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Chapter 1

Introduction

The languages of classical propositional logic (CPC) have a neat interpretation
by taking as models the truth-value assignments to the propositional variables, or
valuations of the language. Each formulaof a propositional language can be
associated with a set of valuationsz., the formula’s extension, denoted fy].
Moreover, the extension of a formula allows for a neat compositional definition.
We conceive of classical consequence as a relation that intuitively holds between
two sets of formulas (otheories) whenever at least one formula of the latter set

is true, if all formulas of the former are. Assuming this relation independently be
given byt, the following soundness and completeness result is obtained:

re it (<l

yel’ ved

Each theoryl” may be said to impose a set theoretic structure on the set of
valuations viz,, the set of extensions of its formuld$~] : ~ € I'}. Observe
that by taking the intersection or the union of this set much of this structure may
be lost: although two set§[y] : v € I'} and{[y] : ~ € I'"'} may be distinct in
many ways, their intersections or unions may very well be identical.

In this report, we propose an interpretation of a thebras a relation over
valuations. This makes that relation theoretic operations — such as composition,
inverse and the like — become available for the semantical analysis of proposi-
tional logic. The way a theory induces this relation over the valuations entertains
a close relation with the notion of (relative) logical strength, which constitutes

Throughout this report by theorywe understand a mere set of formulas that is not necessarily
closed under logical consequence. A theory that is closed under a notion of logical conseduence
we will refer to as al-closed theoryor aclosed theoryf A is clear from the context.
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2 SET INDUCED RELATIONS AND RELATIONAL SEMANTICS

a natural starting point for semantical analyses of such non-standard phenomena
as,e.g, belief revision, paraconsistency, and and non-monotonic and default rea-
soning. Veltman’s update semantics for default reasoning (Veltman (1996)) is a
particularly apt example. Relations in a similar way induced by formulas and the-
ories played an important role in the definition of the distributed evaluation games
that formed the basis of the game-theoretical concept of consequence advanced in
Harrenstein (2004, to appear).

The relative logical strength of two formulas can be captured in terms of the
extensions of the formulas involved. A formujas said to be at least as strong as
another formula) whenever any formula that follows frothis also a consequence
of ¢. In terms of sets of valuationg,is then at least as strongasf and only if the
extension ofy is included in that of). This definition of relative logical strength
can straightforwardly be extrapolated as to hold between theories. A themy
said to be logically at least as strong as another théaifithe consequences d@f
are contained in those @. In this manner, relative logical strength induces a
reflexive and transitive relationg., a preorder, on the subtheories of a theory.

This ordering on the formulas in a theofy in turn engenders an ordering
over the valuations as follows. Léf be the subtheory of" containing exactly
those formulas froni” satisfied bys. Then, I is easily recognized as the (unique)
logically strongest subtheory df satisfied bys. On this basis, we might define a
valuations to be at least as strong as a valuat®with respect tal” if and only
if I'sislogically at least as strong @& . This ordering on the valuations is reflexive
and transitive.

For an example, lef” be the theory{aV b, —a,-a A —=b} and consider the
valuations{a} and {b}. Then{aV b,—-a} is the strongest subtheory éf the
valuation{b} satisfies. The valuatiofa}, on the other hand, satisfies no subtheory
stronger tha{a Vv b}. BecausdqaV b, —a} is logically stronger thaga Vv b}, the
valuation{b} is ranked higher with respect tb than the valuatio{a}. For a
similar reason, the valuatiofs} and ¢ are incomparable with respectio Also
consider Figure 1.1 for a pictorial illustration of these considerations.

In the second section of Chapter 2 we show how each subsets cfdetite
relations overS and similarly how each set of subsets®tloes the same. The
relations induced by formulas over the valuations are then defined as the relations
induced thus by the extensions of the formulas, the latter being subsets of valua-
tions. For each subsét of a setS, a relationpg(X) is defined such that for all

>The material of this report largely derives from Harrenstein (2004). An exception is Chapter 6,
which was not included in my thesis.
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Figure 1.1. The extensions of three formulasty andy in logical space. The ordering on

the valuations determined by the thedky, ¥, x} on the basis of relative logical strength

is indicated by the different shades of grey. The darker the area a valuation is in the higher
that valuation is in the ordering on valuations determined by the three formulas, on the
understanding that the valuations[ip] — [¢] and those irf¢’] — [¢] are incomparable.

The valuations in the darkest area satisfy alppf) andy and are ranked highest; those in

the lighter areas satisfy no so strong a subtheoky0f), x} and are consequently ranked
lower.

elementxandx' in S
(x,X) € po(X) iff xe X impliesx € X.

Let further for each seX of subsets ofS, py (X) the relationpy (X) be defined
as(\xex ro(X). As a special case, for each extensfarj of a propositional for-
mula, po([¢]) defines a relation over the valuations of the respective language.
In a similar fashion, each theoty gives rise to the relatioft), . - po([~]), which
we also denote by, (I"). We find that the relatiop, (I") coincides with the re-
lation over the valuations based on the notion of relative logical strength of the
formulas inI".

Defined thus, however, this relation has a considerable drawback: the relation
po(¢) does not allow for a neat compositional definitiongn The malefactor
is here the fact both theories containing merely contradictions and theories solely
made up of tautologies induce the universal relation over the valuations. In order
to circumvent this problem we define for each sub&et a setSthe relatiorp (X)
such thap (9) is the empty relation ang(X) coincides withpg(X), wheneveiX is
nonempty. For setX of subsets of, the relationp (X) is again defined as the in-
tersection of the relations(X) for all X € X, i.e., p (X) is defined ag)y .y p (X).
Obviously, for each formulg and each theory’, bothp ([¢]) and(, < p ([7])
induces a relation over the valuations of the language in question. In Chapter 6 we
prove that the relatiop ([¢]) can be provided with a definition that is composi-
tional in .



4 SET INDUCED RELATIONS AND RELATIONAL SEMANTICS

The remainder of this report concerns the formal properties of these relations
induced by formulas, theories and sets. Apart from Chapter 3, which concerns
Veltman’s semantics for defaults, their application to the formal analysis of non-
standard reasoning mechanisms decidedly falls beyond its scope. Chapter 4 con-
cerns the characterization of the relations induced by sets, sets of subsets, formulas
and theories. We find that the class of relations over &setinduced by a sub-
setX of Scoincides with the class of so-callesective relation®ver X (Proposi-
tion 4.3.2). Here, a relation is understood to be bisective whenever it is transitive
and in addition satisfies the following condition:

forallx, X, X" € S: x<x implies X" <x or X <x".

A relation that is either empty or both reflexive and transitive we will hereafter
refer to as groto-order. Corollary 6.1.9 establishes that the relations over &set
defined by a set of subsets is precisely the set of proto-orderssover

Since for propositional languages withfiaite number of propositional vari-
ables each subset of valuations is the extension of some formula, these results im-
mediately settle the case for the relations defined by formulas and theories of such
finite languages. For propositional languages withirdimite number of propo-
sitional variables, things are slightly different. It is then no longer the case that
each subset of valuations is the extension of some formula or even of some theory.
Similarly, the bisective relations over the valuations are not exhausted by the rela-
tions induced by formulas and neither are the proto-orders over the valuations by
the relations induced by theories. A characterization of the relations induced by
the formulas and theories of a propositional language with an infinite number of
propositional variables, however, can be given relying on the apparatus provided
by rough set theoryCorollary 4.3.5 and Theorem 4.3.10).

In classical logic a theory may be closed under its consequences without af-
fecting its deductive properties. At a semantical level, this fact is reflected in that
the extension of a theor¥ is identical to the extension of its closure under logical
consequence,e, in general[I'] = [Cn(I")]. The relations over the valuations
induced by theories, however, are more sensitive in this respect. In particular, it
is not in general the case that the relatignd”) and p (Cn(I")) are identical,
whereCn (I") stands for the set of classical consequences of the théory

At a set-theoretic level, a set of se¢annot in general be closed under super-
sets without affecting the relatign(X). On the other hand, different sets of sets
may very well induce the same relation on a univerge, p (X) andp (Y) may
be identical even iX andY are distinct. Chapter 5 aims at making precise the
conditions on sets of se¥ andY that have to be satisfied for the relatignsX)
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andp (Y) to be identical. Closure conditions on theories that preserve relations
induced by theories can then be obtained as corollaries.






Chapter 2

Set Induced Relations and Relational
Semantics

2.1 SetInduced Relations

In this chapter we advance a relational semantics for classical propositional logic.
The set-theoretic basis for the semantics is provided by relations on a uns/erse
that sets and sets of sets give rise to. With each subséta setSwe associate

a relationpg(X), which relates all elements outsideto any other element @ as

well as all elements iX to one another. Intuitively, the objectsXhare considered
‘higher’ than those outsid¥. Formally we define for each subs¢tof Sand all
elementx andx of S

(x,X) € po(X) iff xeX implies X' € X

On this basis we also define for each Xaif subsets oS a relationpy (X) on S

po(X) =ar. [ ro(X).

XeX

As can easily be checked, for ea¥hC S the relationpg(X) is a total pre-order,
i.e, it is reflexive, transitive and connected. For eachXseff subsets of5, the
relation py (X) is apartial pre-order oves, i.e,, it is both reflexive and transitive
but not necessarily connected. As auxiliary notions we hav&) and pq (X),
defined as, respectivelyp(X) andycx o (X).

Of particular interest to us are the relations on the valuations induced by the
extensions of formulas of a propositional language. kdte a formula and” a

7



8 SET INDUCED RELATIONS AND RELATIONAL SEMANTICS

theory. We denot@o([¢]) by po(¢) and(,c po(v) by po (7). Observe that,
defined thusp, (I") does noin general coincide with([17]).

For I" atheory,p, (I') is exactly the relation the subtheoriesioflefines over
the valuations relative to their respective logical strength. Recall that we under-
stood a theory to be logically stronger than another the@yyin case the conse-
quences 0B were included in those df, i.e., if Cn(©) C Cn(I"). To appreciate
this, define for each theor¥ the relationp,(I") over the valuations, such that for
all valuationss ands'”:

(s,8) e po(I') iff Cn({yerl: siky})CCn({yel: IFy}).

RecallCn(I") stands for the set of classical consequences of the théoiptu-

itively, p,(I") relates a valuatios with anothers’ if the latter satisfies at least all
those subtheories d@f thats satisfies as well. As such, it is in effect the relation on
the valuations based on the classical notion of logical strength that was proposed
in the introduction to this report. We now have the following easy proposition.

Proposition 2.1.1 Let " be a theory in a propositional languag€A). Then the
relationspq (I") and p1(I") coincide.

Proof: First assumés,s') € po (I"). Then, for ally € I, if sIF v thens' I ~.
Hence{y e I': sl-~} C {ye': §IF~}. By monotonicity ofCn, immedi-
atelyCn({yeI': slk~}) CCn({ye': slk~}), ie, (sS) € py(I'). For
the opposite direction, assun@n({y € I": slk~}) C Cn({yeI': SIF4})
as well as for an arbitrary € I thats I v. Then,y € {yeI': slk~}
and by monotonicity ofCn alsoy € Cn({y € I': slF~}). By the assump-
tion,y € Cn({ye': §lk~}). Then{ryeI: sIk~} Fcpc 7, i.e, forall
valuationss’, if §" IF p forall p € {yeI': sIk~}, thens” I ~. Since
trivially, s IF ¢ forall ¢ € {y € I': S IF~}, in particulars' I+ ~. Therefore
(s,9) € po (') and we are done. .

For formulasy, however, the relatiopg(p) does not have in general a neat
compositional definition in the complexity of. To appreciate this, observe that
both po(T) and po(_L) are the universal relation over the valuations. In contrast,
for each propositional variable, the relationpg(a) is not universal. Whenever
a valuations forcesa but another valuatios' does not, the paifs,s') will not
be inpp(a). This is in particular the case for the valuatiofes} and ¢, which
are guaranteed to exist for any language veiths a propositional variable. Now
consider the formulas. AaandT A a. Since[T Aa] = [a], it should also be
the case that the relatiops(T A a) andpp(a) coincide. So, withpg(a) not being
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the universal relation, neither j&(T A a). However,po(L A @) is the universal
relation on the valuations, in virtue df A aand L being logically equivalent, and
as such having the same extension. Hemg& A a) is distinct frompg(L A @).
However, withpo(T) and po(L) being identical, this distinction cannot be made
on the basis of the relations(T), po(L) andpg(a) alone.

The problem here of course is thaf(®) andpo(S) are the same relation. For
any two non-empty subse¥andy of Sthe reader can easily verify thag(X)
andpo(Y) coincide if and only ifX andY are identical (also compare Fact 2.1.2,
below). By treating the empty set as a special case, many of the problems dissolve.
So, define, for each subsétbof a setS, the relatiorp (X) on Sas follows?

{(x,X): xe Ximpliesx € X} if X+# o,
p(X) =t -
%) otherwise

Defined thusy (X) coincides withpp(X) for non-empty subsets, and is empty
otherwise €f., Fact 2.1.3 below). FoA a set of propositional variables, &%, (A)
denote the sefp () : ¢ aformulainL(A)}. Similarly, for each seX of subsets
of S, we define the relatiop (X) overSas:

p(X) = [)r(X).

XeX

Let furtherp (¢) and p (I") denotep ([¢]) and ()., p ([7]), respectively. Ob-
serve thap (X) = pg (X) if and only if ¢ X (cf,, Fact 2.1.3). Fop € X, the re-
lation p (X) is empty. As a dual notion we also introduce for each su¥s#tSthe
relations (X) on Sdefined ag (X). Also, for each seX of subsets o8, let 5 (X)
denote the relation o8 given by(\y.x o (X). We havep (¢) andp (I") abbrevi-
atep ([¢]) and(, < o ([7])- In contradistinction teo(¢), the relatiorp (¢) does
allow for a compositional definition iy. This we show in Chapter 6 below.

We first review some of the more elementary properties of the relatioX$
andp (X). As a first fact we find that no two different subsgtandY of a setS
such thap (X) andp (Y) are identical relations o0&

LIt might seem that the identity relatidd would have been an equally suitable choice/f¢p),
as there is no subs&t of S such thatpo(X) = Id. Had the definition been chosen thus, how-
ever, an exception should be made in Proposition 2.2.2 below for propositional languages with no
propositional variables. For such languages there is only one valuationg, and againp ()
would coincide with the universal relation over all valuations. Then it would have been the case
thatmax(p (L)) = {9} andmax(p(T)) = . Hencemax(p (L)) € max(p(T)). In classical
logic, however,L = T, even for languages lacking in propositional variables.
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Fact2.1.2 Let X and Y be subsets of some set S. Then:
p(X)=p(Y) iff X=Y.

Proof: The right-to-left direction is trivial. For the opposite direction suppose
X £ Y. Without loss of generality we may assume there be sanse X for
whichx ¢ Y. In caseY is empty,(X,X) ¢ p(Y) but (x,x) € p(X) anda fortiori
p (X) # p(Y). If on the other hand/ is not empty there is somgc Y. Then,
(y,x) ¢ p(Y)and(y,x) € p(X). Again we may conclude that(X) # p (Y). -

By contrast,po(X) and po(Y) may be identical even for distinet andY, be it
only if either X or Y is the universe and the other the empty set. BeftxX) and
po(Y) are then the universal relation. Béany subset other than the empty set, the
relationspo(X) andp (X) coincide. This observation also sustains a corresponding
result for relationg (X) induced by sets of subsexs

Fact 2.1.3 Let X be a subset of some non-empty set S. Then:

p(X)=p(X) it X£o and  py(X)=p(X) iff 0¢X.

Proof:  For the first claim, the proof from right to left is trivial. So assukie- ¢.
Then,p (X) = @ andpo(X) = Sx S SinceShad been assumed to be non-empty,
alsopp(X) # p (X). For the second claim merely observe the following equalities:
po(X) = [V rX) =ogx [p(X) = p(X). n
XeX Xex
We also have the following equally easy fact.

Fact2.1.4 LetX be a set of subsets of a non-empty set S. Then:

pX)=0 iff oeX

Proof: Straightforward. From right to left the proof is almost trivial. Merely
observe that thep (0) € {p(X) : X € X} and, sincep (9) = 0, p(X) =
Nxex » (X) = 0. For the opposite direction assume tiaatZ X. In virtue of
Fact 2.1.3, thep (X) = pg(X). With the latter begin reflexive, it follows that
p (X) is reflexive as well. Having assum&to be non-empty, we may conclude
thatp (X) is non-empty. -

For any subseX, the relationp (X) is notin general monotone iX. To ap-
preciate this, leX andY be two non-empty proper subsets of a Ssuch thaty
is also a proper subset of Assume thay € Y, x € X—Y andz ¢ X. Then,
(y,Xx) € p(X) but(y,x) ¢ p(Y). Moreover,(x,2) € p(Y) but(x,2) ¢ p(X). More
in general we have the following fact.
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Fact 2.1.5 Let X and Y balistinctsubsets of some set S. Then:

p(X)Cp(Y) iff X=0 or Y=S

Proof: From right-to-left the claim is trivial. The opposite direction is by con-
traposition. So, assumgé # ¢ andY # S Hence,x € X andz ¢ Y, for
somex, z € S In caseY is empty, we are done immediately, for thenx) € p (X)
and(x,x) ¢ p(Y). So for the remainder of the proof we may assume there to be
somey € Ssuch thaty € Y. By Fact 2.1.3, moreover, boih(X) = po(X) and
p (Y) = po(Y), which simplifies the reasoning.

With the assumption thaX andY be distinct, eithely ¢ X, orY C X. In
the former casey’ € Y andy ¢ X, for somey € S. Hence,(Y,z) € p(X) and
(Y,2) ¢ p(Y). Inthe latter caseX’ € X andx' ¢ Y, for somex € S Because
Y C X, alsoy € X. Therefore(y,X') € p (X) whereagy,x') ¢ p(Y). -

By contrast, bottp, (X) andp (X) are tidily downward monotone iX.
Fact 2.1.6 (Monotonicity) LetX andY be sets of subsets of a set S. Then:

X CY implies po(Y) C po(X) and p(Y) < p(X).

Proof: Straightforward. Assum& C Y. Then also{po(X) : X € X} C
{po(Y): Y € Y}. Hence:

po(Y) = (V{ro(Y): YeY} Cxcy [J{roX): XeX} = po(X).

The reasoning fop (Y) C p (X) runs along analogous lines. .

2.2 Relational Semantics

We are now in a position to furnish classical propositional logic with a relational
semantics. With each formula we associate the relatiops¢) and s () over

the valuations and, similarly, with each theafythe relationsp (I") andp (I").

By a maximum elemerf a relationp on a setS we understand an elemext

of Ssuch that for all elements of Sit is the case thatx',x) € p Denoting the

set of maximum elements of a relatiprby max(p), we now have the following
proposition.

Proposition 2.2.1 Let I be a theory in a propositional languag€A). Then:
[ = max(p(I))  and () = max(5(D)).
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Proof: FirstassuméI] to be empty. Assume further foraductio ad absurdum
thats is a maximum element gb (I") and consider an arbitrary € I'. Then,
(8,s) € p(v), for all valuationss. So, in particular(s,s) € p(vy) and from the
definition of p () then follows thafly] # . Hences* € [], for somes*. Then
also(s*,s) € p () and consequently € [y] as well. With~y having been chosen
as an arbitrary element df, we have thas € [I'], which is at variance with the
assumption thalt"] be empty.

So, for the remainder of the proof we will assuffiTé] to be not empty. Con-
sider an arbitrary valuation First assume that ¢ [I']. Thens ¢ [v], for some
~ € I'. With [I'] not empty, we may assume there is saghe [y]. Then, how-
ever,(s,s) ¢ p(v)and(s,s) ¢ p(I'). Hencesis no maximum element gf (I").
Finally, assumes € [I']. Now consider an arbitrary valuatiss along with an
arbitraryy € I'. Then,s € [y] and so(s, s) € p (). With v having been chosen
arbitrarily, also(s, s) € p (I") and we may conclude thais a maximum element
of p (I"). This concludes the first part of the proof

The second part of the proof can be obtained using the first one (duality).
Merely consider the following equalities:

(0) = Usea 9] = Nyea 9] = [{-0: v eoO}]

=max(p ({-9: 9€6})) = maxNyeo r([9])) = maxp(O)).

This concludes the proof. —

As an immediate consequence of this result, we have the following corollary, which
characterizes classical logical consequence in terms of the relations theories define.
A theory © follows classically from another theody if and only if the maximum
elements of the relatiop (I") areno maximum elements of the relatign(©).

Corollary 2.2.2 Let[ be atheory ang> a formula. Then:

I'tcpcO iff max(p () C max(p(O)).

Proof: Immediate by Proposition 2.2.1. 4

As an alternative to classical consequence, one could define a consequence
relation* as follows in terms of the maximum elements of the relatipgél”)
andpg (I'):
I'=*e iff max(pg () C max(pg(O)).

This consequence relation is as the classical one, except for its behavior with re-
spect to classical contradictions and tautologies. In virtue of Fact 2.1.3 below —
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which states thgp (I") = po (I") if and only if @ ¢ X — it can easily be appreci-
ated thatl" H* © if and only if I" Fcpc @, provided thatl” contains no contradic-
tions and® no tautologies. We have already seen, however,dflat) andpo(T)
are both interpreted as the universal relation over the valuations. Consequéntly,
treats classical contradictions on a par with classical tautologies. This makes that,
e.g, the classical rulex falso quod libefails for H*. For a counterexample, let
a be a propositional variable of a languagé?A). Then observe that ¥* a,
asmax(pg ({L})) = 2% andmax(p, ({a})) = max(py ({—a})) = [a]. A similar
remark would have applied, had been defined in terms of theaximalelements
of the relationspy (I") and py (©). Observe in this respect that the maximal el-
ements ofpy ({_L}) exhaust logical space just as well as the maximum elements
of po ({L}) do. The consequence relations defined in terms of maximal elements
also exhibit non-monotonic features, but we will not pursue this issue here.

The advantage of the relational semantics is that it preserves more of the struc-
ture that formulas and theories impose on logical space. From the extd@gion
of a theoryI" the extensiongy] of the formulasy in I" cannot in general be re-
covered; this structure may have been lost beyond repair. In a strict sense a similar
thing can be said of the relatign(I") and the relationg (v): it is not in general
the case that from the relatign(I”) the theoryl” can be reconstructed. Neverthe-
less, the relatiop (I") can distinguish valuationrsands' even if neither of them
is maximum inp ("), indicating that/" contain a formula that is validated in the
one but not in the other, or if" is inconsistent.E.g, the valuationg is strictly
less than the valuatiofe} in the relationp ({a, b}), yet neither of them is a maxi-
mum element in this respect. This feature of the relational semantics is especially
serviceable when one is interested in the maximal or maximum elements of the
relation determined by a theory as restricted to a subset of valuations, even if the
maximal or maximum elements of the unrestricted relation are disjoint from that
subset.







Chapter 3

Intermezzo: Veltman’'s Updates for
Defaults

The additional ordinal structure the relational semantics for propositional logic en-
genders over the set of valuations, is quite superfluous if one’s concerns are with
classical consequence only. However, the semantics of a considerable number of
non-standard variants or extensions of classical propositional logic appeal to a rela-
tional structure over the valuations or possible worlds. We have already mentioned
qualitative decision theorye(g, Boutilier (1994)), belief revisiond.g, Gardenfors
(1988)), and non-monotonic consequence relatiens, (Shoham (1988), Kraus,
Lehmann, and Magidor (1990) and Makinson (1994)). The prime example in this
respect is, of course, Kripke semantics for modal languages. As in Kripke seman-
tics, this relational structure is often assumed to be given independently by the
semantics, rather than induced by syntactic objects, such as formulas.

Veltman'’s analysis of defaults (Veltman (1996)), however, is different in this re-
spect. There itis suggested that in a proper treatment of defeasible reasoning, some
formulas are interpreted as imposing a relational structure on logical space. This
enables one to distinguish among any subset of valuations those that are optimal
with respect to this structure. In the semantics of formulas of another logical form
these optimal valuations play a crucial role. There being a clear parallel between
the concluding remarks of the previous section and Veltman’s semantical ideas, we
will here give a synopsis of the third section of ‘Defaults in Update Semantics’.

Classical logic is monotonic in the sense that if a conclusion follows from a col-
lection of premisse$’, then the same conclusion also follows from any collection
of premisses that includes. If premisses are taken to represent the information
available to an agent and conclusions the inferences that agent may reasonably

15
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draw from the premisses, it has been argued that much of human reasoning ex-
hibits non-monotonic features. In the face of new evidence one may be happy to
withdraw conclusions arrived at on the basis of information obtained previously.
The new evidence is then said to defeat the conclusion and the conclusion itself
is said to be defeasibleE.g, if the only piece of information available is that it
normally rains, one could arguably infer that it presumably rains. However, if one
obtains as an additional piece of information that it as a matter of fact does not rain,
one might be quite willing to retract the conclusion that it rains, as it does not.
Veltman gives a formal account of these and similar phenomena having to do
with defeasible reasoning and the order in which information is received. Using a
dynamic framework Veltman can account for the contrast betweeactteptability
of texts as (1) and (2), and thumacceptabilityof the sequence (3):

D) “Normally, it rains. ... Presumably, it rains.”
(2) “Normally, it rains. ... Presumably, it rains. ... It does not rain.”
3) “Normally, it rains. ...It does not rain. ...Presumably, it rains.”

Although many of the merits of Veltman'’s approach lie in its ability to deal with
such examples using a dynamic framework, we concentrate on some of its static
aspects. The intuition behind Veltman’s approach is that a sentenc®isum-

ably, it rains” signifies that it rains in all of the most normal states of affairs that
are consistent with the information available. This presupposes that the possible
states of affairs can somehow be ordered with respect to normality. A distinguish-
ing mark of Veltman'’s proposal is that this normality order over the possible states
of affairs is determined by sentences liRéormally, it rains” that occurred earlier

in the text, rather than merely fixed exogenously.

Veltman proposes a propositional modal language {normally, presumably),
wherenormallyandpresumablyare modalities operating on formulas of the propo-
sitional languagé_(A) only. l.e, the formulas ofL(A, {normally, presumably)
are given by the Se{go, normallyp, presumably, : ¢ aformula ofL(A)} and
there is no nesting of the modalities. The intended readingsohallyy and
presumablyy suggest themselves.

The formulas of. (A, {normally, presumably) are interpreted in terms of states
consisting of a so-calledxpectation patterm and aninformation set X An ex-
pectation pattern is a reflexive and transitive relation over the valuationgAgr
and the information seX is a subset of valuations, intuitively, containing the pos-
sible states of affairs that are compatible with one’s factual information about the
world.Veltman distinguishes the minimal st@&and the absurd stafe defined by
(Sx §'S)and(ld, ), respectively. The valuatiorssthat are minimal with respect
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to p —i.e, such that' < sin p, for no valuatiors' — are callechormal If the set
of normal worlds in an expectation pattesiis not empty, is said to becoherent
A state(p, X) is aninformation statef p is coherent an&X non-empty, or if( p, X)
is the absurd state

Semantically, formulay in L(A, {normally, presumably) is interpreted as a
postfixedoperation[¢] on information states. For each formutain L(A), the
operation[y] performs an update on the information set of an information state,
accommodating the information conveyedpyvithout changing the expectation
pattern. That is, provided that the update does not render the information set void,
for then the absurd state results.

By contrast, ify is of the formnormallyy) and the extensioff)] contains a
normal world with respect tp, we have[y] operate on the expectation pattern
of an information statép, X). It leaves the information set as it was bup by
removing from it all edgess, s') with ¢ holding ins but not ins’. This renders
any valuations that forcesy strictly more normal than any valuation in whigh
does not hold but that was as normalsas the original expectation pattern. As
such[normally] imposes additional structure on logical space rendefingrlds
more normal that nog- worlds without affecting the agents factual information
about the world. Rathemormallyy] refines the expectation pattern by intersecting
it with the inverse of the relatiopg(v), as defined in the previous section. |f,
however ][] fails to contain a normal world with respectapthen updatingp, X)
with [normally)] will result in the absurd state

Finally, [presumablyy] performs a test on information states. In caskolds
in all valuations that are minimal with respect to the expectation pattern of the
information state[presumablyp| returns the original information state. Otherwise,
it returns the absurd state. Lebe a formulairL(A). Then — employing notations
used throughout this thesis — Veltman'’s formally definitions are given by:

(p, X0 []) it XN ] # 0,
1 otherwise

(0s X)[p] =, {

(p, X)[normallyg] =g {(pﬂ po(p)”, X) if [¢] contains a normal world

otherwise

(p,X) if se [¢], for all sminimal in X w.r.t. p,

, X)[presumably| =
(0, X)lp Wl = {1 otherwise

(Here,po(v) "~ denotes thénverseof the relationpg().)
For formulasy of L(A, {normally, presumably) and information states de-
fineo I ¢ if and only if o[p] = 0. Moreover, consequents; for this particular
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ia, by Wia, b

Figure 3.1. The figure on the left depict® for a language witha andb as the only
propositional variables. The dashed box and the grey balloons indicate the subset of
valuations and the expectation patter, respectively. From left to right the figures de-
pict the minimal stat®, O[normally d andO[normally [—b]. The valuatior{a} is now
minimal in O[normally d[—b], but for instancep is not. Hence,Onormally d[—b] I+
presumablya A —b) butO[normally §[—-b] ¥ presumably— (aV b)).

system is defined as a relation betweendbgquencesf formulasyy, . . ., yn and
a formulay as follows:

©0,---sentv i iff O[pol. .. [pn] IF 1.

The sequential order of the formulas, . . ., on here makes a differencé&.g, as
the formal counterparts of (1), (2) and (3), above, we find:

1) O[normally d[presumably & # 1,
@) O[normally d[presumably §-a] # 1,
(3) O[normally d[—a][presumablys = 1.

The reader be also referred to Figure 3.1 for further illustration.

The guiding principle behind Veltman’'s update semantics for defaults is that
Boolean formulasy and those of the fornmormallye build up an information
state. Suppose th8fpo) ... [¢n] IS an information state that is being constructed
in the course of an update process and distinct from the absurd state. The con-
stituent expectation pattern is then precisely the inverse of the relatjo@),
where® is given by exactly those formulag such that the formulaormallyz)
is amongyo, - - ., wn. Formulas of the fornpresumablyy are then evaluated with
respect to the information state constructed. A fornprssumably holds in a
non-absurd information state, X), i.e., o IF presumablyp, if ¢ holds in allopti-
mal states inp that are compatible with the factual information represente.by
Optimality is here taken as minimality with respect to the information pattern, but
could equally well be defined as maximality with respect to its inverse. Moreover,
the expectation pattern of an information state is built up by formulashy those
formulas that are of the formormally.



Chapter 4

Characterizing Set Induced Relations

It is a well-known fact of classical propositional logic that, in case the language
contains an countably infinite number of propositional variables, it is not the case
that each subset of valuations is the extension of some formula. To appreciate
this observe that the number of formulas of a language of classical propositional
logic is denumerable whereas the number of valuations for an infinite number of
propositional variables is uncountable. A similar remark applies to the extensions
of the theories of a countably infinite propositional language.

Classical propositional logic is a particular logic that can be given a semantics
by associating sets of valuations to formulas. Other and distinct logics with a
similar semantics angrima facieconceivable and we may come to wonder whether
such logics fare better or worse with respect to characterizing subsets of valuations
as the extension of formulas. In the first section of this chapter we prove that
classical propositional logic is in an important sense the most expressive of such
languages. Let a set of valuations be calledinitary, or of finite characterin
case it depends on the values assigned to a finite set of propositional variables
whether a valuation belongs ¥ or not. Let further a valuation based semantics
for a propositional language be callédite in case the extensions it associates
with the formulas are all finitary. We find that classical propositional logic is the
most “expressive” in this respect: the extensions associated with the formulas in
the Tarskian semantics for classical propositional logic exhaust the set of finitary
sets of valuations.

In the previous chapter, formulas and theories were associated with relations
over valuations rather than with sets of valuations, thus giving rise to a relational
semantics. We find that the relatiopn) thus associated with a formula in
general satisfies a particular propetty,, that ofbisectivity(cf., page 4). Similarly,

19
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the relationp (I") associated with a theoty will in general be groto-order(cf.,
page 4). However, if the set of propositional variables is infinite, the relations thus
defined with formulas and those with theories fail to exhaust, respectively, the set
of bisective relations and that of the proto-orders over the valuations. However,
invoking a suitable notion of finite character for relations, analogous as we did for
sets, we find that the set of bisective relations defined by formulas can suitably
be characterized. Eventually we also obtain a kindred result for the proto-orders
defined by theories.

The notions of finitary sets and relations are most conveniently defined using
the machinery of rough set theory. We therefore first give a brief summary of some
of the latter’s elementary facts.

4.1 Some Elementary Facts about Rough Sets

In this section the elementary concepts of rough set the@rythe upper and lower
approximations of a set, are introduced. In the next sections they are employed for
some results for propositional logics. As such our employment of rough sets is
divergent from normal use. First we will give some basic facts concerning upper
and lower approximations.

For Swe havePart(S) denote the set of partitions ov8r Moreover, forr a
partition inSand forx an element o, [x]; is the unique block ofr containingx.

Let Sbe a set and let be a partition ofS. Obviously, it is not in general the
case that a subs&tof Sis identical to a union of a number of blocksn Still
each subset can be characterized by two sets which do have this property. Define
thelower approximation apr(X) and theupper approximatiorpr,.(X) by:

apr (X) =ar [ J{Yenr: YCX},
a_prﬂ(X) =df. U{YE?T: YmX;é@}.

Let e, be the equivalence relation ovBrassociated with the partitiom. Then
we also have the following equivalent characterizations of the lower and upper
approximation of a subsetof S. For eachx € S:

x € apr (X) iff forall s € Ssuchthas~;s":s €X,
x € apr.(X) iff forsomes € S:s~,d ands €X.

For a more extensive account the reader be referred to Pawlak (1991)
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Figure 4.1. Rough sets in a s& partitioned byr. The oval represents the s¢t The
colored areas indicate the upper approximation and the darkly colored area the lower ap-
proximation.

Clearly,apr, is a cylindrification operator on>2and apr_ its dual. As such they
exemplify a more general mathematical concept that'is also instanced by quantifi-
cation and modality in logic. This observation has by no means escaped attention
in the literature ¢f. e.g, Yao, Wong, and Lin (1997), intsch (1999) and intsch

(no date)). Figure 4.1 illustrates the lower and upper approximations of)& set
Suppressing the subscript the approximation operatiorgpr andapr satisfy the
following elementary properties for subsétandY of a setS?

apr(o) = o apr(o) = o
apr(s) = S apr(s) = S
apr(X) € X apr(X) 2 X
apr(X) < apr(apr(X) apr (X) 2 apr(apr (X))

X C apr(@pr (X)) X 2 apr (apr (X))
apr(X) C apr(apr(X)) apr(X) 2 apr(apr(X))
apr(X) = apr (X) apr(X) = apr(X)

apr(Xny) = apr(X)napr(Y) apr(Xny) < apr(X)napr(Y)
apr(XUY) D apr(X)Uapr(Y) apr(XuyY) = apr(X)uapr(Y)

As two obvious consequences of these properties alscaﬂo(ra_pr (X)) = apr(X)
andapr (apr (X)) = apr (X). Moreover, the latter four inequalities can be general-

2These inequalities are taken from Yao, Wong, and Lin (1997).
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ized to infinite sets of sets. L&t C 25, then:

apr(NX) = () apr(X) apr (NX) € () apr(X)
XeX Xex

apr(UX) 2 Japr(x) apr(UX) = | Japr(X)
XeX XeX

Both apr andapr satisfy upward monotonicity:

X CY implies apr(X) Capr(Y),
XCY implies apr(X)Capr(Y).

We also have the following fact, which says that, given a partition, the fixed points
of the upper and lower approximations coincide.

Fact4.1.1 LetS be aset, X S andr € Part(S). Then:

X =apt,(X) iff X=apr (X).

Proof: First assumeX = apr(X). Observe that botapr (X) C apr (apr (X))
andapr (apr (X)) € apr(X) are instances of rough set laws. Hersge (X) =
apr (apr (X)) and we may reason as follows:

X =ass. a_pT(X) = @’(E_DT(X)) =X =apr(X) @‘(X)

The reasoning in the opposite direction is analogbus. -

As a generalization of this fact, we also have the following.

Fact4.1.2 Letw be a partition of a set S. Let furthef a set of subsets of S such
thatX C «. Then:

apr.(UX) = apr (UX) = UX.

Proof: Straightforward. -

The partitions by means of which sets are approximated may be finer or coarser.
The facts that follow concern the behavior of the approximation operations with
respect to partitions of various degrees of coarsenessr Bod«’ partitions of a
setS i.e, m, 7' € Part(S), letw < 7’ be formally defined as:

/

7 <7 iff forall x € «thereisay € «’ suchtha Cy.

SFor this elegant proof | am indebted to Boudewijn de Bruin.



CHARACTERIZING SET INDUCED RELATIONS 23

Intuitively, 7 < #’ denotes that at least as fine ag'. As such< defines a partial
order onPart(S). Then< defines a partial order oRart(S). Rather,Part(S)
constitutes a complete lattice if ordered thus. We now also have the following
monotonicity properties for the lower and upper approximation operations:

Fact4.1.3 Letw and~x’ be partitions of some set S. Then for alExS:

< implies apr(X) 2 apr_(X),
< implies @pr,(X) C &PT,.(X).

™

Proof: Both cases are analogous; here we prove only the first. Assuraer’
and consider an arbitraryc apr_, (X). Consider the block«~ of 7; then,[x|» €
X. By the assumption there is ¢ a blowlof 7 such thafx]. C Y. Thenx € Y and,
therefore,Y = [x],». Hence,[x] C [X],» C X. Sincex € [X|;, we may conclude
thatx € apr_(X). -

In words, the coarser the partition, the larger the upper approximation of a set and
the smaller its lower approximation. The following fact conveys a stronger and
closely related result.

Fact4.1.4 Letw and~n’ be partitions of some set S. Then:

s

7 iff forallX CS: apr (X) 2 apr_(X),

<
<« iff forallX CS: apr, (X) C apr.(X).

s

Proof: The proofs of both cases run along analogous lines; we will here give that
of the first. The left-to-right direction is immediate by Fact 4.1.3. For the opposite
direction, assume that for al C Swe haveapr (X) 2 apr_,(X). Consider an
arbitrary X € 7. By definition, X is a non- empty subset & AsS = U,

there is a¥Y € 7’ such thatX N Y # @. By the assumption, theaprﬁ( ) D
a_prTr,(Y) —Fact4.1.2Y. Because aIsa_prﬂ(Y) C Y, itfollows thatY = @(Y). By
definition,Y = (J{X' € 7 : X' C Y}. Since XNY # ¢, we haveX N X" # 0,

for someX” ¢ {X’ enm: X C Y}. With X andX” blocks in the partitionr, it
follows thatX = X”, and henceX C Y. Having choserX arbitrarily fromz, we

may conclude that < 7. -

In the sequel, we will mostly be interested in a particular class of partitions of
a universe with respect to which the approximations are defined. If the universe set
is the powerset of a sét, we define an equivalence relation holding between any
two subsets oA if each element of a third subset Afis in the one subset if and
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only if it is an element of the other. Lét be a set and define for eaZzhC A the
equivalence relationz on 2* such that for alX,Y C A:

X,Y)eez iff ZNX=2ZNY.

Sometimes we use the infix notati®n~z Y to convey tha{X,Y) € ¢z. Observe

that it is both a necessary and a sufficient conditionderz Y to hold that for all

z € Z, itis the case that € X if and only if z € Y. Note thats, andea are the
universal relation and the identity relation oty Pespectively. More in general, we
haveX C Y if and only ifey C ex. The only-if direction is trivial. For the other
direction assume for the contrapositive that X butx ¢ Y. Then,o ~x {x} but

@ ~vy {x}, i.e, the relationgx andey are distinct. Hence, the sétyx : X C A}
constitute a complete lattice with relation composition and intersection as join and
meet, respectively. To appreciate this, consider the following fact.

Fact4.1.5 Let X and Y be subsets of a set A. Then:

EXNY = EXOEvY and eExuy = e&ExNey.

Proof: For theC-direction of the first claim, assume for arbitraxys’ € 2* that
(s,9) € exny. HencesN XNY =3 NXNY. Defines* =4, (sNX) U (s NX).
Then:

sNX = (snXNX)u(§NXnX) = ((snX)u(snX))nX.

Hence,(s, s*) € ex. Also consider the following equalities:

SNY = ((SnX)uEnX)ny = ((NXNnY)u(EnXny ))

((sNXNY)u(sNXnY)) = ((snX)u(snX))n

Accordingly also(s*, §') € ey and finally alsds, s') € ex oey.

For the D-direction, assumeés,s) € exoey. So, for somes” € 24 both
(s,8") € exand(s’,9) € ey. lL.e, bothsNn X =" NnXands’NY =5 nNY.
Consider the following equalities:

sNXNY = NXNY = nYnX = InynxXx = Inxny.

Hence,(s,s) € exny.

For the second claim, first assume for arbitrarg € 2 that(s,s) € exuy.
Then,sN(XUY) =sN(XUY). SinceX,Y C XUY then also botlsnX = s NX
andsnNY = s NY. We may conclude thgss,s') € ex N ey. For the opposite
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direction, assumes,s') € ex Ney, i.e, bothsn X =sNXandsNnY =5nNY.
Now reason as follows:

sN(XUY)=(snX)U(snY)=(§nX)u(§nY)=5n(XUY).

We may conclude thds, §') € exyy. .

The partition of 2 as determined byy, we denote byry. The notationx].,
for the equivalence class undey containingx we usually abbreviate tx|x. Ob-
viously, 7 is the finest andr, the coarsest partition of*2 More in general we
have that the larger the s¥f the finer the partitionrx.

Fact4.1.6 Let X and Y be subsets of some set A. Then:

XCY iff wy <7x

Proof: First assumeX C Y and consider an arbitray¢ € mx. We without loss
of generality we may assume thét= [Z]x, for someZ C A. Now considerlZ]y
as well as an arbitrary’ € [Z]y. Then,Z’ NY = Z N'Y. With the assumption
thatX C VY, then alsaZ’ N X = Z N X. Hence,Z' € [Z]x. We may conclude that
Ty < XK.

For the opposite direction, assume tiatZ Y, i.e, that there be am € X
with x ¢ Y. Consider thisx along with the blocK{x}]y of my. Observe that both
{y} € [{x}]y ando € [{x}]y. It suffices to show that for aK € 7x if {x} € X
theno ¢ X. So consider an arbitraly € mx with {x} € X as well as an arbitrary
X' e X. Then{x} ~x X/, and withx € {x} andx € X we may conclude that
x € X'. Hence X' # 0. =

For X a subset of a seh we denote the approximation operatanﬂﬂx and
apr

. as defined for subsets ot 2oy apr, andapry, respectively. As an immedi-
ate result of the facts 4.1.4 and 4.1.6 we have the following corollary.

Corollary 4.1.7 Let X and Y be subsets of some set A. Then:
XCY iff forallX C2*: apr (X) C apr,(X),
X CY iff forallX C2”: apr,(X) C apry(X).

Proof: Immediate from Fact 4.1.4 and Fact 4.1.6. =

With respect to the behavior of lower and upper approximations of a set given
partitionsmx andwy, we have the following two facts.



26 SET INDUCED RELATIONS AND RELATIONAL SEMANTICS

Fact4.1.8 Let A be some set, of which X and Y are subsets. Let, moreoker,
a subset 0P”. Then:

apr,  (X) = apr, (apr,(X)),

aerﬂY(X> = apry (apry(X)),
LoyX) 2 apr, (X) napr, (X),
a_pTXUY(X) C apry(X) napry(X).

Proof: The proofs of the first two claims are analogous; here we only give that of
the latter.

S € aplyqy(X) iff S~xny § ands € X, for somes € 2°
iff Fact4.15 S~x ' ~y § ands € X, for somes, s’ € 24

iff s~x S’ ands € apry(X), for somes’ € 24
iff s apry (apry(X) ).

For the latter two claims merely observe that, in virtue of Coroll 4.1.7,
both apr, (X) < apr, . (X) and apr,(X) < apr, .(X), as well as both
apry,y(X) € apry(X) andapry y (X) € apry(X). .

Fact4.1.9 LetAasetand letlbe asetofindices. Let furthir}; ., and{Xi}
be indexed families of subsets of A and of subse28,aespectively. Then:

Mapr, (X) < apr; o (Mier Xi)

ﬂa—prxi(xi) 2 a_prUia Xi (ﬂiel Xi)‘

Proof: First consider an arbitrary C A and assume&’ € [, apr, (Xi), i.e,
foralli € I, it is the case tha¥ ¢ apr, (Xi). Since, obviouslyX; C ¢ X
by Corollary 4.1.7 for alli € I, alsoY ¢ aprU X(X-). Therefore,Y €
Nici aprU % (Xj). Finally, by distribution of") overa_pr we may conclude that

Ye aprU Xi (ﬂlel )

For the second claim, assume for an arbitrafy C A, that Y €
% (Mici Xi). Then there is som& C A such thatY ~_x Z and

|el
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Z € g Xi. It follows that for eachi € I, bothY ~x Z andZ € X;, i.e,
Y € apry (Xi). We may conclude thaf € ();, apry, (X). =

For the special partitionsa andn,, moreover the following equalities hold:

Fact4.1.10 Let A be asetand let C 2”. Then:
apr,(X) = apnX) = X

) X ifX=2°
apr =
- @ otherwise

X fX=0
a—pTQ(X) = A .
2" otherwise

Proof: Observe thata = { {a} : a € A} and thatr, = {2*}. Then the claims
follow almost immediately from the definitions of upper and lower approximation.
_|

4.2 Extensions in Propositional Logic

A propositional language (A) consists of a set of formula&(A) over some set of
propositional variable8. Unless stated otherwise, we assulite be countable. A
proper logicfor a propositional languadgA) is a set of pairs of theories In(A),

i.e, a subset ofb(A) x ®(A).* For any logicA for L(A) and any pair of theories

I" and© we say tha® logically follows fromI™ in Aif (I',©) € A. In the sequel

we will usually denoteI",0) € Aby I' -, © and(I',0) ¢ Aby I' ¥4 ©, also
omitting the subscript whenever possible. At an intuitive level, it can be a help to
readl” - © as signifying that some formulas & hold whenever all formulas ifY

hold. We take a very liberal attitude towards what to consider a logic and impose
no further restrictions.

A valuation based semanti¢er just ‘semantics’) for a languaggA) asso-
ciates with each formula of the language a subset of &vhich we call theex-
tension ofy and denote byy]. Here, 2 is taken as the set afaluations which
will in the sequel frequently be referred to By Lets Ik ¢ if s € [¢] ands ¥ ¢
if s ¢ [¢]. The set of extensions of the formulas id"ave denote by’ (I'), i.e,
&) =ar. {[y] : v € I'}. The set of all formula extensions of a languag#),

“We follow Segerberg (1982) in this definition and the following remarks on logics.
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& (P(A)) we usually denote by simplf (A) or even just?, if Ais clear from the
context. Let, furthermorell"] =qt. (), cp [v] and{(I") =ar. U, [7]. Semanti-
cal consequencis then defined as:

ree iff [I]c (o).

In a similar vein, a theory is said to lsatisfiablef [I"] # ¢ andvalidif [I'] = 24
A formula ¢ is satisfiableor valid if {¢} is, respectively, satisfiable or valid. Any
binary relation on the theories of a langudd@) is said to besoundwith respect
to a logicA if it is a subset ofA andcompletewhenever it is a superset df

We call a valuation-based semantics for a languade finite if for each for-
mulay of L(A) there is a finite subset C,, A such that:

s€ [¢] ands~x § implies s € [¢]

Intuitively, this says that whether a valuation belongs to the extension of a formula
depends only on the values it assigns to a finite number of propositional variables.
In terms of rough sets this means that for all formutasf L(A) there is a finite

setX C,, Asuch that:

[¢]l = aprx([e]) -

It now happens that if a semantics is finite, then for each formutaL(A) there
is asmallesffinite set such thafy] = apry([¢]) . This proposition is a corollary
of the following lemma in rough set theory:

Lemma4.2.1 Let A be a countable set artl C 2*. Assume further that there
exists some finitegZ”,, 2% in Z. LetX C 27, Then:

apry, (X) = apr,(X) forallZ € Z implies apry (X) = aprnz(X).

Proof: Assume for allZ € Z : apr, (X) = aprz(X). Since(\Z C 2,
alsoapry (X) C aprnz(X), in virtue of Fact 4.1.7. So consider an arbitrary
S € aprnz(X). We prove thas € apry (X). Then, for somep € X, s ~nzs.
SinceZy is finite, so arg ) Z andZy — (\Z. LetZy — (Z = {2y, .. ., Zn}. Observe
that for eactz € {2z, ...,z }, there is som& € Z such thatz ¢ Z. Assuming the
axiom of choice, le{Zy,...,Z,} C Z be such thay, ¢ Z/, for eachi < n. For
each 0< i < n+ 1, defines® as follows:

S  =d. S
st =a (5 —{z})U(sn{z})
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Since by definitiorz, ¢ Z{, and withs' ands’, , differing at most a, it follows
that for each 6Xi<n+1, § ~z/ S.1. As a consequencs,;, € a‘pTZO(X),
for eachi < n+ 1. To appreciate this, observe that by assumpgpre X and
hence alsa; € apr (X). Now assumes; € aprz, (X). By the initial assumption
aprz,(X) = apry(X), sos' € aprz(X). Since, moreovers' ~z S, S €
apry (aprz(X) ). Then alsas’, ; € @pry (X) and eventuallg’, ; € aprz (X).

We now prove by induction onthat for alli < n+ 1 (letting{z,...,z} = 0
if k> n):

S ~2o- {72} S

Fori = 0, recall that by assumptiog; ~nz s, which is exactly what we
have to prove considering thdt, ..., z,} = Zp — () Z. For the induction step,
we may assume tha" ~z _(; 3 S Now considersii as well as an
arbitrary ze€ Zo — {z41,...,2,}. If z € Zy—{z,...,z,}, just observe that
S't1 ~zo—{z,z} S ~20—{z,..2,} S If, however, the only remaining possibil-
ity obtains andz = z, then alsos’,; ~;, s. Hence, we may conclude that
Si1 20— {z1zn} S

In particular it holds thats;,; € apr, (X) and thats;,; ~zs. Hence,
s € apfy, (apr, (X)), which is so much as to say that apr, (X). Wrapping
things up, we recall thathad been chosen arbitrarily such tsgt- 7 s. So, we
may conclude thapr z(X) C apry, (X). -

Observe that Lemma 4.2dbes nohold in general iZ does not contain at least
one finite element. For a counterexample, consider a countably infinife aved
let X be the set of infinite subsets &f HenceX # 24, Let furtheray, . .., ay, .. .
be an enumeration ok and setZ =4 {A— {ao,...,an} : n € w}. Clearly,
Z = o and soaprn z(X) = 2A. However, since everX € X has an infinite
intersection with any € Z, we also havapr,(X) = apry(X) forall Z,Z' € Z.
However, ifZ is itself finite, the restriction of it containing a finite element can be
dropped. Just recall thapr, (apry (X)) = apr,~z (X). We are now in a position
to prove the following proposition.

Proposition 4.2.2 For every finite semantics for{A) and each formulg of L(A)
there is a (unique) smallest X A such thafp] = apry([¢])-

Proof: Consider a finite semantics fau(A) along with an arbitrary formule.
Now consider the sef =q; {Z C A: apr([¢]) = [¢]}. By finiteness, there
is also a finiteZy € Z. Hence for allZz € Z, apr,([»]) = aprz ([¢]). By
Lemma 4.2.1ap1 2 ([¢]) = aprz, ([¥]) = [¢]. Hence, by definition oF, also
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() Z € Z, which proves the proposition. 4

This result warrants the definition &(p) as thesmallestsubset of propo-
sitional variables inA for which [¢] = aprg([¢]). More in general we set
Al =t Uvep A(vy). Moreover we employ the notatiop (ag, ..., a,) to

1111

note the smallest subsktof propositional variables such tht'| = apry ([1]).
We have the following two facts.

Fact4.2.3 Lety be a formula of a propositional languag€A). Then for all
subsetsA of A such tha’A(¢) C A:

apra(lel) = apry(le]) = Iel-
Proof: Merely consider the following equalities:

apra([e]) = apra (aPTac,)(l¢])) =ractars
a_pTAmA(w)([[QO]]) =A(p) C A a_pTA(@([[@ﬂ) = [e].

That then als@pr , ([¢]) = [¢], follows immediately from Fact 4.1.1. -

Fact4.2.4 LetI be atheory in I(A) and A a subset of A such th#&t(I") C A.
Then:

apr, ([I']) = apra(lr]) = [
apr, ((I) = apra({I)) = (I)-

Proof: Consider the following equalities:

apr, ([1) Myerapr([7]) =ractazs Myer]l = [T,
aprA([17) User@aa(lv]) =ractazs U,erv] = 17

That alscapr 4 ([1]) = [I'] andapr ,([I"]) = [] then follows by Fact 4.1.1.

A classical propositional language(B) over a set of propositional variabl@s
is a minimal set containing as well asl and for each formula contains another
formula denoted by—y) as well as for each pair of formulgsand a formula
denoted by(¢ V 1) and allows for a classical semanticsclassical semantictor
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a classical languadg(A) is such that for each propositional variable A and all
formulasy andv:

[a] = {seS: aes}
[ = o
[(=o)] = S—I[«l
[Vl = el V¥l

The resulting logic we will refer to aglassical propositional logi¢CPC). Where
possible we omit parentheses. We also have the usual abbreviatjops\ 1,

¢ — ¢, \© and\/ ©, whereyp and are formulas oL(A) and© a finite and
possibly empty sequences of formulasLifA). For each formulap, the set of
propositional variablesccurringin ¢ is defined as usual and depicted Afp).

We useA(I) to denotel J. . - A(v). Classical semantics is finite in the sense that
for each formulap there is a finite set\ such thafy] = apr,([¢]).

Fact 4.2.5 Classical semantics is finite.

Proof: Consider an arbitrary classical propositional langua@® along with an
equally arbitrary formulg of L(A). The proof is then by induction op.

First assumep = a. Obviously[a] C apr, ([a]); so, it suffices to show that
apr,([a]) < [a]. Observe that for ang € apr,, ([a]), there is some' € [a]
such thas ~ 5 . Since by definitiora € S, alsoa € s. Hences € [].

Letp = —wp. Invirtue of the induction hypothesis we may assume there to be a
finite A C,, Asuch thafy)] = apr,([«]). Now consider the following equalities:

[Fol = [ =in apra(lv]) = apry ([¥]) =in apr,([-¢]).

With Fact 4.1.1, we may conclude thaty)] = apr,(—).

In casep = 1)V, the induction hypothesis grants us there to be fidite\’ C
Asuch thafy)] = apr,([v]) and]x] = apra ([x]). Now consider the following
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equalities:

aprua ([ vxl) = aptapar(fe] U [¥])
= apraua ([¥]) vaprsua (X))
=ih. apTua (@PTA([¥])) UapT oy (@PTA ([X]))
= aplavaynall¥]) vapr auanna ([x])
= apra([v]) vapr ([x])
=in. [WI1UX]
= [vval

This concludes the proof. =

[
[

For classical propositional logic we have in genékép) C A(y). Hence the
following fact.

Fact4.2.6 Let L(A) be a classical propositional languagel C A andy a for-
mula of L(A). Then:

apr, ([e]) = apry o (leD) = apry, ()

apra(le]) = aPTana)([P]) = @PTanae) (I¥])

Proof: Immediately from the Facts 4.1.8 and Fact 4.2.3 and the fact that for clas-
sical propositional in generdl(¢) C A(p). -

In the previous section we argued tiag@r. can be construed as a cylindrifica-
tion operation andpr asits dual. Infirst-order logic the quantifiers can be thought
of in a similar manner. Quantification increases the expressive power of first-order
logic tremendously and is responsible for Church’s famous undecidability result.
These phenomena connected with cylindrification, however, do not occur at all in
classical propositional logic. As a matter of fact, the set of extensfomsclas-
sical propositional logic is closed under taking lower and upper approximations.
Hence for each subsEtof propositional variables we may assume the existence of
formulas(X) ¢ and[X] ¢ with the respective extensioagry ([»]) andapr, ([¢]).

This we prove. Moreover we characterize the set of extensions of a classical propo-
sitional language as the set of fixed points of all operataprg andapr, with X

finite. Recall thats’ (A) denotes the sgft[¢] : ¢ € ¢(A)}.
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Theorem 4.2.7 Let L(A) be a classical propositional language with a classical
semantics and let Figaprg) =qt. {X € S: X =aprg(X) }. Then:

& = | Fix(aprg).

BCLA

Proof: The left-to-right direction is immediate by finiteness of classical seman-
tics.

For the opposite direction consider an arbitrXriC. Ssuch thaiX = aprg(X),
for some finiteB C A. Now define for eacls C B:

Bs =d. /\{b,ﬂb’ : bo’eB andbes and b’ ¢s}.
Obviously,s I+ 3, for eachs C B. Now set:

B =a \/{Bs: sCBandse X}.

We prove thaiX = [3]. First assume, for an arbitrasye S thats € [3]. Then
s I By, for somes € X with § C B. Some reflection reveals that~g s and
subsequently € apr,(X). With the assumption that = aprg(X), the latter is
equivalent withs € X.

Conversely, assumg € X. Defines* =4 sn B; thens® I+ (Fs. Since,
moreover,s ~g S and 3¢ only depends o8 we also have that I [s. Itis
equally clear thas* C B. Sinces*® ~g s, alsos" € aprg(X), i.e, s* € X by the
assumptionA fortiori, alsos I 3, and we may conclude thate [5]. —

This result is very close to the more syntactically flavored fact of classical proposi-
tional logic that each formula is equivalent to a complete disjunctive normal form.
Observe that ifA comprises precisely the propositional variables occurring in a

formula ¢, then each disjunct of its complete disjunctive normal form character-

izes a block in the partitionr a.

Corollary 4.2.8 Let L(A) be a classical propositional language. Then:

& = {aprg(X): BC, A and XC 2*}.

Proof: The inclusion of¢ in {aprg(X) : B C,, A and X C 24} is an immedi-
ate consequence of Theorem 4.2.7. For the opposite inclusion just observe that
apr (apr (X)) = apr (X) is a law of rough set theory and again Theorem 4.2:7.

This corollary establishes classical propositional logic as the most expressive one
with a finite semantics, in the sense that the extensions of its formulas exhaust the
set of valuations that can be finitely approximated.
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So, the set of extension$(A) of formulas of a propositional languadgg€A)
is given by the fixed points of the approximation operatiapg; on sets of valu-
ations withB finite. Obviously,&” (A) does not exhaust in general the powerset of
valuations 2. If Ais countably infinite, so is the set of formulaslgfA). The set
of valuations, not to mention the set of sets of valuations, however, is uncountably
infinite and so there can impossibly be a formula for each subset of valuations, or
even for each valuation.

In virtue of Theorem 4.2.7 and Corollary 4.2.8 we also have that the set of
extensions is closed under taking approximations. Hence the following fact.

Fact4.2.9 Let L(A) be a classical propositional language with a classical se-
mantics. Then for all BC A:

Xe & implies aprg(X) € &

Proof: At page 25 it was stated as a law of rough set theory that foBagGyC A,
aprg(apre(X)) = aprg~c(X). Now consider an arbitrarX € &. By Theo-
rem 4.2.7 there is a finit€ C Asuch thaiX = apr-(X). Now consider an arbitrary
B C A and reason as follows:

aprg(X) = aprg(@prc(X)) = aprgnc(X).
Since obviouslyB N C is finite, with Corollary 4.2.8aprg~c(X) € & and we may
conclude thaaprg(X) € &. -

The set of theories of a propositional langu&agé) will be uncountable iA is
countably infinite. Nevertheless, there will still be subsets of valuations that are not
the extension of some theory. For an example consifier 20}. For areductio
ad absurdumassume thall"] = 2* — {@}. Then there is at least onein I" such
that[y] does not contain the empty set In virtue of Corollary 4.2.8, there is a
finite subseB of propositional variables and some subset of valuattoesch that
[v] = aprg(X). Now consider thevaluationB. Observe that wittB finite andA
infinite, B is not empty. HenceB € [I'] anda fortiori alsoB € [v]. Therefore,

B ¢ aprg(X). Evidently,B ~p ¢ and sop € aprg(aprg(X)) = aprgg(X) =
aprg(X) = [v], which is at variance with the assumption thag [+].

4.3 Characterizing Set Induced Relations

In purpose of this section is to demarcate the classes of relations over the valuations
as defined by formulas and theories.
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The relations (X) as defined by subsets of a Ssbver Shave a neat charac-
terization in terms of general properties of relations. We say that a relatora
setSis bisectivef it is transitive and moreover satisfies the following condition:

(%) forallx,xX, X" € S: x<x implies X" <xorx <X’

Observe that the empty relation qualifies as bisective, as in that case both transi-
tivity and (x) are satisfied trivially in virtue of vacuous quantification. Any other
bisective relation, however, is both reflexive in addition to being transitive.

Fact 4.3.1 Any non-empty bisective relation over a set S is reflexive.

Proof: Letp be a non-empty bisective relation over aSethenx < X/, for some
x,X € S. Consider an arbitrary in S. In virtue of p satisfying &), then,y < x or
X < y. In both cases the reasoning runs along similar lines; here we deal with the
former case only. If < x, again in virtue of £), eithery < yorx <y. Ify <ywe
are done immediately. Otherwise, we hgvg x < y and by transitivity ofp also
ysy. B

The following proposition characterizes a bisective relation over a uniese
one which coincides with (X) for some subseX of S In its proof, as elsewhere
in this section] ,x denotes the sely € S: (X,y) € p}, for all elements< of and
all relationsp on a seS.

Proposition 4.3.2 LetS be aset. Thenthe ggt(X) € SxS: X C S} coincides
with the set of bisective relations on S.

Proof: In caseSis empty, the empty relation is the only (bisective) relatiorSon
Also, ¢ is the only subset oB. Now, observe thap (¢) is the empty relation as
well. So, for the remainder of the proof we may assi8te be non-empty.

First consider an arbitrar)X C S along with equally arbitrark, X', x” € S.
We prove thatp (X) is bisective. For transitivity first assume that bdthx')
and(x',x") are inp (X) as well as thax € X. Since(x,X) € p(X), alsox € X and
becauséx’, x”) € p (X), moreoverx” € X. We may conclude thdk, x”) € p (X).
To show thatp (X) satisfies condition«) as well, assuméx, x') € p (X). Either
X" € Xorx’ ¢ X. If the former,(X,X") € p(X); if the latter (X", x) € p(X). In
both cases we are done.

To prove that for an arbitrary bisective relatipron Sthere is a subset such
thatp = p (X), assume to be bisective and consider the &5 T, x. Suppress-
ing the subscripp in 1, x, we prove thap = p ((,cs1X). In casep is empty,| x
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is equally empty, for any € S. Having assume8to be non-empty},.sTx = 0.
Hence,p (NyesTX) = p(9) = 0. For the remainder of the proof, we may ac-
cordingly assume to be non-empty. In virtue of Fact 4.3.1, the relatijpmay be
assumed to be reflexive as well.

For theC-inclusion, assume for arbitraryy’ € Sthat(y,y) € p. Assume
further thaty € [, 1 x and consider an arbitrary € S. Theny < 1, i.e,
(X,y) € p. By transitivity, alsax,y') € p,i.e,y € 1 x. With x having been chosen
arbitrarily,y € (,.5 T X, and we are done.

For the D-inclusion, assume for arbitraryy € Sthat(y,y) ¢ p. Then,
Yy ¢ 1y and, thereforey’ ¢ (,.51x. It suffices now to prove that € (g7 X
So, consider an arbitrayc S, we prove thay € 7 x. By reflexivity, (y,y) € p. In
virtue of (y,y') ¢ p and ), then(y',y) € p. Again because o, either(x,y’) or
(y,Xx) € p. In the former casgx,y) € p sincep is transitive andy’, y) € p. Also
in the latter case we havg,y) € p, becausdy,y) ¢ p and ). With x having
been chosen arbitrarily,€ (.5 T x. We may conclude thdy,y’) ¢ p ((yesTX).

_|

For a classical propositional language with a countably infinite number of
propositional variables, the relationg ) for formulasy of the language, ex-
haust the set of bisective relations on the valuations just as little as the extensions
of the formulas exhaust the set of subsets of the valuations. Recall that the number
of relations over the valuations of a countably infinite propositional language is
uncountable, whereas the number of formulas remains countable. Corollary 4.2.8
on page 33 characterizes the set of extensions of a language as the approximations
of the subsets of valuations by means of a finite subset of propositional variables.
Proposition 4.3.5, gives a similar result for the relational semantics for classical
propositional logic. Before getting there, however, we make some more general
remarks concerning approximations of relations.

The approximation operatoegpr and apr on the powerset of some sgtare
relative to an equivalence relatieron S. The coordinate-wise squaref an equiv-
alence relation ovesis again an equivalence relation over the Cartesian product
of S. The coordinate-wise squaresf— denoted by ® ¢ — can in turn be used to

®In Preliminaries. Le{S},_, be a family of sets. Let further for eatle 1, pi be a relation org.
We define thecoordinate-wise productr the product relation, of{ pi };, as the relatiop™ on the
generalized Cartesian order over iesuch that for alk,y € [],., S:

(Xy) € p" iff foralliel: (x,yi) € pi.

The coordinate-wise squarg ® p of a relationp on Sis the coordinate-wise product relation of
with itself.
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approximateelationson Sby means of rough sets. Thus, we havedarrelation
over a set

(X7 X/) € a_pre®€(p)
iff for some(y,y’) € Sx S: ((x,X),(y,Y)) €ee®@e and (y,y) € p
iff forsomey,y € S: (x,y),(X,yY) € e and (y,Y) € p.

When no confusion is likely, we will denote the approximation operations on the
relations ofS relative to the squares of an equivalence relatigralso byapry
andapr, . l.e., we will write apry (p) for apr., .., (o).

The approximation operatio@pry on relations does not in general preserve
transitivity. For a counterexample one consider a base set of three eldadnts}.

Let p be the smallest reflexive transitive relation of#2° containing (o, {a})
and ({a,c},{a b}). Transitivity fails for the relatioreipry,p,,(p). Observe in
this respect that bottw, {a,c}) and({a,c}, {a, b}) are inapr,, (p). The lat-
ter because@ C apr,p(p). For the former, observe that both ~,p, and
{a} ~apy {a,c}. Asaconsequence al$v, {a}), (9,{a,c})) € efac) ® £fac)-
Nevertheless(o, {a,b} ) ¢ apr(,p(p). In a similar fashion it can be shown that
the upper approximation operation does not preserve reflexivity.

Since, every relatiop (X) is transitive, witness Proposition 4.3.2, the set of bi-
sective relations is not closed under taking approximations. The following propo-
sition, however, establishes a general connection between bisective relations and
their approximations.

Proposition 4.3.3 Lete be an equivalence relation on some set S amdle its
coordinatewise square. Then for eachcXS:

P(a_pTa(X)) C aprg. (p (X))

Proof: In case X is empty, in general, bottapr(X) = apr(o) = o
andp (apr (X)) = p(a@pr(9)) = p(v) = @. Therefore, in particular, both
p(@pr.(X)) andapr.. (p (X)) are empty, and we are done immediately. Hence,
for the remainder of the proof we may assuxit be non-empty.

Assume (x,X) € p(apr.(X)). If also (x,X) € p(X), then (x,X) €
apr. .. (p (X)) follows immediately. So, assume that x') ¢ p (X). Thenx € X
andx ¢ X. Hencex € apr.(X), and having assumed that X') € p (apr.(X)),
alsox' € apr.(X). Consequently there is aff € X such thatX' ~. x”. Then
also(x,x") € p(X). Since, bottx ~ xandx’ ~ x”, that(x,x) € apr.,.(p (X))
follows, and we are done. -
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Figure 4.2. Counterexample againapr. .. (p (X)) C p(@pr.(X)). Let the partition
be given bys. Becaus€Xx,y) € p (X), immediately alsdx,y) € apr.(p (X)). However,
x € apr_(X) andy ¢ apr_ (X). Therefore(x,y) ¢ p (apr.(X)).

The opposite inclusion, however, does not hold in general. For a counterexample,
consider a situation as pictured in Figure 4.2, in which there is a stbsétS

and an equivalence relatiansuch that there are some elemexntmdy of Ssuch

that neitherx nory are inX. Let there further be an equivalence relatiowith

(x,2) € e for somezin X and(y, z) € ¢ for no zin X. Accordingly,x € apr.(X)

andY ¢ apr_(X). Then,(x,y) € apr..(p (X)), becausgx,y) € p (X) ande ® ¢

is reflexive. Howeverx is in apr.(X), whereasy is not and, thereforex,y) ¢

p (@pr.(X)).

We say a relatiop on 2* is of finite characterif and only if p is a fixed point
of the operatiorapry on relations for soménite subsetX of A, i.e, if there is
some finiteX C A such thatp = apry(p) . We find that the bisective relations of
finite character on the set of valuations of a classical propositional landwage
coincide with the relationg (¢), for formulasy of L(A). In analogy with Theo-
rem 4.2.7 on page 33 we have the following theorem. RecallZh@) denotes
{p(p): paformulainL(A)}.

Theorem 4.3.4 Let L(A) be a propositional language with A as propositional
variables and S deno®®. For each finite subset B, A, let further Fix(aprg) be
defined as the sdtp € Sx S: pis bisective angh = aprg(p) }. Then:

2 = | Fix(aprg).
BCLA

Proof: First consider an arbitrary relatignin # (A). Then there is some for-
mulay of L(A) such thatp = p (¢). By Proposition 4.3.2p () is bisective; we
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show tha@pr, ) (o (¢) ) = p () proving that it is of finite character as well. As

p(p) C @ty (0 () ) is immediate, assumgx,y) € apta, (0 (») ). Then,
there arex,y € 2 such thaix ~aip) X5 Y ~a@) Y and(X,y) € p(p). Now
assume € [¢]. Thenx' € apra,)([¢]) = [¢]. Itfollows thaty’ € [¢] as well,
and, hencey € apra . ([¢]) = [#]. Therefore(x,y) € p (¢).

For the opposite direction, consider an arbitrary bisective relationfinite
character. We may thus assume there to be a finite sBbSgt A such thatp =
aprg(p) as well as a subseét C 24 such thatp = p (X). If X is empty, we have
p=p(®)=0=p(Ll). So, for the remainder of the proof, we may assufrte
be non-empty. We prove that = aprg(X). Thenp (X) = p (aprg(X)). In virtue
of Corollary 4.2.8 on page 33 af&lbeing finite, there is also a formujasuch that
[] =aprg(X) and, hencep (X) = p (@pTa(X)) = p (¢).

BecauseX C aprg(X) is immediate, we assungec aprg(X), for an arbitrary
s and prove thas € X. Then there is somg such thats ~g § ands € X. It
follows that(s,s) € p(X). Moreover, sinces ~g s and, trivially, boths' ~g
s and(s,s) € p(X), also(s,s) € aprg(p(X)). By the initial assumptions,
aprs(p (X)) = p(X) and therefords,s) € p(X). With s' € X, finally, we may
conclude thas € X as well. -

The following corollary has a certain likeness with Corollary 4.2.8 on page 33
above, which characterized the extensions of the formul&$Afin a much simi-
lar way.

Corollary 4.3.5 Let L(A) be a classical propositional language. Theén(A)
coincides with the set of bisective relations of finite characte2®nthe set of
valuations, i.e.:

Z(N) = {aprg(p(X)): X< 2*and BC,, A}.

Proof: The inclusion of#Z (A) in { aprg(p (X)) : X C 2" andB C,, A} follows
immediate from Theorem 4.3.4. The inclusion in the opposite direction is an im-
mediate consequence@rg(p (X)) = aprg(aprg(p (X))), which is an instance of

a rough set law, and again Theorem 4.3.4. -

As another corollary we find that, for propositional languages) on afinite set
of propositional variablesz (A) is complete with respect to all bisective relations

on 2.

Corollary 4.3.6 Let A be a finite set of propositional variables on whidA\Lis
defined. ThenZ (A) is complete with respect to the bisective relation26n



40 SET INDUCED RELATIONS AND RELATIONAL SEMANTICS

Proof: Immediate Theorem 4.3.5. =

The relation dheorydefines over the valuations, however, can be characterized
as the limit of thefinite approximations of a proto-ordeiré., an empty or reflexive
and transitive relation) over the valuations. With a finite approximation of a relation
over the valuations we mean here the approximation of that relation relative to the
equivalence relation defined over the valuations by a finite set of propositional
variables, ie, relative to the coordinate square of a relatipwhereB is a finite
subset of propositional variables. First, we prove two preliminary facts.

Fact4.3.7 Letp be a proto-order over aset S. Then=p ({1,x: x€ S}).

Proof: First assume that be empty. Then],x = ¢, for eachx € S Hence,
p({1,x: xeS})={o}andp({0}) = p(2) = ©. So, for the remainder of the
proof we may assumeto be both reflexive and transitive.

First assume thaty,y’) € p({Tx: x€ S}), for arbitraryy,y € S Then,

y € Tximpliesy € 1x, for all x € S. By reflexivity of p, we have(y,y) € p, i.e,
ye 1y. Withy € S thenalso/ € 1y, i.e, (y,Y) € p.

For the opposite direction, assume thaty') € p as well as thay € 1 x, for an
arbitraryx € S Then,(x,y) € p. By transitivity then als@x,y) € p,i.e,y € Tx.
Therefore(y,y) € p(1x), and withx having been chosen arbitrarily, eventually,
v.y)ep({Tx: xe8}). .

This fact has the following corollary, which says that the class consisting of the
reflexive and transitive relations over a set together with the empty relation can be
characterized as intersections of bisective relations.

Corollary 4.3.8 Letp be arelation over some set S. Then:

pis a proto-order iff forsom& C 25, p = p(X).

Proof: The left-to-right direction is immediate by Fact 4.3.7. For the opposite
direction, assume = p (X), for someX C 25, If X contains the empty set,
then{p (X) : X € X} containsp (¢), i.e., the empty relation. Hences (X) =
Nxex £ (X) = @ and by the initial assumptiom,is empty as well. So, henceforth
X may be assumed not to contain the empty set. By Fact 443X) is both
reflexive and transitive, for eack € X. An easy check then establishes that
P (X) = Nxex p (X) is reflexive and transitive as well. -

This result has as an immediate corollary that for a langli#g¢ on afinite set of
propositional variables, the class consisting of the relatofis) for all theoriesl”
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in L(A) is also complete with respect to the reflexive and transitive and otherwise
empty relations over the valuations.

Corollary 4.3.9 Let L(A) be propositional language onfanite set A of proposi-
tional variables and lep be a relation ove”. Then:

pis a proto-order iff forsomd of L(A), p=p ().

Proof: Immediately by the Corollaries 4.3.6 and 4.3.9. -

The relationsp (I"), as defined by the theories of a languagé), however
fail to exhaust the set of reflexive and transitive, or otherwise empty relations over
the valuations oL (A), if the setA of propositional variables is infinite. For, in
any such case, the subsets of valuations of langu&§goutnumber its formulas
and for someX C 2 there is no formulay in L(A) such that[o] = X. We
find that for any suclX, there is no theory™ of L(A) such that relatiop ({X})
equals the relatiom (I"). To appreciate this observe that{X}) = p(X) and
assume for @aeductio ad absurdurthat there be somg such tha (X) = p (I).
Consider an arbitrary € I'. By choice ofX, thenX # [y]. Moreover,p (X) C
p (7), for otherwisep (X) ¢ p (7), which would be absurd becaugéI”) C p (7).
By Fact 2.1.5, then eitheX = ¢ or [y] = 2*. Since[l] = o and L is a
formula of L(A), the former cannot obtain by choice Xf Hence,[y] = 2* and,
consequentlyp () is the universal relation over the valuations. Witthaving
been chosen arbitrarily and the initial assumption, it follows koth") andp (X)
coincide with the universal relation as well. HenpéX) = p (T). This however
yields a contradiction, because, by Fact 2.X2~= [T] would follow, which is
absurd withT being a formula of.(A).

As the next best thing, the following theorem characterizes the set of relations
defined over the valuations by the theories of a propositional language in the gen-
eral case.

Theorem 4.3.10 Letp be a reflexive and transitive relation or the empty relation
over S, with S= 2% and A a set of propositional variables. Then:

p= () aprg(p) iff forsome theony inL(A): p=p(I).
BC.A

Proof: If p is the empty relation, then so is any relatiapr (p). Hence,p =
? = (gc_a@Ps(p). Now observe that for the theofyL }, the relationp ({ L })
is empty as well. Thus, for the remainder of the proof, we may assutoebe
transitive and reflexive.
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For the left-to-right direction, assume = (g Aa@Plg(p) and letX =gt
{1,s: s e S}. (Henceforth in this proof we omit the subscripin 1,s.) By
Corollary 4.2.8 on page 33 above, there is a formulsuch thatflp] = aprg(X),
for eachX € X and each finit&8 C,, A. Now let:

r* =g |J {p: forsomeBC, A, [¢] =aprg(X) }.
XEX

We prove thap = p (I'™).

For the D-direction, assume an arbitrary pasg; s') to be inp (I"). Consider
an arbitrary finite subse® of A; we show thats,s') € aprg(p). Also consider
1,8 Then, there is somein I such thafy] = aprg(1s). Since(s,s) € p(0),
in particular(s,s') € p(v) and sos € [v] impliess' € [vy]. By reflexivity of
p, trivially, s € 1 sanda fortiori s € aprg(1s) = [y]. Hence, als& € [v] =
aprg(1s). l.e, for somes’ € S boths ~g s” ands” € 7s,i.e, (s,9") € p. As
trivially, s ~g s, we may conclude thds, s') € aprg(p).

For theC-direction, observe that with reflexive and transitive and Fact 4.3.7
we havep = p ({1s: se S}). Hence:

p = [)amslp) = () ams(p({Is: ses})).

ngA ngA

Assume for arbitrary valuationsands' that (s,s') ¢ p(I'*). Hence, for some
~v € I'*, boths € [y] ands ¢ [vy]. By definition of I'*, there is some finite
subsetB C,, A and somes in Ssuch that]y] = aprg(so). Then, for all val-
uationss’ such thats' ~g s, §" ¢ 1s. Also, by transitivity ofeg, 8" € 1,
for all valuationss” with s ~g s”. Hence,(s,s) ¢ aprg(p(1%)). Since
p({Is: s€S}) Cp({l}) weobtain(s,s) ¢ aprg(p ({1s: s€S})). Ac-
cordingly, (s, s) ¢ Ngc_a@Pfs(p ({1s: s€S})),i.e,(ss) ¢ p.

For the opposite direction assumpe= p (I") for some theoryl” of L(A).
Thenp C Ngc a@PTg(p) is immediate. Assume thas,s’) ¢ p; we prove that
(s.8) ¢ Nac_a@PT(p). In virtue of the assumption, there is somesuch that
s€ [v] ands ¢ [y]. Now consider the finite sét(~). For arbitrary valuations”
ands” such thats ~(,) " ands ~a,) s, we haves’ € apra.,\([7]) = [7]
ands” ¢ apta.,)([v]) = [v]. Therefore,(s’,s”) ¢ p(y). It follows that
(s,8) & apTa(y)(p (7). Asp (I7) C p(7), alsoapra,)(p (1) € @Prac (p (7))-
Therefore,(s,s) ¢ apra(,)(p (")) andafortiori (s,s) ¢ (gc a@PTe(p (1))
Having assumed that= p (I"), eventually(s, s') ¢ (g _a @Prg(p)- =

Thus we find that the class of relations induced by theories of a propositional lan-
guage contains the empty relation as well as those partial preorders over the valu-
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ations that can be considered the limit of their own finite approximations. Theo-
rem 4.3.10 sets a bound on the relations that can be expressed as a pe{dtjon
for some propositional theord.






Chapter 5

Closure Conditions for Set-Induced
Relations

In classical logic a theory may be closed under its consequences without affecting
its deductive properties. At a semantical level, this fact is reflected in that the
extension of a theory" is identical to the extension of its closure under logical
consequence.e, in general '] = [Cn(I)].

The relations over the valuations induced by theories, however, are more sensi-
tive in this respect. In particular, it is not in general the case that the relgiofis
and p (Cn(I")) are identical. For an easy counterexample consider a proposi-
tional language containing the propositional varialsl@ndb. Obviously we have
aVv b € Cn({a}). For the valuationsy and {b} clearly ({b},0) € p({a}).
However,({b},0) ¢ p({a,aV b}), becaus€b} I aV bbuto ¥ aVv b. Hence,
({b},2) ¢ p(aVb). The same argument holds fag. It is obvious, however, that
a theoryl” may generally be closed under formulas thatlagécally equivalenin
the classical sense without affectipd ).

At a set-theoretic level, a set of se¢annot in general be closed under super-
sets without affecting the relatigm(X). On the other hand, different sets of sets
may very well induce the same relation on a univeigs, p (X) andp (Y) may
be identical even iX andY are distinct. This chapter aims at making precise the
conditions on sets of se¥ andY that have to be satisfied for the relatignéX)
and p (Y) to be identical. Closure conditions on theories that preserve relations
induced by theories then follow as a matter of course. We find that relgjpi$)
are slightly better behaved than relatignéX) and, therefore, we will focus on the
former first.

As an example of monotonicitp, ({X, Y}) includespy ({X, Y, XNY,XUY}).
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Figure 5.1. Three intersecting setsX, Y and Z. A pair (x,y) is in the rela-

tion p ({X,Y,Z}) the set of set§X, Y, Z} defines over the universgwhenever one can
reachy from y without ever moving from an area to an area that is colored ligliay,

(xy) € p({X,Y,Z}), for all elementsx in area 1 and/ in the darker colored area 5.

But any element in area 2 and any element in area 5 are incomparable with respect to
p ({X,Y,Z}). Some reflection reveals that closing the §€tY,Z} under intersections

and unions would not distort this relation.

The opposite inclusion, however, also holds in general. For a generalization of this
fact, define foiX a set of subsets of a s&t

XY =g {UX': X CX} XD =g {OX': X CX}.

The following proposition says in effect that, for any set of sétselationpg (X)
is invariant under taking arbitrary intersections as well as under taking arbitrary
unions.

Proposition 5.0.11 LetX andY be sets of subsets of a set S such #hat Y C
XU U Xm. Thenpo (X) = po (Y)

Proof: By monotonicity immediately, (Y) C pq (X). Therefore, it suffices to
prove thatpy (X) C po (Y). Consider arbitrary, X' € Ssuch thatx, X') € pg (X).
Consider, furthermore, an arbitraly € Y and assume that € Y. We prove
thatx' € Y. EitherY = N X' orY = |JX/, for someX’ C X. Consider thisX'.
In the former case, consider an arbitra¢yc X’. Then bothX € X andx € X.
Since(x, X) € pg (X), in particular(x, X') € po(X). HencexX € X. With X having
been chosen as an arbitrary elemenXgffinally x € () X’, and we may conclude
thatx € Y.

In the latter case —e,, if Y = [JX' — we havex € X, for someX € X'.
As X' C X, alsoX € X and with(x,X) € pg (X), in particular(x,X') € po(X). It
follows thatx’ € X and, subsequently, € | X', i.e, X €Y. =
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Corollary 5.0.12 LetX andY be sets of subsets of aset S. Thea Y C X"
impliespg (X) = po (Y). Similarly, if X CY C X thenp, (X) = pg (Y).

Proof: In virtue of monotonicity it suffices to show that, (X) = po (X“"™)
and thatpg (X) = po (X™V). Evidently, X C X as well asx" € X", With
Proposition 5.0.11p, (X) = py (X™). And again with Proposition 5.0.11, also,
po(X™) = po (X"Y). Hence,py(X) = po(X"V). The proof forpy (X) =
po (XY is fully analogous. 8

For relations induced by a theory over a set of valuations, this corollary means that
a theoryl” may be closed under arbitrary conjunctions and disjunctions without
affecting the relatiomo(I).

The ground has now been cleared to formulate exact conditions under which
the relationsp, (X) and py (Y) are identical, for possibly distinct sets of sets
andy.

Proposition 5.0.13 LetX andY be sets of subsets of a set S. Then:

po(X) =po(Y) iff X7 =Y

Proof: For the right-to-left direction, observe théf'Y = Y™V immediately im-
plies pg (X)) = py (YY), Since, by Corollary 5.0.12, botty, (X"V) = pg (X)
andpg (X"VY) = pg (X), we are done.

The left-to-right direction is less straightforward. Assume the contrapositive
XY £ yOU Without loss of generality we may assume there beXam S
such thaX € X"V andX ¢ Y™V, Consider thisX. Observe that triviallys C Y"
andlJo = @. Hencep € Y. Moreover, since C Y and( @ = S bothSe Y"
and{S} C Y". Sincel J{S} = S alsoSe Y". It follows thatX # ¢ andX # S.

Now consider the set*, defined as:

Y* =g, {YGYQ: YQX}.

Clearly, | JY* € Y"Y and|JY* C X. Due to the assumption that ¢ Y™,
howeverX # | J Y*. Hence, there is somé < X such thatx* ¢ |JY*. Consider
thisx*. We prove that am in Sexists such that is not containedXrand for which
it is moreover the case that, for Mle Y,x € Y, if x* € Y as well.l.e:

(*) there is arx ¢ X such that for ally € Y: x* € Yimpliesx € Y.

This suffices because, witti € X then(x*,x) ¢ po(X). Then(x*,x) ¢ po (X™Y),
becauseX had been assumed to be i (X"Y). With Corollary 5.0.12, then
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po (X)) = pg (X) and (x*,x) ¢ po (X) follows. Moreover, alsgx*, x) € po(Y),
for eachY € X. Hence(x*,x) € py (Y), which would prove the proposition.
We prove(x) by areductio ad absurdumSo assume:

(*%) for all x ¢ X there is a¥ € Y such that botkx ¢ Y andx* € Y.
Then, consider the s&t**, defined as:

Y =g |J{YeY: x¢Yandx €Y}
X&X

By (xx) and the fact thaX # S we haveY** # @. Obviously,Y** C Y and
soY** € Y. By constructionx* € (\Y**. Moreover, by construction and
(xx), also(Z** C X. It would follow that(Y** € Y* as well as thak* €
JY*, quod non =

Corollary 5.0.12 has as a special case fatX) = pg (X""), which signi-
fies that closing a set of subsefsunder arbitrary intersections and then arbitrary
unions does not affect the relation induced on the universe. As a corollary of Propo-
sition 5.0.13 we now find, moreover, thét'" is also maximal in this respedte.,
thatX can not be extended beyoXd"“ without distorting the relatiop, (X).

Corollary 5.0.14 LetX andY be sets of subsets of S. Then:

po (X)) = po (XPUY) iff Y S XY

Proof: From right to left the proof is trivial. So assume thag (XY) =
po (XY UY). It can easily be verified that UY C X" UY C (XUY)".
By Proposition 5.0.11, themy (XU Y) = pg (XY UY). In virtue of the same
proposition, alsgg (X) = pg (X"Y). With the initial assumption then it follows
that pg (X) = po (X UY). Proposition 5.0.13 then give€'¥ = (XU Y) V. Be-
cause X" UY C (XUY)", thenX"W UY C X", We may conclude that
Y C X"V, -

Similar results can be obtained for relatign$X) induced by sets of sets.
Unfortunately, things are not as neat as fgr(X). Becausep (X) andp, (X) are
distinct only if X contains the empty set (Proposition 2.1.3), Proposition 5.0.13
also has the following corollary fgs (X).

Corollary 5.0.15 LetX andY be sets of subsets of a set S. Then:

p(X)=p(Y) iff X"W=Y"orgeXny.
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Proof: Immediately by the Facts 2.1.3 and 2.1.4 together with Proposi-
tion 5.0.13.

It is, however, not in general the case that Xonot containing the empty set the
relationsp (X) andp (X"V) coincide. Observe in this respect thét always con-
tains the empty set, singg » = ¢ ando C X. Moreover,p (X) need not be the
empty relation, not even X contains disjoint sets. In any such case, howexer,
will contain the empty set and (X) will also end up empty. In order to obtain
the desired closure properties, defineXoa set of subsets of a s&t

XY =g {UX': X' CXandX' # 0}
XM =g XU{NX: X' SXandX #0}.

The idea behind these definitions is essentially the same as thosearfd X",
be it that they prevent the empty set to be include'inor Y if, and only if, X
does not conclude the empty set. It is therefore not surprising<thaind X' are
in extension very similar tox" andX", respectively.

Fact5.0.16 For X a set of subsets of some set S:

T XY —{o} ifo¢X, “ X" —{o} ifo¢X,
XY otherwise XN otherwise

Proof: For the first case, firstassume# X. Observe thab ¢ X". For, assuming
otherwise would thap = J X’ for some non-emptxX’ C X. This would imply
thatX’ = {#} and hence € X, quod non Hence X" C X" — {@} and it suffices
to prove the opposite inclusion. Consider an arbittdne X — {o}. Then,
X # @ andX = | J X’ for someX’ C X. Moreover, X" # @ by assumption, and so
(X" = X € X". Second, assume thate X. Observe that triviallyX” C XV.
Hence it suffices to prove the opposite inclusion. Consider an arbXrarx". If

X = @, observe that by the assumpti¢n} C X. Since{o} # @, it follows that
U{o} = o € X". In caseX # ¢ the proof is like the case in whiah ¢ X.

For the second case, first assume that X. Some reflection on the definitions
reveals thatthem ¢ X" and alsoX"" C X" — {@}. Proving the opposite inclusion,
consider an arbitrarX € X" —{@}. Then,X = (X’ for someX' C X. It
follows that() X" # @ and so | X’ = X € X", Finally, letg € X and observe
that X" C X". Hence, consider an arbitrady ¢ X". If X = @, we are done
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immediately by the assumption thate X. Otherwise, the reasoning is like the
case in whichp ¢ X. -

On basis of this fact and employing Proposition 5.0.11 the following closure prop-
erties forp (X) are obtained.

Proposition 5.0.17 LetX andY be sets of subsets of a set S such #hat Y C
XY U X" Then,p (X) = p (Y).

Proof: First assume € Y. Then,p € X" or g € X". In either casep € X,
by Fact 5.0.16. Therp (X) = ¢ = p(Y). So, for the remainder of the proof
we may assume that ¢ Y. Then,¢ ¢ X and in virtue of Fact 5.0.16 both
XY = XY andX" = X". HenceX C Y C XYUX" and by Proposition 5.0.11, then
po (X) = po (Y). With the assumption that ¢ X and Fact 2.1.3p (X) = pq (X)
andp (Y) = po (Y) and we may conclude that(Y) = p (X). -

As corollaries of Proposition 5.0.17 we find that a thedrynay be closed under
disjunctions andonsistentonjunctions without this having consequences for the
relation induced on the valuations.

Corollary 5.0.18 LetI" be atheory in a propositional languag€A) Let» and
¢ be formulas inI". Then,p (") = p(I"U{p Vv¥}). Moreover, if{p, 1} is
classically satisfiable, then algn(I") = p(I'U {¢ A ¥ }).

Proof: Immediately by Proposition 5.0.17. -



Chapter 6

Compositionality of Formula Induced
Relations

Introduction

On page 8 it was argued that the set of relations of the fajfn) does not allow
for a compositional definition ip. We found thatoo(T A a) is not identical to
po(L A a), butsincepo(T) = po(L), this difference could not be made on the basis
of the relations ofp(a), po(T) andpo(_L) alone. We stated that the relatigngp)
defined for propositional formulasfared better in this respect. This chapter gives
an, admittedly monstrous, proof of this claim.

We have to prove that, for each formutawith sub-formulasy)yo, . .., ¥n, the
relationp () can be viewed as a construct in the relatiprigy), ..., p (¢,). In
any such construct we may use the operations from relational algedrahe
identity relation (d), relational compositiongo o) and relational inversep(),
along with the usual Boolean operators. As we may assume the relat{ans
over the valuations for propositional variablago be given, it suffices for our
purposes to define operationrs+ and- on relations on a s&in general such that
in particular all subsetX andY we have:

—p(X) = p(X),
p(X)+p(Y) = p(XUY),
p(X)-p(Y) = p(XNY).

The following definitions and propositions in the next section are all auxiliary to
this one result.
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6.1 The Proof of Compositionality

For easy reference let us first summarize the non-Boolean laws of relation algebra:

pold = p Idop = p

po=p " = p
(bU0)" = p Uo" (po0)” = a”op’
po(0UT) = (poo)Ulpor)  (pUd)or = (po7)U(0oT)
(poo)or = po(ooT) (PVOW) <0

The universal relation is denoted by, We further introduce as a shorthand
notation forp N p~, i.e, thestrict subrelationof p. Thus we have:

(x,X)ep iff (xX)epand(X,x) ¢ p.

We usually denote (_’X) by / (X). It can easily be established tHatandId are

both empty. Also,p”) equals(p) ~, as witness the following relation algebraic
equations:

¥

(p) = pNp" = p () = (pnp) = ("
Hence, we can usg” andp (X) ~ without ambiguity. We also have the following
easy, but useful, facts.
Fact6.1.1 Let X be a non-empty subset of some set S. Thef),” = p (X).
Proof: For arbitraryx, X' € Swe have(x,x) € p(X) ", if and only if (X,x) €

p(X), ifand only ifX ¢ X or x € X, if and only ifx ¢ X or X' € X, if and only if
(x,X) € p (X). -

Fact6.1.2 Let X be a non-empty subset of some set S. The(X) C p (X) ~.

Proof: For arbitraryx, X' € Swe have(x, X') € p (X) imply (x,X) ¢ p (X). Then,
x € X. Therefore, subsequentl’, x) € p (X) and(x,x) € p(X) ~. =

Fact6.1.3 Let X and Y be a subsets of set S such that¥X# @. Then:

p(X)Np(Y) S p(XNY).

These inequalities are taken from van Benthem (1996).
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Figure 6.1. All elements outsidex are connected with one anothda 5 (X) o p (X) ~.
All elements inX are related to one another pyX) ~ o p (X).

Proof: Assume(x,X) € p(X)Np(Y),i.e, both(x,x) € p(X) and(x,X) € p(Y).
Now assume also that €¢ X NY. Then bothx € X andx € Y. Therefore,
alsox' € X andx € Y, from which in turnx € X N X. We may conclude that
(x,X) € p(XNY). -

Fact 6.1.4 Let X be a non-empty subset of some set S. Then:
(x,X) ep(X)” iff x¢X and %€ X.

Proof: For arbitraryx, X' € Swe have(x,x) € p(X)~, if and only if (x,X) ¢
p (X) ", ifand only if (X', X) ¢ p (X), if and only ifx ¢ X andx' € X. -

Fact 6.1.1 suggests relational inverse as a candidate for the unary operation
It holds, however, only for relations(X) in caseX is not empty. For the empty set
we havep (0) " = ¢~ = ¢ but alsop (9) = p (S) = Sx S The following lemma
establishes the rather more complicgied p” o p)U(po p~) as a proper definition
for —p. It takes an easy check to establish that defined #w@i) is the empty
relation if X coincides withS, and the universal relation X is empty. Figure 6.1
explains informally the workings of the definition for a relatipriX) with X a
non-empty proper subset 8f To appreciate the underlying idea observe that the
relation/ (X) holds exactly between those pafrsx’) such thak ¢ X andx’ € X,
i.e., forwhich(x,x') € p(X). Inp (X) also connects any two elements that are both
inside or both outsidX. The relationg (X) “ o 5 (X) ) and(p (X) o p (X) *) take
care of this. Formally, we have the following lemma.

Lemma 6.1.5 Let X be a subset of some set S. Then:

p(X) = 2K U (5(X)"0p(X)) U (p(X) 0p(X)").
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Proof: We distinguish the cases in whighis empty, in whichX is Sand in which
X is neither of the previous. First assuide= ¢. Then observe:

p(@) = p(§ = U =U=-0 = U-p(0) = p(9)

Hence certainlyy (2) U (5 () “0p(2)) U (p(2) op(9)~) = U. Secondly,
assumeX = S Thenp (S) = p(9) = 0. Now observe thap (S) = U = ¢ and
thaty (S) = U = @. Consequently, alsp (S) * = ¢ and the following equations

hold:
P(S U (h(970p(9) U (p(90p(97) = oUoUo = 0.

Finally, assume& # ¢ andX # S, in which case (X) = p (X). By Fact 6.1.1,
now, p (X) = p (X)" and it suffices to prove that:

p(X)" = p(X)U(p(X) 0p(X)U(p(X)op(X)”).

For theC-direction supposéx, x') € p(X)”, i.e, (X,X) € p(X) and distinguish
the following three cases:

(@ X eXandxeX (b) X ¢ Xandx e X () X ¢ Xandx ¢ X

If (b), (x,X) ¢ p(X) and immediately(x,x') € p (X). Now assumed) to be the
case. SinceX # Sthere is somg ¢ X. For thisy both (x,y) € p(X)~ and
(y,X) € p(X). Hence x,X) € p(X) o p(X). Similarly, if (c), observe that since
X # @, there is somg € X. Now again bothx,y) € p (X) and(y,X) € p(X) ".
Hence, in this casex, X') € p(X) o p(X) °. So, in each of the three cases we have

that(x,X) € p (X) U (5 (X) "0 (X)) U (5 (X) 0 (X) ).

Finally, for the D-direction, observe thai (X) C p(X)~ by Fact 6.1.2. So,
assume for arbitrary, X € Ssuch that(x,x) € p(X) "o (X). Then there is
somey such that’x,y) € p(X) ~ and(y,X) € p(X). Consequentlyx € X,y ¢ X
andx € X and we may conclude thdk,x') € p(X)”. Similarly if (x,x) €
p (X) o p(X). Then there is somgsuch thatx,y) € p (X) and(y,X) € p(X) ~.
From this follows thak, X' ¢ X andy € X and again we may conclude thHatx') €
p(X)". -

A proper definition of an operatiorsuch thaip (X) - p (Y) = p(XNY) has to
give rise to the correct relation in a number of different cases.

First, we consider the case in which oneXfr Y is a subset of the other.
For an illustration of this situation, consider Figure 6.1, assuming without loss of
generality thaly C X. Barring the borderline cases in which eitbeequalsSor Y
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is empty, the intersection @f(X) andp (Y) gives us exactly the relation we want,
except that also all pairs, X') with x € X — Y andx’ € X should be inp (X NY)
as well. Define for arbitrary relationsandp’ over some se®:

p®a =d (pNo)U((pUd)o(p"Ns”)).

We abbreviatey (X) ® p (Y) to p* (X,Y). This definition, when applied to bisec-
tive relations, gives precisely the relation we were after. Figure 6.1 illustrates its
workings informally, whereas formally we have the following lemma.

pO0 NH -

Figure 6.2. Each element inX — Y is related to all elements outsidé by (5 (X) U
p(Y))o(p(X) " np(Y)"),ifYCX

Lemma 6.1.6 Let X Y be subsets of some set S suchthatX orYC X. Then,

p(XNY) = p*(X.Y).

Proof: Firstassume eithet or Y to be empty. TheiXNY = @ and consequently
p(XNY) = p(v) = @. Italso follows thatp (X) = @ or p(Y) = @. In either
case,p (X) N p(X) = @ and, moreoverp (X) " N p(Y)~ = @, which renders
(pX)Up(Y))o(p(X) " Np(Y)") to be empty. Hencey* (X,Y) =0 U0 = 0,
as well.

So, for the remainder we may assume tKat ¢ andY # ¢. Moreover, since
eitherX C YorY C X, we also havethaX N Y # ¢ andp (XNY) = p(XNY).
Without loss of generality we may assume thatC Y. Now, eitherY = Sor
Y#£S

In the former casep (XNY) = p(XNS) = p(X). Observe thap (Y) =
p(S) = U and hence (X) N p(Y) = p(X) nU = p(X). Moreover,p(Y) =
U = @, which makes thafp (X) U 4 (Y)) o (5 (X) N p(Y) ) is empty. Hence,

(X Y) = p(X) U0 = p(X) = p(XY).
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This leaves us with the case in whidh=# S, So for theD-direction, con-
sider arbitraryx, X' € Ssuch that(x,x) € p*(X,Y). If (x,X) € p(X) N p(Y),
by Fact 6.1.3, immediatelyx,X) € p(XNY). So assuméx,x) € (p(X) U
p(Y))o(p(X)" N p(Y)"). Then there is som&”’ € S such that(x,x") €
p(X)Up(Y)and(X’,X) € p(X) " Np(Y)~. From the former follows that ¢ X
orx ¢ Y;in either casex ¢ XN'Y. Hence,(x,X) € p(XNY).

For the C-direction, assuméx,xX') € p(XNY). So eitherx ¢ X NY or
X € XNY. If the latter, then bothx,x') € p(X) and(x,X) € p(Y) and so
(x,X) € p(X) N p(Y)anda fortiori (x,X) € p* (X,Y). Hence, in the former case
we may additionally assume theit¢ X N'Y. With X C Y, thenx ¢ X andx’ ¢ X.
Accordingly, (x,X) € p(X). If now X € Y, then(x,x) € p(Y). Accordingly
(x%X) € p(X)Np(Y)and(x,X) € p*(X,Y). So, finally, consider the case in
whichX ¢ Y. SinceXNY # @ there is som&” € XNY. Withx ¢ X andx” € X,
we have(x, X") € p (X) and so alsdx, X”) € p (X) U p (Y). Moreover, withx' ¢ X
andx ¢ Y, also both(x”,X') € p(X)~ and(x’,X') € p(Y)"~. We conclude the
proof by observing that nowx”,x') € p(X)~ N p(Y) ", and subsequently that
(xX) e (p(X)Up(Y))o(p(X) " Np(Y)~). Hence,(x,X) € p* (X,Y). -

As an auxiliary relation construct, define for arbitrary relatiprnsnd o over
some seSthe binary operatop as follows:

p@a =d (po(p"Nd7)op”)U (oo (67Np7)oa”).

We denotep (X) ® p(Y) by p° (X,Y). For subsetX andY the relationp® (X, Y)
connects any elements 8iwith any oneoutside XN 'Y, provided that the relative
differences betweeX andY are not empty. Otherwises® (X,Y) is the empty
relation. The machinations ¢f (X,Y) if X —Y andY — X are non-empty are
illustrated in Figure 6.1. Formally, we have the following lemma.

Lemma6.1.7 LetSbeaset, X CS. Then:

i {(xxX): X gXnY}, fX-Y,Y-X#0
p°(XY) = _
%) otherwise

Proof: First assume that eithet—Y = gorY — X = @. Then eitheiX C Y
orY C X. Without loss of generality, we may assume the former. It suffices
to demonstrate that both(X) " N p(Y) = g andp(Y) " N p(X) = @. In case

X = ¢, bothp (X) = ¢ andp (X) © = ¢ and we are done immediately. If however
X # @, then alsoY # @. Now consider arbitrarx,x' € S. We first prove that
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£ (X)"np(Y) °

Figure 6.3. The relationy (X) "N (Y) holds precisely between those elementXin Y
and those iy — X. Each element ity — X is connected to any other element outsiie
and to none therein; considerg, the elemenk*. Provided that botlX — Y andY — X are
non-empty, all elements are related to an elemedt inY by p (X) and also to precisely
all elements outsidX via p (X) o (5 (X) “ N p(Y)) o p(X) “. A similar argument shows
thatp (Y) o (p(Y) "N p (X)) op(Y) " connects all elements to all elements outside

p(X)Np(Y)” =a. If (x,X) ¢ p(X) we have immediatelgx, X') ¢ p (X)Np (Y) °.
So assuméx, X') € p(X). Then,x ¢ X andx € X. By the inclusion ofX in Y,
alsox’ € Y. It follows that(x,x) ¢ p(Y)~. Now again(x,X') ¢ p(X) N p(Y)".
With x andy having been chosen arbitrarily, we have th&X) N p(Y) ~ = @.

We now prove thap (Y) N p(X)~ = @. Similarly, for arbitraryx, X' € S, if
(x,X) ¢ p(Y) immediately(x,x) ¢ p(Y) N p(X)~. So assuméx,X) € p(Y);
thenx € Y. AlsoY # ¢ andx ¢ X. From the latter(X,x) ¢ p(X), i.e,
(x,X) ¢ p(X) ~. It now follows that(x,x) ¢ p (X) "N p(Y). With xandx’ having
been chosen arbitrarily,(Y) “ N p (X) = @.

Second, assume that both- Y # ¢ andY — X # ¢. Then bothX # ¢ and
Y # o. We prove subsequently that (X,Y) € {(x,X) : X ¢ XN Y} and that
p° (X, Y) 2 {(x,X): X & XNY}.

For the C-direction, assume for arbitrary, X’ € S first that (x,X) €
p(X)o (p(X)"Np(Y)) op(X)”. Then there arg,y”’ such that(x,y) € p(X),
v,y) € p(X)"np(Y)and(y,X) € p(X)". Hence, in particulaty,y') € p (X) ~
and soy’ ¢ X. Since also(y,X) € p(X)”, we havex ¢ X and a fortiori
X ¢ XNY. For(x,X) € p(Y)o (p(Y) " Nnp(X)) op(Y)” a similar argument
shows tha’ ¢ Y and, accordinglyx’ ¢ XNY.

For theD-direction assume for arbitraryx’ € Sthatx’ ¢ XNY. Hence, either
X ¢ Xorx ¢ Y. For symmetry reasons, we may assume without loss of generality
that the former holds. Observe that sirke- Y # @, there is some&” € X such
thatx” ¢ Y. Similarly, in virtue ofY — X # @, there is somg € Y such thay ¢ X.
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Now, obviously,(x,x”) € p (X). Moreover, withx” € X andy ¢ X, (y,x") € p (X)
and so(X",y) € p(X)~. Withx” ¢ Y andy € Y also(x",y) € p(Y). Hence
(X'y) € p(X) "N p(Y). With X' ¢ X, immediately(y,x) € p(X)”. Putting
things together, we may conclude thiatx') € p (X)o (p(X) "N p(Y)) op(X)7,
which suffices for a proof. —|

The ground has now been cleared for a definitiorp@K N'Y) in terms of
p (X), p(Y) and the relation algebraic operators alone. Little intuitive motivation
can unfortunately be given apart from that it works.

Lemma 6.1.8 Let X and Y be subsets of some set S. Then:
p(XNY) = (p"(%Y) = p° (X, Y)) U (p° (X, Y) o p (X,Y)).

Proof: If X—Y =@ orY - X = ¢, eitherX - YorY C )_(. In this case, by
Lemma 6.1.7p° (X,Y) = ¢ and, hence, alsp® (X,Y) = p°(X,Y) 0 p° (X,Y) =
Q.

we must prove thap (XNY) = p* (X,Y). This, however, is immediate by
Lemma6.1.6.

For the remainder of the proof we may assumeXhatY # ¢ andY — X # o.
Hence we may also assume tpa(X, Y) = {(x,x) : x' ¢ XNY} and, moreover,

that (x,X') € p°(X,Y) ifand only if x ¢ X N'Y andx' € XN'Y. There are two
cases; eitheXNY = g orXNY # ¢. If the former,p (XNY) = p () = 0. Also
observe thap® (X,Y) = U. Hence,p* (X,Y) —p° (X,Y) = p*(X,Y)-U =90
andp® (X,Y)op°(X,Y) =UoU=¢goU=00U = 0.

So, assumeX N'Y # @. Then neitherX nor Y is empty and the
facts 6.1.1 through 6.1.4 may be invoked. We prove, subsequently, both

p(XNY) € (p" (X, Y) = p° (X, Y)) U (p° (X, ¥)0p® (X,Y)) andp(XNY) 2

(IO* (X> Y) - po (Xv Y)) U (po (Xv Y) © :00 (Xv Y) )

For the C-direction, consider arbitrary arbitraryx’ € Ssuch that(x,x') €
p(XNY). EitherxX ¢ XNYorx € XNY. If the latter, bothx € X and
X' € Y. Hence(x,X) € p(X) and(x,X) € p(Y) and so(x,X) € p(X) N p(Y).
Consequently alséx,X') € p*(X,Y). SincexX € XNY, (x,X) ¢ p°(X,Y).
Accordingly, (x,X') € p* (X,Y) — p° (X,Y), and we are done.

In the former case.e., if X ¢ XNY, becauséx, x) € p (XNY), alsox ¢ XNY.
With X N'Y having been assumed to be not empty, there is sdneX NY. So,

(x,X") € p°(X,Y). Moreover, since’ ¢ XNY, also(x”,X) € p°(X,Y). Hence,

(x,X) € p° (X,Y)op°(X,Y), and again we are done.
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For the D-direction, consider arbitrary elements and X of S such

that (x,X) € (p* (X,Y) = p°(X,Y)) U (p°(X,Y)op° (X,Y)). If (x,X) €
p* (X,Y) — p° (X,Y), obviously (x,xX) ¢ p°(X,Y). Under the present assump-
tions this means that € XY, and so, immediatelyx, x’) € p (XN Y).

Finally assumex, x) € p°(X,Y)op®(X,Y). Then there is ax” € Ssuch

that (x,X”) € p° (X,Y) and(X",X) € p°(X,Y). From the former we obtain that
x ¢ XN'Y and consequentlgx,x') € p (XNY). =

Now we are in a position to define the relation construgtsand+-. For p and
o be relations on some s8tdefine;

—p =d. pU(p op)U(pop”)
p-o =d (p®s—peo)U(p@copeo)
pto =da —(=p-—0).
The following proposition merely wraps things up.

Proposition 6.1.9 Let X and Y be relations on a set S. Then:

—p(X) = p(X),
p(X)-p(Y) = p(XNY),
p(X)+p(Y) = p(XUY).

Proof: The first two claims are immediate from Lemmas 6.1.5 and 6.1.8. The
last claim follows from the first two and duality of andn. -

As an almost immediate consequence of Proposition 6.1.9 we have(thatan
be given a compositional definition ip. To appreciate this define for each for-
mula  of a propositional language(A) a relationpz(y) over the valuations in-
ductively as follows:

p2(a) =q¢r. {(s9): acsimpliesac s}
p2(L) =a. ©

p2(=p)  =dt. —p2(p)

pa(p AY) =dt. pa(p) - p2(¥)

The following theorem formulates the result we were after in this section.
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Theorem 6.1.10 Let ¢ be a formula of a propositional languagdA). Then,
p () = p2(e).

Proof: By induction to the complexity op. The first atomic case is almost trivial,
merely observe thda] is never empty. The second atomic case is trivial. The
inductive cases follow almost immediately from Proposition 6.1.9. o
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