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Abstract. The contraction degeneracy of a graph G is the maximum minimum degree of G′

over all minors G′ of G. The corresponding decision problem is known to be NP -complete.
In this paper, we present a dynamic programming approach for computing the contraction
degeneracy of cographs.

1 Introduction

Contracting an edge in a graph is the operation that introduces a new vertex and new edges such
that the new vertex is adjacent to all the neighbours of the endpoints of the contracted edge, and
then we delete the endpoints of the contracted edge and all their incident edges. Contracting edges
has been shown to be of great use for obtaining new lower bound heuristics for treewidth [2]. The
new parameter contraction degeneracy arose from this research. However, it is an interesting topic
in its own right and not only as a treewidth lower bound. The minimum degree of a graph is a lower
bound for its treewidth (see [9, 1]), as is the maximum minimum degree (also called degeneracy)
over all subgraphs [8]. Instead of deleting vertices, we can use edge contraction, which leads to
contraction degeneracy first defined in [2]. The according decision problem is NP -complete [2].
Thus, it is interesting to look for special graph classes where the contraction degeneracy can be
computed in polynomial time. So far, little is known about this. In this paper, we consider the
contraction degeneracy problem for the class of cographs. It should be noted that the treewidth of
cographs is polynomial time computable [3], and thus our algorithm, while of independent interest,
is not necessary to obtain lower bounds for treewidth of given cographs.

Cographs (also called complement reducible graphs) are graphs with a special structure. They
are perfect and form a proper subset of the permutation graphs. Cographs can be defined recur-
sively using two operations (disjoint union and product, see Section 2.3) on singletons. Another
characterisation is that cographs are exactly those graphs that do not contain a P4 as an induced
subgraph. The recursive definition enables a cograph being represented by an expression, and in
turn, being represented by a tree, from which we can derive the cotree of the graph [5]. Very often,
a dynamic programming approach can be applied to such a cotree, enabling efficient algorithms
on cographs for problems that are NP -hard on general graphs.

The paper is organised as follows. In Section 2, we fix some terminology and give more detailed
information about edge contractions (Section 2.1), the contraction degeneracy (Section 2.2) and
cographs (Section 2.3). Section 3 presents our dynamic programming method. The lemmas showing
the correctness of our approach are given in Section 3.1 and 3.2, followed by the main result in
Section 3.3. The paper is closed with some remarks in Section 4.

2 Preliminaries

Throughout the paper G = (V,E) denotes a simple undirected graph. Most of our terminology is
standard graph theory/algorithm terminology. The open neighbourhood NG(v) or simply N(v) of
a vertex v ∈ V is the set of vertices adjacent to v in G. As usual, the degree in G of vertex v is
dG(v) or simply d(v), and we have d(v) = |N(v)|. N(S) for S ⊆ V denotes the open neighbourhood
of S, i.e. N(S) =

⋃
s∈S N(s) \ S. We denote the minimum degree of a vertex in G:

δ(G) := min
v∈V

d(v)
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After deleting vertices of a graph and their incident edges, we get an induced subgraph. A subgraph
is obtained, if we additionally allow deletion of edges. If we furthermore allow edge-contractions
(see Section 2.1), we get a minor. We explicitely exclude the null graph (the empty graph on 0
vertices), as a subgraph or minor of a graph. It is known that the treewidth of a minor of G is at
most the treewidth of G (see e.g. [1]). A vertex v is universal in G, if v is adjacent to each vertex
w ∈ V ,w 6= v.

2.1 Edge Contraction

A more formal approach to edge contractions as well as basic lemmas, which are summarised here,
can be found in [10]. Contracting edge e = {u, v} in the graph G = (V,E), denoted as G/e, is
the operation that introduces a new vertex ae and new edges such that ae is adjacent to all the
neighbours of u and v and delete vertices u and v and all edges incident to u or v:

G/e := (V ′, E′), where

V ′ = {ae} ∪ V \ {u, v}
E′ = { {ae, x} | x ∈ N({u, v})} ∪ E \ {e′ ∈ E | e′ ∩ e 6= ∅}

Contracting all edges of a cycle in a graph means that the last contraction is unnecessary. Hence,
a contraction-set is a cycle free set E ′ ⊆ E(G) of edges. Let be e, f ∈ E. Contracting edges
is commutative, i.e. (G/e)/f and (G/f)/e are isomorphic graphs. For a contraction-set E ′ =
{e1, e2, . . . , ep}, we define G/E′ := G/e1/e2/ . . . /ep. A contraction H of G is a graph such that
there exists a contraction-set E ′ with: H = G/E′. An edge contraction might decrease the degree
of a vertex, but it can never decrease it by more than one.

Note that after each single edge contraction the names of the vertices are updated in the graph.
Hence, for two adjacent edges e = {u, v} and f = {v, w}, edge f will be different after contracting
edge e, namely in G/e we have f = {ae, w}. Using the old names of vertices and edges is formally
not correct. However, it is unambiguous which new vertex or edge is meant. Furthermore, using the
old names might increase understandability and readability. Thus, we can agree on f representing
the same edge in G and in G/e. The same applies also to vertices.

2.2 Contraction Degeneracy

In this section, we define the parameter δC – the contraction degeneracy. A few basic statements
on the contraction degeneracy can be found in [10]. Heuristics and experimental evaluations of
these for the contraction degeneracy are given in [2].

The degeneracy δD of a graph is the maximum over all its subgraphs of the minimum degree
of the subgraph.

δD(G) := max
G′
{δ(G′) | G′ is a subgraph of G}

The parameter δD is known to be a lower bound for treewidth [8]. Instead of deleting vertices
and edges while recording the minimum degree of the occurring subgraphs, contracting edges
experimentally proved to be a very good idea for better treewidth lower bounds [2, 7]. Inspired by
this lower bound, the parameter δC and the according decision problem were defined.

Definition 1. The contraction degeneracy δC of a graph G is defined as follows:

δC(G) := max
G′
{δ(G′) | G′ is a minor of G}

Note that δC(G) is defined as the maximum over all minors G′ of G of the minimum degree of
G′. Using contractions instead of minors in this definition does not lead to an equivalent notion,
unless the considered graph G is connected. If G is not connected, it might be necessary to delete
one or more connected components, to obtain a minor G′ of G with maximum minimum degree.
The corresponding decision problem is formulated as usual:
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Problem: Contraction Degeneracy
Instance: Graph G = (V,E) and integer k ≥ 0.
Question: Is the contraction degeneracy of G at least k?

Contraction Degeneracy is NP -complete, even for bipartite graphs [2]. Therefore, it is in-
teresting to look at polynomial time computable special cases. Hence, in Section 3 of this paper,
we look at contraction degeneracy for cographs.

2.3 Cographs

Cographs can be represented by a tree, enabling dynamic programming approaches on the tree.
There are several equivalent definitions of cographs. One is that cographs are exactly those graphs
that do not contain a P4 (a path with four vertices) as an induced subgraph [5]. An alternate,
equivalent definition requires two operations.

Definition 2. Let be given two graphs G1 = (V1, E1) and G2 = (V2, E2), V1 ∩ V2 = ∅.

– The disjoint union of G1 and G2 is
G1 ∪G2 = (V1 ∪ V2, E1 ∪ E2).

– The product of G1 and G2 is
G1 ×G2 = (V1 ∪ V2, E1 ∪ E2 ∪ {{v1, v2} : v1 ∈ V1 ∧ v2 ∈ V2}).

Note that the operations ∪ and × are commutative and associative. Hence, the result of a sequence
of equal operations is well defined, and such a sequence can easily be converted into a tree structure
using only the binary versions of these operations.

Definition 3. A graph G is a cograph if and only if one of the following holds:

– |V | = 1

– G = G1 ∪G2 ∪ ... ∪Gp for cographs G1, ..., Gp.

– G = G1 ×G2 × ...×Gp for cographs G1, ..., Gp.

A consequence from this definition is that a cograph can be represented as an expression using
the operations ∪ and × on singletons. Such an expression can be represented by a tree from which
we can derive the cotree of the cograph.

The cotree TG of G is a labelled tree. Leaves of the cotree are in a one-to-one correspondence
with the vertices of the graph. Internal nodes of the cotree are labelled with either ‘0’ or ‘1’. To
each node of the cotree, we can associate a cograph in the following manner: Each leaf of the cotree
represents a graph with a single vertex, hence a cograph. A 0-node represents a cograph that is the
disjoint union of the cographs corresponding to the children of the 0-node, and a 1-node represents
a cograph that is the product of the cographs corresponding to the children of that 1-node. Note
that there is an edge between two vertices v and w if and only if the lowest common ancestor of
v and w in the cotree is a 1-node. There are linear time algorithms for recognising cographs and
building the cotree [6, 4].

In Definition 3, we can restrict p to be 2. As a consequence, a cotree is a binary tree. This is
very helpful for formulating dynamic programming algorithms on trees. The size of such a binary
cotree TG of cograph G is linear in the size of G, because TG has exactly n = |V (G)| leaves,
and after at most O(n) nonempty disjoint union or product operations, we obtain the graph G.
Therefore, we have at most O(n) internal nodes in TG. In the following, we assume that the cotree
is a binary cotree, i.e. ‘cotree’ refers to ‘binary cotree’. Clearly, the contraction degeneracy of a
disconnected graph is the minimum contraction degeneracy of its connected components. Thus,
we may assume that the given cograph is connected, and hence, the root of the cotree is a 1-node.
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3 Contraction Degeneracy on Cographs

In this section, we present a dynamic programming method for computing the contraction de-
generacy of a cograph G. We assume that we are given G with a binary cotree T (otherwise, a
cotree can be build in linear time [6, 4], from which a binary cotree can be easily constructed). The
special structure of a binary cotree makes it easier to present a dynamic programming algorithm.
As already described earlier, cotrees have two kind of internal nodes: 1-nodes and 0-nodes. Every
node i represents a subgraph Gi of the input graph G. Each internal node i of a binary cotree has
exactly two children j1 and j2. When considering a 0-node i of a cotree, the graph Gi is simply
the disjoint union of the two graphs Gj1 and Gj2 . Consequently, all edges that can be contracted
in Gi can either be contracted in Gj1 or in Gj2 . However, if i is an 1-node, new edges are created
between vertices of Gj1 and vertices of Gj2 . Hence, not all edges that can be contracted in Gi can
be contracted in Gj1 or in Gj2 . Consider some fixed internal node i of T with children j1 and j2.
We use the following terminology:

– Gi is the graph corresponding to node i, i.e. Gi = Gj1 ∪Gj2 if i is a 0-node, and Gi = Gj1×Gj2
if i is a 1-node.

– Vi = V (Gi), Vj1 = V (Gj1 ), Vj2 = V (Gj2).
– Ei = E(Gi), Ej1 = E(Gj1 ), Ej2 = E(Gj2).
– ni = |Vi|.
– e ∈ Ei is called a cross edge if i is a 1-node and e 6∈ Ej1 ∪ Ej2 .
– G \ V ′ = G[V \ V ′] for a graph G = (V,E) and V ′ ⊆ V .

The following lemma is easy to see, but it is an important part of the correctness proof of our
approach.

Lemma 1. Contracting a cross edge of Gi creates a universal vertex in Gi.

Proof. Given a cross edge e = {u, v}, u ∈ Vj1 and v ∈ Vj2 , we know by definition of a 1-node, that
u is adjacent to all w ∈ Vj2 in Gi. Also, v is adjacent to all w ∈ Vj1 in Gi. When contracting e, we
get a vertex, adjacent to all w ∈ Vi \ e in Gi. ut

In our dynamic programming approach, we associate to each node i, i.e. to each subgraph Gi,
a function

Fi : IN × IN −→ IN

For nonnegative integers x and y with x + y ≤ ni, x ≤ ni − 1, the function Fi is defined in the
following way:

Fi(x, y) = max{δ(H) | H can be obtained from Gi by

contracting the edges of a contraction-set of size x

and then deleting y vertices and their incident edges }
A table Ti with O(n2

i ) entries can be used to store the values of Fi. The table contains a tuple for
every possible x-y-combination. Each tuple consists of three integers (x, y, z), with z = Fi(x, y).

The motivation behind storing the maximum minimum degree after x edge contractions and
y vertex deletions is as follows. When considering a graph Gi, we can contract edges in E(Gi) to
increase the minimum degree. We also must consider the possibility that in order to obtain the
maximum minimum degree of G, i.e. to solve the contraction degeneracy problem on G, it might
be necessary to contract some edges not in E(Gi) but in E(Gh) where h is a 1-node in the cotree
that is on the path from i to the root r of the cotree. Deleting a vertex can decrease the minimum
degree. However, we do not delete vertices from the graph Gi, we only ‘deactivate’ them, such
that they have no influence on the degrees at this moment. In a later stage, deactivated vertices
might be used for contracting cross edges, which results in universal vertices (see Lemma 1). The
consequences of the introduction of a universal vertex are easily computable, since the degree of
each vertex is increased by one. That is the reason why we first ‘deactivate’ some vertices and
later using them again (not explicitely). In the next lemma, we see that we indeed can compute
the contraction degeneracy of a cograph by using function Fi.
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Lemma 2. Given the function Fi defined above for node i of a binary cotree, we can solve the
contraction degeneracy problem for Gi in O(ni) time.

Proof. To solve the problem on Gi means that we can only use contractions of edges in Gi to in-
crease the minimum degree, and we must not delete any vertices. For every number x of contracted
edges in Gi, and every number y of deleted vertices, we have the maximum minimum degree. For
the contraction degeneracy problem, we only need these values with y = 0. Clearly, we have:

δC(Gi) = max
x=0,...,ni−1

Fi(x, 0)

ut
Hence, if we have the function Fr for the root r of the cotree, i.e. Gr = G, we can compute

the contraction degeneracy of G in O(n) additional time. Now we have seen that the functions Fi
are sufficient to solve the problem, we look at how to compute these for each node i, using the
functions for the children of i. As giving such a function for a leaf node i is trivial (there are just
two values Fi(0, 0) = 0 and Fi(0, 1) =∞), we describe the methods to compute the values of these
functions for 0-nodes and for 1-nodes.

3.1 A Recurrence Relation for 0-nodes

In this section, we give the recurrence relation for a 0-node i with children j1 and j2, i.e. we present
and prove the correctness of the recursive formula to compute Fi using the already computed values
of functions Fj1 and Fj2 .

Lemma 3. Let i be a 0-node with children j1 and j2, x and y nonnegative integers with x+y ≤ ni,
x ≤ ni − 1. Then, we have:

Fi(x, y) = max { min(Fj1 (x1, y1), Fj2(x2, y2)) |
x1, x2, y1, y2 ∈ IN ∧ x1 + x2 = x ∧ y1 + y2 = y ∧
x1 ≤ nj1 − 1 ∧ x2 ≤ nj2 − 1 }

Proof. Let x and y be fixed nonnegative integers with x+ y ≤ ni, x ≤ ni − 1. First, we will prove
that Fi(x, y) is at least the stated expression.

Claim. Let x1, y1, x2, and y2 be fixed integers with x1 + x2 = x, y1 + y2 = y, x1 ≤ nj1 − 1 and
x2 ≤ nj2 − 1. Then Fi(x, y) ≥ min(Fj1 (x1, y1), Fj2 (x2, y2)).

Proof. Let E1 be the contraction-set with |E1| = x1, and let V1 be the vertex set with |V1| = y1,
such that: Fj1 (x1, y1) = δ((Gj1/E1) \ V1). E2 and V2 are defined similarly.

Now we can contract in Gi the contraction-set E1 ∪ E2, and then delete all vertices in V1 ∪
V2. Since Fi(x, y) is defined to be a maximum value, and (Gi/(E1 ∪ E2) \ (V1 ∪ V2) is a pos-
sible minor (see the definition of Fi), we have: Fi(x, y) ≥ δ((Gi/(E1 ∪ E2)) \ (V1 ∪ V2)) =
min(Fj1 (x1, y1), Fj2(x2, y2)). �
As the claim holds for all nonnegative integers x1, y1, x2, and y2 with x1 + x2 = x, y1 + y2 = y,
x1 ≤ nj1 − 1 and x2 ≤ nj2 − 1, we have:

Fi(x, y) ≥ max { min(Fj1 (x1, y1), Fj2 (x2, y2)) |
x1, x2, y1, y2 ∈ IN ∧ x1 + x2 = x ∧ y1 + y2 = y

x1 ≤ nj1 − 1 ∧ x2 ≤ nj2 − 1 }
Now we show that Fi(x, y) is at most the stated expression. Consider a contraction-set E ′ ⊆ E

with |E′| = x, and a vertex set V ′ ⊆ V with |V ′| = y, such that

Fi(x, y) = δ((Gi/E
′) \ V ′)

Note that i is a 0-node, and hence, each edge in Ei belongs to Ej1 or Ej2 . E′ and V ′ can be
partitioned in the following way:
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E1 := Ej1 ∩ E′ E2 := Ej2 ∩ E′ V1 := Vj1 ∩ V ′ V2 := Vj2 ∩ V ′
x1 := |E1| x2 := |E2| y1 := |V1| y2 := |V2|

Claim. It holds: x1 + x2 = x, y1 + y2 = y, x1 ≤ nj1 − 1 and x2 ≤ nj2 − 1.

Proof. From the partition of E ′ and V ′ directly follows x1 + x2 = x and y1 + y2 = y. Each
contraction-set is a forest, and hence, each contraction-set has at most n− 1 edges, where n is the
number of vertices in the considered graph. E1 is a contraction-set, since E1 ⊆ E′. Therefore, E1

is a contraction-set for Gj1 . Thus, x1 ≤ nj1 − 1 and x2 ≤ nj2 − 1. �

We have Gi = Gj1 ∪ Gj2 and by definition of E1, E2, V1 and V2, the following is easy to see.
(Gi/E

′) \ V ′ = (Gj1/E1) \ V1 ∪ (Gj2/E2) \ V2, and therefore, we have:

Fi(x, y) = δ((Gi/E
′) \ V ′) = min(δ((Gj1/E1) \ V1), δ((Gj2/E2) \ V2))

So, Fi(x, y) ≤ δ((Gj1/E1) \ V1) ≤ Fj1 (x1, y1). Similarly, Fi(x, y) ≤ Fj2(x2, y2), and hence,
Fi(x, y) ≤ min(Fj1(x1, y1), Fj2 (x2, y2)). ut

3.2 A Recurrence Relation for 1-Nodes

This section is devoted to the recurrence relation for a 1-node i with children j1 and j2. However,
before we present and prove the correctness of the recursive formula to compute Fi (using the
already computed values of functions Fj1 and Fj2 ), we introduce a modified version F ′i of Fi.
The function F ′i is defined especially for 1-nodes. The advantage is that it is easier and faster to
compute. Later, we will show that we can compute Fi using function F ′i . Let i be a 1-node with
associated graph Gi = (Vi, Ei), and let Ec ⊆ Ei be the set of cross edges of Gi.

F ′i : IN × IN −→ IN

For nonnegative integers x and y with x+ y ≤ ni and x ≤ ni− 1, the function F ′i is defined in the
following way:

F ′i (x, y) = max{δ(H) | H can be obtained from Gi by

contracting the edges of a contraction-set E ′ of size x

and then deleting y vertices and their incident edges,

where ∀e, f ∈ Ec ∩ E′ : e ∩ f = ∅ }

The last requirement in the definition of F ′i says that all cross edges in E ′ are pairwise non-
adjacent. Hence, every cross edge in E ′ creates a unique universal vertex. We first give a number
of lemmas which will be used later. For Lemmas 4, 5, and 6, suppose the following is given. The
graph Gi = Gj1 ×Gj2 is the product of Gj1 and Gj2 . Furthermore, let be given contraction-sets
E′ ⊆ Ei, |E′| = x, E1 ⊆ Ej1 and E2 ⊆ Ej2 , vertex sets V ′ ⊆ Vi, |V ′| = y, V1 ⊆ Vj1 , V2 ⊆ Vj2 , with
E1 = E′ ∩Ej1 , |E1| = x1, E2 = E′ ∩Ej2 , |E2| = x2, E∗ = E′ \ (E1 ∪E2), |E∗| = x∗, and E∗ does
not contain any two adjacent edges, i.e. ∀e, f ∈ E∗ : e∩ f = ∅. Furthermore, let be V ∗ =

⋃
e∈E∗ e,

V1 = (Vj1 ∩ V ′) ∪ V ∗, |V1| = y1, V2 = (Vj2 ∩ V ′) ∪ V ∗, |V2| = y2, and y1 ≥ x∗, y2 ≥ x∗. Note that
E∗ is the set of cross edges that is contracted, and V ∗ is the set of endpoints of edges in E∗.

Lemma 4. Each of the following holds:

1. |V (Gi/E
′ \ V ′)| = ni − x− y.

2. x+ y = ni =⇒ Fi(x, y) =∞.
3. x+ y < ni =⇒ Fi(x, y) < ni − x− y.

Proof. (1.) Note that Gi has ni vertices. Since E′ is a contraction-set, every contraction of an edge
in E′ results in a decrease of the number of vertices by one. Hence, |V (Gi/E

′)| = ni−x. Now, we
have to delete y vertices in Gi/E

′. Clearly, |V (Gi/E
′ \ V ′)| = ni − x− y.
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(2.) From (1.), we can conclude that Gi/E
′ \ V ′ is the null graph (the empty graph with 0

vertices). Hence, the minimum degree of a vertex over an empty vertex set is the minimum of an
empty set of integers, i.e. it is ∞.

(3.) Since Gi/E
′ \ V ′ has ni − x − y vertices, the maximum degree of a vertex in Gi/E

′ \ V ′
is at most ni − x − y − 1. As this holds for every E ′ and V ′ with |E′| = x, |V ′| = y, we have
Fi(x, y) ≤ ni − x− y − 1. ut

Note that we explicitely excluded the null graph as a minor and as a subgraph of a graph.
However, we will use the minimum degree of the null graph in our recurrence relations, i.e. we
need statement (2.) of Lemma 4.

Lemma 5. Let v1 ∈ V (Gj1/E1 \ V1). Then we have:

dGi/E′\V ′(v1) = dGj1/E1\V1
(v1) + nj2 − x2 − y2 + x∗

Proof. Since E1 and V1 only change the internal structure and number of vertices in Gj1 , we
have: d(Gj1×Gj2 )/E1\V1

(v1) = dGj1/E1\V1
(v1) + nj2 . With the same argument that E2 and V2 only

affect Gj2 , we have: d(Gj1×Gj2 )/(E1∪E2)\(V1∪V2)(v1) = dGj1/E1\V1
(v1) + nj2 − x2 − y2 (see (1.) in

Lemma 4). However, instead of deleting all vertices in V1 ∪ V2, we contract x∗ non-adjacent edges
with one endpoint in V1 and the other endpoint in V2, i.e. we contract all cross edges in E∗. It is
easy to see that this results in x∗ additional universal vertices (see Lemma 1). Hence, we have:

d(Gj1×Gj2 )/(E1∪E2∪E∗)\[(V1∪V2)\V ∗](v1) = dGj1/E1\V1
(v1) + nj2 − x2 − y2 + x∗

ut

Lemma 6. Let v1, v2 ∈ V (Gj1/E1 \ V1). Then we have:

dGj1/E1\V1
(v1) ≤ dGj1/E1\V1

(v2)⇐⇒ dGi/E′\V ′(v1) ≤ dGi/E′\V ′(v2)

Proof. This follows directly from Lemma 5. ut

Lemma 7. If x+ y = ni, then F ′i (x, y) =∞.

Proof. This is similar to Lemma 4(2). ut

Now in Lemmas 8 and 9, we give the recurrence relation for 1-nodes.

Lemma 8. Let i be a 1-node with children j1 and j2. Let x and y be nonnegative integers with
x+ y ≤ ni, x ≤ ni − 1. Then, we have:

F ′i (x, y) = max{ min( Fj1 (x1, y1) + nj2 − x2 − y2 + x∗,

Fj2 (x2, y2) + nj1 − x1 − y1 + x∗ ,

ni − x− y − 1) |
x1, x2, y1, y2, x

∗ ∈ IN ∧
x1 + x2 + x∗ = x ∧ y1 + y2 = y + 2 · x∗ ∧
y1 ≥ x∗ ∧ y2 ≥ x∗ ∧
x1 + y1 ≤ nj1 ∧ x2 + y2 ≤ nj2
x1 ≤ nj1 ∧ x2 ≤ nj2 }

Proof. Let x and y be fixed nonnegative integers with x + y ≤ ni, x ≤ ni − 1. We will first
prove that F ′i (x, y) is at least the stated expression. Therefore, let x1, x2, y1, y2, and x∗ be fixed
nonnegative integers fulfilling the requirements stated in the lemma. We will first prove:

F ′i (x, y) ≥ min( Fj1(x1, y1) + nj2 − x2 − y2 + x∗,

Fj2(x2, y2) + nj1 − x1 − y1 + x∗,

ni − x− y − 1 )
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Let E1 and E2 be contraction-sets with |E1| = x1 and |E2| = x2 and V1 and V2 be set of
vertices with |V1| = y1 and |V2| = y2, such that Fj1(x1, y1) = δ(Gj1/E1 \ V1) and Fj2 (x2, y2) =
δ(Gj2/E2 \ V2). Let E∗ be a set of x∗ pairwise non-adjacent cross edges, each of them having one
endpoint in V1 and the other in V2, and let be V ∗ =

⋃
e∈E∗ e. As |V1| = y1 ≥ x∗ and |V2| = y2 ≥ x∗,

and each vertex in V1 is adjacent to each vertex in V2, we can choose such a set E∗. We define:
E′ := E1 ∪ E2 ∪ E∗ and V ′ := (V1 ∪ V2) \ V ∗.

Claim. |E′| = x and |V ′| = y.

Proof. This follows from the definition of the corresponding sets. Note that E1, E2 and E∗ are
pairwise disjoint. Furthermore, observe that V1 and V2 are disjoint and V ∗ ⊆ (V1 ∪ V2). Hence,
|V ′| = |V1|+ |V2| − |V ∗| = y1 + y2 − 2 · x∗. �

Note that V (Gi/E
′ \ V ′) can be partitioned into three disjoint sets: W1 := V (Gj1/E1 \ V1),

W2 := V (Gj2/E2\V2), and the vertices that result from contracting a cross edge W ∗ := V (Gi/E
′\

V ′) \ (W1 ∪W2).
If W1 is empty, then x1 + y1 = nj1 and Fj1(x1, y1) = ∞. Otherwise, let v1 be a vertex in

Gj1/E1 \ V1 of minimum degree, i.e. dGj1/E1\V1
(v1) = Fj1(x1, y1). From Lemma 6, we know that

all other vertices in Gj1/E1 \ V1 have degree in Gi/E
′ \ V ′ as least as large as the degree of v1 in

Gi/E
′ \V ′. So, by Lemma 5 all vertices in W1 have degree at least dGj1/E1\V1

(v1)+nj2−x2−y2 +
x∗ ≥ Fj1 (x1, y1) +nj2 −x2−y2 +x∗. Similarly, either W2 is empty, in which case Fj2(x2, y2) =∞,
or all vertices in W2 have degree at least Fj2 (x2, y2) + nj1 − x1 − y1 + x∗.

Vertices that are the result of a contraction of a cross edge are universal in Gi/E
′ \ V ′, and

hence have degree ni − x− y − 1.
We can conclude that

F ′i (x, y) ≥ δ(Gi/E′ \ V ′)
≥ min( Fj1 (x1, y1) + nj2 − x2 − y2 + x∗,

Fj2 (x2, y2) + nj1 − x1 − y1 + x∗,
ni − x− y − 1)

Since this holds for all x1, x2, y1, y2 and x∗, fulfilling the conditions as in the lemma, we can
conclude:

F ′i (x, y) ≥ max{ min( Fj1 (x1, y1) + nj2 − x2 − y2 + x∗,

Fj2 (x2, y2) + nj1 − x1 − y1 + x∗,

ni − x− y − 1) |
x1, x2, y1, y2, x

∗ ∈ IN ∧
x1 + x2 + x∗ = x ∧ y1 + y2 = y + 2 · x∗ ∧
y1 ≥ x∗ ∧ y2 ≥ x∗ ∧
x1 + y1 ≤ nj1 ∧ x2 + y2 ≤ nj2 ∧
x1 ≤ nj1 ∧ x2 ≤ nj2 }

We now show the equality, i.e. we show that F ′i (x, y) is at most the given expression. Let E ′

be a contraction-set of size x containing no two adjacent cross edges, and V ′ be a vertex set of
size y such that F ′i (x, y) = δ(Gi/E

′ \ V ′). E′ and V ′ can be partitioned in the following way:

E1 := Ej1 ∩ E′ E2 := Ej2 ∩ E′ E∗ := E′ \ (E1 ∪ E2)
V1 := Vj1 ∩ (V ′ ∪ V ∗) V2 := Vj2 ∩ (V ′ ∪ V ∗) V ∗ :=

⋃
e∈E∗ e

x1 := |E1| x2 := |E2| x∗ := |E∗|
y1 := |V1| y2 := |V2|

Claim. x = x1 + x2 + x∗, y1 + y2 = y + 2 · x∗, y1 ≥ x∗, y2 ≥ x∗, x1 + y1 ≤ nj1 , x2 + y2 ≤ nj2 ,
x1 ≤ nj1 , x2 ≤ nj2 .
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Proof. The first equality follows directly from the corresponding definitions.
Note that E∗ is a contraction-set containing all cross edges of E ′ (they are pairwise non-

adjacent). Hence, |V ∗| = 2 ·x∗. Furthermore, observe that Vj1 and Vj2 are disjoint and Vj1 ∪Vj2 =
Vi ⊇ (V ′∪V ∗). Therefore, y1+y2 = |V1|+|V2| = |Vj1∩(V ′∪V ∗)∪Vj2∩(V ′∪V ∗)| = |Vi∩(V ′∪V ∗)| =
|V ′ ∪ V ∗| = y + 2 · x∗.

The inequality y1 ≥ x∗ follows from y1 = |V1| = |Vj1 ∩ (V ′ ∪ V ∗)| ≥ |Vj1 ∩ V ∗| = |E∗| = x∗.
|Vj1 ∩ V ∗| = |E∗| can be seen from the fact that E∗ contains exactly x∗ non-adjacent cross edges
that have one endpoint in Vj1 and the other endpoint in Vj2 .

Since E1 is the subset of E′, restricted to Gj1 , E1 is a contraction-set of Gj1 , and V1 is a subset
of vertices in Gj1/E1, since V ′ is a subset of vertices in Gi/E

′. Hence, x1 +y1 ≤ nj1 and x1 ≤ nj1 .
In the same way, we can conclude y2 ≥ x∗, x2 + y2 ≤ nj2 and x2 ≤ nj2 . �

Similar as above, write W1 = V (Gj1/E1 \ V1), W2 = V (Gj2/E2 \ V2) and W ∗ = V (Gi/E
′ \

V ′) \ (W1 ∪W2) the set of vertices resulting from contracting a cross edge. Note that W1, W2 and
W ∗ partition V (Gi/E

′ \ V ′). We consider four different cases.

Case 1 ‘W1 = ∅ and W2 = ∅’: In this case, Gi/E
′ \V ′ is a clique with x∗ vertices, as each vertex in

this graph is the result of a contraction of a cross edge. So, δ(Gi/E
′\V ′) = x∗−1 = ni−x−y−1. As

W1 = ∅, we must have that nj1 −x−y−1, and hence Fj1(x1, y1) =∞. Similarly, Fj2(x2, y2) =∞.
So,

F ′i (x, y) = δ(Gi/E
′ \ V ′)

= min( Fj1 (x1, y1) + nj2 − x2 − y2 + x∗,
Fj2 (x2, y2) + nj1 − x1 − y1 + x∗,
ni − x− y − 1 )

Case 2 ‘W1 6= ∅ and W2 = ∅’: First note that W2 = ∅ implies that Fj2(x2, y2) = ∞, similar to
the previous case. Take a vertex v1 ∈ W1 which has minimum degree in Gi/E

′ \ V ′. Note that
vertices in W ∗ are universal in Gi/E

′ \ V ′, hence have degree that is at least the degree of v1 in
this graph. So, we have (use Lemmas 5 and 6)

F ′i (x, y) = δ(Gi/E
′ \ V ′)

= dGi/E′\V ′(v1)

= dGj1/E1\V1
(v1) + nj2 − x2 − y2 + x∗

≤ Fj1(x1, y1) + nj2 − x2 − y2 + x∗

= min( Fj1 (x1, y1) + nj2 − x2 − y2 + x∗,
Fj2 (x2, y2) + nj1 − x1 − y1 + x∗,
ni − x− y − 1)

The last step follows by using that Fj2(x2, y2) =∞, and noting that Fj1(x1, y1)+nj2−x2−y2+x∗ ≤
nj1 − x1 − y1 − 1 + nj2 − x2 − y2 + x∗ = ni − x− y − 1.

Case 3 ‘W1 = ∅ and W2 6= ∅’: Similar to the previous Case 2, with the roles of W1 and W2

exchanged.

Case 4 ‘W1 6= ∅ and W2 6= ∅’: As in Case 2, Fj1 (x1, y1) + nj2 − x2 − y2 + x∗ ≤ ni − x− y− 1, and
similar Fj2 (x2, y2) +nj1 −x1− y1 +x∗ ≤ ni−x− y− 1. Take a vertex v1 ∈W1 that has minimum
degree in Gi/E

′ \ V ′ among all vertices in W1, and similar take a vertex v2 ∈ W2 with minimum
degree in Gi/E

′ \ V ′.
Again, vertices in W ∗ have a degree that is at least the degree of v1 (or v2) in Gi/E

′ \ V ′. So,
we have using Lemmas 5 and 6

F ′i (x, y) = δ(Gi/E
′ \ V ′)
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= min( dGi/E′\V ′(v1),
dGi/E′\V ′(v2))

= min( dGj1/E1\V1
(v1) + nj2 − x2 − y2 + x∗,

dGj2/E2\V2
(v2) + nj1 − x1 − y1 + x∗)

≤ min( Fj1(x1, y1) + nj2 − x2 − y2 + x∗,
Fj2(x2, y2) + nj1 − x1 − y1 + x∗)

= min( Fj1(x1, y1) + nj2 − x2 − y2 + x∗,
Fj2(x2, y2) + nj1 − x1 − y1 + x∗,
ni − x− y − 1)

This ends the last case of the proof, and hence we can conclude Lemma 8. ut

Now we have seen that our recurrence relation for F ′i is correct, we will show how we can
compute Fi given F ′i .

Lemma 9.

Fi(x, y) = max
0≤z≤x

F ′i (x− z, y + z)

Proof. We will first prove that Fi(x, y) ≥ max0≤z≤x F ′i (x− z, y + z).

Claim. Fi(x, y) ≥ F ′i (x− 1, y + 1).

Proof. Let E′ be a contraction-set of size x− 1 without any adjacent cross edges, and let V ′ be a
vertex set of size y + 1 such that: F ′i (x − 1, y + 1) = δ(Gi/E

′ \ V ′). Let v ∈ V ′ be a vertex that
we deleted in Gi/E

′ \ V ′, i.e. v ∈ V ′. Instead of deleting it, we can contract it using a cross edge
e adjacent to v. Since v is not contained in Gi/E

′ \ V ′, contracting it via a cross edge (no matter
whether e is adjacent to another cross edge in E ′), will not decrease any vertex degree. Note that
unless v is the only vertex left, a cross edge incident to v always exists, since Gj1 and Gj2 are
graphs with at least one vertex each. Hence, we have a contraction-set E ′ ∪ {e} of x edges and a
vertex set V ′ \ {v} of y vertices, such that:

Fi(x, y) ≥ δ(Gi/(E′ ∪ {e}) \ (V ′ \ {v})) ≥ F ′i (x− 1, y + 1)

�

A similar argument can be used when 2 ≤ z ≤ x. Now we contract z vertices with cross edges
incident to them instead of deleting them. Thus, for all z, 0 ≤ z ≤ x, we have Fi(x, y) ≥ F ′i (x −
z, y + z), and hence

Fi(x, y) ≥ max
0≤z≤x

F ′i (x− z, y + z) (1)

We will now show Fi(x, y) ≤ max0≤z≤x F ′i (x − z, y + z). Let E′ be a contraction-set of size x
and let be V ′ be a vertex set of size y, such that Fi(x, y) = δ(Gi/E

′ \ V ′). Let E∗ ⊆ E′ be the
set of all cross edges in E ′, and let be V ∗ :=

⋃
e∈E∗ e. Observe that (V ∗, E∗) is a forest without

isolated vertices. Let c be the number of connected components in (V ∗, E∗). We modify E∗ in the
following way to obtain E∗∗. In each connected component of (V ∗, E∗), we delete all but one edge,
resulting in the forest (V ∗, E∗∗). Let be V ∗∗ :=

⋃
e∈E∗∗ e. Clearly, E∗∗ does not contain any two

adjacent cross edges and |E∗∗| = c, |V ∗∗| = 2c. We define:

E′′ := (E′ \E∗) ∪ E∗∗ and V ′′ := V ′ ∪ (V ∗ \ V ∗∗) and z := |E′| − |E′′|

Claim. |E′′| = |E′| − z = x− z and |V ′′| = |V ′|+ z = y + z.
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Proof. |E′′| = |E′|−z follows directly from the definition of z. To see the other equality, note that
the vertex sets are disjoint or contained in each other when applying basic operations. Furthermore,
note that in a forest, the number of edges plus the number of connected components equals the
number of vertices. We therefore have:

|V ′′| = |V ′ ∪ (V ∗ \ V ∗∗)| = |V ′|+ |V ∗| − |V ∗∗| = y + |E∗|+ c− 2c

= y + |E∗| − c = y + |E∗| − |E∗∗| = y + |E′| − |E′|+ |E∗| − |E∗∗|
= y + |E′| − (|E′| − |E∗|+ |E∗∗|) = y + |E′| − (|E′ \E∗|+ |E∗∗|)
= y + |E′| − |(E′ \E∗) ∪ E∗∗| = y + |E′| − |E′′| = y + z

�

Claim. Let E′ contain two adjacent cross edges. e = {u1, u2} and f = {u2, w}, such that there is
no other edge in E′ than e adjacent to f . Let v be a vertex in Gi/(E

′ \ {f}) \ V ′. Then it holds:
dGi/E′\V ′(v) = dGi/(E′\{f})\(V ′∪{w})(v).

Proof. If w is not adjacent to v then the claim follows easily. So suppose {v, w} is an edge in
Gi/(E

′ \ {f}) \ V ′. Since e was (w.l.o.g.) contracted before f , the vertex created by contracting e
is a universal vertex ae. Now, we can either delete vertex w, resulting in decreasing the degree of
v by one, or we can contract edge f to the universal vertex ae, which also results in ‘losing’ one
edge incident to v, since {ae, v} is already present in Gi/(E

′ \ {f}) \ V ′. Hence, the degree of v is
the same in both cases. �

Applying the last claim iteratively, we can conclude the following: δ(Gi/E
′ \ V ′) = δ(Gi/E

′′ \
V ′′). Hence, there is a z, such that Fi(x, y) = F ′i (x− z, y+ z). From this fact and Equation 1, the
lemma follows. ut

3.3 A Dynamic Programming Algorithm for Contraction Degeneracy on Cographs

Now, we are able to formulate our main result. So far, we only presented the recurrence rela-
tions necessary for dynamic programming. It is an easy task to transform these relations into an
algorithm.

Theorem 1. There is an O(n6) time algorithm to compute the contraction degeneracy of a given
cograph G with n vertices.

Proof. We first build the cotree in linear time [6, 4], from which the binary cotree can be easily
derived. We then compute in bottom up order for each node i in the cotree the relevant values of
Fi. For 1-nodes, we first compute F ′i . These computations are as dictated by Lemmas 3, 7, 8 and 9.
After the root values are computed, we use Lemma 2 to compute the contraction degeneracy of
G.

For the running time, consider the formula for computing F ′i on 1-nodes, since the computation
time of this formula dominates the others. We can implement this formula by five nested loops, for
x1, x2, y1, y2 and x∗, running over the appropriate domains (at most {0, ..., ni}). In the innermost
loop body, we check the restrictions, compute x, y, and the minimum as given in the formula, and
we update F ′i (x, y) if we have found a larger value. This loop takes O(n5) time, and since we have
O(n) internal nodes in the cotree, the theorem follows. ut

It is also possible to obtain in O(n6) time the set of contractions that achieve the contraction
degeneracy, using standard techniques for transforming a dynamic programming decision algorithm
to one that also constructs solutions.
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4 Discussion

The contraction degeneracy of a graph appears to be an interesting graph parameter. So far, little
is known on it. Its strong relation to the well understood minimum degree δ and degeneracy δD
of a graph, and its elementary nature make it a worthwhile object of study. In this paper we have
presented a dynamic programming method for computing the contraction degeneracy of a cograph.
The running time of our algorithm seems surprisingly high, since cographs are a very restricted
class of graphs with a tree representation, and they usually enable faster algorithms. This might be
a consequence of the possible inherent hardness of computing δC of a graph. However, it remains
an interesting topic for further research to decrease the running time for cographs, or to develop
algorithms for other special graph classes.

References

1. H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor. Comp. Sc.,
209:1–45, 1998.

2. H. L. Bodlaender, A. M. C. A. Koster, and T. Wolle. Contraction and treewidth lower bounds. In
Proceedings 12th Annual European Symposium on Algorithms ESA’04, 2004. (to appear).
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