. J. Kolen. Solving partial constraint
satisfaction problems with tree decomposition. Networks, 40, 170-180 (2002).

[11] S.J.Lauritzen, D.J.Spiegelhalter, Local computations with probabilities on graphical
structures and their application to expert systems, The Journal of The Royal Statistical
Society. Series B (Methodological). 50:157-224, 1988.

[12] D. Seese. Tree-partite graphs and the complexity of algorithms. In L. Budach, edi-
tor, Proc. 1985 Int. Conf. on Fundamentals of Computation Theory, Lecture Notes in
Computer Science 199, pages 412421, Berlin, 1985. Springer Verlag.

[13] D. Seese, F. Schlottmann, Logical Ways to Reduce Complexity by Avoiding Grids: A
Survey on Results and Problems, manuscript (2002)

[14] M. Thorup, Structured Programs have Small Tree-Width and Good Register Alloca-
tion, Information and Computation 142, 159-181, 1998.

11

