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Chapter 1

Introduction

The languages of classical propositional logic (CPC) have a neat interpretation
by taking as models the truth-value assignments to the propositional variables, or
valuations, of the language. Each formulaϕ of a propositional language can be
associated with a set of valuations,viz., the formula’s extension, denoted by[[ϕ]].
Moreover, the extension of a formula allows for a neat compositional definition.
We conceive of classical consequence as a relation that intuitively holds between
two sets of formulas (ortheories1) whenever at least one formula of the latter set
is true, if all formulas of the former are. Assuming this relation independently be
given by`, the following soundness and completeness result is obtained:

Γ ` Θ iff
⋂
γ∈Γ

[[γ]] ⊆
⋃
ϑ∈Θ

[[ϑ]].

Each theoryΓ may be said to impose a set theoretic structure on the set of
valuations,viz., the set of extensions of its formulas

{
[[γ]] : γ ∈ Γ

}
. Observe

that by taking the intersection or the union of this set much of this structure may
be lost: although two sets

{
[[γ]] : γ ∈ Γ

}
and

{
[[γ]] : γ ∈ Γ ′} may be distinct in

many ways, their intersections or unions may very well be identical.
In this report, we propose an interpretation of a theoryΓ as a relation over

valuations. This makes that relation theoretic operations — such as composition,
inverse and the like — become available for the semantical analysis of proposi-
tional logic. The way a theory induces this relation over the valuations entertains
a close relation with the notion of (relative) logical strength, which constitutes

1Throughout this report by atheorywe understand a mere set of formulas that is not necessarily
closed under logical consequence. A theory that is closed under a notion of logical consequenceΛ
we will refer to as aΛ-closed theory, or aclosed theoryif Λ is clear from the context.
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2 SET INDUCED RELATIONS AND RELATIONAL SEMANTICS

a natural starting point for semantical analyses of such non-standard phenomena
as,e.g., belief revision, paraconsistency, and and non-monotonic and default rea-
soning. Veltman’s update semantics for default reasoning (Veltman (1996)) is a
particularly apt example. Relations in a similar way induced by formulas and the-
ories played an important role in the definition of the distributed evaluation games
that formed the basis of the game-theoretical concept of consequence advanced in
Harrenstein (2004, to appear).2

The relative logical strength of two formulas can be captured in terms of the
extensions of the formulas involved. A formulaϕ is said to be at least as strong as
another formulaψ whenever any formula that follows fromψ is also a consequence
of ϕ. In terms of sets of valuations,ϕ is then at least as strong asψ if and only if the
extension ofϕ is included in that ofψ. This definition of relative logical strength
can straightforwardly be extrapolated as to hold between theories. A theoryΘ is
said to be logically at least as strong as another theoryΓ if the consequences ofΓ
are contained in those ofΘ. In this manner, relative logical strength induces a
reflexive and transitive relation,i.e., a preorder, on the subtheories of a theory.

This ordering on the formulas in a theoryΓ in turn engenders an ordering
over the valuations as follows. LetΓs be the subtheory ofΓ containing exactly
those formulas fromΓ satisfied bys. Then,Γs is easily recognized as the (unique)
logically strongest subtheory ofΓ satisfied bys. On this basis, we might define a
valuations to be at least as strong as a valuations′ with respect toΓ if and only
if Γs is logically at least as strong asΓs′ . This ordering on the valuations is reflexive
and transitive.

For an example, letΓ be the theory{a∨ b,¬a,¬a∧ ¬b} and consider the
valuations{a} and {b}. Then{a∨ b,¬a} is the strongest subtheory ofΓ the
valuation{b} satisfies. The valuation{a}, on the other hand, satisfies no subtheory
stronger than{a∨ b}. Because{a∨ b,¬a} is logically stronger than{a∨ b}, the
valuation{b} is ranked higher with respect toΓ than the valuation{a}. For a
similar reason, the valuations{a} and ø are incomparable with respect toΓ . Also
consider Figure 1.1 for a pictorial illustration of these considerations.

In the second section of Chapter 2 we show how each subsets of a setSdefine
relations overS and similarly how each set of subsets ofS does the same. The
relations induced by formulas over the valuations are then defined as the relations
induced thus by the extensions of the formulas, the latter being subsets of valua-
tions. For each subsetX of a setS, a relationρ0(X) is defined such that for all

2The material of this report largely derives from Harrenstein (2004). An exception is Chapter 6,
which was not included in my thesis.
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[[ϕ]]

[[χ]]

[[ψ]]

Figure 1.1. The extensions of three formulasϕ,ψ andχ in logical space. The ordering on
the valuations determined by the theory{ϕ,ψ, χ} on the basis of relative logical strength
is indicated by the different shades of grey. The darker the area a valuation is in the higher
that valuation is in the ordering on valuations determined by the three formulas, on the
understanding that the valuations in[[ϕ]] − [[ψ]] and those in[[ψ]] − [[ϕ]] are incomparable.
The valuations in the darkest area satisfy all ofϕ, ψ andχ and are ranked highest; those in
the lighter areas satisfy no so strong a subtheory of{ϕ,ψ, χ} and are consequently ranked
lower.

elementsx andx′ in S:(
x, x′

) ∈ ρ0(X) iff x ∈ X implies x′ ∈ X.

Let further for each setX of subsets ofS, ρ0 (X) the relationρ0 (X) be defined
as

⋂
X∈X ρ0(X). As a special case, for each extension[[ϕ]] of a propositional for-

mulaϕ, ρ0([[ϕ]]) defines a relation over the valuations of the respective language.
In a similar fashion, each theoryΓ gives rise to the relation

⋂
γ∈Γ ρ0([[γ]]), which

we also denote byρ0 (Γ ). We find that the relationρ0 (Γ ) coincides with the re-
lation over the valuations based on the notion of relative logical strength of the
formulas inΓ .

Defined thus, however, this relation has a considerable drawback: the relation
ρ0(ϕ) does not allow for a neat compositional definition inϕ. The malefactor
is here the fact both theories containing merely contradictions and theories solely
made up of tautologies induce the universal relation over the valuations. In order
to circumvent this problem we define for each subsetX of a setSthe relationρ (X)
such thatρ (ø) is the empty relation andρ (X) coincides withρ0(X), wheneverX is
nonempty. For setsX of subsets ofS, the relationρ (X) is again defined as the in-
tersection of the relationsρ (X) for all X ∈ X, i.e., ρ (X) is defined as

⋂
X∈X ρ (X).

Obviously, for each formulaϕ and each theoryΓ , bothρ ([[ϕ]]) and
⋂

γ∈Γ ρ ([[γ]])
induces a relation over the valuations of the language in question. In Chapter 6 we
prove that the relationρ ([[ϕ]]) can be provided with a definition that is composi-
tional inϕ.
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The remainder of this report concerns the formal properties of these relations
induced by formulas, theories and sets. Apart from Chapter 3, which concerns
Veltman’s semantics for defaults, their application to the formal analysis of non-
standard reasoning mechanisms decidedly falls beyond its scope. Chapter 4 con-
cerns the characterization of the relations induced by sets, sets of subsets, formulas
and theories. We find that the class of relations over a setS as induced by a sub-
setX of Scoincides with the class of so-calledbisective relationsoverX (Proposi-
tion 4.3.2). Here, a relation is understood to be bisective whenever it is transitive
and in addition satisfies the following condition:

for all x, x′, x′′ ∈ S: x 6 x′ implies x′′ 6 x or x′ 6 x′′.

A relation that is either empty or both reflexive and transitive we will hereafter
refer to as aproto-order. Corollary 6.1.9 establishes that the relations over a setS
defined by a set of subsets is precisely the set of proto-orders overS.

Since for propositional languages with afinite number of propositional vari-
ables each subset of valuations is the extension of some formula, these results im-
mediately settle the case for the relations defined by formulas and theories of such
finite languages. For propositional languages with aninfinite number of propo-
sitional variables, things are slightly different. It is then no longer the case that
each subset of valuations is the extension of some formula or even of some theory.
Similarly, the bisective relations over the valuations are not exhausted by the rela-
tions induced by formulas and neither are the proto-orders over the valuations by
the relations induced by theories. A characterization of the relations induced by
the formulas and theories of a propositional language with an infinite number of
propositional variables, however, can be given relying on the apparatus provided
by rough set theory(Corollary 4.3.5 and Theorem 4.3.10).

In classical logic a theory may be closed under its consequences without af-
fecting its deductive properties. At a semantical level, this fact is reflected in that
the extension of a theoryΓ is identical to the extension of its closure under logical
consequence,i.e., in general[[Γ ]] = [[Cn(Γ )]]. The relations over the valuations
induced by theories, however, are more sensitive in this respect. In particular, it
is not in general the case that the relationsρ (Γ ) and ρ (Cn(Γ )) are identical,
whereCn(Γ ) stands for the set of classical consequences of the theoryΓ .

At a set-theoretic level, a set of setsX cannot in general be closed under super-
sets without affecting the relationρ (X). On the other hand, different sets of sets
may very well induce the same relation on a universe,i.e., ρ (X) andρ (Y) may
be identical even ifX andY are distinct. Chapter 5 aims at making precise the
conditions on sets of setsX andY that have to be satisfied for the relationsρ (X)
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andρ (Y) to be identical. Closure conditions on theories that preserve relations
induced by theories can then be obtained as corollaries.





Chapter 2

Set Induced Relations and Relational

Semantics

2.1 Set Induced Relations

In this chapter we advance a relational semantics for classical propositional logic.
The set-theoretic basis for the semantics is provided by relations on a universeS
that sets and sets of sets give rise to. With each subsetX of a setS we associate
a relationρ0(X), which relates all elements outsideX to any other element ofSas
well as all elements inX to one another. Intuitively, the objects inX are considered
‘higher’ than those outsideX. Formally we define for each subsetX of S and all
elementsx andx′ of S:(

x, x′
) ∈ ρ0(X) iff x ∈ X implies x′ ∈ X

On this basis we also define for each setX of subsets ofSa relationρ0 (X) onS:

ρ0 (X) =df.

⋂
X∈X

ρ0(X) .

As can easily be checked, for eachX ⊆ S, the relationρ0(X) is a total pre-order,
i.e., it is reflexive, transitive and connected. For each setX of subsets ofS, the
relationρ0 (X) is apartial pre-order overS, i.e., it is both reflexive and transitive
but not necessarily connected. As auxiliary notions we haveρ̄0 (X) and ρ̄0 (X),
defined as, respectively,ρ0

(
X
)

and
⋂

X∈X ρ̄0 (X).
Of particular interest to us are the relations on the valuations induced by the

extensions of formulas of a propositional language. Letϕ be a formula andΓ a

7



8 SET INDUCED RELATIONS AND RELATIONAL SEMANTICS

theory. We denoteρ0([[ϕ]]) by ρ0(ϕ) and
⋂

γ∈Γ ρ0(γ) by ρ0 (Γ ). Observe that,
defined thus,ρ0 (Γ ) does notin general coincide withρ0([[Γ ]]).

ForΓ a theory,ρ0 (Γ ) is exactly the relation the subtheories ofΓ defines over
the valuations relative to their respective logical strength. Recall that we under-
stood a theoryΓ to be logically stronger than another theoryΘ in case the conse-
quences ofΘ were included in those ofΓ , i.e., if Cn(Θ) ⊆ Cn(Γ ). To appreciate
this, define for each theoryΓ the relationρ1(Γ ) over the valuations, such that for
all valuationss ands′:(

s, s′
) ∈ ρ1(Γ ) iff Cn

({
γ ∈ Γ : s ° γ

}) ⊆ Cn
({
γ ∈ Γ : s′ ° γ

})
.

RecallCn(Γ ) stands for the set of classical consequences of the theoryΓ . Intu-
itively, ρ1(Γ ) relates a valuations with anothers′ if the latter satisfies at least all
those subtheories ofΓ thatssatisfies as well. As such, it is in effect the relation on
the valuations based on the classical notion of logical strength that was proposed
in the introduction to this report. We now have the following easy proposition.

Proposition 2.1.1 LetΓ be a theory in a propositional language L(A). Then the
relationsρ0 (Γ ) andρ1(Γ ) coincide.

Proof: First assume(s, s′) ∈ ρ0 (Γ ). Then, for allγ ∈ Γ , if s ° γ thens′ ° γ.
Hence,{γ ∈ Γ : s ° γ} ⊆ {γ ∈ Γ : s′ ° γ}. By monotonicity ofCn, immedi-
atelyCn({γ ∈ Γ : s ° γ}) ⊆ Cn({γ ∈ Γ : s′ ° γ}), i.e., (s, s′) ∈ ρ1(Γ ). For
the opposite direction, assumeCn({γ ∈ Γ : s ° γ}) ⊆ Cn({γ ∈ Γ : s′ ° γ})
as well as for an arbitraryγ ∈ Γ that s ° γ. Then, γ ∈ {γ ∈ Γ : s ° γ}
and by monotonicity ofCn also γ ∈ Cn({γ ∈ Γ : s ° γ}). By the assump-
tion, γ ∈ Cn({γ ∈ Γ : s′ ° γ}). Then{γ ∈ Γ : s′ ° γ} `CPC γ, i.e., for all
valuationss′′, if s′′ ° ϕ for all ϕ ∈ {γ ∈ Γ : s′ ° γ}, then s′′ ° γ. Since
trivially, s′ ° ϕ for all ϕ ∈ {γ ∈ Γ : s′ ° γ}, in particulars′ ° γ. Therefore
(s, s′) ∈ ρ0 (Γ ) and we are done. a

For formulasϕ, however, the relationρ0(ϕ) does not have in general a neat
compositional definition in the complexity ofϕ. To appreciate this, observe that
bothρ0(>) andρ0(⊥) are the universal relation over the valuations. In contrast,
for each propositional variablea, the relationρ0(a) is not universal. Whenever
a valuations forcesa but another valuations′ does not, the pair(s, s′) will not
be in ρ0(a). This is in particular the case for the valuations{a} andø, which
are guaranteed to exist for any language witha as a propositional variable. Now
consider the formulas⊥ ∧ a and> ∧ a. Since[[> ∧ a]] = [[a]], it should also be
the case that the relationsρ0(> ∧ a) andρ0(a) coincide. So, withρ0(a) not being
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the universal relation, neither isρ0(> ∧ a). However,ρ0(⊥ ∧ a) is the universal
relation on the valuations, in virtue of⊥∧ a and⊥ being logically equivalent, and
as such having the same extension. Henceρ0(> ∧ a) is distinct fromρ0(⊥ ∧ a).
However, withρ0(>) andρ0(⊥) being identical, this distinction cannot be made
on the basis of the relationsρ0(>), ρ0(⊥) andρ0(a) alone.

The problem here of course is thatρ0(ø) andρ0(S) are the same relation. For
any two non-empty subsetsX andY of S the reader can easily verify thatρ0(X)
andρ0(Y) coincide if and only ifX andY are identical (also compare Fact 2.1.2,
below). By treating the empty set as a special case, many of the problems dissolve.
So, define, for each subsetX of a setS, the relationρ (X) onSas follows:1

ρ (X) =df.




{
(x, x′) : x ∈ X impliesx′ ∈ X

}
if X 6= ø,

ø otherwise.

Defined thus,ρ (X) coincides withρ0(X) for non-empty subsetsX, and is empty
otherwise (cf., Fact 2.1.3 below). ForA a set of propositional variables, let,R (A)
denote the set

{
ρ (ϕ) : ϕ a formula inL(A)

}
. Similarly, for each setX of subsets

of S, we define the relationρ (X) overSas:

ρ (X) =df.

⋂
X∈X

ρ (X) .

Let furtherρ (ϕ) andρ (Γ ) denoteρ ([[ϕ]]) and
⋂

γ∈Γ ρ ([[γ]]), respectively. Ob-
serve thatρ (X) = ρ0 (X) if and only if ø /∈ X (cf., Fact 2.1.3). Forø ∈ X, the re-
lationρ (X) is empty. As a dual notion we also introduce for each subsetX of Sthe
relationρ̄ (X) on Sdefined asρ

(
X
)
. Also, for each setX of subsets ofS, let ρ̄ (X)

denote the relation onSgiven by
⋂

X∈X ρ̄ (X). We haveρ̄ (ϕ) andρ̄ (Γ ) abbrevi-
ateρ̄ ([[ϕ]]) and

⋂
γ∈Γ ρ̄ ([[γ]]). In contradistinction toρ0(ϕ), the relationρ (ϕ) does

allow for a compositional definition inϕ. This we show in Chapter 6 below.
We first review some of the more elementary properties of the relationsρ (X)

andρ (X). As a first fact we find that no two different subsetsX andY of a setS
such thatρ (X) andρ (Y) are identical relations onS.

1It might seem that the identity relationId would have been an equally suitable choice forρ (ø),
as there is no subsetX of S such thatρ0(X) = Id. Had the definition been chosen thus, how-
ever, an exception should be made in Proposition 2.2.2 below for propositional languages with no
propositional variables. For such languages there is only one valuation,viz., ø, and againρ (ø)
would coincide with the universal relation over all valuations. Then it would have been the case
that max(ρ (⊥)) = {ø} andmax(ρ̄ (>)) = ø. Hence,max(ρ (⊥)) * max(ρ̄ (>)). In classical
logic, however,⊥ ` >, even for languages lacking in propositional variables.
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Fact 2.1.2 Let X and Y be subsets of some set S. Then:

ρ (X) = ρ (Y) iff X = Y.

Proof: The right-to-left direction is trivial. For the opposite direction suppose
X 6= Y. Without loss of generality we may assume there be somex ∈ X for
which x /∈ Y. In caseY is empty,(x, x) /∈ ρ (Y) but (x, x) ∈ ρ (X) anda fortiori
ρ (X) 6= ρ (Y). If on the other handY is not empty there is somey ∈ Y. Then,
(y, x) /∈ ρ (Y) and(y, x) ∈ ρ (X). Again we may conclude thatρ (X) 6= ρ (Y). a
By contrast,ρ0(X) andρ0(Y) may be identical even for distinctX and Y, be it
only if eitherX or Y is the universe and the other the empty set. Bothρ0(X) and
ρ0(Y) are then the universal relation. ForX any subset other than the empty set, the
relationsρ0(X) andρ (X) coincide. This observation also sustains a corresponding
result for relationsρ (X) induced by sets of subsetsX.

Fact 2.1.3 Let X be a subset of some non-empty set S. Then:

ρ0(X) = ρ (X) iff X 6= ø and ρ0 (X) = ρ (X) iff ø /∈ X.

Proof: For the first claim, the proof from right to left is trivial. So assumeX = ø.
Then,ρ (X) = ø andρ0(X) = S× S. SinceShad been assumed to be non-empty,
alsoρ0(X) 6= ρ (X). For the second claim merely observe the following equalities:

ρ0 (X) =
⋂
X∈X

ρ0(X) =ø /∈ X

⋂
X∈X

ρ (X) = ρ (X) . a

We also have the following equally easy fact.

Fact 2.1.4 LetX be a set of subsets of a non-empty set S. Then:

ρ (X) = ø iff ø ∈ X.

Proof: Straightforward. From right to left the proof is almost trivial. Merely
observe that thenρ (ø) ∈ {

ρ (X) : X ∈ X
}

and, sinceρ (ø) = ø, ρ (X) =⋂
X∈X ρ (X) = ø. For the opposite direction assume thatø /∈ X. In virtue of

Fact 2.1.3, thenρ (X) = ρ0 (X). With the latter begin reflexive, it follows that
ρ (X) is reflexive as well. Having assumedS to be non-empty, we may conclude
thatρ (X) is non-empty. a

For any subsetX, the relationρ (X) is not in general monotone inX. To ap-
preciate this, letX andY be two non-empty proper subsets of a setS such thatY
is also a proper subset ofX. Assume thaty ∈ Y, x ∈ X − Y andz /∈ X. Then,
(y, x) ∈ ρ (X) but (y, x) /∈ ρ (Y). Moreover,(x, z) ∈ ρ (Y) but (x, z) /∈ ρ (X). More
in general we have the following fact.
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Fact 2.1.5 Let X and Y bedistinctsubsets of some set S. Then:

ρ (X) ⊆ ρ (Y) iff X = ø or Y = S.

Proof: From right-to-left the claim is trivial. The opposite direction is by con-
traposition. So, assumeX 6= ø and Y 6= S. Hence,x ∈ X and z /∈ Y, for
somex, z∈ S. In caseY is empty, we are done immediately, for then(x, x) ∈ ρ (X)
and(x, x) /∈ ρ (Y). So for the remainder of the proof we may assume there to be
somey ∈ S such thaty ∈ Y. By Fact 2.1.3, moreover, bothρ (X) = ρ0(X) and
ρ (Y) = ρ0(Y), which simplifies the reasoning.

With the assumption thatX andY be distinct, eitherY * X, or Y ( X. In
the former case,y′ ∈ Y andy′ /∈ X, for somey′ ∈ S. Hence,(y′, z) ∈ ρ (X) and
(y′, z) /∈ ρ (Y). In the latter case,x′ ∈ X andx′ /∈ Y, for somex ∈ S. Because
Y ⊆ X, alsoy ∈ X. Therefore,(y, x′) ∈ ρ (X) whereas(y, x′) /∈ ρ (Y). a
By contrast, bothρ0 (X) andρ (X) are tidily downward monotone inX.

Fact 2.1.6 (Monotonicity) LetX andY be sets of subsets of a set S. Then:

X ⊆ Y implies ρ0 (Y) ⊆ ρ0 (X) and ρ (Y) ⊆ ρ (X) .

Proof: Straightforward. AssumeX ⊆ Y. Then also
{
ρ0(X) : X ∈ X

} ⊆{
ρ0(Y) : Y ∈ Y

}
. Hence:

ρ0 (Y) =
⋂ {

ρ0(Y) : Y ∈ Y
} ⊆X ⊆ Y

⋂ {
ρ0(X) : X ∈ X

}
= ρ0 (X) .

The reasoning forρ (Y) ⊆ ρ (X) runs along analogous lines. a

2.2 Relational Semantics

We are now in a position to furnish classical propositional logic with a relational
semantics. With each formulaϕ we associate the relationsρ (ϕ) and ρ̄ (ϕ) over
the valuations and, similarly, with each theoryΓ the relationsρ (Γ ) and ρ̄ (Γ ).
By a maximum elementof a relationρ on a setS we understand an elementx
of S such that for all elementsx′ of S it is the case that(x′, x) ∈ ρ Denoting the
set of maximum elements of a relationρ by max(ρ), we now have the following
proposition.

Proposition 2.2.1 LetΓ be a theory in a propositional language L(A). Then:

[[Γ ]] = max(ρ (Γ )) and 〈〈Γ 〉〉 = max(ρ̄ (Γ )).
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Proof: First assume[[Γ ]] to be empty. Assume further for areductio ad absurdum
that s is a maximum element ofρ (Γ ) and consider an arbitraryγ ∈ Γ . Then,
(s′, s) ∈ ρ (γ), for all valuationss′. So, in particular,(s, s) ∈ ρ (γ) and from the
definition ofρ (γ) then follows that[[γ]] 6= ø. Hence,s∗ ∈ [[γ]], for somes∗. Then
also(s∗, s) ∈ ρ (γ) and consequentlys ∈ [[γ]] as well. Withγ having been chosen
as an arbitrary element ofΓ , we have thats ∈ [[Γ ]], which is at variance with the
assumption that[[Γ ]] be empty.

So, for the remainder of the proof we will assume[[Γ ]] to be not empty. Con-
sider an arbitrary valuations. First assume thats /∈ [[Γ ]]. Thens /∈ [[γ]], for some
γ ∈ Γ . With [[Γ ]] not empty, we may assume there is somes′ ∈ [[γ]]. Then, how-
ever,(s′, s) /∈ ρ (γ) and(s′, s) /∈ ρ (Γ ). Hence,s is no maximum element ofρ (Γ ).
Finally, assumes ∈ [[Γ ]]. Now consider an arbitrary valuations′ along with an
arbitraryγ ∈ Γ . Then,s ∈ [[γ]] and so(s′, s) ∈ ρ (γ). With γ having been chosen
arbitrarily, also(s′, s) ∈ ρ (Γ ) and we may conclude thats is a maximum element
of ρ (Γ ). This concludes the first part of the proof

The second part of the proof can be obtained using the first one (duality).
Merely consider the following equalities:

〈〈Θ 〉〉 =
⋃

ϑ∈Θ [[ϑ]] =
⋂

ϑ∈Θ [[ϑ]] =
[[ {¬ϑ : ϑ ∈ Θ} ]]

= max
(
ρ

({¬ϑ : ϑ ∈ Θ
}))

= max
( ⋂

ϑ∈Θ ρ
(
[[ϑ]]

))
= max

(
ρ̄ (Θ)

)
.

This concludes the proof. a
As an immediate consequence of this result, we have the following corollary, which
characterizes classical logical consequence in terms of the relations theories define.
A theoryΘ follows classically from another theoryΓ if and only if the maximum
elements of the relationρ (Γ ) arenomaximum elements of the relation̄ρ (Θ).

Corollary 2.2.2 LetΓ be a theory andϕ a formula. Then:

Γ `CPCΘ iff max(ρ (Γ )) ⊆ max(ρ̄ (Θ)).

Proof: Immediate by Proposition 2.2.1. a
As an alternative to classical consequence, one could define a consequence

relation`∗ as follows in terms of the maximum elements of the relationsρ0 (Γ )
andρ̄0 (Γ ):

Γ `∗ Θ iff max(ρ0 (Γ )) ⊆ max(ρ̄0 (Θ)).

This consequence relation is as the classical one, except for its behavior with re-
spect to classical contradictions and tautologies. In virtue of Fact 2.1.3 below —
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which states thatρ (Γ ) = ρ0 (Γ ) if and only if ø /∈ X — it can easily be appreci-
ated thatΓ `∗ Θ if and only if Γ `CPCΘ, provided thatΓ contains no contradic-
tions andΘ no tautologies. We have already seen, however, thatρ0(⊥) andρ0(>)
are both interpreted as the universal relation over the valuations. Consequently,`∗

treats classical contradictions on a par with classical tautologies. This makes that,
e.g., the classical ruleex falso quod libetfails for `∗. For a counterexample, let
a be a propositional variable of a languageL(A). Then observe that⊥ 0∗ a,
asmax(ρ0 ({⊥})) = 2A andmax(ρ̄0 ({a})) = max(ρ0 ({¬a})) = [[a]]. A similar
remark would have applied, had̀∗ been defined in terms of themaximalelements
of the relationsρ0 (Γ ) and ρ̄0 (Θ). Observe in this respect that the maximal el-
ements ofρ0 ({⊥}) exhaust logical space just as well as the maximum elements
of ρ0 ({⊥}) do. The consequence relations defined in terms of maximal elements
also exhibit non-monotonic features, but we will not pursue this issue here.

The advantage of the relational semantics is that it preserves more of the struc-
ture that formulas and theories impose on logical space. From the extension[[Γ ]]
of a theoryΓ the extensions[[γ]] of the formulasγ in Γ cannot in general be re-
covered; this structure may have been lost beyond repair. In a strict sense a similar
thing can be said of the relationρ (Γ ) and the relationsρ (γ): it is not in general
the case that from the relationρ (Γ ) the theoryΓ can be reconstructed. Neverthe-
less, the relationρ (Γ ) can distinguish valuationss ands′ even if neither of them
is maximum inρ (Γ ), indicating thatΓ contain a formula that is validated in the
one but not in the other, or ifΓ is inconsistent.E.g., the valuationø is strictly
less than the valuation{a} in the relationρ ({a,b}), yet neither of them is a maxi-
mum element in this respect. This feature of the relational semantics is especially
serviceable when one is interested in the maximal or maximum elements of the
relation determined by a theory as restricted to a subset of valuations, even if the
maximal or maximum elements of the unrestricted relation are disjoint from that
subset.





Chapter 3

Intermezzo: Veltman’s Updates for

Defaults

The additional ordinal structure the relational semantics for propositional logic en-
genders over the set of valuations, is quite superfluous if one’s concerns are with
classical consequence only. However, the semantics of a considerable number of
non-standard variants or extensions of classical propositional logic appeal to a rela-
tional structure over the valuations or possible worlds. We have already mentioned
qualitative decision theory (e.g., Boutilier (1994)), belief revision (e.g., Gärdenfors
(1988)), and non-monotonic consequence relations (e.g., Shoham (1988), Kraus,
Lehmann, and Magidor (1990) and Makinson (1994)). The prime example in this
respect is, of course, Kripke semantics for modal languages. As in Kripke seman-
tics, this relational structure is often assumed to be given independently by the
semantics, rather than induced by syntactic objects, such as formulas.

Veltman’s analysis of defaults (Veltman (1996)), however, is different in this re-
spect. There it is suggested that in a proper treatment of defeasible reasoning, some
formulas are interpreted as imposing a relational structure on logical space. This
enables one to distinguish among any subset of valuations those that are optimal
with respect to this structure. In the semantics of formulas of another logical form
these optimal valuations play a crucial role. There being a clear parallel between
the concluding remarks of the previous section and Veltman’s semantical ideas, we
will here give a synopsis of the third section of ‘Defaults in Update Semantics’.

Classical logic is monotonic in the sense that if a conclusion follows from a col-
lection of premissesΓ , then the same conclusion also follows from any collection
of premisses that includesΓ . If premisses are taken to represent the information
available to an agent and conclusions the inferences that agent may reasonably
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draw from the premisses, it has been argued that much of human reasoning ex-
hibits non-monotonic features. In the face of new evidence one may be happy to
withdraw conclusions arrived at on the basis of information obtained previously.
The new evidence is then said to defeat the conclusion and the conclusion itself
is said to be defeasible.E.g., if the only piece of information available is that it
normally rains, one could arguably infer that it presumably rains. However, if one
obtains as an additional piece of information that it as a matter of fact does not rain,
one might be quite willing to retract the conclusion that it rains, as it does not.

Veltman gives a formal account of these and similar phenomena having to do
with defeasible reasoning and the order in which information is received. Using a
dynamic framework Veltman can account for the contrast between theacceptability
of texts as (1) and (2), and theunacceptabilityof the sequence (3):

“Normally, it rains. . . . Presumably, it rains.”(1)

“Normally, it rains. . . . Presumably, it rains. . . . It does not rain.”(2)

“Normally, it rains. . . . It does not rain. . . . Presumably, it rains.”(3)

Although many of the merits of Veltman’s approach lie in its ability to deal with
such examples using a dynamic framework, we concentrate on some of its static
aspects. The intuition behind Veltman’s approach is that a sentence like“Presum-
ably, it rains” signifies that it rains in all of the most normal states of affairs that
are consistent with the information available. This presupposes that the possible
states of affairs can somehow be ordered with respect to normality. A distinguish-
ing mark of Veltman’s proposal is that this normality order over the possible states
of affairs is determined by sentences like“Normally, it rains” that occurred earlier
in the text, rather than merely fixed exogenously.

Veltman proposes a propositional modal languageL(A, {normally,presumably}),
wherenormallyandpresumablyare modalities operating on formulas of the propo-
sitional languageL(A) only. I.e., the formulas ofL(A, {normally,presumably})
are given by the set

{
ϕ,normallyϕ,presumablyϕ : ϕ a formula ofL(A)

}
and

there is no nesting of the modalities. The intended readings ofnormallyϕ and
presumablyϕ suggest themselves.

The formulas ofL(A, {normally,presumably}) are interpreted in terms of states
consisting of a so-calledexpectation patternρ and aninformation set X. An ex-
pectation pattern is a reflexive and transitive relation over the valuations forL(A)
and the information setX is a subset of valuations, intuitively, containing the pos-
sible states of affairs that are compatible with one’s factual information about the
world.Veltman distinguishes the minimal state0 and the absurd state1, defined by
(S× S,S) and(Id,ø), respectively. The valuationss that are minimal with respect
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to ρ — i.e., such thats′ < s in ρ, for no valuations′ — are callednormal. If the set
of normal worlds in an expectation patternρ is not empty,ρ is said to becoherent.
A state(ρ,X) is aninformation stateif ρ is coherent andX non-empty, or if(ρ,X)
is the absurd state1.

Semantically, formulaϕ in L(A, {normally,presumably}) is interpreted as a
postfixedoperation [ϕ] on information states. For each formulaϕ in L(A), the
operation[ϕ] performs an update on the information set of an information state,
accommodating the information conveyed byϕ without changing the expectation
pattern. That is, provided that the update does not render the information set void,
for then the absurd state results.

By contrast, ifϕ is of the formnormallyψ and the extension[[ψ]] contains a
normal world with respect toρ, we have[ϕ] operate on the expectation patternρ
of an information state(ρ,X). It leaves the information setX as it was butρ by
removing from it all edges(s, s′) with ψ holding in s but not ins′. This renders
any valuations that forcesψ strictly more normal than any valuation in whichψ
does not hold but that was as normal ass in the original expectation pattern. As
such[normallyψ] imposes additional structure on logical space renderingψ worlds
more normal that non-ϕ worlds without affecting the agents factual information
about the world. Rather,[normallyψ] refines the expectation pattern by intersecting
it with the inverse of the relationρ0(ψ), as defined in the previous section. If,
however,[[ψ]] fails to contain a normal world with respect toρ, then updating(ρ,X)
with [normallyψ] will result in the absurd state1.

Finally, [presumablyϕ] performs a test on information states. In caseϕ holds
in all valuations that are minimal with respect to the expectation pattern of the
information state,[presumablyϕ] returns the original information state. Otherwise,
it returns the absurd state. Letϕ be a formula inL(A). Then — employing notations
used throughout this thesis — Veltman’s formally definitions are given by:

(ρ,X)[ϕ] =df.

{
(ρ,X ∩ [[ϕ]]) if X ∩ [[ϕ]] 6= ø,

1 otherwise.

(ρ,X)[normallyϕ] =df.

{
(ρ ∩ ρ0(ϕ)˘,X) if [[ϕ]] contains a normal world,

1 otherwise.

(ρ,X)[presumablyϕ] =df.

{
(ρ,X) if s∈ [[ϕ]], for all sminimal inX w.r.t. ρ,

1 otherwise.

(Here,ρ0(ϕ)˘ denotes theinverseof the relationρ0(ϕ).)
For formulasϕ of L(A, {normally,presumably}) and information statesσ de-

fineσ ° ϕ if and only if σ[ϕ] = σ. Moreover, consequencèV for this particular
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ø

{b}

{a}
{a, b}

ø

{b}

{a}
{a, b}

ø

{b}
{a, b}
{a}

Figure 3.1. The figure on the left depicts0 for a language witha and b as the only
propositional variables. The dashed box and the grey balloons indicate the subset of
valuations and the expectation patter, respectively. From left to right the figures de-
pict the minimal state0, 0[normally a] and0[normally a][¬b]. The valuation{a} is now
minimal in 0[normally a][¬b], but for instanceø is not. Hence,0[normally a][¬b] °
presumably(a∧ ¬b) but0[normally a][¬b] 1 presumably(¬ (a∨ b)).

system is defined as a relation between thesequencesof formulasϕ0, . . . , ϕn and
a formulaψ as follows:

ϕ0, . . . , ϕn `V ψ iff 0[ϕ0] . . . [ϕn] ° ψ.

The sequential order of the formulasϕ0, . . . , ϕn here makes a difference.E.g., as
the formal counterparts of (1), (2) and (3), above, we find:

0[normally a][presumably a] 6= 1,(1′)
0[normally a][presumably a][¬a] 6= 1,(2′)
0[normally a][¬a][presumably a] = 1.(3′)

The reader be also referred to Figure 3.1 for further illustration.
The guiding principle behind Veltman’s update semantics for defaults is that

Boolean formulasϕ and those of the formnormallyϕ build up an information
state. Suppose that0[ϕ0] . . . [ϕn] is an information state that is being constructed
in the course of an update process and distinct from the absurd state. The con-
stituent expectation pattern is then precisely the inverse of the relationρ0 (Θ),
whereΘ is given by exactly those formulasψ such that the formulanormallyψ
is amongϕ0, . . . , ϕn. Formulas of the formpresumablyϕ are then evaluated with
respect to the information state constructed. A formulapresumablyϕ holds in a
non-absurd information state(ρ,X), i.e., σ ° presumablyϕ, if ϕ holds in allopti-
mal states inρ that are compatible with the factual information represented byX.
Optimality is here taken as minimality with respect to the information pattern, but
could equally well be defined as maximality with respect to its inverse. Moreover,
the expectation pattern of an information state is built up by formulas,viz., by those
formulas that are of the formnormallyϕ.



Chapter 4

Characterizing Set Induced Relations

It is a well-known fact of classical propositional logic that, in case the language
contains an countably infinite number of propositional variables, it is not the case
that each subset of valuations is the extension of some formula. To appreciate
this observe that the number of formulas of a language of classical propositional
logic is denumerable whereas the number of valuations for an infinite number of
propositional variables is uncountable. A similar remark applies to the extensions
of the theories of a countably infinite propositional language.

Classical propositional logic is a particular logic that can be given a semantics
by associating sets of valuations to formulas. Other and distinct logics with a
similar semantics areprima facieconceivable and we may come to wonder whether
such logics fare better or worse with respect to characterizing subsets of valuations
as the extension of formulas. In the first section of this chapter we prove that
classical propositional logic is in an important sense the most expressive of such
languages. Let a setX of valuations be calledfinitary, or of finite characterin
case it depends on the values assigned to a finite set of propositional variables
whether a valuation belongs toX or not. Let further a valuation based semantics
for a propositional language be calledfinite in case the extensions it associates
with the formulas are all finitary. We find that classical propositional logic is the
most “expressive” in this respect: the extensions associated with the formulas in
the Tarskian semantics for classical propositional logic exhaust the set of finitary
sets of valuations.

In the previous chapter, formulas and theories were associated with relations
over valuations rather than with sets of valuations, thus giving rise to a relational
semantics. We find that the relationρ (ϕ) thus associated with a formulaϕ in
general satisfies a particular property,viz., that ofbisectivity(cf., page 4). Similarly,
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the relationρ (Γ ) associated with a theoryΓ will in general be aproto-order(cf.,
page 4). However, if the set of propositional variables is infinite, the relations thus
defined with formulas and those with theories fail to exhaust, respectively, the set
of bisective relations and that of the proto-orders over the valuations. However,
invoking a suitable notion of finite character for relations, analogous as we did for
sets, we find that the set of bisective relations defined by formulas can suitably
be characterized. Eventually we also obtain a kindred result for the proto-orders
defined by theories.

The notions of finitary sets and relations are most conveniently defined using
the machinery of rough set theory. We therefore first give a brief summary of some
of the latter’s elementary facts.

4.1 Some Elementary Facts about Rough Sets

In this section the elementary concepts of rough set theory,viz., the upper and lower
approximations of a set, are introduced. In the next sections they are employed for
some results for propositional logics. As such our employment of rough sets is
divergent from normal use. First we will give some basic facts concerning upper
and lower approximations.1

For S we havePart(S) denote the set of partitions overS. Moreover, forπ a
partition inSand forx an element ofS, [x]π is the unique block ofπ containingx.

Let Sbe a set and letπ be a partition ofS. Obviously, it is not in general the
case that a subsetX of S is identical to a union of a number of blocks inπ. Still
each subset can be characterized by two sets which do have this property. Define
the lower approximation apr

π
(X) and theupper approximationaprπ(X) by:

apr
π
(X) =df.

⋃ {
Y ∈ π : Y ⊆ X

}
,

aprπ(X) =df.

⋃ {
Y ∈ π : Y∩ X 6= ø

}
.

Let επ be the equivalence relation overS associated with the partitionπ. Then
we also have the following equivalent characterizations of the lower and upper
approximation of a subsetX of S. For eachx ∈ S :

x ∈ apr
π
(X) iff for all s′ ∈ Ssuch thats∼π s′ : s′ ∈ X,

x ∈ aprπ(X) iff for somes′ ∈ S: s∼π s′ and s′ ∈ X.

1For a more extensive account the reader be referred to Pawlak (1991)
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: apr
π
(X)

: X

: aprπ(X)

Figure 4.1. Rough sets in a setS partitioned byπ. The oval represents the setX. The
colored areas indicate the upper approximation and the darkly colored area the lower ap-
proximation.

Clearly,aprπ is a cylindrification operator on 2S andapr
π

its dual. As such they
exemplify a more general mathematical concept that is also instanced by quantifi-
cation and modality in logic. This observation has by no means escaped attention
in the literature (cf. e.g., Yao, Wong, and Lin (1997), D̈untsch (1999) and D̈untsch
(no date)). Figure 4.1 illustrates the lower and upper approximations of a setX.
Suppressing the subscriptπ, the approximation operationsapr andapr satisfy the
following elementary properties for subsetsX andY of a setS:2

apr(ø) = ø apr(ø) = ø

apr(S) = S apr(S) = S

apr(X) ⊆ X apr(X) ⊇ X

apr(X) ⊆ apr
(
apr(X)

)
apr(X) ⊇ apr(apr(X))

X ⊆ apr(apr(X)) X ⊇ apr
(
apr(X)

)
apr(X) ⊆ apr(apr(X)) apr(X) ⊇ apr

(
apr(X)

)
apr(X) = apr

(
X
)

apr(X) = apr
(
X
)

apr(X ∩ Y) = apr(X) ∩ apr(Y) apr(X ∩ Y) ⊆ apr(X) ∩ apr(Y)

apr(X ∪ Y) ⊇ apr(X) ∪ apr(Y) apr(X ∪ Y) = apr(X) ∪ apr(Y) .

As two obvious consequences of these properties also bothapr
(
apr(X)

)
= apr(X)

andapr(apr(X)) = apr(X). Moreover, the latter four inequalities can be general-

2These inequalities are taken from Yao, Wong, and Lin (1997).
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ized to infinite sets of sets. LetX ⊆ 2S, then:

apr
(⋂

X
)

=
⋂
X∈X

apr(X) apr
( ⋂

X
) ⊆

⋂
X∈X

apr(X)

apr
(⋃

X
) ⊇

⋃
X∈X

apr(X) apr
( ⋃

X
)

=
⋃
X∈X

apr(X) .

Bothapr andapr satisfy upward monotonicity:

X ⊆ Y implies apr(X) ⊆ apr(Y) ,

X ⊆ Y implies apr(X) ⊆ apr(Y) .

We also have the following fact, which says that, given a partition, the fixed points
of the upper and lower approximations coincide.

Fact 4.1.1 Let S be a set, X⊆ S andπ ∈ Part(S). Then:

X = aprπ(X) iff X = apr
π
(X) .

Proof: First assumeX = apr(X). Observe that bothapr(X) ⊆ apr(apr(X))
andapr(apr(X)) ⊆ apr(X) are instances of rough set laws. Henceapr(X) =
apr

(
apr(X)

)
and we may reason as follows:

X =ass. apr(X) = apr(apr(X)) =X = apr(X) apr(X) .

The reasoning in the opposite direction is analogous.3 a
As a generalization of this fact, we also have the following.

Fact 4.1.2 Letπ be a partition of a set S. Let furtherX a set of subsets of S such
thatX ⊆ π. Then:

aprπ(
⋃

X) = apr
π
(
⋃

X) =
⋃

X.

Proof: Straightforward. a
The partitions by means of which sets are approximated may be finer or coarser.

The facts that follow concern the behavior of the approximation operations with
respect to partitions of various degrees of coarseness. Forπ andπ′ partitions of a
setS, i.e., π, π′ ∈ Part(S), letπ 6 π′ be formally defined as:

π 6 π′ iff for all x ∈ π there is ay ∈ π′ such thatx ⊆ y.

3For this elegant proof I am indebted to Boudewijn de Bruin.
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Intuitively, π 6 π′ denotes thatπ at least as fine asπ′. As such6 defines a partial
order onPart(S). Then6 defines a partial order onPart(S). Rather,Part(S)
constitutes a complete lattice if ordered thus. We now also have the following
monotonicity properties for the lower and upper approximation operations:

Fact 4.1.3 Letπ andπ′ be partitions of some set S. Then for all X⊆ S:

π 6 π′ implies apr
π
(X) ⊇ apr

π′(X) ,

π 6 π′ implies aprπ(X) ⊆ aprπ′(X) .

Proof: Both cases are analogous; here we prove only the first. Assumeπ 6 π′

and consider an arbitraryx ∈ apr
π′(X). Consider the block[x]π of π; then,[x]π′ ⊆

X. By the assumption there is a blockY of π′ such that[x]π ⊆ Y. Then,x ∈ Y and,
therefore,Y = [x]π′ . Hence,[x]π ⊆ [x]π′ ⊆ X. Sincex ∈ [x]π, we may conclude
thatx ∈ apr

π
(X). a

In words, the coarser the partition, the larger the upper approximation of a set and
the smaller its lower approximation. The following fact conveys a stronger and
closely related result.

Fact 4.1.4 Letπ andπ′ be partitions of some set S. Then:

π 6 π′ iff for all X ⊆ S: apr
π
(X) ⊇ apr

π′(X) ,

π 6 π′ iff for all X ⊆ S: aprπ(X) ⊆ aprπ′(X) .

Proof: The proofs of both cases run along analogous lines; we will here give that
of the first. The left-to-right direction is immediate by Fact 4.1.3. For the opposite
direction, assume that for allX ⊆ S we haveapr

π
(X) ⊇ apr

π′(X). Consider an
arbitrary X ∈ π. By definition, X is a non-empty subset ofS. As S =

⋃
π′,

there is aY ∈ π′ such thatX ∩ Y 6= ø. By the assumption, thenapr
π
(Y) ⊇

apr
π′(Y) =Fact 4.1.2Y. Because alsoapr

π
(Y) ⊆ Y, it follows thatY = apr

π
(Y). By

definition,Y =
⋃ {

X′ ∈ π : X′ ⊆ Y
}

. Since,X ∩ Y 6= ø, we haveX ∩ X′′ 6= ø,
for someX′′ ∈ {

X′ ∈ π : X′ ⊆ Y
}

. With X andX′′ blocks in the partitionπ, it
follows thatX = X′′, and hence,X ⊆ Y. Having chosenX arbitrarily fromπ, we
may conclude thatπ 6 π′. a

In the sequel, we will mostly be interested in a particular class of partitions of
a universe with respect to which the approximations are defined. If the universe set
is the powerset of a setA, we define an equivalence relation holding between any
two subsets ofA if each element of a third subset ofA is in the one subset if and
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only if it is an element of the other. LetA be a set and define for eachZ ⊆ A the
equivalence relationεZ on 2A such that for allX,Y ⊆ A:

(X,Y) ∈ εZ iff Z ∩ X = Z ∩ Y.

Sometimes we use the infix notationX ∼Z Y to convey that(X,Y) ∈ εZ. Observe
that it is both a necessary and a sufficient condition forX ∼Z Y to hold that for all
z ∈ Z, it is the case thatz ∈ X if and only if z ∈ Y. Note thatεø andεA are the
universal relation and the identity relation on 2A, respectively. More in general, we
haveX ⊆ Y if and only ifεY ⊆ εX. The only-if direction is trivial. For the other
direction assume for the contrapositive thatx ∈ X but x /∈ Y. Then,ø ¿X {x} but
ø ∼Y {x}, i.e., the relationsεX andεY are distinct. Hence, the set{εX : X ⊆ A}
constitute a complete lattice with relation composition and intersection as join and
meet, respectively. To appreciate this, consider the following fact.

Fact 4.1.5 Let X and Y be subsets of a set A. Then:

εX∩Y = εX ◦ εY and εX∪Y = εX ∩ εY.

Proof: For the⊆-direction of the first claim, assume for arbitrarys, s′ ∈ 2A that
(s, s′) ∈ εX∩Y. Hence,s∩ X ∩ Y = s′ ∩ X ∩ Y. Defines∗ =df. (s∩ X) ∪ (

s′ ∩ X
)
.

Then:

s∩ X = (s∩ X ∩ X) ∪ (
s′ ∩ X ∩ X

)
=

(
(s∩ X) ∪ (s′ ∩ X)

) ∩ X.

Hence,(s, s∗) ∈ εX. Also consider the following equalities:

s′ ∩ Y =
((

s′ ∩ X
) ∪ (s′ ∩ X)

) ∩ Y =
((

s′ ∩ X ∩ Y
) ∪ (s′ ∩ X ∩ Y)

)
=

(
(s∩ X ∩ Y) ∪ (s′ ∩ X ∩ Y)

)
=

(
(s∩ X) ∪ (s′ ∩ X)

) ∩ Y.

Accordingly also(s∗, s′) ∈ εY and finally also(s, s′) ∈ εX ◦ εY.
For the⊇-direction, assume(s, s′) ∈ εX ◦ εY. So, for somes′′ ∈ 2A both

(s, s′′) ∈ εX and(s′′, s′) ∈ εY. I.e., boths∩ X = s′′ ∩ X ands′′ ∩ Y = s′ ∩ Y.
Consider the following equalities:

s∩ X ∩ Y = s′′ ∩ X ∩ Y = s′′ ∩ Y∩ X = s′ ∩ Y∩ X = s′ ∩ X ∩ Y.

Hence,(s, s′) ∈ εX∩Y.
For the second claim, first assume for arbitrarys, s′ ∈ 2A that (s, s′) ∈ εX∪Y.

Then,s∩(X ∪ Y) = s′∩(X ∪ Y). Since,X,Y ⊆ X∪Y then also boths∩X = s′∩X
ands∩ Y = s′ ∩ Y. We may conclude that(s, s′) ∈ εX ∩ εY. For the opposite
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direction, assume(s, s′) ∈ εX ∩ εY, i.e., boths∩ X = s′ ∩ X ands∩ Y = s′ ∩ Y.
Now reason as follows:

s∩ (X ∪ Y) = (s∩ X) ∪ (s∩ Y) =
(
s′ ∩ X

) ∪ (
s′ ∩ Y

)
= s′ ∩ (X ∪ Y) .

We may conclude that(s, s′) ∈ εX∪Y. a
The partition of 2A as determined byεX, we denote byπX. The notation[x]εX

for the equivalence class underεX containingx we usually abbreviate to[x]X. Ob-
viously, πA is the finest andπø the coarsest partition of 2A. More in general we
have that the larger the setX, the finer the partitionπX.

Fact 4.1.6 Let X and Y be subsets of some set A. Then:

X ⊆ Y iff πY 6 πX.

Proof: First assumeX ⊆ Y and consider an arbitraryX ∈ πX. We without loss
of generality we may assume thatX = [Z]X, for someZ ⊆ A. Now consider[Z]Y
as well as an arbitraryZ′ ∈ [Z]Y. Then,Z′ ∩ Y = Z ∩ Y. With the assumption
thatX ⊆ Y, then alsoZ′ ∩ X = Z ∩ X. Hence,Z′ ∈ [Z]X. We may conclude that
πY 6 πX.

For the opposite direction, assume thatX * Y, i.e., that there be anx ∈ X
with x /∈ Y. Consider thisx along with the block[{x}]Y of πY. Observe that both
{y} ∈ [{x}]Y andø ∈ [{x}]Y. It suffices to show that for allX ∈ πX if {x} ∈ X
thenø /∈ X. So consider an arbitraryX ∈ πX with {x} ∈ X as well as an arbitrary
X′ ∈ X. Then{x} ∼X X′, and withx ∈ {x} andx ∈ X we may conclude that
x ∈ X′. Hence,X′ 6= ø. a

For X a subset of a setA we denote the approximation operatorsapr
πX

and

aprπX
, as defined for subsets of 2A, by apr

X
andaprX, respectively. As an immedi-

ate result of the facts 4.1.4 and 4.1.6 we have the following corollary.

Corollary 4.1.7 Let X and Y be subsets of some set A. Then:

X ⊆ Y iff for all X ⊆ 2A : apr
X
(X) ⊆ apr

Y
(X) ,

X ⊆ Y iff for all X ⊆ 2A : aprY(X) ⊆ aprX(X) .

Proof: Immediate from Fact 4.1.4 and Fact 4.1.6. a
With respect to the behavior of lower and upper approximations of a set given

partitionsπX andπY, we have the following two facts.
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Fact 4.1.8 Let A be some set, of which X and Y are subsets. Let, moreover,X be
a subset of2A. Then:

apr
X∩Y

(X) = apr
X

(
apr

Y
(X)

)
,

aprX∩Y(X) = aprX
(

aprY(X)
)
,

apr
X∪Y

(X) ⊇ apr
X
(X) ∩ apr

Y
(X) ,

aprX∪Y(X) ⊆ aprX(X) ∩ aprY(X) .

Proof: The proofs of the first two claims are analogous; here we only give that of
the latter.

s∈ aprX∩Y(X) iff s∼X∩Y s′ ands′ ∈ X, for somes′ ∈ 2A

iff Fact 4.1.5 s∼X s′′ ∼Y s′ ands′ ∈ X, for somes′, s′′ ∈ 2A

iff s∼X s′′ ands∈ aprY(X) , for somes′′ ∈ 2A

iff s∈ aprX
(

aprY(X)
)
.

For the latter two claims merely observe that, in virtue of Coroll 4.1.7,
both apr

X
(X) ⊆ apr

X∪Y
(X) and apr

Y
(X) ⊆ apr

X∪Y
(X), as well as both

aprX∪Y(X) ⊆ aprX(X) andaprX∪Y(X) ⊆ aprY(X). a

Fact 4.1.9 Let A a set and let I be a set of indices. Let further{Xi}i∈I and{Xi}i∈I
be indexed families of subsets of A and of subsets of2A, respectively. Then:⋂

i∈I

apr
Xi

(Xi) ⊆ aprS
i∈I Xi

( ⋂
i∈I Xi

)
,

⋂
i∈I

aprXi
(Xi) ⊇ aprS

i∈I Xi

( ⋂
i∈I Xi

)
.

Proof: First consider an arbitraryY ⊆ A and assumeY ∈ ⋂
i∈I apr

Xi
(Xi), i.e.,

for all i ∈ I , it is the case thatY ∈ apr
Xi

(Xi). Since, obviously,Xi ⊆ ⋃
i∈I Xi ,

by Corollary 4.1.7 for alli ∈ I , also Y ∈ aprS
i∈I Xi

(Xi). Therefore,Y ∈⋂
i∈I aprS

i∈I Xi
(Xi). Finally, by distribution of

⋂
overapr, we may conclude that

Y ∈ aprS
i∈I Xi

(⋂
i∈I Xi

)
.

For the second claim, assume for an arbitraryY ⊆ A, that Y ∈
aprS

i∈I Xi

(⋂
i∈I Xi

)
. Then there is someZ ⊆ A such thatY ∼S

i∈I Xi
Z and
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Z ∈ ⋂
i∈I Xi . It follows that for eachi ∈ I , both Y ∼Xi Z and Z ∈ Xi , i.e.,

Y ∈ aprYi
(Xi). We may conclude thatY ∈ ⋂

i∈I aprXi
(Xi). a

For the special partitionsπA andπø, moreover the following equalities hold:

Fact 4.1.10 Let A be a set and letX ⊆ 2A. Then:

apr
A
(X) = aprA(X) = X

apr
ø
(X) =




X if X = 2A

ø otherwise

aprø(X) =




X if X = ø

2A otherwise.

Proof: Observe thatπA =
{ {a} : a ∈ A

}
and thatπø =

{
2A

}
. Then the claims

follow almost immediately from the definitions of upper and lower approximation.
a

4.2 Extensions in Propositional Logic

A propositional language L(A) consists of a set of formulasΦ(A) over some set of
propositional variablesA. Unless stated otherwise, we assumeA to be countable. A
proper logicfor a propositional languageL(A) is a set of pairs of theories inL(A),
i.e., a subset ofΦ(A) × Φ(A).4 For any logicΛ for L(A) and any pair of theories
Γ andΘ we say thatΘ logically follows fromΓ in Λ if (Γ,Θ) ∈ Λ. In the sequel
we will usually denote(Γ,Θ) ∈ Λ by Γ `Λ Θ and(Γ,Θ) /∈ Λ by Γ 0Λ Θ, also
omitting the subscript whenever possible. At an intuitive level, it can be a help to
readΓ ` Θ as signifying that some formulas inΘ hold whenever all formulas inΓ
hold. We take a very liberal attitude towards what to consider a logic and impose
no further restrictions.

A valuation based semantics(or just ‘semantics’) for a languageL(A) asso-
ciates with each formulaϕ of the language a subset of 2A which we call theex-
tension ofϕ and denote by[[ϕ]]. Here, 2A is taken as the set ofvaluations, which
will in the sequel frequently be referred to byS. Let s ° ϕ if s ∈ [[ϕ]] ands 1 ϕ
if s /∈ [[ϕ]]. The set of extensions of the formulas in aΓ we denote byE (Γ ), i.e.,
E (Γ ) =df.

{
[[γ]] : γ ∈ Γ

}
. The set of all formula extensions of a languageL(A),

4We follow Segerberg (1982) in this definition and the following remarks on logics.



28 SET INDUCED RELATIONS AND RELATIONAL SEMANTICS

E (Φ(A)) we usually denote by simplyE (A) or even justE , if A is clear from the
context. Let, furthermore,[[Γ ]] =df.

⋂
γ∈Γ [[γ]] and 〈〈Γ 〉〉 =df.

⋃
γ∈Γ [[γ]]. Semanti-

cal consequenceis then defined as:

Γ ² Θ iff [[Γ ]] ⊆ 〈〈Θ 〉〉 .

In a similar vein, a theory is said to besatisfiableif [[Γ ]] 6= ø andvalid if [[Γ ]] = 2A.
A formulaϕ is satisfiableor valid if {ϕ} is, respectively, satisfiable or valid. Any
binary relation on the theories of a languageL(A) is said to besoundwith respect
to a logicΛ if it is a subset ofΛ andcompletewhenever it is a superset ofΛ.

We call a valuation-based semantics for a languageL(A) finite if for each for-
mulaϕ of L(A) there is a finite subsetX ⊆ω A such that:

s∈ [[ϕ]] ands∼X s′ implies s′ ∈ [[ϕ]]

Intuitively, this says that whether a valuation belongs to the extension of a formula
depends only on the values it assigns to a finite number of propositional variables.
In terms of rough sets this means that for all formulasϕ of L(A) there is a finite
setX ⊆ω A such that:

[[ϕ]] = aprX([[ϕ]]) .

It now happens that if a semantics is finite, then for each formulaϕ in L(A) there
is asmallestfinite set such that[[ϕ]] = aprX([[ϕ]]) . This proposition is a corollary
of the following lemma in rough set theory:

Lemma 4.2.1 Let A be a countable set andZ ⊆ 2A. Assume further that there
exists some finite Z0 ⊆ω 2A in Z. LetX ⊆ 2A. Then:

aprZ0
(X) = aprZ(X) for all Z ∈ Z implies aprZ0

(X) = aprT Z(X) .

Proof: Assume for allZ ∈ Z : aprZ0
(X) = aprZ(X). Since

⋂
Z ⊆ Z0,

also aprZ0
(X) ⊆ aprT Z(X), in virtue of Fact 4.1.7. So consider an arbitrary

s ∈ aprT Z(X). We prove thats ∈ aprZ0
(X). Then, for somes0 ∈ X, s0 ∼T

Z s.
SinceZ0 is finite, so are

⋂
Z andZ0 −

⋂
Z. Let Z0 −

⋂
Z = {z0, . . . , zn}. Observe

that for eachz∈ {z0, . . . , zn}, there is someZ ∈ Z such thatz /∈ Z. Assuming the
axiom of choice, let{Z′

0, . . . ,Z
′
n} ⊆ Z be such thatzi /∈ Z′

i , for eachi 6 n. For
each 06 i 6 n + 1, defines∗i as follows:

s∗0 =df. s0

s∗i+1 =df.
(
s∗i − {zi}

) ∪ (
s∩ {zi}

)
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Since by definitionzi /∈ Z′
i , and withs∗i ands∗i+1 differing at most atzi , it follows

that for each 06 i 6 n + 1, s∗i ∼Z′
i

s∗i+1. As a consequences∗i+1 ∈ aprZ0
(X),

for eachi 6 n + 1. To appreciate this, observe that by assumptions∗0 ∈ X and
hence alsos∗0 ∈ aprZ0

(X). Now assumes∗i ∈ aprZ0
(X). By the initial assumption

aprZ0
(X) = aprZ′

i
(X), so s∗i ∈ aprZ′

i
(X). Since, moreover,s∗i ∼Z′

i
s∗i+1, s∗i+1 ∈

aprZ′
i

(
aprZ′

i
(X)

)
. Then alsos∗i+1 ∈ aprZ′

i
(X) and eventuallys∗i+1 ∈ aprZ0

(X).
We now prove by induction oni that for all i 6 n + 1 (letting{zk, . . . , zn} = ø

if k > n):

s∗i ∼Z0−{zi ,...,zn} s.

For i = 0, recall that by assumptions∗0 ∼T

Z s, which is exactly what we
have to prove considering that{z0, . . . , zn} = Z0 −

⋂
Z. For the induction step,

we may assume thats∗i ∼Z0−{zi ,...,zn} s. Now considersi+1 as well as an
arbitrary z∈ Z0 − {zi+1, . . . , zn}. If z ∈ Z0 − {zi, . . . , zn}, just observe that
s∗i+1 ∼Z0−{zi ,...,zn} s∗i ∼Z0−{zi ,...,zn} s. If, however, the only remaining possibil-
ity obtains andz = zi, then alsos∗i+1 ∼{zi} s. Hence, we may conclude that
s∗i+1 ∼Z0−{zi+1,...,zn} s.

In particular it holds thats∗n+1 ∈ aprZ0
(X) and that s∗n+1 ∼Z0 s. Hence,

s∈ aprZ0

(
aprZ0

(X)
)
, which is so much as to say thats∈ aprZ0

(X). Wrapping
things up, we recall thats had been chosen arbitrarily such thats0 ∼T

Z s. So, we
may conclude thataprT Z(X) ⊆ aprZ0

(X). a
Observe that Lemma 4.2.1does nothold in general ifZ does not contain at least

one finite element. For a counterexample, consider a countably infinite setA and
let X be the set of infinite subsets ofA. HenceX 6= 2A. Let furthera0, . . . ,an, . . .
be an enumeration ofA and setZ =df.

{
A− {a0, . . . ,an} : n ∈ ω

}
. Clearly,⋂

Z = ø and soaprT Z(X) = 2A. However, since everyX ∈ X has an infinite
intersection with anyZ ∈ Z, we also haveaprZ(X) = aprZ′(X) for all Z,Z′ ∈ Z.
However, ifZ is itself finite, the restriction of it containing a finite element can be
dropped. Just recall thataprZ(aprZ′(X)) = aprZ∩Z′(X). We are now in a position
to prove the following proposition.

Proposition 4.2.2 For every finite semantics for L(A) and each formulaϕ of L(A)
there is a (unique) smallest X⊆ A such that[[ϕ]] = aprX([[ϕ]]).

Proof: Consider a finite semantics forL(A) along with an arbitrary formulaϕ.
Now consider the setZ =df.

{
Z ⊆ A : aprZ([[ϕ]]) = [[ϕ]]

}
. By finiteness, there

is also a finiteZ0 ∈ Z. Hence for allZ ∈ Z, aprZ([[ϕ]]) = aprZ0
([[ϕ]]). By

Lemma 4.2.1,aprT Z([[ϕ]]) = aprZ0
([[ϕ]]) = [[ϕ]]. Hence, by definition ofZ, also
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⋂
Z ∈ Z, which proves the proposition. a
This result warrants the definition ofA(ϕ) as thesmallestsubset of propo-

sitional variables inA for which [[ϕ]] = aprX([[ϕ]]). More in general we set
A(Γ ) =df.

⋃
γ∈Γ A(γ). Moreover we employ the notationϕ (a0, . . . ,an) to

indicate that[[ϕ]] = apr{a0,...,an}([[ϕ]]). Observe thatA(Γ ) does not in general de-
note the smallest subsetX of propositional variables such that[[Γ ]] = aprX([[Γ ]]).
We have the following two facts.

Fact 4.2.3 Let ϕ be a formula of a propositional language L(A). Then for all
subsets∆ of A such thatA(ϕ) ⊆ ∆:

apr∆([[ϕ]]) = apr
∆

([[ϕ]]) = [[ϕ]].

Proof: Merely consider the following equalities:

apr∆([[ϕ]]) = apr∆
(

aprA(ϕ)([[ϕ]])
)

=Fact 4.1.8

apr∆∩A(ϕ)([[ϕ]]) =A(ϕ) ⊆ ∆ aprA(ϕ)([[ϕ]]) = [[ϕ]].

That then alsoapr
∆

([[ϕ]]) = [[ϕ]], follows immediately from Fact 4.1.1. a

Fact 4.2.4 LetΓ be a theory in L(A) and∆ a subset of A such thatA(Γ ) ⊆ ∆.
Then:

apr
∆

([[Γ ]]) = apr∆([[Γ ]]) = [[Γ ]].

apr
∆

( 〈〈Γ 〉〉 ) = apr∆( 〈〈Γ 〉〉 ) = 〈〈Γ 〉〉 .

Proof: Consider the following equalities:

apr
∆

([[Γ ]]) =
⋂

γ∈Γ apr
∆

([[γ]]) =Fact 4.2.3
⋂

γ∈Γ [[γ]] = [[Γ ]],

apr∆([[Γ ]]) =
⋃

γ∈Γ apr∆([[γ]]) =Fact 4.2.3
⋃

γ∈Γ [[γ]] = [[Γ ]].

That alsoapr∆([[Γ ]]) = [[Γ ]] andapr
∆

([[Γ ]]) = [[Γ ]] then follows by Fact 4.1.1.a
A classical propositional language L(A) over a set of propositional variablesA

is a minimal set containingA as well as⊥ and for each formulaϕ contains another
formula denoted by(¬ϕ) as well as for each pair of formulasϕ andψ a formula
denoted by(ϕ∨ ψ) and allows for a classical semantics. Aclassical semanticsfor
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a classical languageL(A) is such that for each propositional variablea ∈ A and all
formulasϕ andψ:

[[a]] = {s∈ S : a ∈ s}
[[⊥]] = ø

[[(¬ϕ)]] = S− [[ϕ]]
[[(ϕ ∨ ψ)]] = [[ϕ]] ∪ [[ψ]].

The resulting logic we will refer to asclassical propositional logic(CPC). Where
possible we omit parentheses. We also have the usual abbreviations>, ϕ ∧ ψ,
ϕ → ψ,

∧
Θ and

∨
Θ, whereϕ andψ are formulas ofL(A) andΘ a finite and

possibly empty sequences of formulas inL(A). For each formulaϕ, the set of
propositional variablesoccurring in ϕ is defined as usual and depicted byA(ϕ).
We useA(Γ ) to denote

⋃
γ∈Γ A(γ). Classical semantics is finite in the sense that

for each formulaϕ there is a finite set∆ such that[[ϕ]] = apr∆([[ϕ]]).

Fact 4.2.5 Classical semantics is finite.

Proof: Consider an arbitrary classical propositional languageL(A) along with an
equally arbitrary formulaϕ of L(A). The proof is then by induction onϕ.

First assumeϕ = a. Obviously[[a]] ⊆ apr{a}([[a]]); so, it suffices to show that
apr{a}([[a]]) ⊆ [[a]]. Observe that for anys ∈ apr{a}([[a]]), there is somes′ ∈ [[a]]
such thats∼{a} s′. Since by definitiona ∈ s′, alsoa ∈ s. Hence,s∈ [[a]].

Letϕ = ¬ψ. In virtue of the induction hypothesis we may assume there to be a
finite∆ ⊆ω A such that[[ψ]] = apr∆([[ψ]]). Now consider the following equalities:

[[¬ψ]] = [[ψ]] =i.h. apr∆([[ψ]]) = apr
∆

(
[[ψ]]

)
=i.h. apr

∆
([[¬ψ]]) .

With Fact 4.1.1, we may conclude that[[¬ψ]] = apr∆(¬ψ).

In caseϕ = ψ∨ψ, the induction hypothesis grants us there to be finite∆,∆′ ⊆
A such that[[ψ]] = apr∆([[ψ]]) and[[χ]] = apr∆′([[χ]]). Now consider the following
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equalities:

apr∆∪∆′([[ψ ∨ χ]]) = apr∆∪∆′([[ϕ]] ∪ [[ψ]])

= apr∆∪∆′([[ψ]]) ∪ apr∆∪∆′([[χ]])

=i.h. apr∆∪∆′(apr∆([[ψ]])) ∪ apr∆∪∆′(apr∆′([[χ]]))

= apr(∆∪∆′)∩∆([[ψ]]) ∪ apr(∆∪∆′)∩∆′([[χ]])

= apr∆([[ψ]]) ∪ apr∆′([[χ]])

=i.h. [[ψ]] ∪ [[χ]]

= [[ψ ∨ χ]].

This concludes the proof. a
For classical propositional logic we have in generalA(ϕ) ⊆ A(ϕ). Hence the

following fact.

Fact 4.2.6 Let L(A) be a classical propositional language,∆ ⊆ A andϕ a for-
mula of L(A). Then:

apr
∆

([[ϕ]]) = apr
∆∩A(ϕ)

([[ϕ]]) = apr
∆∩A(ϕ)

([[ϕ]])

apr∆([[ϕ]]) = apr∆∩A(ϕ)([[ϕ]]) = apr∆∩A(ϕ)([[ϕ]])

Proof: Immediately from the Facts 4.1.8 and Fact 4.2.3 and the fact that for clas-
sical propositional in generalA(ϕ) ⊆ A(ϕ). a

In the previous section we argued thataprπ can be construed as a cylindrifica-
tion operation andapr

π
as its dual. In first-order logic the quantifiers can be thought

of in a similar manner. Quantification increases the expressive power of first-order
logic tremendously and is responsible for Church’s famous undecidability result.
These phenomena connected with cylindrification, however, do not occur at all in
classical propositional logic. As a matter of fact, the set of extensionsE in clas-
sical propositional logic is closed under taking lower and upper approximations.
Hence for each subsetX of propositional variables we may assume the existence of
formulas〈X〉ϕ and[X]ϕ with the respective extensionsaprX([[ϕ]]) andapr

X
([[ϕ]]).

This we prove. Moreover we characterize the set of extensions of a classical propo-
sitional language as the set of fixed points of all operationsaprX andapr

X
with X

finite. Recall thatE (A) denotes the set
{
[[ϕ]] : ϕ ∈ Φ(A)

}
.
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Theorem 4.2.7 Let L(A) be a classical propositional language with a classical
semantics and let Fix(aprB) =df.

{
X ⊆ S : X = aprB(X)

}
. Then:

E =
⋃

B⊆ωA

Fix (aprB) .

Proof: The left-to-right direction is immediate by finiteness of classical seman-
tics.

For the opposite direction consider an arbitraryX ⊆ Ssuch thatX = aprB(X),
for some finiteB ⊆ A. Now define for eachs⊆ B:

βs =df.

∧ {
b,¬b′ : b,b′ ∈ B and b ∈ s and b′ 6∈ s

}
.

Obviously,s ° βs, for eachs⊆ B. Now set:

β =df.

∨{
βs : s⊆ B ands∈ X

}
.

We prove thatX = [[β]]. First assume, for an arbitrarys ∈ S, thats ∈ [[β]]. Then
s ° βs′ , for somes′ ∈ X with s′ ⊆ B. Some reflection reveals thats ∼B s′ and
subsequentlys ∈ aprA(X). With the assumption thatX = aprB(X), the latter is
equivalent withs∈ X.

Conversely, assumes ∈ X. Define s∗ =df. s ∩ B; then s∗ ° βs∗ . Since,
moreover,s ∼B s∗ andβs∗ only depends onB we also have thats ° βs∗ . It is
equally clear thats∗ ⊆ B. Sinces∗ ∼B s, alsos∗ ∈ aprB(X), i.e., s∗ ∈ X by the
assumption.A fortiori, alsos ° β, and we may conclude thats∈ [[β]]. a
This result is very close to the more syntactically flavored fact of classical proposi-
tional logic that each formula is equivalent to a complete disjunctive normal form.
Observe that if∆ comprises precisely the propositional variables occurring in a
formulaϕ, then each disjunct of its complete disjunctive normal form character-
izes a block in the partitionπ∆.

Corollary 4.2.8 Let L(A) be a classical propositional language. Then:

E =
{

aprB(X) : B ⊆ω A and X⊆ 2A}
.

Proof: The inclusion ofE in
{

aprB(X) : B ⊆ω A and X ⊆ 2A
}

is an immedi-
ate consequence of Theorem 4.2.7. For the opposite inclusion just observe that
apr(apr(X)) = apr(X) is a law of rough set theory and again Theorem 4.2.7.a
This corollary establishes classical propositional logic as the most expressive one
with a finite semantics, in the sense that the extensions of its formulas exhaust the
set of valuations that can be finitely approximated.
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So, the set of extensionsE (A) of formulas of a propositional languageL(A)
is given by the fixed points of the approximation operationsaprB on sets of valu-
ations withB finite. Obviously,E (A) does not exhaust in general the powerset of
valuations 2A. If A is countably infinite, so is the set of formulas ofL(A). The set
of valuations, not to mention the set of sets of valuations, however, is uncountably
infinite and so there can impossibly be a formula for each subset of valuations, or
even for each valuation.

In virtue of Theorem 4.2.7 and Corollary 4.2.8 we also have that the set of
extensions is closed under taking approximations. Hence the following fact.

Fact 4.2.9 Let L(A) be a classical propositional language with a classical se-
mantics. Then for all B⊆ A:

X ∈ E implies aprB(X) ∈ E

Proof: At page 25 it was stated as a law of rough set theory that for anyB,C ⊆ A,
aprB(aprC(X)) = aprB∩C(X). Now consider an arbitraryX ∈ E . By Theo-
rem 4.2.7 there is a finiteC ⊆ A such thatX = aprC(X). Now consider an arbitrary
B ⊆ A and reason as follows:

aprB(X) = aprB(aprC(X)) = aprB∩C(X) .

Since obviouslyB∩ C is finite, with Corollary 4.2.8,aprB∩C(X) ∈ E and we may
conclude thataprB(X) ∈ E . a

The set of theories of a propositional languageL(A) will be uncountable ifA is
countably infinite. Nevertheless, there will still be subsets of valuations that are not
the extension of some theory. For an example consider 2A − {ø}. For areductio
ad absurdumassume that[[Γ ]] = 2A − {ø}. Then there is at least oneγ in Γ such
that [[γ]] does not contain the empty setø. In virtue of Corollary 4.2.8, there is a
finite subsetB of propositional variables and some subset of valuationsX such that
[[γ]] = aprB(X). Now consider thevaluationB. Observe that withB finite andA
infinite, B is not empty. Hence,B ∈ [[Γ ]] anda fortiori alsoB ∈ [[γ]]. Therefore,
B ∈ aprB(X). Evidently, B ∼B ø and soø ∈ aprB(aprB(X)) = aprB∩B(X) =
aprB(X) = [[γ]], which is at variance with the assumption thatø /∈ [[γ]].

4.3 Characterizing Set Induced Relations

In purpose of this section is to demarcate the classes of relations over the valuations
as defined by formulas and theories.
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The relationsρ (X) as defined by subsets of a setSoverShave a neat charac-
terization in terms of general properties of relations. We say that a relationρ on a
setS is bisectiveif it is transitive and moreover satisfies the following condition:

(∗) for all x, x′, x′′ ∈ S : x 6 x′ implies x′′ 6 x or x′ 6 x′′.

Observe that the empty relation qualifies as bisective, as in that case both transi-
tivity and (∗) are satisfied trivially in virtue of vacuous quantification. Any other
bisective relation, however, is both reflexive in addition to being transitive.

Fact 4.3.1 Any non-empty bisective relation over a set S is reflexive.

Proof: Letρ be a non-empty bisective relation over a setS. Thenx 6 x′, for some
x, x′ ∈ S. Consider an arbitraryy in S. In virtue ofρ satisfying (∗), then,y 6 x or
x′ 6 y. In both cases the reasoning runs along similar lines; here we deal with the
former case only. Ify 6 x, again in virtue of (∗), eithery 6 y or x 6 y. If y 6 y we
are done immediately. Otherwise, we havey 6 x 6 y and by transitivity ofρ also
y 6 y. a
The following proposition characterizes a bisective relation over a universeS as
one which coincides withρ (X) for some subsetX of S. In its proof, as elsewhere
in this section,↑ρ x denotes the set{y ∈ S : (x, y) ∈ ρ}, for all elementsx of and
all relationsρ on a setS.

Proposition 4.3.2 Let S be a set. Then the set
{
ρ (X) ⊆ S×S : X ⊆ S

}
coincides

with the set of bisective relations on S.

Proof: In caseS is empty, the empty relation is the only (bisective) relation onS.
Also, ø is the only subset ofS. Now, observe thatρ (ø) is the empty relation as
well. So, for the remainder of the proof we may assumeS to be non-empty.

First consider an arbitraryX ⊆ S along with equally arbitraryx, x′, x′′ ∈ S.
We prove thatρ (X) is bisective. For transitivity first assume that both(x, x′)
and(x′, x′′) are inρ (X) as well as thatx ∈ X. Since(x, x′) ∈ ρ (X), alsox′ ∈ X and
because(x′, x′′) ∈ ρ (X), moreover,x′′ ∈ X. We may conclude that(x, x′′) ∈ ρ (X).
To show thatρ (X) satisfies condition (∗) as well, assume(x, x′) ∈ ρ (X). Either
x′′ ∈ X or x′′ /∈ X. If the former,(x′, x′′) ∈ ρ (X); if the latter(x′′, x) ∈ ρ (X). In
both cases we are done.

To prove that for an arbitrary bisective relationρ on S there is a subsetX such
thatρ = ρ (X), assumeρ to be bisective and consider the set

⋂
x∈S↑ρ x. Suppress-

ing the subscriptρ in ↑ρ x, we prove thatρ = ρ
(⋂

x∈S↑ x
)
. In caseρ is empty,↑ x
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is equally empty, for anyx ∈ S. Having assumedSto be non-empty,
⋂

x∈S↑ x = ø.
Hence,ρ

(⋂
x∈S↑ x

)
= ρ (ø) = ø. For the remainder of the proof, we may ac-

cordingly assumeρ to be non-empty. In virtue of Fact 4.3.1, the relationρ may be
assumed to be reflexive as well.

For the⊆-inclusion, assume for arbitraryy, y′ ∈ S that (y, y′) ∈ ρ. Assume
further thaty ∈ ⋂

x∈S↑ x and consider an arbitraryx ∈ S. Theny ∈ ↑ x, i.e.,
(x, y) ∈ ρ. By transitivity, also(x, y′) ∈ ρ, i.e., y′ ∈ ↑ x. With x having been chosen
arbitrarily,y ∈ ⋂

x∈S↑ x, and we are done.
For the⊇-inclusion, assume for arbitraryy, y′ ∈ S that (y, y′) /∈ ρ. Then,

y′ /∈ ↑ y and, therefore,y′ /∈ ⋂
x∈S↑ x. It suffices now to prove thaty ∈ ⋂

x∈S↑ x.
So, consider an arbitraryx ∈ S; we prove thaty ∈ ↑ x. By reflexivity, (y, y) ∈ ρ. In
virtue of (y, y′) /∈ ρ and (∗), then(y′, y) ∈ ρ. Again because of (∗), either(x, y′) or
(y, x) ∈ ρ. In the former case,(x, y) ∈ ρ sinceρ is transitive and(y′, y) ∈ ρ. Also
in the latter case we have(x, y) ∈ ρ, because(y, y′) /∈ ρ and (∗). With x having
been chosen arbitrarily,y ∈ ⋂

x∈S↑ x. We may conclude that(y, y′) /∈ ρ
(⋂

x∈S↑ x
)
.
a

For a classical propositional language with a countably infinite number of
propositional variables, the relationsρ (ϕ) for formulasϕ of the language, ex-
haust the set of bisective relations on the valuations just as little as the extensions
of the formulas exhaust the set of subsets of the valuations. Recall that the number
of relations over the valuations of a countably infinite propositional language is
uncountable, whereas the number of formulas remains countable. Corollary 4.2.8
on page 33 characterizes the set of extensions of a language as the approximations
of the subsets of valuations by means of a finite subset of propositional variables.
Proposition 4.3.5, gives a similar result for the relational semantics for classical
propositional logic. Before getting there, however, we make some more general
remarks concerning approximations of relations.

The approximation operatorsapr andapr on the powerset of some setS are
relative to an equivalence relationε onS. The coordinate-wise square5 of an equiv-
alence relation overS is again an equivalence relation over the Cartesian product
of S. The coordinate-wise square ofε— denoted byε⊗ ε— can in turn be used to

5In Preliminaries. Let{Si}i∈I be a family of sets. Let further for eachi ∈ I , ρi be a relation onSi .
We define thecoordinate-wise product,or the product relation, of{ρi}i∈I as the relationρ∗ on the
generalized Cartesian order over theSi such that for all~x,~y ∈ Q

i∈I Si :

(~x,~y) ∈ ρ∗ iff for all i ∈ I : (xi , yi) ∈ ρi .

Thecoordinate-wise squareρ ⊗ ρ of a relationρ on S is the coordinate-wise product relation ofρ
with itself.
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approximaterelationson Sby means of rough sets. Thus, we have forρ a relation
over a setS:

(x, x′) ∈ aprε⊗ε(ρ)

iff for some(y, y′) ∈ S× S:
(
(x, x′), (y, y′)

) ∈ ε⊗ ε and (y, y′) ∈ ρ

iff for somey, y′ ∈ S: (x, y), (x′, y′) ∈ ε and (y, y′) ∈ ρ.

When no confusion is likely, we will denote the approximation operations on the
relations ofS relative to the squares of an equivalence relationεX also byaprX
andapr

X
. I.e., we will write aprX(ρ) for aprεX⊗εX

(ρ).
The approximation operationaprX on relations does not in general preserve

transitivity. For a counterexample one consider a base set of three elements{a,b, c}.
Let ρ be the smallest reflexive transitive relation on 2{a,b,c} containing(ø, {a})
and ({a, c} , {a,b}). Transitivity fails for the relationapr{a,b}(ρ). Observe in
this respect that both(ø, {a, c}) and({a, c} , {a,b}) are inapr{a,b}(ρ). The lat-
ter becauseρ ⊆ apr{a,b}(ρ). For the former, observe that bothø ∼{a,b} and
{a} ∼{a,b} {a, c}. As a consequence also

(
(ø, {a}), (ø, {a, c})) ∈ ε{a,c} ⊗ ε{a,c}.

Nevertheless,
(
ø, {a,b} )

/∈ apr{a,b}(ρ). In a similar fashion it can be shown that
the upper approximation operation does not preserve reflexivity.

Since, every relationρ (X) is transitive, witness Proposition 4.3.2, the set of bi-
sective relations is not closed under taking approximations. The following propo-
sition, however, establishes a general connection between bisective relations and
their approximations.

Proposition 4.3.3 Let ε be an equivalence relation on some set S andε ⊗ ε its
coordinatewise square. Then for each X⊆ S:

ρ
(

aprε(X)
) ⊆ aprε⊗ε

(
ρ (X)

)
Proof: In case X is empty, in general, bothapr(X) = apr(ø) = ø
and ρ (apr(X)) = ρ (apr(ø)) = ρ (ø) = ø. Therefore, in particular, both
ρ
(

aprε(X)
)

andaprε⊗ε

(
ρ (X)

)
are empty, and we are done immediately. Hence,

for the remainder of the proof we may assumeX to be non-empty.
Assume (x, x′) ∈ ρ (aprε(X)). If also (x, x′) ∈ ρ (X), then (x, x′) ∈

aprε⊗ε(ρ (X)) follows immediately. So, assume that(x, x′) /∈ ρ (X). Thenx ∈ X
andx′ /∈ X. Hence,x ∈ aprε(X), and having assumed that(x, x′) ∈ ρ (aprε(X)),
alsox′ ∈ aprε(X). Consequently there is anx′′ ∈ X such thatx′ ∼ε x′′. Then
also(x, x′′) ∈ ρ (X). Since, bothx ∼ x andx′ ∼ x′′, that(x, x′) ∈ aprε⊗ε(ρ (X))
follows, and we are done. a
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x

y

Xz

Figure 4.2. Counterexample againstaprε⊗ε

(
ρ (X)

) ⊆ ρ
(

aprε(X)
)
. Let the partition

be given byε. Because(x, y) ∈ ρ (X), immediately also(x, y) ∈ aprε(ρ (X)). However,
x ∈ aprε(X) andy 6∈ aprε(X). Therefore,(x, y) 6∈ ρ (aprε(X)).

The opposite inclusion, however, does not hold in general. For a counterexample,
consider a situation as pictured in Figure 4.2, in which there is a subsetX of S
and an equivalence relationε such that there are some elementsx andy of Ssuch
that neitherx nor y are inX. Let there further be an equivalence relationε with
(x, z) ∈ ε for somez in X and(y, z) ∈ ε for no zin X. Accordingly,x ∈ aprε(X)
andY /∈ aprε(X). Then,(x, y) ∈ aprε⊗ε(ρ (X)), because(x, y) ∈ ρ (X) andε ⊗ ε
is reflexive. However,x is in aprε(X), whereasy is not and, therefore,(x, y) /∈
ρ (aprε(X)).

We say a relationρ on 2A is of finite characterif and only if ρ is a fixed point
of the operationaprX on relations for somefinite subsetX of A, i.e., if there is
some finiteX ⊆ A such thatρ = aprX(ρ) . We find that the bisective relations of
finite character on the set of valuations of a classical propositional languageL(A)
coincide with the relationsρ (ϕ), for formulasϕ of L(A). In analogy with Theo-
rem 4.2.7 on page 33 we have the following theorem. Recall thatR (A) denotes{
ρ (ϕ) : ϕ a formula inL(A)

}
.

Theorem 4.3.4 Let L(A) be a propositional language with A as propositional
variables and S denote2A. For each finite subset B⊆ω A, let further Fix(aprB) be
defined as the set

{
ρ ∈ S× S : ρ is bisective andρ = aprB(ρ)

}
. Then:

R (A) =
⋃

B⊆ωA

Fix (aprB) .

Proof: First consider an arbitrary relationρ in R (A). Then there is some for-
mulaϕ of L(A) such thatρ = ρ (ϕ). By Proposition 4.3.2,ρ (ϕ) is bisective; we
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show thataprA(ϕ)

(
ρ (ϕ)

)
= ρ (ϕ) proving that it is of finite character as well. As

ρ (ϕ) ⊆ aprA(ϕ)

(
ρ (ϕ)

)
is immediate, assume(x, y) ∈ aprA(ϕ)

(
ρ (ϕ)

)
. Then,

there arex′, y′ ∈ 2A such thatx ∼A(ϕ) x′, y ∼A(ϕ) y′ and(x′, y′) ∈ ρ (ϕ). Now
assumex ∈ [[ϕ]]. Then,x′ ∈ aprA(ϕ)([[ϕ]]) = [[ϕ]]. It follows thaty′ ∈ [[ϕ]] as well,
and, hence,y ∈ aprA(ϕ)([[ϕ]]) = [[ϕ]]. Therefore,(x, y) ∈ ρ (ϕ).

For the opposite direction, consider an arbitrary bisective relationρ of finite
character. We may thus assume there to be a finite subsetB ⊆ω A such thatρ =
aprB(ρ) as well as a subsetX ⊆ 2A such thatρ = ρ (X). If X is empty, we have
ρ = ρ (ø) = ø = ρ (⊥). So, for the remainder of the proof, we may assumeX to
be non-empty. We prove thatX = aprB(X). Thenρ (X) = ρ (aprB(X)). In virtue
of Corollary 4.2.8 on page 33 andB being finite, there is also a formulaϕ such that
[[ϕ]] = aprB(X) and, hence,ρ (X) = ρ (aprB(X)) = ρ (ϕ).

BecauseX ⊆ aprB(X) is immediate, we assumes ∈ aprB(X), for an arbitrary
s and prove thats ∈ X. Then there is somes′ such thats ∼B s′ ands′ ∈ X. It
follows that (s, s′) ∈ ρ (X). Moreover, sinces ∼B s′ and, trivially, boths′ ∼B

s′ and (s′, s′) ∈ ρ (X), also (s′, s) ∈ aprB(ρ (X)). By the initial assumptions,
aprB(ρ (X)) = ρ (X) and therefore(s′, s) ∈ ρ (X). With s′ ∈ X, finally, we may
conclude thats∈ X as well. a

The following corollary has a certain likeness with Corollary 4.2.8 on page 33
above, which characterized the extensions of the formulas ofL(A) in a much simi-
lar way.

Corollary 4.3.5 Let L(A) be a classical propositional language. ThenR (A)
coincides with the set of bisective relations of finite character on2A, the set of
valuations, i.e.:

R (A) =
{

aprB(ρ (X)) : X ⊆ 2A and B⊆ω A
}
.

Proof: The inclusion ofR (A) in
{

aprB(ρ (X)) : X ⊆ 2A andB ⊆ω A
}

follows
immediate from Theorem 4.3.4. The inclusion in the opposite direction is an im-
mediate consequence ofaprB(ρ (X)) = aprB(aprB(ρ (X))), which is an instance of
a rough set law, and again Theorem 4.3.4. a
As another corollary we find that, for propositional languagesL(A) on afinite set
of propositional variables,R (A) is complete with respect to all bisective relations
on 2A.

Corollary 4.3.6 Let A be a finite set of propositional variables on which L(A) is
defined. Then,R (A) is complete with respect to the bisective relations on2A.
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Proof: Immediate Theorem 4.3.5. a
The relation atheorydefines over the valuations, however, can be characterized

as the limit of thefiniteapproximations of a proto-order (i.e., an empty or reflexive
and transitive relation) over the valuations. With a finite approximation of a relation
over the valuations we mean here the approximation of that relation relative to the
equivalence relation defined over the valuations by a finite set of propositional
variables, ie, relative to the coordinate square of a relationεB whereB is a finite
subset of propositional variables. First, we prove two preliminary facts.

Fact 4.3.7 Letρ be a proto-order over a set S. Then,ρ = ρ
({↑ρ x : x ∈ S

})
.

Proof: First assume thatρ be empty. Then,↑ρ x = ø, for eachx ∈ S. Hence,
ρ

({↑ρ x : x ∈ S
})

= {ø} andρ ({ø}) = ρ (ø) = ø. So, for the remainder of the
proof we may assumeρ to be both reflexive and transitive.

First assume that(y, y′) ∈ ρ ({↑ x : x ∈ S}), for arbitraryy, y′ ∈ S. Then,
y ∈ ↑ x impliesy′ ∈ ↑ x, for all x ∈ S. By reflexivity of ρ, we have(y, y) ∈ ρ, i.e.,
y ∈ ↑ y. With y ∈ S, then alsoy′ ∈ ↑ y, i.e., (y, y′) ∈ ρ.

For the opposite direction, assume that(y, y′) ∈ ρ as well as thaty ∈ ↑ x, for an
arbitraryx ∈ S. Then,(x, y) ∈ ρ. By transitivity then also(x, y′) ∈ ρ, i.e., y′ ∈ ↑ x.
Therefore,(y, y′) ∈ ρ (↑ x), and withx having been chosen arbitrarily, eventually,
(y, y′) ∈ ρ ({↑ x : x ∈ S}). a

This fact has the following corollary, which says that the class consisting of the
reflexive and transitive relations over a set together with the empty relation can be
characterized as intersections of bisective relations.

Corollary 4.3.8 Letρ be a relation over some set S. Then:

ρ is a proto-order iff for someX ⊆ 2S, ρ = ρ (X) .

Proof: The left-to-right direction is immediate by Fact 4.3.7. For the opposite
direction, assumeρ = ρ (X), for someX ⊆ 2S. If X contains the empty setø,
then

{
ρ (X) : X ∈ X

}
containsρ (ø), i.e., the empty relation. Hence,ρ (X) =⋂

X∈X ρ (X) = ø and by the initial assumption,ρ is empty as well. So, henceforth
X may be assumed not to contain the empty set. By Fact 4.3.1,ρ (X) is both
reflexive and transitive, for eachX ∈ X. An easy check then establishes that
ρ (X) =

⋂
X∈X ρ (X) is reflexive and transitive as well. a

This result has as an immediate corollary that for a languageL(A) on afiniteset of
propositional variables, the class consisting of the relationsρ (Γ ) for all theoriesΓ
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in L(A) is also complete with respect to the reflexive and transitive and otherwise
empty relations over the valuations.

Corollary 4.3.9 Let L(A) be propositional language on afinite set A of proposi-
tional variables and letρ be a relation over2A. Then:

ρ is a proto-order iff for someΓ of L(A), ρ = ρ (Γ ) .

Proof: Immediately by the Corollaries 4.3.6 and 4.3.9. a
The relationsρ (Γ ), as defined by the theories of a languageL(A), however

fail to exhaust the set of reflexive and transitive, or otherwise empty relations over
the valuations ofL(A), if the setA of propositional variables is infinite. For, in
any such case, the subsets of valuations of languageL(A) outnumber its formulas
and for someX ⊆ 2A there is no formulaϕ in L(A) such that[[ϕ]] = X. We
find that for any suchX, there is no theoryΓ of L(A) such that relationρ ({X})
equals the relationρ (Γ ). To appreciate this observe thatρ ({X}) = ρ (X) and
assume for areductio ad absurdumthat there be someΓ such thatρ (X) = ρ (Γ ).
Consider an arbitraryγ ∈ Γ . By choice ofX, thenX 6= [[γ]]. Moreover,ρ (X) ⊆
ρ (γ), for otherwiseρ (X) * ρ (γ), which would be absurd becauseρ (Γ ) ⊆ ρ (γ).
By Fact 2.1.5, then eitherX = ø or [[γ]] = 2A. Since [[⊥]] = ø and⊥ is a
formula ofL(A), the former cannot obtain by choice ofX. Hence,[[γ]] = 2A and,
consequently,ρ (γ) is the universal relation over the valuations. Withγ having
been chosen arbitrarily and the initial assumption, it follows bothρ (Γ ) andρ (X)
coincide with the universal relation as well. Hence,ρ (X) = ρ (>). This however
yields a contradiction, because, by Fact 2.1.2,X = [[>]] would follow, which is
absurd with> being a formula ofL(A).

As the next best thing, the following theorem characterizes the set of relations
defined over the valuations by the theories of a propositional language in the gen-
eral case.

Theorem 4.3.10 Letρ be a reflexive and transitive relation or the empty relation
over S, with S= 2A and A a set of propositional variables. Then:

ρ =
⋂

B⊆ωA

aprB(ρ) iff for some theoryΓ in L(A): ρ = ρ (Γ ).

Proof: If ρ is the empty relation, then so is any relationapr(ρ). Hence,ρ =
ø =

⋂
B⊆ωA aprB(ρ). Now observe that for the theory{⊥}, the relationρ ({⊥})

is empty as well. Thus, for the remainder of the proof, we may assumeρ to be
transitive and reflexive.
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For the left-to-right direction, assumeρ =
⋂

B⊆ωA aprB(ρ) and letX =df.{↑ρ s : s ∈ S
}

. (Henceforth in this proof we omit the subscriptρ in ↑ρ s.) By
Corollary 4.2.8 on page 33 above, there is a formulaϕ such that[[ϕ]] = aprB(X),
for eachX ∈ X and each finiteB ⊆ω A. Now let:

Γ ∗ =df.

⋃
X∈X

{
ϕ : for someB ⊆ω A, [[ϕ]] = aprB(X)

}
.

We prove thatρ = ρ (Γ ∗).
For the⊇-direction, assume an arbitrary pair(s, s′) to be inρ (Γ ). Consider

an arbitrary finite subsetB of A; we show that(s, s′) ∈ aprB(ρ). Also consider
↑ρ s. Then, there is someγ in Γ ∗ such that[[γ]] = aprB(↑ s). Since(s, s′) ∈ ρ (Θ),
in particular(s, s′) ∈ ρ (γ) and sos ∈ [[γ]] implies s′ ∈ [[γ]]. By reflexivity of
ρ, trivially, s ∈ ↑ s anda fortiori s ∈ aprB(↑ s) = [[γ]]. Hence, alsos′ ∈ [[γ]] =
aprB(↑ s). I.e., for somes′′ ∈ S, boths′ ∼B s′′ ands′′ ∈ ↑ s, i.e., (s, s′′) ∈ ρ. As
trivially, s∼B s, we may conclude that(s, s′) ∈ aprB(ρ).

For the⊆-direction, observe that withρ reflexive and transitive and Fact 4.3.7
we haveρ = ρ

({↑ s : s∈ S
})

. Hence:

ρ =
⋂

B⊆ωA

aprB(ρ) =
⋂

B⊆ωA

aprB
(
ρ

({↑ s : s∈ S
}))

.

Assume for arbitrary valuationss ands′ that (s, s′) /∈ ρ (Γ ∗). Hence, for some
γ ∈ Γ ∗, both s ∈ [[γ]] ands′ /∈ [[γ]]. By definition ofΓ ∗, there is some finite
subsetB ⊆ω A and somes0 in S such that[[γ]] = aprB(↑ s0). Then, for all val-
uationss′′ such thats′ ∼B s′′, s′′ /∈ ↑ s0. Also, by transitivity ofεB, s′′′ ∈ ↑ s0,
for all valuationss′′′ with s ∼B s′′′. Hence,(s, s′) /∈ aprB(ρ (↑ s0)). Since
ρ

({↑ s : s∈ S
}) ⊆ ρ ({↑ s0}), we obtain(s, s′) /∈ aprB

(
ρ

({↑ s : s∈ S
}))

. Ac-
cordingly,(s, s′) /∈ ⋂

B⊆ωA aprB
(
ρ

({↑ s : s∈ S
}))

, i.e., (s, s′) /∈ ρ.
For the opposite direction assumeρ = ρ (Γ ) for some theoryΓ of L(A).

Thenρ ⊆ ⋂
B⊆ωA aprB(ρ) is immediate. Assume that(s, s′) /∈ ρ; we prove that

(s, s′) /∈ ⋂
B⊆ωA aprB(ρ). In virtue of the assumption, there is someγ such that

s∈ [[γ]] ands′ /∈ [[γ]]. Now consider the finite setA(γ). For arbitrary valuationss′′

ands′′′ such thats ∼A(γ) s′′ ands′ ∼A(γ) s′′′, we haves′′ ∈ aprA(γ)([[γ]]) = [[γ]]
and s′′′ /∈ aprA(γ)([[γ]]) = [[γ]]. Therefore,(s′′, s′′′) /∈ ρ (γ). It follows that
(s, s′) /∈ aprA(γ)(ρ (γ)). As ρ (Γ ) ⊆ ρ (γ), alsoaprA(γ)(ρ (Γ )) ⊆ aprA(γ)(ρ (γ)).
Therefore,(s, s′) /∈ aprA(γ)(ρ (Γ )) and a fortiori (s, s′) /∈ ⋂

B⊆ωA aprB(ρ (Γ )).
Having assumed thatρ = ρ (Γ ), eventually(s, s′) /∈ ⋂

B⊆ωA aprB(ρ). a
Thus we find that the class of relations induced by theories of a propositional lan-
guage contains the empty relation as well as those partial preorders over the valu-
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ations that can be considered the limit of their own finite approximations. Theo-
rem 4.3.10 sets a bound on the relations that can be expressed as a relationρ (Γ )
for some propositional theoryΓ .





Chapter 5

Closure Conditions for Set-Induced

Relations

In classical logic a theory may be closed under its consequences without affecting
its deductive properties. At a semantical level, this fact is reflected in that the
extension of a theoryΓ is identical to the extension of its closure under logical
consequence,i.e., in general[[Γ ]] = [[Cn(Γ )]].

The relations over the valuations induced by theories, however, are more sensi-
tive in this respect. In particular, it is not in general the case that the relationsρ (Γ )
and ρ (Cn(Γ )) are identical. For an easy counterexample consider a proposi-
tional language containing the propositional variablesa andb. Obviously we have
a ∨ b ∈ Cn({a}). For the valuationsø and {b} clearly ({b} ,ø) ∈ ρ ({a}).
However,({b} ,ø) /∈ ρ ({a,a∨ b}), because{b} ° a∨ b butø 1 a∨ b. Hence,
({b} ,ø) /∈ ρ (a∨ b). The same argument holds forρ0. It is obvious, however, that
a theoryΓ may generally be closed under formulas that arelogically equivalentin
the classical sense without affectingρ (Γ ).

At a set-theoretic level, a set of setsX cannot in general be closed under super-
sets without affecting the relationρ (X). On the other hand, different sets of sets
may very well induce the same relation on a universe,i.e., ρ (X) andρ (Y) may
be identical even ifX andY are distinct. This chapter aims at making precise the
conditions on sets of setsX andY that have to be satisfied for the relationsρ (X)
andρ (Y) to be identical. Closure conditions on theories that preserve relations
induced by theories then follow as a matter of course. We find that relationsρ0 (X)
are slightly better behaved than relationsρ (X) and, therefore, we will focus on the
former first.

As an example of monotonicity,ρ0 ({X,Y}) includesρ0 ({X,Y,X ∩ Y,X ∪ Y}).

45
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Figure 5.1. Three intersecting sets,X, Y and Z. A pair (x, y) is in the rela-
tion ρ ({X,Y,Z}) the set of sets{X,Y,Z} defines over the universeS whenever one can
reachy from y without ever moving from an area to an area that is colored lighter.E.g.,
(x, y) ∈ ρ ({X,Y,Z}), for all elementsx in area 1 andy in the darker colored area 5.
But any element in area 2 and any element in area 5 are incomparable with respect to
ρ ({X,Y,Z}). Some reflection reveals that closing the set{X,Y,Z} under intersections
and unions would not distort this relation.

The opposite inclusion, however, also holds in general. For a generalization of this
fact, define forX a set of subsets of a setS:

X∪ =df.
{ ⋃

X′ : X′ ⊆ X
}

X∩ =df.
{ ⋂

X′ : X′ ⊆ X
}
.

The following proposition says in effect that, for any set of setsX, relationρ0 (X)
is invariant under taking arbitrary intersections as well as under taking arbitrary
unions.

Proposition 5.0.11 Let X andY be sets of subsets of a set S such thatX ⊆ Y ⊆
X∪ ∪ X∩. Thenρ0 (X) = ρ0 (Y).

Proof: By monotonicity immediatelyρ0 (Y) ⊆ ρ0 (X). Therefore, it suffices to
prove thatρ0 (X) ⊆ ρ0 (Y). Consider arbitraryx, x′ ∈ Ssuch that(x, x′) ∈ ρ0 (X).
Consider, furthermore, an arbitraryY ∈ Y and assume thatx ∈ Y. We prove
thatx′ ∈ Y. EitherY =

⋂
X′ or Y =

⋃
X′, for someX′ ⊆ X. Consider thisX′.

In the former case, consider an arbitraryX ∈ X′. Then bothX ∈ X andx ∈ X.
Since(x, x′) ∈ ρ0 (X), in particular(x, x′) ∈ ρ0(X). Hence,x′ ∈ X. With X having
been chosen as an arbitrary element ofX′, finally x ∈ ⋂

X′, and we may conclude
thatx ∈ Y.

In the latter case —i.e., if Y =
⋃

X′ — we havex ∈ X, for someX ∈ X′.
As X′ ⊆ X, alsoX ∈ X and with(x, x′) ∈ ρ0 (X), in particular(x, x′) ∈ ρ0(X). It
follows thatx′ ∈ X and, subsequently,x′ ∈ ⋃

X′, i.e., x′ ∈ Y. a
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Corollary 5.0.12 Let X andY be sets of subsets of a set S. ThenX ⊆ Y ⊆ X∪∩

impliesρ0 (X) = ρ0 (Y). Similarly, if X ⊆ Y ⊆ X∩∪ thenρ0 (X) = ρ0 (Y).

Proof: In virtue of monotonicity it suffices to show thatρ0 (X) = ρ0 (X∪∩)
and thatρ0 (X) = ρ0 (X∩∪). Evidently,X ⊆ X∩ as well asX∩ ⊆ X∩∪. With
Proposition 5.0.11,ρ0 (X) = ρ0 (X∩). And again with Proposition 5.0.11, also,
ρ0 (X∩) = ρ0 (X∩∪). Hence,ρ0 (X) = ρ0 (X∩∪). The proof forρ0 (X) =
ρ0 (X∩∪) is fully analogous. a
For relations induced by a theory over a set of valuations, this corollary means that
a theoryΓ may be closed under arbitrary conjunctions and disjunctions without
affecting the relationρ0(Γ ).

The ground has now been cleared to formulate exact conditions under which
the relationsρ0 (X) andρ0 (Y) are identical, for possibly distinct sets of setsX
andY.

Proposition 5.0.13 LetX andY be sets of subsets of a set S. Then:

ρ0 (X) = ρ0 (Y) iff X∩∪ = Y∩∪.

Proof: For the right-to-left direction, observe thatX∩∪ = Y∩∪ immediately im-
pliesρ0 (X∩∪) = ρ0 (Y∩∪). Since, by Corollary 5.0.12, bothρ0 (X∩∪) = ρ0 (X)
andρ0 (X∩∪) = ρ0 (X), we are done.

The left-to-right direction is less straightforward. Assume the contrapositive
X∩∪ 6= Y∩∪. Without loss of generality we may assume there be anX ⊆ S
such thatX ∈ X∩∪ andX /∈ Y∩∪. Consider thisX. Observe that triviallyø ⊆ Y∩

and
⋃

ø = ø. Hence,ø ∈ Y∩∪. Moreover, sinceø ⊆ Y and
⋂

ø = S, bothS∈ Y∩

and{S} ⊆ Y∩. Since
⋃ {S} = S, alsoS∈ Y∩∪. It follows thatX 6= ø andX 6= S.

Now consider the setY∗, defined as:

Y∗ =df.
{

Y ∈ Y∩ : Y ⊆ X
}
.

Clearly,
⋃

Y∗ ∈ Y∩∪ and
⋃

Y∗ ⊆ X. Due to the assumption thatX /∈ Y∩∪,
however,X 6= ⋃

Y∗. Hence, there is somex∗ ∈ X such thatx∗ /∈ ⋃
Y∗. Consider

thisx∗. We prove that anx in Sexists such that is not contained inX and for which
it is moreover the case that, for allY ∈ Y, x ∈ Y, if x∗ ∈ Y as well.I.e.:

(∗) there is anx /∈ X such that for allY ∈ Y : x∗ ∈ Y impliesx ∈ Y.

This suffices because, withx∗ ∈ X then(x∗, x) /∈ ρ0(X). Then(x∗, x) /∈ ρ0 (X∩∪),
becauseX had been assumed to be inρ0 (X∩∪). With Corollary 5.0.12, then
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ρ0 (X∩∪) = ρ0 (X) and (x∗, x) /∈ ρ0 (X) follows. Moreover, also(x∗, x) ∈ ρ0(Y),
for eachY ∈ X. Hence(x∗, x) ∈ ρ0 (Y), which would prove the proposition.

We prove(∗) by areductio ad absurdum. So assume:

(∗∗) for all x /∈ X there is aY ∈ Y such that bothx /∈ Y andx∗ ∈ Y.

Then, consider the setY∗∗, defined as:

Y∗∗ =df.

⋃
x/∈X

{
Y ∈ Y : x /∈ Y andx∗ ∈ Y

}
.

By (∗∗) and the fact thatX 6= S, we haveY∗∗ 6= ø. Obviously,Y∗∗ ⊆ Y and
so

⋂
Y∗∗ ∈ Y∩. By construction,x∗ ∈ ⋂

Y∗∗. Moreover, by construction and
(∗∗), also

⋂
Z∗∗ ⊆ X. It would follow that

⋂
Y∗∗ ∈ Y∗ as well as thatx∗ ∈⋃

Y∗, quod non. a
Corollary 5.0.12 has as a special case thatρ0 (X) = ρ0 (X∩∪), which signi-

fies that closing a set of subsetsX under arbitrary intersections and then arbitrary
unions does not affect the relation induced on the universe. As a corollary of Propo-
sition 5.0.13 we now find, moreover, thatX∩∪ is also maximal in this respect,i.e.,
thatX can not be extended beyondX∩∪ without distorting the relationρ0 (X).

Corollary 5.0.14 LetX andY be sets of subsets of S. Then:

ρ0

(
X∩∪)

= ρ0

(
X∩∪ ∪ Y

)
iff Y ⊆ X∩∪.

Proof: From right to left the proof is trivial. So assume thatρ0 (X∩∪) =
ρ0 (X∩∪ ∪ Y). It can easily be verified thatX ∪ Y ⊆ X∩∪ ∪ Y ⊆ (X ∪ Y) ∩∪.
By Proposition 5.0.11, then,ρ0 (X ∪ Y) = ρ0 (X∩∪ ∪ Y). In virtue of the same
proposition, alsoρ0 (X) = ρ0 (X∩∪). With the initial assumption then it follows
thatρ0 (X) = ρ0 (X ∪ Y). Proposition 5.0.13 then givesX∩∪ = (X ∪ Y) ∩∪. Be-
cause,X∩∪ ∪ Y ⊆ (X ∪ Y) ∩∪, thenX∩∪ ∪ Y ⊆ X∩∪. We may conclude that
Y ⊆ X∩∪. a

Similar results can be obtained for relationsρ (X) induced by sets of setsX.
Unfortunately, things are not as neat as forρ0 (X). Becauseρ (X) andρ0 (X) are
distinct only if X contains the empty set (Proposition 2.1.3), Proposition 5.0.13
also has the following corollary forρ (X).

Corollary 5.0.15 LetX andY be sets of subsets of a set S. Then:

ρ (X) = ρ (Y) iff X∩∪ = Y∩∪ or ø ∈ X ∩ Y.
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Proof: Immediately by the Facts 2.1.3 and 2.1.4 together with Proposi-
tion 5.0.13.

It is, however, not in general the case that forX not containing the empty set the
relationsρ (X) andρ (X∩∪) coincide. Observe in this respect thatX∩ always con-
tains the empty set, since

⋃
ø = ø andø ⊆ X. Moreover,ρ (X) need not be the

empty relation, not even ifX contains disjoint sets. In any such case, however,X∩

will contain the empty set andρ (X∩) will also end up empty. In order to obtain
the desired closure properties, define forX a set of subsets of a setS:

Xt =df.
{ ⋃

X′ : X′ ⊆ X andX′ 6= ø
}

Xu =df. X ∪ { ⋂
X′ : X′ ⊆ X and

⋂
X′ 6= ø

}
.

The idea behind these definitions is essentially the same as those ofX∪ andX∩,
be it that they prevent the empty set to be included inXt or Yu if, and only if, X
does not conclude the empty set. It is therefore not surprising thatXt andXu are
in extension very similar toX∪ andX∩, respectively.

Fact 5.0.16 For X a set of subsets of some set S:

Xt =




X∪ − {ø} if ø /∈ X,

X∪ otherwise
Xu =




X∩ − {ø} if ø /∈ X,

X∩ otherwise.

Proof: For the first case, first assumeø /∈ X. Observe thatø /∈ Xt. For, assuming
otherwise would thatø =

⋃
X′ for some non-emptyX′ ⊆ X. This would imply

thatX′ = {ø} and henceø ∈ X, quod non. Hence,Xt ⊆ X∪ − {ø} and it suffices
to prove the opposite inclusion. Consider an arbitraryX ∈ X∪ − {ø}. Then,
X 6= ø andX =

⋃
X′ for someX′ ⊆ X. Moreover,X′ 6= ø by assumption, and so⋂

X′ = X ∈ Xt. Second, assume thatø ∈ X. Observe that trivially,Xt ⊆ X∪.
Hence it suffices to prove the opposite inclusion. Consider an arbitraryX ∈ X∪. If
X = ø, observe that by the assumption{ø} ⊆ X. Since{ø} 6= ø, it follows that⋃ {ø} = ø ∈ Xt. In caseX 6= ø the proof is like the case in whichø /∈ X.

For the second case, first assume thatø /∈ X. Some reflection on the definitions
reveals that thenø /∈ Xu and alsoXu ⊆ X∩ − {ø}. Proving the opposite inclusion,
consider an arbitraryX ∈ X∩ − {ø}. Then,X =

⋂
X′ for someX′ ⊆ X. It

follows that
⋂

X′ 6= ø and so
⋂

X′ = X ∈ Xu. Finally, letø ∈ X and observe
that Xu ⊆ X∩. Hence, consider an arbitraryX ∈ X∩. If X = ø, we are done
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immediately by the assumption thatø ∈ X. Otherwise, the reasoning is like the
case in whichø /∈ X. a
On basis of this fact and employing Proposition 5.0.11 the following closure prop-
erties forρ (X) are obtained.

Proposition 5.0.17 Let X andY be sets of subsets of a set S such thatX ⊆ Y ⊆
Xt ∪ Xu. Then,ρ (X) = ρ (Y).

Proof: First assumeø ∈ Y. Then,ø ∈ Xu or ø ∈ Xt. In either case,ø ∈ X,
by Fact 5.0.16. Then,ρ (X) = ø = ρ (Y). So, for the remainder of the proof
we may assume thatø /∈ Y. Then,ø /∈ X and in virtue of Fact 5.0.16 both
Xt = X∪ andXu = X∩. HenceX ⊆ Y ⊆ X∪∪X∩ and by Proposition 5.0.11, then
ρ0 (X) = ρ0 (Y). With the assumption thatø /∈ X and Fact 2.1.3,ρ (X) = ρ0 (X)
andρ (Y) = ρ0 (Y) and we may conclude thatρ (Y) = ρ (X). a
As corollaries of Proposition 5.0.17 we find that a theoryΓ may be closed under
disjunctions andconsistentconjunctions without this having consequences for the
relation induced on the valuations.

Corollary 5.0.18 LetΓ be a theory in a propositional language L(A) Letϕ and
ψ be formulas inΓ . Then,ρ (Γ ) = ρ (Γ ∪ {ϕ ∨ ψ}) . Moreover, if{ϕ,ψ} is
classically satisfiable, then alsoρ (Γ ) = ρ

(
Γ ∪ {

ϕ ∧ ψ})
.

Proof: Immediately by Proposition 5.0.17. a



Chapter 6

Compositionality of Formula Induced

Relations

Introduction

On page 8 it was argued that the set of relations of the formρ0(ϕ) does not allow
for a compositional definition inϕ. We found thatρ0(> ∧ a) is not identical to
ρ0(⊥ ∧ a), but sinceρ0(>) = ρ0(⊥), this difference could not be made on the basis
of the relations ofρ0(a), ρ0(>) andρ0(⊥) alone. We stated that the relationsρ (ϕ)
defined for propositional formulasϕ fared better in this respect. This chapter gives
an, admittedly monstrous, proof of this claim.

We have to prove that, for each formulaϕ with sub-formulasψ0, . . . , ψn, the
relationρ (ϕ) can be viewed as a construct in the relationsρ (ψ0), . . . , ρ (ψn). In
any such construct we may use the operations from relational algebra,i.e., the
identity relation (Id), relational composition (ρ ◦σ) and relational inverse (ρ˘),
along with the usual Boolean operators. As we may assume the relationsρ (a)
over the valuations for propositional variablesa to be given, it suffices for our
purposes to define operations−, + and· on relations on a setS in general such that
in particular all subsetsX andY we have:

−ρ (X) = ρ
(
X
)
,

ρ (X) + ρ (Y) = ρ (X ∪ Y),

ρ (X) · ρ (Y) = ρ (X ∩ Y).

The following definitions and propositions in the next section are all auxiliary to
this one result.

51
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6.1 The Proof of Compositionality

For easy reference let us first summarize the non-Boolean laws of relation algebra:1

ρ ◦ Id = ρ Id ◦ ρ = ρ

ρ˘˘ = ρ (ρ) ˘ = ρ˘
(ρ ∪ σ) ˘ = ρ˘ ∪ σ˘ (ρ ◦σ) ˘ = σ˘ ◦ ρ˘

ρ ◦ (σ ∪ τ) = (ρ ◦σ) ∪ (ρ ◦ τ) (ρ ∪ σ) ◦ τ = (ρ ◦ τ) ∪ (σ ◦ τ)
(ρ ◦σ) ◦ τ = ρ ◦ (σ ◦ τ) (

ρ˘ ◦ (ρ ◦σ)
)

6 σ

The universal relation is denoted byU. We further introduceρ̇ as a shorthand
notation forρ ∩ ρ˘, i.e., thestrict subrelationof ρ. Thus we have:(

x, x′
) ∈ ρ̇ iff

(
x, x′

) ∈ ρ and
(
x′, x

)
/∈ ρ.

We usually denote ˙ρ (X) by ρ̇ (X). It can easily be established thatU̇ and ˙Id are
both empty. Also, ˙(ρ˘) equals(ρ̇) ˘, as witness the following relation algebraic
equations:

˙(ρ˘) = ρ˘ ∩ ρ˘˘ = ρ˘ ∩ (
ρ˘

)
˘ =

(
ρ ∩ ρ˘)

˘ = (ρ̇) ˘.

Hence, we can usėρ˘ andρ̇ (X) ˘ without ambiguity. We also have the following
easy, but useful, facts.

Fact 6.1.1 Let X be a non-empty subset of some set S. Then,ρ (X) ˘ = ρ
(
X
)
.

Proof: For arbitraryx, x′ ∈ S we have(x, x′) ∈ ρ (X) ˘, if and only if (x′, x) ∈
ρ (X), if and only if x′ /∈ X or x ∈ X, if and only if x /∈ X or x′ ∈ X, if and only if
(x, x′) ∈ ρ

(
X
)
. a

Fact 6.1.2 Let X be a non-empty subset of some set S. Then,ρ (X) ⊆ ρ (X) ˘.

Proof: For arbitraryx, x′ ∈ Swe have(x, x′) ∈ ρ (X) imply (x, x′) /∈ ρ (X). Then,
x ∈ X. Therefore, subsequently,(x′, x) ∈ ρ (X) and(x, x′) ∈ ρ (X) ˘. a

Fact 6.1.3 Let X and Y be a subsets of set S such that X∩ Y 6= ø. Then:

ρ (X) ∩ ρ (Y) ⊆ ρ (X ∩ Y) .
1These inequalities are taken from van Benthem (1996).
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ρ̇ (X)

ρ̇ (X) ˘

ρ̇ (X) ˘

ρ̇ (X)

X

Figure 6.1. All elements outsidex are connected with one anothervia ρ̇ (X) ◦ ρ̇ (X) ˘.
All elements inX are related to one another byρ̇ (X) ˘ ◦ ρ̇ (X).

Proof: Assume(x, x) ∈ ρ (X)∩ ρ (Y), i.e., both(x, x) ∈ ρ (X) and(x, x) ∈ ρ (Y).
Now assume also thatx ∈ X ∩ Y. Then bothx ∈ X and x ∈ Y. Therefore,
alsox′ ∈ X andx′ ∈ Y, from which in turnx′ ∈ X ∩ X. We may conclude that
(x, x′) ∈ ρ (X ∩ Y). a

Fact 6.1.4 Let X be a non-empty subset of some set S. Then:(
x, x′

) ∈ ρ (X) ˘ iff x /∈ X and x′ ∈ X.

Proof: For arbitraryx, x′ ∈ S we have(x, x′) ∈ ρ (X) ˘, if and only if (x, x′) /∈
ρ (X) ˘, if and only if (x′, x) /∈ ρ (X), if and only if x /∈ X andx′ ∈ X. a

Fact 6.1.1 suggests relational inverse as a candidate for the unary operation−.
It holds, however, only for relationsρ (X) in caseX is not empty. For the empty set
we haveρ (ø) ˘ = ø˘ = ø but alsoρ (ø) = ρ (S) = S× S. The following lemma
establishes the rather more complicatedρ∪(ρ̇˘ ◦ ρ̇)∪(ρ̇ ◦ ρ̇˘) as a proper definition
for −ρ. It takes an easy check to establish that defined thus−ρ (

X
)

is the empty
relation if X coincides withS, and the universal relation ifX is empty. Figure 6.1
explains informally the workings of the definition for a relationρ (X) with X a
non-empty proper subset ofS. To appreciate the underlying idea observe that the
relationρ̇

(
X
)

holds exactly between those pairs(x, x′) such thatx /∈ X andx′ ∈ X,
i.e., for which(x, x′) ∈ ρ (X). In ρ

(
X
)

also connects any two elements that are both
inside or both outsideX. The relations

(
ρ̇ (X) ˘ ◦ ρ̇ (X)

)
and

(
ρ̇ (X) ◦ ρ̇ (X) ˘

)
take

care of this. Formally, we have the following lemma.

Lemma 6.1.5 Let X be a subset of some set S. Then:

ρ
(
X
)

= ρ (X) ∪ (
ρ̇ (X) ˘ ◦ ρ̇ (X)

) ∪ (
ρ̇ (X) ◦ ρ̇ (X) ˘

)
.
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Proof: We distinguish the cases in whichX is empty, in whichX is Sand in which
X is neither of the previous. First assumeX = ø. Then observe:

ρ (ø) = ρ (S) = U = U − ø = U − ρ (ø) = ρ (ø)

Hence certainly,ρ (ø) ∪ (
ρ̇ (ø) ˘ ◦ ρ̇ (ø)

) ∪ (
ρ̇ (ø) ◦ ρ̇ (ø) ˘

)
= U. Secondly,

assumeX = S. Thenρ
(
S
)

= ρ (ø) = ø. Now observe thatρ (S) = U = ø and
that ρ̇ (S) = U̇ = ø. Consequently, alsȯρ (S) ˘ = ø and the following equations
hold:

ρ (S) ∪ (ρ̇ (S) ˘ ◦ ρ̇ (S)) ∪ (ρ̇ (S) ◦ ρ̇ (S) ˘) = ø ∪ ø ∪ ø = ø.

Finally, assumeX 6= ø andX 6= S, in which caseρ (X) = ρ (X). By Fact 6.1.1,
now,ρ

(
X
)

= ρ (X)˘ and it suffices to prove that:

ρ (X)˘ = ρ (X) ∪ (ρ̇ (X) ˘ ◦ ρ̇ (X)) ∪ (ρ̇ (X) ◦ ρ̇ (X) ˘) .

For the⊆-direction suppose(x, x′) ∈ ρ (X)˘, i.e., (x′, x) ∈ ρ (X) and distinguish
the following three cases:

(a) x′ ∈ X andx ∈ X (b) x′ /∈ X andx ∈ X (c) x′ /∈ X andx /∈ X

If (b), (x, x′) /∈ ρ (X) and immediately(x, x′) ∈ ρ (X). Now assume (a) to be the
case. SinceX 6= S there is somey /∈ X. For thisy both (x, y) ∈ ρ̇ (X) ˘ and
(y, x′) ∈ ρ̇ (X). Hence,(x, x′) ∈ ρ̇ (X) ˘ ◦ ρ̇ (X). Similarly, if (c), observe that since
X 6= ø, there is somey ∈ X. Now again both(x, y) ∈ ρ̇ (X) and(y, x′) ∈ ρ̇ (X) ˘.
Hence, in this case(x, x′) ∈ ρ̇ (X) ◦ ρ̇ (X) ˘. So, in each of the three cases we have
that(x, x′) ∈ ρ (X) ∪ (

ρ̇ (X) ˘ ◦ ρ̇ (X)
) ∪ (

ρ̇ (X) ◦ ρ̇ (X) ˘
)
.

Finally, for the⊇-direction, observe thatρ (X) ⊆ ρ (X)˘ by Fact 6.1.2. So,
assume for arbitraryx, x′ ∈ S such that(x, x′) ∈ ρ̇ (X) ˘ ◦ ρ̇ (X). Then there is
somey such that(x, y) ∈ ρ̇ (X) ˘ and(y, x′) ∈ ρ̇ (X). Consequently,x ∈ X, y /∈ X
and x′ ∈ X and we may conclude that(x, x′) ∈ ρ (X)˘. Similarly if (x, x′) ∈
ρ̇ (X) ˘ ◦ ρ̇ (X). Then there is somey such that(x, y) ∈ ρ̇ (X) and(y, x′) ∈ ρ̇ (X) ˘.
From this follows thatx, x′ /∈ X andy ∈ X and again we may conclude that(x, x′) ∈
ρ (X)˘. a

A proper definition of an operation· such thatρ (X) · ρ (Y) = ρ (X ∩ Y) has to
give rise to the correct relation in a number of different cases.

First, we consider the case in which one ofX or Y is a subset of the other.
For an illustration of this situation, consider Figure 6.1, assuming without loss of
generality thatY ⊆ X. Barring the borderline cases in which eitherX equalsSor Y
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is empty, the intersection ofρ (X) andρ (Y) gives us exactly the relation we want,
except that also all pairs(x, x′) with x ∈ X − Y andx′ ∈ X should be inρ (X ∩ Y)
as well. Define for arbitrary relationsρ andρ′ over some setS:

ρ~ σ =df.
(
ρ ∩ σ) ∪ (

(ρ̇ ∪ σ̇) ◦ (ρ̇˘ ∩ σ̇˘)
)
.

We abbreviateρ (X) ~ ρ (Y) to ρ∗ (X,Y). This definition, when applied to bisec-
tive relations, gives precisely the relation we were after. Figure 6.1 illustrates its
workings informally, whereas formally we have the following lemma.

ρ̇ (X) ∪ ρ̇ (Y)

ρ̇ (X) ˘ ∩ ρ̇ (Y) ˘

X
Y

Figure 6.2. Each element inX − Y is related to all elements outsideX by
(
ρ̇ (X) ∪

ρ̇ (Y)
) ◦ (

ρ̇ (X) ˘ ∩ ρ̇ (Y) ˘
)
, if Y ⊆ X.

Lemma 6.1.6 Let X,Y be subsets of some set S such that X⊆ Y or Y⊆ X. Then,

ρ (X ∩ Y) = ρ∗ (X,Y) .

Proof: First assume eitherX or Y to be empty. ThenX∩Y = ø and consequently
ρ (X ∩ Y) = ρ (ø) = ø. It also follows thatρ (X) = ø or ρ (Y) = ø. In either
case,ρ (X) ∩ ρ (X) = ø and, moreover,̇ρ (X) ˘ ∩ ρ̇ (Y) ˘ = ø, which renders(
ρ̇ (X) ∪ ρ̇ (Y)

) ◦ (
ρ̇ (X) ˘ ∩ ρ̇ (Y) ˘

)
to be empty. Hence,ρ∗ (X,Y) = ø ∪ ø = ø,

as well.
So, for the remainder we may assume thatX 6= ø andY 6= ø. Moreover, since

eitherX ⊆ Y or Y ⊆ X, we also have thatX ∩ Y 6= ø andρ (X ∩ Y) = ρ (X ∩ Y).
Without loss of generality we may assume thatX ⊆ Y. Now, eitherY = S or
Y 6= S.

In the former case,ρ (X ∩ Y) = ρ (X ∩ S) = ρ (X). Observe thatρ (Y) =
ρ (S) = U and henceρ (X) ∩ ρ (Y) = ρ (X) ∩ U = ρ (X). Moreover,ρ̇ (Y) =
U̇ = ø, which makes that

(
ρ̇ (X) ∪ ρ̇ (Y)

) ◦ (
ρ̇ (X) ˘ ∩ ρ̇ (Y) ˘

)
is empty. Hence,

ρ∗ (X,Y) = ρ (X) ∪ ø = ρ (X) = ρ (X ∩ Y).
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This leaves us with the case in whichY 6= S. So for the⊇-direction, con-
sider arbitraryx, x′ ∈ S such that(x, x′) ∈ ρ∗ (X,Y). If (x, x′) ∈ ρ (X) ∩ ρ (Y),
by Fact 6.1.3, immediately(x, x′) ∈ ρ (X ∩ Y). So assume(x, x′) ∈ (

ρ̇ (X) ∪
ρ̇ (Y)

) ◦ (
ρ̇ (X) ˘ ∩ ρ̇ (Y) ˘

)
. Then there is somex′′ ∈ S such that(x, x′′) ∈

ρ̇ (X) ∪ ρ̇ (Y) and(x′′, x′) ∈ ρ̇ (X) ˘ ∩ ρ̇ (Y) ˘. From the former follows thatx /∈ X
or x /∈ Y; in either casex /∈ X ∩ Y. Hence,(x, x′) ∈ ρ (X ∩ Y).

For the⊆-direction, assume(x, x′) ∈ ρ (X ∩ Y). So eitherx /∈ X ∩ Y or
x′ ∈ X ∩ Y. If the latter, then both(x, x′) ∈ ρ (X) and (x, x′) ∈ ρ (Y) and so
(x, x′) ∈ ρ (X) ∩ ρ (Y) anda fortiori (x, x′) ∈ ρ∗ (X,Y). Hence, in the former case
we may additionally assume thatx′ /∈ X ∩ Y. With X ⊆ Y, thenx /∈ X andx′ /∈ X.
Accordingly, (x, x′) ∈ ρ (X). If now x′ ∈ Y, then(x, x′) ∈ ρ (Y). Accordingly
(x, x′) ∈ ρ (X) ∩ ρ (Y) and (x, x′) ∈ ρ∗ (X,Y). So, finally, consider the case in
whichx′ /∈ Y. SinceX∩ Y 6= ø there is somex′′ ∈ X∩ Y. With x /∈ X andx′′ ∈ X,
we have(x, x′′) ∈ ρ̇ (X) and so also(x, x′′) ∈ ρ̇ (X)∪ ρ̇ (Y). Moreover, withx′ /∈ X
andx′ /∈ Y, also both(x′′, x′) ∈ ρ̇ (X) ˘ and(x′′, x′) ∈ ρ̇ (Y) ˘. We conclude the
proof by observing that now(x′′, x′) ∈ ρ̇ (X) ˘ ∩ ρ̇ (Y) ˘, and subsequently that
(x, x′) ∈ (

ρ̇ (X) ∪ ρ̇ (Y)
) ◦ (

ρ̇ (X) ˘ ∩ ρ̇ (Y) ˘
)
. Hence,(x, x′) ∈ ρ∗ (X,Y). a

As an auxiliary relation construct, define for arbitrary relationsρ andσ over
some setS the binary operator} as follows:

ρ} σ =df.
(
ρ ◦ (ρ̇˘ ∩ σ̇˘) ◦ ρ˘) ∪ (

σ ◦ (σ̇˘ ∩ ρ̇˘) ◦σ˘
)
.

We denoteρ (X) } ρ (Y) by ρ◦ (X,Y). For subsetsX andY the relationρ◦ (X,Y)
connects any elements ofSwith any oneoutside X∩ Y, provided that the relative
differences betweenX and Y are not empty. Otherwise,ρ◦ (X,Y) is the empty
relation. The machinations ofρ◦ (X,Y) if X − Y and Y− X are non-empty are
illustrated in Figure 6.1. Formally, we have the following lemma.

Lemma 6.1.7 Let S be a set, X,Y ⊆ S. Then:

ρ◦ (X,Y) =




{
(x, x′) : x′ /∈ X ∩ Y

}
, if X − Y,Y− X 6= ø

ø otherwise.

Proof: First assume that eitherX − Y = ø or Y− X = ø. Then eitherX ⊆ Y
or Y ⊆ X. Without loss of generality, we may assume the former. It suffices
to demonstrate that botḣρ (X) ˘ ∩ ρ̇ (Y) = ø and ρ̇ (Y) ˘ ∩ ρ̇ (X) = ø. In case
X = ø, bothρ̇ (X) = ø andρ̇ (X) ˘ = ø and we are done immediately. If however
X 6= ø, then alsoY 6= ø. Now consider arbitraryx, x′ ∈ S. We first prove that
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X

Y

ρ (X)

ρ (X)

ρ̇ (X) ˘∩ρ̇ (Y)

ρ (X)

ρ (X) ˘

ρ (X) ˘

y

X

Y
ρ (X)

ρ (X)

ρ̇ (X) ˘∩ρ̇ (Y)

ρ (X)

ρ (X) ˘

ρ (X) ˘

yx∗ρ (X)

Figure 6.3. The relationρ̇ (X) ˘∩ ρ̇ (Y) holds precisely between those elements inX − Y
and those inY− X. Each element inY− X is connected to any other element outsideX
and to none therein; consider,e.g., the elementx∗. Provided that bothX − Y andY− X are
non-empty, all elements are related to an element inX − Y by ρ (X) and also to precisely
all elements outsideX via ρ (X) ◦ (

ρ̇ (X) ˘ ∩ ρ̇ (Y)
) ◦ ρ (X) ˘. A similar argument shows

thatρ (Y) ◦ (
ρ̇ (Y) ˘ ∩ ρ̇ (X)

) ◦ ρ (Y) ˘ connects all elements to all elements outsideY.

ρ̇ (X)∩ρ̇ (Y) ˘ = ø. If (x, x′) /∈ ρ̇ (X) we have immediately(x, x′) /∈ ρ̇ (X)∩ρ̇ (Y) ˘.
So assume(x, x′) ∈ ρ̇ (X). Then,x /∈ X andx′ ∈ X. By the inclusion ofX in Y,
alsox′ ∈ Y. It follows that(x, x′) /∈ ρ̇ (Y) ˘. Now again(x, x′) /∈ ρ̇ (X) ∩ ρ̇ (Y) ˘.
With x andy having been chosen arbitrarily, we have thatρ̇ (X) ∩ ρ̇ (Y) ˘ = ø.

We now prove thaṫρ (Y) ∩ ρ̇ (X) ˘ = ø. Similarly, for arbitraryx, x′ ∈ S, if
(x, x′) /∈ ρ̇ (Y) immediately(x, x′) /∈ ρ̇ (Y) ∩ ρ̇ (X) ˘. So assume(x, x′) ∈ ρ̇ (Y);
then x′ ∈ Y. Also Y 6= ø and x /∈ X. From the latter,(x′, x) /∈ ρ̇ (X), i.e.,
(x, x′) /∈ ρ̇ (X) ˘. It now follows that(x, x′) /∈ ρ̇ (X) ˘∩ ρ̇ (Y). With x andx′ having
been chosen arbitrarily,̇ρ (Y) ˘ ∩ ρ̇ (X) = ø.

Second, assume that bothX − Y 6= ø andY− X 6= ø. Then bothX 6= ø and
Y 6= ø. We prove subsequently thatρ◦ (X,Y) ⊆ {

(x, x′) : x′ /∈ X ∩ Y
}

and that
ρ◦ (X,Y) ⊇ {

(x, x′) : x′ /∈ X ∩ Y
}

.

For the ⊆-direction, assume for arbitraryx, x′ ∈ S first that (x, x′) ∈
ρ (X) ◦ (ρ̇ (X) ˘ ∩ ρ̇ (Y)) ◦ ρ (X)˘. Then there arey, y′′ such that(x, y) ∈ ρ (X),
(y, y′) ∈ ρ̇ (X) ˘∩ ρ̇ (Y) and(y′, x′) ∈ ρ (X)˘. Hence, in particular(y, y′) ∈ ρ̇ (X) ˘
and soy′ /∈ X. Since also(y′, x′) ∈ ρ (X)˘, we havex′ /∈ X and a fortiori
x′ /∈ X ∩ Y. For (x, x′) ∈ ρ (Y) ◦ (ρ̇ (Y) ˘ ∩ ρ̇ (X)) ◦ ρ (Y)˘ a similar argument
shows thatx′ /∈ Y and, accordingly,x′ /∈ X ∩ Y.

For the⊇-direction assume for arbitraryx, x′ ∈ Sthatx′ /∈ X∩Y. Hence, either
x′ /∈ X or x′ /∈ Y. For symmetry reasons, we may assume without loss of generality
that the former holds. Observe that sinceX − Y 6= ø, there is somex′′ ∈ X such
thatx′′ /∈ Y. Similarly, in virtue ofY− X 6= ø, there is somey ∈ Y such thaty /∈ X.
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Now, obviously,(x, x′′) ∈ ρ (X). Moreover, withx′′ ∈ X andy /∈ X, (y, x′′) ∈ ρ̇ (X)
and so(x′′, y) ∈ ρ̇ (X) ˘. With x′′ /∈ Y andy ∈ Y also (x′′, y) ∈ ρ̇ (Y). Hence
(x′′, y) ∈ ρ̇ (X) ˘ ∩ ρ̇ (Y). With x′ /∈ X, immediately(y, x′) ∈ ρ (X)˘. Putting
things together, we may conclude that(x, x′) ∈ ρ (X) ◦ (ρ̇ (X) ˘ ∩ ρ̇ (Y)) ◦ ρ (X)˘,
which suffices for a proof. a

The ground has now been cleared for a definition ofρ (X ∩ Y) in terms of
ρ (X), ρ (Y) and the relation algebraic operators alone. Little intuitive motivation
can unfortunately be given apart from that it works.

Lemma 6.1.8 Let X and Y be subsets of some set S. Then:

ρ (X ∩ Y) =
(
ρ∗ (X,Y) − ρ◦ (X,Y)

) ∪ ( ˙
ρ◦ (X,Y) ◦ ρ◦ (X,Y)

)
.

Proof: If X − Y = ø or Y− X = ø, eitherX ⊆ Y or Y ⊆ X. In this case, by

Lemma 6.1.7,ρ◦ (X,Y) = ø and, hence, also ˙
ρ◦ (X,Y) = ˙

ρ◦ (X,Y) ◦ ρ◦ (X,Y) =
ø.

we must prove thatρ (X ∩ Y) = ρ∗ (X,Y). This, however, is immediate by
Lemma6.1.6.

For the remainder of the proof we may assume thatX − Y 6= ø andY− X 6= ø.
Hence we may also assume thatρ◦ (X,Y) =

{
(x, x′) : x′ /∈ X∩Y

}
and, moreover,

that (x, x′) ∈ ˙
ρ◦ (X,Y) if and only if x /∈ X ∩ Y andx′ ∈ X ∩ Y. There are two

cases; eitherX∩Y = ø or X∩Y 6= ø. If the former,ρ (X ∩ Y) = ρ (ø) = ø. Also
observe thatρ◦ (X,Y) = U. Hence,ρ∗ (X,Y) − ρ◦ (X,Y) = ρ∗ (X,Y) − U = ø

and ˙
ρ◦ (X,Y) ◦ ρ◦ (X,Y) = U̇ ◦U = ø̇ ◦U = ø ◦U = ø.
So, assumeX ∩ Y 6= ø. Then neitherX nor Y is empty and the

facts 6.1.1 through 6.1.4 may be invoked. We prove, subsequently, both

ρ (X ∩ Y) ⊆ (
ρ∗ (X,Y) − ρ◦ (X,Y)

) ∪ ( ˙
ρ◦ (X,Y) ◦ ρ◦ (X,Y)

)
andρ (X ∩ Y) ⊇(

ρ∗ (X,Y) − ρ◦ (X,Y)
) ∪ ( ˙

ρ◦ (X,Y) ◦ ρ◦ (X,Y)
)
.

For the⊆-direction, consider arbitrary arbitraryx, x′ ∈ S such that(x, x′) ∈
ρ (X ∩ Y). Either x′ /∈ X ∩ Y or x′ ∈ X ∩ Y. If the latter, bothx′ ∈ X and
x′ ∈ Y. Hence(x, x′) ∈ ρ (X) and(x, x′) ∈ ρ (Y) and so(x, x′) ∈ ρ (X) ∩ ρ (Y).
Consequently also(x, x′) ∈ ρ∗ (X,Y). Sincex′ ∈ X ∩ Y, (x, x′) /∈ ρ◦ (X,Y).
Accordingly,(x, x′) ∈ ρ∗ (X,Y) − ρ◦ (X,Y), and we are done.

In the former case,i.e., if x′ /∈ X∩Y, because(x, x) ∈ ρ (X ∩ Y), alsox /∈ X∩Y.
With X ∩ Y having been assumed to be not empty, there is somex′′ ∈ X ∩ Y. So,

(x, x′′) ∈ ˙
ρ◦ (X,Y). Moreover, sincex′ /∈ X ∩ Y, also(x′′, x′) ∈ ρ◦ (X,Y). Hence,

(x, x′) ∈ ˙
ρ◦ (X,Y) ◦ ρ◦ (X,Y), and again we are done.
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For the ⊇-direction, consider arbitrary elementsx and x′ of S such

that (x, x′) ∈ (
ρ∗ (X,Y) − ρ◦ (X,Y)

) ∪ ( ˙
ρ◦ (X,Y) ◦ ρ◦ (X,Y)

)
. If (x, x′) ∈

ρ∗ (X,Y) − ρ◦ (X,Y), obviously(x, x′) /∈ ρ◦ (X,Y). Under the present assump-
tions this means thatx′ ∈ X ∩ Y, and so, immediately,(x, x′) ∈ ρ (X ∩ Y).

Finally assume(x, x′) ∈ ˙
ρ◦ (X,Y) ◦ ρ◦ (X,Y). Then there is anx′′ ∈ S such

that (x, x′′) ∈ ˙
ρ◦ (X,Y) and(x′′, x′) ∈ ρ◦ (X,Y). From the former we obtain that

x /∈ X ∩ Y and consequently(x, x′) ∈ ρ (X ∩ Y). a
Now we are in a position to define the relation constructs−, · and+. Forρ and

σ be relations on some setS, define:

−ρ =df. ρ ∪ (ρ̇ ˘ ◦ ρ̇ ) ∪ (ρ̇ ◦ ρ̇ ˘)

ρ · σ =df.
(
ρ~ σ − ρ} σ

) ∪ ( ˙ρ} σ ◦ ρ} σ
)

ρ+ σ =df. − (−ρ · −σ) .

The following proposition merely wraps things up.

Proposition 6.1.9 Let X and Y be relations on a set S. Then:

−ρ (X) = ρ
(
X
)
,

ρ (X) · ρ (Y) = ρ (X ∩ Y),

ρ (X) + ρ (Y) = ρ (X ∪ Y).

Proof: The first two claims are immediate from Lemmas 6.1.5 and 6.1.8. The
last claim follows from the first two and duality of∪ and∩. a
As an almost immediate consequence of Proposition 6.1.9 we have thatρ (ϕ) can
be given a compositional definition inϕ. To appreciate this define for each for-
mulaϕ of a propositional languageL(A) a relationρ2(ϕ) over the valuations in-
ductively as follows:

ρ2(a) =df.
{
(s, s′) : a ∈ s impliesa ∈ s′

}
ρ2(⊥) =df. ø

ρ2(¬ϕ) =df. −ρ2(ϕ)

ρ2(ϕ ∧ ψ) =df. ρ2(ϕ) · ρ2(ψ)

The following theorem formulates the result we were after in this section.
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Theorem 6.1.10 Let ϕ be a formula of a propositional language L(A). Then,
ρ (ϕ) = ρ2(ϕ).

Proof: By induction to the complexity ofϕ. The first atomic case is almost trivial,
merely observe that[[a]] is never empty. The second atomic case is trivial. The
inductive cases follow almost immediately from Proposition 6.1.9. a
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