
 1

New Upper Bound Heuristics for
Treewidth

Emgad H. Bachoore

Hans L. Bodlaender

institute of information and computing sciences, utrecht university
technical report UU-CS-2004-036
www.cs.uu.nl

 2

New Upper Bound Heuristics for Treewidth*

Emgad H. Bachoore Hans L. Bodlaender
Institute of Information and Computing Sciences,

Utrecht University, P.O. Box 80.089, 3508 TB Utrecht,
The Netherlands

Abstract

In this paper, we introduce and evaluate some heuristics to find an upper bound on the
treewidth of a given graph. Each of the heuristics selects the vertices of the graph one by
one, building an elimination list. The heuristics differ in the criteria used for selecting
vertices. These criteria depend on the fill-in of a vertex and the related new notion of the
fill-in-excluding-one-neighbor. In several cases, the new heuristics improve the bounds
obtained by existing heuristics.

1 Introduction

For several applications involving graphs, it is of great interest to have good algorithms
that compute or approximate the treewidth of a graph and its corresponding tree
decomposition. The interest in these notions, and some other related notions such as
branchwidth, branch decomposition, pathwidth, path decomposition, and minimum fill-in
arose because of their theoretical significance in (algorithmic) graph theory, and because
a tree decomposition of small width of a graph enables us to solve many graph problems
in linear or polynomial time. Among these problems are many well-known combinatorial
optimization problems such as: graph coloring [17], maximum independent set, and the
Hamiltonian cycle problem. Nowadays, there are several ‘real world’ applications that
use the notion of tree decomposition or branch decomposition to find solutions for the
problems at hand. These come from many different fields, such as expert systems [14],
probabilistic networks [3], frequency assignment problems [11, 12], telecommunication
networks design, VLSI-design, natural language processing [9], and the traveling
salesman problem [8].

The problem of computing the treewidth of a graph is NP-hard [1]. Therefore, for
computing the treewidth of a graph, we have to use an exact but slow method like branch
and bound, algorithms that work only for specific classes of graphs, or resort to
algorithms that only approximate the treewidth. In the past years, several heuristics for
treewidth have been designed. We can divide those heuristics into two categories: those
that find upper bounds for the treewidth, and those that find lower bounds for the
treewidth. This paper concentrates on upper bound heuristics.

* This work has been supported by the Netherlands Organization for Scientific Research NWO (project
TACO: ‘Treewidth And Combinatorial Optimization').

 3

Some of the heuristics for finding an upper bound for the treewidth are based on
algorithms that test whether a given graph is triangulated. These are Maximum
Cardinality Search, Lexicographic Breadth First search, Minimum Degree and Minimum
Fill-in algorithms. Other heuristics are based on other ideas, e.g. the Minimum Separating
Vertex Set algorithm (cf. [6, 10]).

In this paper, we present a number of heuristic methods to find upper bounds for the
treewidth of the graph. Each of our heuristics is based on constructing a triangulation of
the graph from an elimination ordering of the vertices. These elimination orderings are
constructed by repeatedly selecting a vertex and then adding the so-called fill-in edges
between its neighbors. The various heuristics differ in the criteria of the selection of the
vertices. These criteria, basically, depend on two concepts: the number of edges that must
be added between the neighbor vertices of a vertex to form a clique, and the number of
edges that must be added between all neighbor vertices of a vertex except one to form a
clique between them.

We have implemented the algorithms proposed in this paper, and tested them on a set of
32 graphs. These graphs are taken from instances of probabilistic networks, frequency
assignment and vertex coloring. We compared the results of these algorithms with those
of other heuristic methods. We observed that in many cases our algorithms perform well.

2 Definitions and preliminary results

In this section, we give the definitions of the most frequently used concepts and notions
in this paper. Let G= (V,E) be an undirected graph with vertex set V and edge set E. A
graph H is a minor of graph G, if H can be obtained from G by zero or more vertex
deletions, edge deletions, and edge contractions. Edge contraction is the operation that
replaces two adjacent vertices v and w by a single vertex that is connected to all
neighbors of v and w.

We denote the set of neighbors of vertex v by N(v)= {w ∈ V | {v, w} ∈ E }, and the set of
neighbors of v plus v itself by N[v]= N(v)U {v}. In the same manner we define N0 [v]=
{v}, Ni+1[v]= N[Ni[v]], Ni+1(v)=Ni+1[v]\Ni [v]. We can extend the above definition to a set
of vertices instead of one vertex. Suppose that S is a set of vertices, then N0 [S]= S,
Ni+1[S]= N[Ni [S]], Ni+1(S)= Ni+1[S] \Ni[S], N[S]= U

Sv

vN
∈

][,N(S)= N [S]\S, i ∈ ∈ ∈ ∈ ℕ. ℕ. ℕ. ℕ.

Let degree(v)= | N(v)| be the degree of vertex v. A graph is complete if every pair of its
distinct vertices is adjacent. Given a subset A ⊆ V of the vertices, we define the subgraph
induced by A to be GA= (A, EA), where EA = {{x, y} ∈ E: x ∈ A and y ∈ A}. A subset A
⊆ V of r vertices is an r-clique if it induces a complete subgraph. A single vertex is a 1-
clique. A subset A ⊆ V is a clique if it is an r-clique for some r. A clique A is maximal, if
G has no clique B that contains A as a proper subset. A clique is maximum if there is no
clique of G of larger cardinality. The clique number of G, ωωωω(G) is the number of vertices
in a maximum clique of G; i.e., it is the size of the largest complete subgraph of G. A
subset A ⊆ V of r vertices is an r-almost-clique if there is a v ∈ A such that A - {v} forms
a clique. A vertex v in G is called simplicial, if its set of neighbors N(v) forms a clique in

 4

G. A vertex v in G is called almost simplicial, if its neighbors except one form a clique in
G, i.e., if v has a neighbor w such that N(v) – {w} is a clique. A graph G is called
triangulated if every cycle of length four of more possesses a chord. A chord is an edge
between two nonconsecutive vertices of the cycle. Triangulated graphs are also called
chordal graphs. A graph G=(V, E) is a subgraph of graph H=(W, F) if V ⊆ W and E ⊆
F. A graph H= (W, F) is a triangulation of graph G=(V, E), if G is a subgraph of H and H
is a triangulated graph.

A linear ordering of a graph G= (V, E) is a bijection f: V → {1, 2, …, |V|}. A linear
ordering of the vertices of a graph G, σ = [v1, …, vn] is called a perfect elimination order
(p.e.o.) of G, if for every 1 ≤ i ≤ n, vi is a simplicial vertex in G[{vi, …, vn}], i.e., the
higher numbered neighbors of vi form a clique. It has been shown in [7] that a graph G is
triangulated, if and only if G has a p.e.o. Eliminating a vertex v from a graph G = (V, E)
is the operation that first adds an edge between every pair of non-adjacent neighbors of v,
and then removes v and its incident edges.

The tree decomposition of the graph G = (V, E) is a pair (X, T) in which T = (I, F) a tree,
and X= {Xi | i ∈ I} a collection of subsets of V, one for each node of T, such that:

! U

Ii∈

Xi= V,

! For all (u, v) ∈ E, there exists an i ∈ I with u, v ∈ Xi, and
! For all i, j, k ∈ I: if j is on path from i to k in T, then Xi I Xk ⊆ Xj.

The width of the tree decomposition ((I, F), {Xi | i ∈ I}) is max i∈ I | Xi – 1|. The treewidth
of a graph G is the minimum width over all tree decompositions of G.

Lemma 1. (See Bodlaender [4].)

(i) For every triangulated graph G = (V, E), there exists a tree decomposition (X=
{Xi | i ∈ I}, T= (I, F)) of G, such that every set Xi forms a clique in G, and for
every maximal clique W ⊆ V, there exists an i ∈ I with W= Xi.

(ii) Let (X= {Xi | i ∈ I}, T= (I, F)) be a tree decomposition of G of width at most
k. The graph H= (V, E ∪ E’), with E’= {{v, w} | ∃ i ∈ I : v, w ∈ Xi}, obtained
by making every set Xi a clique, is triangulated, and has maximum clique size
at most k + 1.

(iii) Let (X= {Xi | i ∈ I}, T= (I, F)) be a tree decomposition of G, and let W ⊆ V
form a clique in G. Then there exist an i ∈ I with W ⊆ Xi.

Lemma 2. (See Shoikhet and Geiger [16].) For triangulated graphs, tree decompositions
exist where the nodes are exactly the maximal cliques of the graph. Such tree
decompositions are called clique trees. The width of a triangulated graph T is max
k∈ K(T) (|K| – 1), where K(T) is the set of maximal cliques of T.

 5

3 Upper Bound Heuristics for Treewidth

In this section we present some heuristic methods to find upper bounds for the treewidth
of a given graph, and the corresponding tree decompositions. Basically, these methods
depend on two concepts: The first one is the number of edges that must be added between
the neighbors of a vertex x to make it simplicial, i.e., the neighborhood of that vertex turn
into a clique. We call this the fill-in of x.

fill-in(x)= |{{v, w} | v, w ∈ N(x), {{{{v, wv, wv, wv, w}}}} ∉∉∉∉ E E E E }}}}|

The second concept is very similar to the first one, but here we find the minimum number
of edges which when added between pairs of neighbors of a vertex x, turn x into an
almost simplicial vertex, i.e., by adding these edges to the graph, the neighborhood of
that vertex will turn into an almost clique. We call this parameter the fill-in of x
excluding one neighbor “fill-in-excl-one(x)”

 fill-in-excl-one(x)=

)(
min

xNz∈
| {{ v, w} | v, w ∈ N(x) � {z}, {v, w} ∉ ∉ ∉ ∉ EEEE } } } } |

A graph with |V| vertices has |V|! (permutations of |V|) linear ordering. For each linear
ordering σ of G, we can build a triangulation Hσ of G, such that σ is the p.e.o. of Hσ, in
the following way. For i= 1 … |V|, in that order, we add an edge between every pair of
non-adjacent neighbors of vi that are after vi in the ordering, vi is the i’th vertex in σ. One
can observe that σ is a p.e.o. of the resulting graph Hσ. As Hσ is triangulated, its
treewidth is one smaller than its maximum clique size, which equals the maximum
number of neighbors of v over all vertices v that are after v in the linear ordering σ. One
can construct from Hσ a tree decomposition of Hσ and of G with width exactly this
maximum clique size minus one. It is also known that there is at least one linear ordering
of G where we obtain the exact treewidth of G in this way [4]. This suggests the
following general scheme for heuristics for treewidth.

G’= G;
i= 1; σ= ();
while G’ is not the empty graph
do
 select according to some criteria a vertex v from G’;
 eliminate v;
 add v to position i in the ordering σ;
 i= i + 1;
enddo
{Now σ is a linear ordering of V.}
Construct triangulation Hσ of G and the corresponding tree decomposition.

Instead of constructing Hσ after σ is constructed, we also can construct Hσ and the
corresponding tree decomposition while σ is constructed.

 6

The width of the tree decomposition thus obtained is the maximum over all vertices v of
the number of neighbors of v in G’. We call a graph G’ encountered during the algorithm
a temporary graph. A linear ordering of G, used in this way, is called often an elimination
scheme. Several heuristics are of this type. Most known are the Minimum Fill-in
heuristic, and the Minimum Degree heuristic. In these, we repeatedly select the vertex v
with minimum fill-in in G’, or minimum degree in G’ respectively. These two heuristics
appear to be successful heuristics for treewidth; they often give good bounds and are fast
to compute. The success of these heuristics encouraged us to develop other heuristics
based on similar principles. Our heuristics are inspired by results on preprocessing graphs
for treewidth. In [3], reduction rules are given that are safe for treewidth. Here, such rules
rewrite a graph G to a smaller graph G’, and possibly update a variable low that gives a
lower bound on the treewidth of the original graph.

In [3], the notion of safe rule was introduced. The safe rule rewrites a graph to a smaller
one, and maintains a lower bound variable low, such that the maximum of low and the
treewidth of the graph at hand stays invariant, i.e., rule R is safe, if for all graphs G, G’,
and all integers low, low’, we have

(G, low) →R (G’, low’) ⇒ max(treewidth(G), low) = max(treewidth(G’), low’).

Thus the treewidth of the original graph is known when we know the treewidth of the
reduced graph and low. Amongst others, the following two rules were shown to be safe
for the treewidth in [3].

The Simplicial Reduction Rule (SRR):
Let v be a simplicial vertex of degree(v) ≥ 0.
Remove v.
Set low to max(low, degree(v)).

The Almost Simplicial Reduction Rule (ASRR):
Let v be an almost simplicial vertex of degree(v) ≥ 2.
If low ≥ degree(v) then eliminate v.

The safeness of the simplicial reduction rule tells us that if a vertex v has fill-in zero, then
selecting that vertex as the next one in the elimination ordering will not cause a treewidth
that is larger than necessary for this elimination ordering. It can be seen as a motivation
for the Minimum Fill-in Heuristic, where we select vertices with minimum fill-in.
Similarly, the almost simplicial reduction rule can be seen as motivation to look at the
fill-in-excl-one. If a vertex has fill-in-excl-one of zero, then selecting that vertex as the
next vertex in the elimination ordering will in many cases not cause the treewidth caused
by the formed elimination ordering to be larger than necessary, unless the degree of the
almost simplicial vertex is more than the treewidth of the original graph. With a small
twist to the terminology, we say that eliminating v is safe (in a graph G), if the choice of v
in the heuristic scheme presented above can lead to a tree decomposition whose width
equals the treewidth of G.

 7

Motivated by these observations, we designed new heuristics for treewidth that are given
below.

3-1 Method 1: Enhanced Minimum Fill-in (EMF):
The motivation for the Enhanced Minimum Fill-in algorithm is based upon the following
lemmas:

Lemma 3.
1- If v is a simplicial vertex, then eliminating v is safe.
2- If v is an almost simplicial vertex and the treewidth of G is at least the degree of v,
then eliminating v is safe.

Proof. See [3]. The lemma is a reformulation of the safeness of the Simplicial Reduction
Rule and the Almost Simplicial Reduction Rule.

Note that when we have vertices x and y with fill-in-excl-one(y)= 0, degree(y) ≤ low (for
some lower bound low on the treewidth of the input graph), fill-in(x) > 1, and fill-in(y) >
fill-in(x), then y appears to be the best choice for elimination (as this is safe by lemma 3);
the Minimum Fill-in heuristic, however, would have selected x.

For faster implementation of the algorithms, we observe that in many cases we do not
have to recompute the values of fill-in and fill-in-excl-one of every vertex in the
temporary graph after we eliminate a vertex from it.

Lemma 4. Let v be a simplicial vertex in graph G, G’= G[V-{v}] be the graph obtained
by eliminating v, and fill-inG(v) be the fill-in of vertex v in graph G. For all w ∉ ∉ ∉ ∉ N1(v), we
have
 fill-inG(w)= fill-inG’(w),
 fill-in-excl-oneG(w)= fill-in-excl-oneG’(w).

Therefore, when we eliminate a simplicial vertex v from a graph, and we want to find the
next vertex in the graph with minimum fill-in or minimum fill-in-excl-one, we need only
to recompute fill-in and fill-in-excl-one for neighbors of v (N1(v)) . For instance, if we
eliminate vertex 1 from the graph in Figure 1 and we want to find the next vertex with
minimum fill-in or minimum fill-in-excl-one in the graph, then we need only to
recompute the fill-in and fill-in-excl-one for vertices 2, 3 and 4.

 Figure 1.

 8

Similarly, the following lemma shows that if we eliminate a non simplicial vertex v from
a graph, and we want to find the next vertex in the graph with minimum fill-in or
minimum fill-in-excl-one, then the fill-in and fill-in-excl-one of only the vertices in N2(v)
could be change. For instance, if we eliminate vertex 1 from the graph in Figure 2 and we
want to find the next vertex with minimum fill-in or minimum fill-in-excl-one, then we
need to recompute the fill -in and fill-in-excl-one for vertices 2, 3, 4 and 5 only.

Lemma 5: Let v be any vertex in graph G that is not simplicial, G’= G[V-{v}] be the
graph obtained by eliminating v, and fill-inG(v) be the fill-in of vertex v in graph G. For
all w ∉ ∉ ∉ ∉ N2(v), we have
 fill-inG(w)= fill-inG’(w),
 fill-in-excl-oneG(w)= fill-in-excl-oneG’(w).

 Figure 2.

Motivated by these observations, we propose the Enhanced Minimum Fill-in algorithm.
Here, we first select vertices whose elimination is safe by Lemma 3, i.e., we select
vertices that are simplicial (have fill-in 0), or almost simplicial (have fill-in-excl-one 0)
and their degrees are at most the lower bound (low) on the treewidth of the graph.
Otherwise, we select the vertex of minimum fill-in. See Algorithm (1) for more details.

Observation
Many of the heuristics have slightly different implementations that can give different
results on the same graph. For instance, consider the Minimum Fill-in heuristic. If there is
more than one vertex that has minimum fill-in, the method does not specify which of
these has to be selected and placed in the elimination ordering. For instance, there could
be some arbitrary numbering of the vertices, and the specific implementation could
choose the lowest or the highest numbered vertex with minimum fill-in. It seems better to
use criteria that guide towards a better upper bound for the treewidth for such a selection.
Using other criteria apart from minimum fill-in can be seen to give better bounds for
several inputs. Still, in each case, there are graphs for which we do not find the optimal
treewidth with such heuristics; given the NP-hardness of the problem, we also cannot
expect to do so.

We would like to remark here that if we want to fully describe an upper bound algorithm,
we must specify details like the method of representing the graph, specifically, because of
matters like when vertices have the same fill-in, in which manner such a tie is broken. If

 9

we do not give such specifications, there is possibility to get different results from the
same algorithm. Moreover, it becomes more difficult to compare the results of different
methods.

Algorithm 1: Enhanced Minimum Fill-in (EMF):
Input: A connected graph G(V,E), and a lower bound on the treewidth of G, low.
Output: An upper bound on the treewidth of the input graph G, ub(G) and its corresponding tree
 decomposition, td(G) , and elimination order, σσσσ(G).

/* phase 1: Initialization */
let H(W, F)= G(V, E); ub(H)= 0; td(H)= ∅∅∅∅; σσσσ(G) = ∅∅∅∅;

for every w ∈ W
 compute degree[w];
 compute fill-in[w];
 compute fill-in-excl-one[w];
 /* phase 2: the main phase */
while H is not empty /*determine which vertex should be eliminated from the graph.*/
do
 if (H has a simplicial vertex w)
 then update(H, w);
 else if (H has an almost simplicial vertex w with degree(w) ≤ low)
 then
 update(H, w);
 else
 find the vertex w with minimum fill-in in H;
 update(H, w);
enddo;
return(ub(G) , td(G), σσσσ(G));
End Algorithm 1: Enhanced Minimum Fill-in.

Algorithm 2: update(G, p) /* eliminate a vertex v from a graph G, and update the values of the upper
bound for treewidth, and the corresponding tree decomposition and elimination order; and recompute
the fill-in, fill-in-excl-one and the degrees for some vertices, see Lemmas 4 and 5 */
ub(G) = max(ub(G) , degree(p));
add p to the end of the σσσσ;
create a new node (bag) Xi in td(G), let Xi= N[p]; /*add p with its neighbors as a node to the td(G) */
/* recompute the fill-in and fill-in-excl-one for some vertices in H, see lemmas 3 & 4 */
if (p is simplicial)
then
 for every x ∈ N1(p)
 compute fill-in(x);,
 compute fill-in-excl-one(x);
else
 clique(p); /* add an edge between any two non adjacent neighbors of v */
 for every x, y ∈ N1(p) and {x, y} ∉∉∉∉ E /* update the degrees of the non adjacent neighbors of p */
 degree(x)= degree(x) + 1;
 degree(y)= degree(y) + 1;
 for every x ∈ N 2(p)
 compute fill-in(x) ;
 compute fill-in-excl-one(x);
 for every x ∈ N1(p) /* update the degree of every neighbor of vertex p */
 degree(x)= degree(x) � 1;
End Algorithm 2: Update.

 10

3-2 Method 2.1: Minimum Fill-in Excluding One Neighbor (MFEO1) :
Using the ideas behind Method 1 and additional techniques, we now develop a more
advanced heuristic. The idea is as follows: first, we test whether the graph contains
simplicial vertices, or almost simplicial vertices with degree at most the lower bound for
the treewidth of the graph. If we find such vertices, we process them as in Method 1. If
the graph does not include such simplicial or almost simplicial vertices anymore, then we
go to the second step. In this step, we test whether the graph contains a vertex v with fill-
in-excl-one less than the minimum fill-in of the vertices in the temporary graph, such that
the degree of v is at most the current lower bound for the treewidth. In the case that the
graph includes such a vertex, then that vertex will be processed first; otherwise, the
vertex with minimum fill-in should be processed first. However, if the graph contains
more than one vertex with such properties then the vertex with minimum fill-in-excl-one
amongst these is processed first. But, if still there is more than one vertex that satisfies
the last condition, then the vertex with minimum fill-in amongst these should be selected
first.

In the algorithm we distinguish two phases: The Initialization Phase and The Main
Phase. The main phase consists of a loop. Each loop iteration has two main steps: (a)
finding the next vertex in the elimination order, and (b) updating the values of the
parameters. The input to the algorithm is a connected undirected graph. The algorithm
returns an upper bound on the treewidth of the graph and its corresponding tree
decomposition. Algorithm 3 gives more details for this method.

Phase I: The Initialization Phase:
In this phase, the upper bound for the treewidth of the graph is initialized with the value
zero, the tree decomposition with an empty set, and σ with an empty list.

Phase II: The Main Phase:
In each iteration of this phase, the following steps are performed:

Step (a): Finding the next vertex in the elimination order (σσσσ):
As mentioned above, the algorithm verifies whether the temporary graph contains
simplicial vertices or almost simplicial vertices with degree less than or equal to the
lower bound for the treewidth. If so, these are processed by placing them on σ. If there
are no such vertices, the algorithm finds a vertex p with minimum fill-in in the temporary
graph and then performs the following test on the other remaining vertices. Let p be the
vertex with minimum fill-in. We test if there exists a vertex w with the following
properties:

(1) degree(w) < low,
(2) fill-in-excl-one(w) < fill-in(p) = minimum fill-in,

If so, such a vertex w is added to the elimination order list. In case there are more vertices
that satisfy conditions (1) and (2) above, preference is given to the vertex with minimum

 11

fill-in-excl-one. If there is still more than one vertex that can be selected, then, amongst
these, preference is given to the vertex with minimum fill-in.

Step (b): Updating phase:
This phase consists of the following operations to keep the values of the variables defined
in phase (1) up to date:

(1) Updating the upper bound value. Set the upper bound for the treewidth of the
graph to the maximum of the current one and the degree of the vertex selected
from step (a) above.

 Let v be the vertex selected from step (a).
Let upper bound (G)= max (upper bound(G), degree(v)).

(2) Updating the elimination order list: Add vertex v to the next empty position of σ.
(3) Updating the tree decomposition: Add vertex v and its neighbor vertices as a node

to the tree decomposition of the graph,
(4) Eliminating v: turning the set of neighbors of v into a clique and then removing v

and its incident edges from the graph.
(5) Recompute the fill-in and fill-in-excl-one of some vertices in the temporary graph:

If the eliminated vertex v is simplicial, then recompute the fill-in and fill-in-excl-
one for all neighbors of vertex v, N1(v); otherwise recompute the fill-in and fill-in-
excl-one for all neighbors of vertex v and the neighbors of those neighbors, N2(v).

(6) Update the degree of every neighbor vertex of v, N1(v).

After the Initialization phase, the algorithm repeats the two main steps (a) and (b) until
the temporary graph contains no vertices anymore. At the end of the procedure, the final
results are produced: an upper bound on the treewidth, its corresponding tree
decomposition, and a perfect elimination ordering of the input graph. For more details see
Algorithm 3.

3-3 Method 2.2: Minimum Fill-in Excluding One Neighbor Vertex (MFEO2) :
The difference between this heuristic and the previous one is in the method that is used
by the algorithm to find the sequence of vertices in the elimination order list, namely, in
Phase II, and more precisely in step (a) of that phase. The sequence of operations
(conditions) in this step becomes as follows: If we have more than one candidate vertex
satisfying conditions (1) and (2) mentioned in section 3-2, then the vertex with minimum
fill-in amongst these will be selected. But, if there still is more than one vertex fulfilling
all conditions, then from these, the vertex with minimum fill-in-excl-one of those vertices
will be selected. In other words, we switched the order in which the fill-in and fill-in-excl-
one are used to do the tie breaking in the end. For more details see algorithm 4.

 12

Algorithm 3: Minimum Fill-in Excluding One Neighbor (MFEO1)
Input: A connected graph G(V,E), and a lower bound on the treewidth of G, low.
Output: An upper bound on the treewidth of the input graph G, ub(G) and its corresponding tree
 decomposition, td(G) , and elimination order, σσσσ(G).
/* phase 1: Initialization */
let H(W, F)= G(V, E); ub(H)= 0; td(H)= ∅∅∅∅; σσσσ(G). = ∅∅∅∅;

for every w ∈ W
 compute degree[w];
 compute fill-in[w];
 compute fill-in-excl-one[w];
 /* phase 2: the main phase */
while H is not empty /*determine which vertex should be eliminated from the graph.*/
do
 if (H has a simplicial vertex w)
 then update(H, w)
 else if (H has an almost simplicial vertex w with degree[w] ≤ low)
 then
 update(H, w);
 else
 find the vertex p that has minimum fill-in in H;
 minimum-fill-in= fill-in(p);
 local-min-fill-in= MaxInt;
 local-min-fill-in-excl-one= MaxInt;
 for all q ∈ W
 do
 if ((fill-in-excl-one[q] < min-fill-in) & (degree[q] ≤ low))
 then
 if ((fill-in-excl-one[q] < < < < local-min-fill-in-excl-one) or
 ((fill-in-excl-one[q] = = = = local-min-fill-in-excl-one) and (fill-in[q] < local-min-fill-in)))
 then
 p= q;
 local-min-fill-in= fill-in[q];
 local-min-fill-in-excl-one= fill-in-excl-one[q];
 enddo;
 update(H, p);
enddo;
return(ub(G) , td(G), σσσσ(G));
End Algorithm 3: Minimum Fill-in Excluding One Neighbor (MFEO1).

Algorithm 4: Minimum Fill-in Excluding One Neighbor (MFEO2)
/* phase 2: the main phase */
while H is not empty /*determine which vertex should be eliminated from the graph.*/
do
 if (H has a simplicial vertex w)
 then update(H, w)
 else if (H has an almost simplicial vertex w with degree[w] ≤ low)
 then
 update(H, w);
 else
 find the vertex p that has minimum fill-in in H;
 minimum- fill-in= fill-in(p);

 13

 local-min-fill-in= MaxInt;
 local-min-fill-in-excl-one= MaxInt;
 for all q ∈ W
 do
 if ((fill-in-excl-one[q] < min-fill-in) & (degree[q] ≤ low))
 then
 if ((fill-in[q] < < < < local-min-fill-in) or
 ((fill-in[q] = = = = local-min-fill-in) and (fill-in-excl-one[q] < local-min-fill-in-excl-one)))
 then
 p= q;
 local-min-fill-in= fill-in[q];
 local-min-fill-in-excl-one= fill-in-excl-one[q];
 enddo;
 update(H, p);
enddo;

3-4 Method 3.1: The Ratio heuristic, version 1 (Ratio1):
In the two versions of the Ratio heuristic, we use different rules for when vertices of
small fill-in-excl-one can be selected for elimination before vertices of minimum fill-in.
Again, we first select simplicial vertices, or almost simplicial vertices whose degree is at
least the lower bound for the treewidth. If there are no such vertices in the temporary
graph, we proceed now as follows: In the Ratio heuristic, version 1, a vertex v can be
selected when its fill-in-excl-one is smaller than minimum fill-in, its degree is at most the
lower bound for the treewidth, and it satisfies the following condition. Let H(W, F) be a
temporary graph of graph G(V, E). Select a vertex p of minimum fill-in. Compute r1(w)=
fill-in(w) / fill-in(p), and r2(w)= degree(w) / degree(p). We now require that r1(w) < r2(w)
for w ≠ p to be a candidate for selection at this point. If we have more than one such
candidate, we select from these a vertex with minimum difference between r1 and r2, (r1
- r2).

The motivation for the Ratio heuristic, version 1, is that we want to select vertices for
which elimination creates a large clique while only few fill-in edges are added. Let us
illustrate the method with the following examples: Let p be a vertex of minimum fill-in
and w be a vertex whose fill-in-excl-one is less than minimum fill-in and its degree is less
than the value of the lower bound for the treewidth.

Example 1:
Let minimum fill-in= fill-in(p)= 6, degree(p)= 40, fill-in-excl-one(w)= 5, degree(w)= 30,
lower-bound= 10, r1(w)= 5 / 6, r2(w)= 30/ 40, and r1(w) is less than r2(w). In such a case,
vertex w will be eliminated before vertex p from the graph.

Example 2:
Let minimum fill-in= fill-in(p)= 4 degree(p)= 60, fill-in-excl-one(w)= 3, degree(w)= 50,
lower-bound= 10, r1(w)= 3/ 4, r2(w)= 50/ 60, and r1(w) is not less than r2(w). In such a
case, vertex p will be eliminated before vertex w from the graph.

We only show the new part of the algorithm below; phase 1 is as in Algorithm 3.

 14

Algorithm 5: Ratio 1
 /* phase 2: determine which vertex should be eliminated from the graph.*/
Let H= (W, F) be the temporary graph,
While H is not empty
do
 if (H has a simplicial vertex w)
 then update(H, w)
 else if (H has an almost simplicial vertex w with degree[w] ≤ low)
 then
 update(H, w);
 else
 find the vertex p that has minimum fill-in in H;
 let r3 = - ∞∞∞∞;
 for every w ∈∈∈∈ W
 do
 if ((fill-in-excl-one(w) < min-fill-in) and (degree(w) ≤≤≤≤ low))
 then
 r1 = fill-in-exc-one(w) / min-fill-in;
 r2= degree(w) / degree(p);
 if ((r1 < r2) and ((r2– r1) > r3)))
 then
 p= w;
 r3 = r2 – r1;
 enddo;
 update(H, p);
enddo;

Algorithm 6: Ratio 2
 /* phase 2: determine which vertex should be eliminated from the graph.*/
Let H= (W, F) be the temporary graph,
while H is not empty
do
 if (H has a simplicial vertex w)
 then update(H, w)
 else if (H has an almost simplicial vertex w with degree[w] ≤ low)
 then
 update(H, w);
 else
 find the vertex p that has minimum fill-in in H;
 minimum-ratio= MaxInt;
 for every w ∈∈∈∈ W
 do
 r(w)= fill-in(w) / degree(w);
 if (r(w) < minimum-ratio)
 then
 p= w;
 minimum_ratio= ratio(w);
 enddo;

 update(H, p);
enddo;

 15

3-5 Method 3.2: The Ratio heuristic, version 2 (Ratio 2):
The second variant of the Ratio heuristic is similar to the first one, with the following
difference. For each vertex w ∈ W, we set r(w)= fill-in(w) / degree(w) (degree(w) > 1,
otherwise w is simplicial). When there are no simplicial vertices and no almost simplicial
vertices with degree at most the treewidth lower bound, we select the vertex w whose
ratio r(w) is smallest. Below, we give the code of phase 2 of this method.

4 Computational Analysis

The algorithms described in the previous section and some other algorithms described in
[6, 10] have been implemented using Microsoft Visual C++ 6.0 on a Window 2000 PC
with a Pentium III 800 MHz processor.

The algorithms were tested on two sets of graphs. The first one includes 18 graphs from
real-life probabilistic networks and frequency assignment problems [10]. The second set
includes 14 graphs from a DIMACS coloring benchmark [6]. The selected graphs have
different number of vertices and edges. Also, the differences between the known upper
bounds and lower bounds for the treewidth of many of those graphs are noticeable. As a
result of that, it is possible to obtain different results for the upper bound of the same
graph by using different heuristics.

In order to be able to achieve good conclusions from this analysis, we analyze our
algorithms in different ways. First, we compare the results of the implementations of
different methods that have been introduced in this paper on two aspects, namely, the
obtained upper bound for the treewidth of the graph and the computer processing time
needed by the algorithms to produce the results. The second part of the evaluations
compares the heuristics introduced in this paper with known heuristics.

4-1 Comparison between the heuristics introduced in this paper:
In section 3, we have introduced five methods for finding upper bounds for the treewidth
of the graph; in addition we implemented the Minimum Fill-in heuristic (MF) and the
Minimum Degree Fill-in (MDFI). The results of implementing these algorithms on
different graphs are given in the following tables. Table 1(a) and Table 1(b) show a
comparison between different methods illustrated in this paper from the point view of
their best upper bound values. Table 1(a) consists of instances of probabilistic networks
and frequency assignment problems. Table 1(b) gives graphs from the DIMACS coloring
benchmark. Table 2(a) and Table 2(b) give the processing times in seconds. These are
given for each of the heuristics, and each of the graphs that were used in Table 1(a) and
Table 1 (b). Times are rounded to the nearest integer. The LB values are the lower bound
values used by the algorithms; these values are not necessarily good or even valid lower
bounds for the treewidth.

We notice clearly from the results in these tables that in general the upper bounds
obtained by MFEO1 and RATIO2 are better than those obtained by the other methods.

 16

The main differences between the results obtained by MFEO1 and those obtained by
RATIO2 are as follows:

! The results of applying the MFEO1 heuristic on graphs of probabilistic networks

and frequency assignment instances in Table 1(a) are better than or equal to those
produced by any other heuristic in that table. However, this is not the case for
some of the instances from the DIMACS coloring benchmark, see Table 1(b). We
notice when we consider Table 1(b) that the upper bounds for some graphs are
better when using RATIO2 than those obtained when using MFEO1.

! The results of MFEO1 are more stable, always better than or equal to that

produced by any other heuristic, except for RATIO2. RATIO2 does not have such
a ‘stable behavior’.

S Graph name |V| |E| LB MF EMF MFEO1 MFEO2 RATIO1 RATIO2
1 alarm1 37 65 2 4 4 4 4 4 4
2 barley 48 126 3 7 7 7 7 7 7
3 boblo 221 328 2 3 3 3 3 3 3
4 celar06_pp_a 100 350 11 11 11 11 11 11 11
5 celar07_pp_a 200 817 16 16 16 16 16 16 16
6 celar09_pp_a 340 1130 7 16 16 16 16 16 16
7 graph05_pp_a 100 416 11 26 26 25 25 25 26
8 mildew 35 80 2 4 4 4 4 4 4
9 munin1 189 366 3 11 11 11 11 11 11
10 oesoca_hugina 67 208 9 11 11 11 11 11 11
11 oow_bas 27 54 2 4 4 4 4 4 4
12 oow_solo_a 40 87 4 6 6 6 6 6 6
13 oow-trad_a 33 72 4 6 6 6 6 6 6
14 pigs 441 806 3 10 10 10 10 10 10
15 ship-ship_a 50 114 4 8 8 8 9 8 9
16 vsd-hugin 38 62 2 4 4 4 4 4 4
17 water_a 32 123 9 10 10 9 10 9 10
18 wilson-hugin 21 27 2 3 3 3 3 3 3

Table 1 (a): The upper bounds produced by the heuristics described in this paper for some graphs from
probabilistic networks and frequency assignment instances.

S Graph name |V| |E| LB MF EMF MFEO1 MFEO2 RATIO1 RATIO2
1 anna 138 986 11 12 12 12 12 12 12
2 david 87 812 11 13 13 13 13 13 13
3 dsjc125_1 125 736 17 65 65 64 64 64 66
4 dsjc125_5 125 3891 55 111 111 110 110 110 109
5 dsjc250_1 250 3218 3 177 177 177 177 177 177
6 games120 120 1276 10 39 39 39 42 41 38
7 LE450_5A 450 5714 3 315 315 310 315 315 304
8 mulsol_i_4 175 3946 32 32 32 32 32 32 32
9 myciel4 23 71 10 11 11 10 10 10 10
10 myciel5 47 236 8 21 21 20 20 20 20
11 myciel6 95 755 20 35 35 35 35 35 35
12 myciel7 191 2360 31 66 66 66 66 66 66
13 queen5_5 25 320 12 18 18 18 18 18 19
14 school1 385 19095 80 225 225 225 225 225 209

Table 1 (b): The upper bounds produced by the heuristics described in this paper for some DIMACS vertex
coloring instances.

The second aspect of interest of the implementation of the heuristics is the processing
time. The EMF heuristic needs less time than that the other algorithms. Tables 2 (a) and 2

 17

(b) give the details. Table 3 summarizes the behavior of the heuristics given in this paper
on the graphs used in Table 1 (a) and Table 1(b). For each heuristic, it gives the number
of times from each set of instances when the heuristic gives the best result, and when its
result is smaller than the best result of all five heuristics.

S Graph name |V| |E| MF EMF MFEO1 MFEO2 RATIO1 RATIO 2
1 alarm1 37 65 0 0 0 0 0 0
2 barley 48 126 0 0 0 0 0 0
3 boblo 221 328 13 0 0 0 8 0
4 celar06_pp_a 100 350 1 0 0 0 1 0
5 celar07_pp_a 200 817 10 1 1 1 6 1
6 celar09_pp_a 340 1130 98 4 4 3 49 4
7 graph05_pp_a 100 416 1 0 1 1 0 1
8 mildew 35 80 0 0 0 0 0 0
9 munin1 189 366 9 0 1 1 5 1
10 oesoca_hugin_a 67 208 0 0 0 0 0 0
11 oow_bas 27 54 0 0 0 0 0 0
12 oow_solo_a 40 87 0 0 0 0 0 0
13 oow-trad_a 33 72 0 0 0 0 0 0
14 pigs 441 806 190 6 6 6 123 6
15 ship-ship_a 50 114 0 0 0 0 0 0
16 vsd-hugin 38 62 0 0 0 0 0 0
17 water_a 32 123 0 0 0 0 0 0
18 wilson-hugin 21 27 0 0 0 0 0 0

Table 2 (a): The used processing time in seconds for graphs from probabilistic networks and frequency
assignment instances.

S Graph name |V| |E| MF EMF MFEO1 MFEO2 RATIO1 RATIO2
1 anna 138 986 2 0 0 0 0 0
2 david 87 812 0 0 0 0 0 0
3 dsjc125_1 125 736 7 6 6 6 6 6
4 dsjc125_5 125 3891 59 35 36 37 36 38
5 dsjc250_1 250 3218 478 451 451 451 453 441
6 games120 120 1276 3 2 2 1 2 2
7 LE450_5A 450 5714 13694 13437 15308 13301
8 mulsol_i_4 175 3946 29 23 27 26 26 28
9 myciel4 23 71 0 0 0 0 0 0
10 myciel5 47 236 0 0 1 0 0 0
11 myciel6 95 755 1 2 1 2 1 2
12 myciel7 191 2360 33 31 31 32 32 28
13 queen5_5 25 320 0 0 0 0 0 0
14 school1 385 19095 6280 5791 5742 5738 6390 3877

Table 2 (b): The used processing time in seconds for DIMACS vertex coloring instances.

The upper bound
produced by the
heuristic is equal
to the best one

The upper bound
produced by the
heuristic is worse
than the best one

S Heuristic name

No. of
graphs
in set 1

No. of
graphs
in set 2

No. of
graphs
in set 1

No. of
graphs
in set 2

1 MF 16 7 2 7
2 EMF 16 7 2 7
3 MFEO1 18 10 0 4
4 MFEO2 17 10 1 4
5 RATIO1 18 11 0 3
6 RATIO2 16 13 2 1

Table 3: Comparison of heuristics: How often do the heuristics give or do not give the best result?

 18

LB: Lower Bound.
MF: Minimum Fill-in.
ENF: Enhancement Minimum Fill-in.
MFEO1: Minimum Fill-in Excluding One neighbor vertex, version 1.
MFEO2: Minimum Fill-in Excluding One neighbor vertex, version 2.
RATIO1: The Ratio, version 1.
RATIO2: The Ratio, version 2.

4-2 Comparison heuristics introduced in this paper with known heuristics:
Tables 4-6 make a second type of comparison. Here, we compare the MFEO1 heuristic
with a number of existing heuristics from the scientific literature. The data for the
existing heuristics were taken from [6, 10]. Tables 4(a) and 4(b) give the upper bound
values, Tables 5(a) and 5(b) the processing times, and Tables 6(a) and 6(b) an abstract
comparison, in the same manner as Tables 1(a), 1(b), 2(a), 2(b), and 3. Each of these
heuristics has been described in the overview [10]. The first five are based on building
elimination order lists, and respectively use two variants of Lexicographic Breadth First
Search (LEX-P and LEX-M), the Maximum Cardinality Search (MCS), the Minimum
Fill-in heuristic (MF, also used in tables 1-3), and the Minimum Degree heuristic (MD:
the vertex of minimum degree in the temporary graph is chosen). The last one is the
Minimum Separating Vertex Sets heuristic (MSVS) from Koster [13], where a trivial tree
decomposition is stepwise refined with help of minimum vertex separators.

S Graph name |V| |E| MFEO1 LEX-P LEX-M MF MDFI MCS MSVS
1 alarm1 37 65 4 4 4 4 4 4 4
2 barley 48 126 7 7 7 7 7 7 7
3 boblo 221 328 3 4 4 3 3 3 3
4 celar06_pp_a 100 350 11 11 11 11 11 11 11
5 celar07_pp_a 200 817 16 19 18 16 18 18 18
6 celar09_pp_a 340 1130 16 19 18 16 18 19 18
7 graph05_pp_a 100 416 25 29 27 26 28 29 26
8 mildew 35 80 4 4 4 4 4 4 4
9 munin1 189 366 11 15 13 11 11 20 11
10 oesoca_hugin_a 67 208 11 12 11 11 11 11 11
11 oow_bas 27 54 4 4 4 4 4 5 4
12 oow_solo_a 40 87 6 6 6 6 6 6 6
13 oow-trad_a 33 72 6 6 6 6 6 6 6
14 pigs 441 806 10 19 18 10 10 15 15
15 ship-ship_a 50 114 8 9 9 8 8 9 9
16 vsd-hugin 38 62 4 4 4 4 4 5 4
17 water_a 32 123 9 10 10 10 11 10 10
18 wilson-hugin 21 27 3 3 3 3 3 3 3

Table 4 (a): The upper bounds for MFEO1 and heuristics from [10] for Probabilistic Networks and
Frequency Assignment graphs.

 19

S Graphname |V| |E| MF EMF MFEO1 MFEO2 RATIO1 RATIO2 D_LB
1 anna 138 986 12 12 12 12 12 12 12
2 david 87 812 13 13 13 13 13 13 13
3 dsjc125_1 125 736 65 65 64 64 64 66 67
4 dsjc125_5 125 3891 111 111 110 110 110 109 110
5 dsjc250_1 250 3218 177 177 177 177 177 177 176
6 games120 120 1276 39 39 39 39 41 38 41
7 LE450_5A 450 5714 315 315 310 315 315 304 323
8 mulsol_i_4 175 3946 32 32 32 32 32 32 32
9 myciel4 23 71 11 11 10 10 10 10 11
10 myciel5 47 236 21 21 20 20 20 20 20
11 myciel6 95 755 35 35 35 35 35 35 35
12 myciel7 191 2360 66 66 66 66 66 66 70
13 queen5_5 25 320 18 18 18 18 18 19 18
14 school1 385 19095 225 225 225 225 225 209 242

Table 4 (b): The upper bounds for D_LB from [6] and heuristics introduced in this paper for DIMACS
vertex coloring instances.

S Graph name |V| |E| MFEO1 LEX-P LEX-M MF MDFI MCS MSVS
1 alarm1 37 65 4 0 0 0 0 0 0
2 barley 48 126 7 0 0 0 0 0 0
3 boblo 221 328 3 1 10 0 0 1 0
4 celar06_pp_a 100 350 11 0 2 0 0 0 0
5 celar07_pp_a 200 817 16 2 16 0 0 2 3
6 celar09_pp_a 340 1130 16 0 0 0 0 0 0
7 graph05_pp_a 100 416 25 3 11 0 0 3 5
8 mildew 35 80 4 0 0 0 0 0 0
9 munin1 189 366 11 2 20 0 0 3 2
10 oesoca_hugin_a 67 208 11 0 0 0 0 0 0
11 oow_bas 27 54 4 0 0 0 0 0 0
12 oow_solo_a 40 87 6 0 0 0 0 0 0
13 oow-trad_a 33 72 6 0 0 0 0 0 0
14 pigs 441 806 10 14 161 0 0 8 10
15 ship-ship_a 50 114 8 0 0 0 0 0 0
16 vsd-hugin 38 62 4 0 0 0 0 0 0
17 water_a 32 123 9 0 0 0 0 0 0
18 wilson-hugin 21 27 3 0 0 0 0 0 0

Table 5 (a): The processing time for MFEO1 and heuristics from [10] for Probabilistic Networks and
Frequency Assignment graphs.

S Graphname |V| |E| MF EMF MFEO1 MFEO2 RATIO1 RATIO2 D_LB
1 anna 138 986 3 0 0 1 1 1 1
2 david 87 812 0 0 1 0 0 0 0
3 dsjc125_1 125 736 7 6 6 6 6 6 3
4 dsjc125_5 125 3891 36 37 36 38 4
5 dsjc250_1 250 3218 478 451 451 451 453 441 33
6 games120 120 1276 3 2 2 1 2 2 2
7 LE450_5A 450 5714 10566 7340 13694 13437 15308 13301 274
8 mulsol_i_4 175 3946 29 23 27 26 26 28 14
9 myciel4 23 71 0 0 0 0 0 0 0
10 myciel5 47 236 0 0 1 0 0 0 0
11 myciel6 95 755 1 2 1 2 1 2 2
12 myciel7 191 2360 33 31 31 32 32 28 29
13 queen5_5 25 320 0 0 0 0 0 0 0
14 school1 385 19095 6280 5791 5742 5738 6390 3877 274

Table 5 (b): The processing time for D_LB from [6] and heuristics introduced in this paper for DIMACS
vertex coloring instances.

 20

LEX-P: Lexicographic Breadth First Search.
LEX-M: Lexicographic Minimum Triangulation.
MDFI: Minimum Degree Fill-in.
MCS: Minimum Cardinality Search.
MSVS: Minimum Separating Vertex Set.
D_LB: Heuristic from [6].

We conclude from the results of Tables 4, 5 and 6, that usually the best upper bounds
were achieved by the MFEO1 heuristic. Table 6 (a) shows how often each of the
heuristics MFEO1, LEX-P, LEX-M, MF, MCS, and D-LB gives the best result of all
seven on the 18 graphs from probabilistic network and frequency assignment instances,
and 14 graphs from DIMACS vertex-coloring instances. We can see that out 18 graphs of
the first set of graphs in Table 4 (a), the upper bound of 2 graphs became better by using
MFEO1 than that produced by the heuristics introduced in [10], the upper bounds of 14
graphs remain equal to the best upper bound of them, and no graph from this set of
graphs its upper bound became worse by MFEO1 than that produced by those heuristics.

As well, by applying the MFEO1 on 14 graphs of the second set of graphs (DIMACS
vertex-coloring instances), the upper bounds of 6 graphs became better than that
produced by D_LB (introduced in [6]), upper bounds of 7 graphs remain equal to the best
upper bound, and only for one graph, the upper bound obtained by D_LB method is
better than that obtained by MFEO1. Table 6 (b) shows a comparison between MFEO1
and each of these seven heuristics. It gives number of graphs when MFEO1 gives a
better, equal, or worse upper bounds than that produced by every heuristics introduced in
[6, 10]. The processing time of the MFEO1 heuristic is relatively close to the processing
time of other heuristics in spite of the fact that this algorithm uses O(n4) time in the worst
case, while some of other heuristics are of O(n2) time complexity.

The upper
bound

produced by
this heuristic

is the only
best one

The upper
bound

produced by
this heuristic
is equal to the

best one

The upper
bound

produced by
this heuristic
is worse than
the best one

Sum S Heuristic name

No. of
graphs
in set 1

No. of
graphs
in set 2

No. of
graphs
in set 1

No. of
graphs
in set 2

No. of
graphs
in set 1

No. of
graphs
in set 2

No. of
graphs
in set 1

No. of
graphs
in set 1

1 MFEO1 2 6 16 7 0 1 18 14
2 LEX-P 0 6 12 18
3 LEX-M 0 7 11 18
4 MF 0 3 15 18
5 MD 0 11 7 18
6 MCS 0 5 13 18
7 D_LB 1 7 6 14

Table 6 (a): Comparison of heuristics: How often do the heuristics give or do not give the best result?

 21

S Heuristic name The upper
bound

produced by
MFEO1 is

better

The upper
bound

produced by
MFEO1 is

equal

The upper
bound

produced by
MFEO1 is

worse

Sum

1 LEX-P 9 9 0 18
2 LEX-M 8 10 0 18
3 MF 16 2 0 18
4 MDFI 4 14 0 18
5 MCS 9 9 0 18
6 MSVS 6 12 0 18
7 D_LB 6 7 1 14

Table 6 (b): Comparison of heuristics: How often is MFEO1 better, equal or worse than every heuristics
introduced in [6, 10]?

References:

[1] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings
 in a k-tree. SIAM Journal on Algebraic and Discrete Methods, 8:277-284, 1987.

[2] A. Berry, P. Heggernes, and G. Simonet. The minimum degree heuristic and the
 minimal triangulation process. Proceedings of the 29th International Workshop on
 Graph-Theoretical Concepts in Computer Science, WG 2003, pages 58-70, Elspeet,
 the Netherlands, 2003. Springer Verlag, Lecture Notes in Computer Science, vol.
 2880.

[3] H. L. Bodlaender, A. M. C. A. Koster, F. van den Eijkhof, and L. C. van der Graag.
 Preprocessing for triangulation of probabilistic networks. In J. Breese and D. Koller,
 editors, Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence,
 pages 32-39, San Francisco, 2001. Morgan Kaufmann Publishers.

[4] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth.
 Theoretical Computer Science, 209:1-45, 1998.

[5] H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11(1-2):
 1-21, 1993.

[6] F. Clautiaux, J. Carlier, A. Moukrim, and S. Negre. New lower and upper bounds
 for graph treewidth. Proceedings of the Second International Workshop on
 Experimental and Efficient Algorithms, pages 70-80, Ascona, Switzerland, 2003.
 Springer Verlag, Lecture Notes in Computer Science, vol. 2647.

[7] M. C. Columbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,
 Inc., 1980.

[8] W. Cook and P. D. Seymour. Tour Merging via branch-decomposition. Informs J. on
 Computing, 15:233-248, 2003.

[9] A. Kornai and Z. Tuza. Narrowness, pathwidth, and their application in natural

 22

 language processing. Discrete Application Mathematics, 36:87-92, 1992.

[10] A. M. C. A. Koster, H. L. Bodlaender, and S. van Hoesel. Treewidth: Computational
 experiments. In Hajo Broersma, Ulrich Faigle, Johann Hurink, and Stefan Pickl
 (editors), Electronic Notes in Discrete Mathematics, volume 8. Elsevier Science
 Publishers, 2001.

[11] A. M. C. A. Koster, C.P.M. van Hoesel, and A.W.J. Kolen. Solving frequency
 assignment problems via tree-decomposition. Technical report RM 99/011,
 Maastricht University, 1999. Available at http://www.zip.de/koster/.

[12] A. M. C. A. Koster, C.P.M. van Hoesel, and A.W.J. Kolen. Lower bounds for
 minimum interference frequency assignment problems. Ricerca Operativa, 30(94-
 95): 101-116, 2000.

[13] A. M. C. A. Koster. Frequency Assignment – Models and Algorithms. PhD thesis,
 Maastricht University, Maastricht, the Netherlands, 1999.

[14] S. J. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on
 graphical structures and their application to expert systems. The Journal of the Royal
 Statistical Society, Series B (Methodological), 50:157-224, 1988.

[15] D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex
 elimination on graphs. SIAM Journal on Computing, 5:266-283, 1976.

[16] K. Shoikhet and D. Geiger. A practical algorithm for finding optimal triangulations.
 Proceedings National conference on Artificial Intelligence (AAAI’97), pages 185-
 190. Morgan Kaufmann, 1997.

[17] J.A. Telle and R. Proskurowski. Algorithms for vertex partitioning problems on
 partial k-trees. SIAM Journal on Discrete Mathematics, 10:529-550, 1997.

	New Upper Bound Heuristics for Treewidth*
	Abstract
	1 Introduction
	3 Upper Bound Heuristics for Treewidth
	Algorithm 1: Enhanced Minimum Fill-in (EMF):

