
Typing Haskell with an Attribute Grammar
(Part I)

Atze Dijkstra
Doaitse Swierstra

institute of information and computing sciences, utrecht university

technical report UU-CS-2004-037

www.cs.uu.nl

Preface

Type systems for functional languages (abstract)

Much has been written about type systems. Much less has been written about implementing type
systems. Even less has been written about implementations of real compilers where all aspects of
a compiler come together. This paper helps filling the final gap by describing the implementation
of a compiler for a simplified variant of Haskell. By using an attribute grammar system, aspects
of a compiler implementation are described separately and added in a sequence of steps, thereby
giving a series of increasingly complex (working) compilers. Also, the source text of both paper and
executable compilers come from the same source files by an underlying minimal weaving system.
Therefore, sources and (this) explanation are kept consistent.

Context of this paper

A previous version of this paper has been presented and distributed at the AFP2004 summerschool1.
This paper describes a part of a Haskell compiler under development [8], focussing on the type
system of the langauge and its implementation. Subsequent papers will describe the remaining parts
of the implementation.

Not all parts of the implementation are explained in this paper. In a subsequent paper (continuing
with part II) for example data structures (data types, kind inference and records) will be introduced
and explained. As a consequence at some points in this paper a forward reference will be made to
material to be published later. This concerns mainly future design decisions which have an influence
on design decisions made in this paper.

1The proceedings for the AFP2004 summerschool have yet to appear.

1

2

Contents

I Type checking, inference and polymorphism 7

1 Introduction and overview 9
1.1 Purpose . 9
1.2 A short tour . 10
1.3 Haskell language elements not described . 12
1.4 About the presented code . 13

2 EH 1: typed λ-calculus 15
2.1 Concrete and abstract syntax . 16
2.2 Parsing: from concrete to abstract (syntax) . 19
2.3 Pretty printing: from abstract to concrete . 22
2.4 Types . 25

2.4.1 What is a type . 25
2.4.2 Type pretty printing . 26

2.5 Checking types . 27
2.5.1 Type rules . 28
2.5.2 Environment . 29
2.5.3 Checking Expr . 30
2.5.4 Checking PatExpr . 35
2.5.5 Checking declarations . 37
2.5.6 Checking TyExpr . 39

2.6 Reporting program errors . 39
2.7 Tying it all together . 40

3 EH 2: monomorphic type inference 41
3.1 Type variables . 42
3.2 Constraints . 43

3.2.1 Remembering and applying constraints . 43
3.2.2 Computing constraints . 44

3.3 Reconstructing types for Expr . 46
3.4 Reconstructing types for PatExpr . 49
3.5 Declarations . 51
3.6 Partial type signatures: a test case for extendibility . 51

4 EH 3: polymorphic type inference 53
4.1 Type language . 55
4.2 Type inference . 56

4.2.1 Instantiation . 56
4.2.2 Quantification . 58
4.2.3 Generalization/quantification of inferred types 59
4.2.4 Type expressions . 61

5 EH 4: ∀ and ∃ everywhere 63

3

4 CONTENTS

5.1 Type language . 66
5.2 Fitting, subsumption . 67

5.2.1 Issues . 67
5.2.2 Implementation . 70

5.3 Instantiation . 75
5.4 Quantification . 76
5.5 Type inference . 79

5.5.1 Handling of tuples . 82
5.5.2 Declarations and options . 83
5.5.3 Type expressions . 83

References 84

Index 86

List of Figures

2.1 Abstract syntax for EH (without Expr) . 17
2.2 Parser combinators . 20
2.3 Pretty printing combinators . 23
2.4 Type checking for expression . 28
2.5 Rules for fit . 30
2.6 Type checking for expression (checking variant) . 31
2.7 Type checking for let-expression with pattern . 35
2.8 Building environments from patterns . 36

3.1 Type inferencing for expressions (using constraints) . 46
3.2 Type inferencing for pattern (using constraints) . 49

4.1 Type inferencing for expressions with quantifier ∀ . 57

5.1 Fitting/subsumption for type applications . 71
5.2 Fitting/subsumption for quantified types . 71
5.3 Quantifier location inferencing . 76
5.4 Quantifier location inferencing for types in a Gamma 77
5.5 Type checking/inferencing for expression . 80
5.6 Type checking/inferencing for pattern . 81

5

6 LIST OF FIGURES

Part I

Type checking, inference and
polymorphism

7

Chapter 1

Introduction and overview

Haskell98[25] is a complex language, not to mention its more experimental incarnations. Though
also intended as a research platform, realistic compilers for Haskell [1] have grown over the years
and understanding of and experimentation with those compilers is not an easy task. Experimentation
on a smaller scale usually is based upon relatively simple and restricted implementations [14], often
focussing only on a particular aspect of the language and/or its implementation. This paper aims at
walking somewhere between this complexity and simplicity by

• Describing the implementation of essential aspects of Haskell (or any other (functional) pro-
gramming language), hence the name Essential Haskell (EH) used for simplified variants of
Haskell1 in this paper.

• Describing these aspects separately in order to provide a better understanding.

• Adding these aspects on top of each other, each addition gives rise to a complete compiler for
a Haskell subset, finally leading to a compiler for full Haskell (and extensions).

• Using tools like the AG system, to allow for separate descriptions yet also to allow the creation
of working software based on these separate descriptions.

The following sections will expand on this by looking at the intentions and purpose of this paper
in more detail. This is followed by a short description of the final language for which we develop
compilers throughout this paper.

1.1 Purpose

For whom is this paper intended?

• For students who wish to learn more about the implementation of functional languages. This
paper also informally explains required theory, in particular theory about type systems.

• For researchers who want to build (e.g.) a prototype and to experiment with extensions to the
type system and need a non-trivial and realistic starting point. This paper provides documen-
tation, design rationales and an implementation for such a starting point.

• For those who wish to encounter a larger example of the tools used to build the compilers in
this paper. This paper uses the AG system [3] to separately describe aspects of the language im-
plementation, and parser combinators [33, 34] to compactly describe executable syntax. Other

1The ’E’ in EH might also be expanded to other aspects of the compiler, like being an Example

9

10 CHAPTER 1. INTRODUCTION AND OVERVIEW

tools for maintaining consistency between different versions of the resulting compilers and the
source code text included in this paper are also used but not discussed in here.

For this intended audience this paper provides

• A description of the implementation of a type checker/inferencer for an extended subset of
Haskell. Extended in the sense of allowing higher ranked polymorphism [26, 4, 22] and exis-
tentials [24, 19, 21]. A subset in the sense of (e.g.) leaving out the class system. However, it
is the intention of the authors to gradually extend the compiler towards the full functionality
offered by Haskell.

• A description of the semantics of Haskell, lying between the more formal [10, 9] and more
implementation oriented [15, 27] or similar to [28].

• A gradual instead of a big bang explanation. It should be noted however that gradual expla-
nation is different from gradual evolution; the former being based on a complete version, the
latter following a path to an at the time unknown final version.

• A somewhat informal proof of the belief that the complexity of a compiler can be managed by
splitting the implementation of the compiler into separate aspects.

• A working combination of otherwise usually separately proven or implemented features.

However, this paper does not provide

• Type theory or parsing theory as a subject on its own. This paper is intended to describe “how
to implement” and will use theory from that point of view. Theoretical aspects are touched
upon from a more intuitive point of view.

Although at occasions informally and concisely introduced where necessary, familiarity with the
following will make reading and understanding this paper easier

• Functional programming, in particular using Haskell

• Compiler construction in general

• Parser combinator library and AG system [3, 32]

• Type systems, λ-calculus

It is our belief and hope that by following this fine line between theory and its implementation, we
serve both who want to learn and those who want to do research are served. It is also our belief that
by splitting the big problem into smaller aspects the combination can be explained in an easier way.
Finally, we believe that this can only be accomplished if supported by proper tooling, currently the
AG system and a weaving system , and in the future perhaps by integrated environments [30].

In the following sections we give examples of the Haskell features present in the series of compilers
described in the following chapters. Only short examples are given, intended to get a feel for what is
explained in more detail and implemented in the relevant versions of the compiler.

1.2 A short tour

Though all compilers described in this paper deal with a different aspect, they all have in common
that they are based on the λ-calculus, most of the time using the syntax and semantics of Haskell. The
first version of our series of compilers therefore most closely resembles the λ-calculus, in particular
typed λ-calculus extended with let expressions and some basic types like Int, Char and tuples.

1.2. A SHORT TOUR 11

EH version 1: λ-calculus. An EH program is a single expression, contrary to a Haskell program
which consists of a set of declarations forming a module.

let i :: Int
i = 5

in i

All variables need to be typed explicitly, absence of an explicit type is considered to be an error. The
corresponding compiler (EH version 1, chapter 2) checks the explicit types against actual types. For
example:

let i :: Char
i = 5

in i

is not accepted.

Besides the basic types Int and Char, composite types can be formed by building tuples and defining
functions:

let id :: Int→ Int
id = λx→ x
fst :: (Int, Char) → Int
fst = λ(a, b) → a

in id 3

Functions accept one parameter only, which can be a pattern. Functions are not polymorphic (yet).

EH version 2: Explicit/implicit typing. The next version (EH version 2, chapter 3) allows the
explicitly specified types to be omitted. The consequently missing type information has to be inferred
by the compiler.

let i = 5
in i

will reconstruct the type specification i :: Int.

The reconstructed type information is monomorphic, for example for the identity function in

let id = λx→ x
in let v = id 3

in id

the type id :: Int→ Int will be reconstructed.

EH version 3: Polymorphism. The third version (EH version 3, chapter 4) performs standard
Hindley-Milner type inference [5, 6] which infers also parametric polymorphism. For example,

let id = λx→ x
in id 3

gives type id :: ∀ a.a→ a.

A type for a value can also be specified explicitly

let id :: a→ a
id = λx→ x

in id 3

The type signature is checked against the inferred type.

12 CHAPTER 1. INTRODUCTION AND OVERVIEW

EH version 4: Higher ranked types. Standard Hindley-Milner type inference cannot infer poly-
morphic parameters, so-called rank-2 (or even higher ranked) polymorphism. In general, this is a
hard if not impossible thing to do [13, 16, 17, 18], so the fourth version (EH version 4, chapter 5) does
not infer this type information but allows explicitly specified polymorphism for (e.g.) parameters.

For example, the following is allowed.

let f :: (∀ a.a→ a) → (Int, Char)
f = λi→ (i 3, i ’x’)

in f

Note that the type signature cannot be omitted here.

This version also provides some notational sugaring by allowing one to omit the explicit quantifiers
from the type signature. For example, if the ∀ in the previous example is omitted the correct location
for the quantifier is inferred, based on the occurrences of type variables in a type expression:

let f :: (a→ a) → (Int, Char)
f = λi→ (i 3, i ’x’)

in f

infers f :: (∀ a.a→ a) → (Int, Char)

Specifying a complete type signature can be difficult for complicated types, so it is permitted to leave
argument and results of a function unspecified using a partial type signature.

let id :: ...→ ...
id = λx→ x
f :: (a→ a) → ...
f = λi→ (i 3, i ’x’)

in f id

Only the part which cannot be inferred is given in the signature.

Finally, type information can be hidden, or encapsulated, by using existential quantification

let id :: ∀ a.a→ a
xy :: ∃ a.(a, a→ Int)
xy = (3, id)
ixy :: (∃ a.(a, a→ Int)) → Int
ixy = λ(v, f) → f v
xy′ = ixy xy
pq :: ∃ a.(a, a→ Int)
pq = (’x’, id) -- ERROR

in xy′

The value xy contains an Int and a function making an Int from the value of which the type has been
hidden. The extraction is done by function ixy. An attempt to construct pq fails.

When a value of an existentially quantified type is opened, that is, identifiers are bound to its com-
ponents, the hidden type becomes visible in the form of a fresh type constant. The explicit ∃ may
also be omitted, for example xy :: (a, a→ Int) is interpreted as xy :: ∃ a.(a, a→ Int).

1.3 Haskell language elements not described

The last compiler in the series of compilers in this paper still lacks many features available in Haskell.
Just to mention a few:

1.4. ABOUT THE PRESENTED CODE 13

• Binding group analysis

• Syntax directives like infix declarations

• Class system

• Modules [7, 31].

• Type synonyms

• Syntactic sugar for if, do, list notation and comprehension.

• Code generation

1.4 About the presented code

The fact that multiple versions of a compiler are described and are the basis of the story around
which the explanation has been woven brings some consequences

• Versions are built on top of each other. However, in practice this meant that the last version
was built and subsequently simplified to earlier versions. It is not the case that the versions
represent a timeline, a tale of how the different versions came into being. It also means that
all versions are dependent on each other and are designed as a whole. Any desired change in
the last version may imply a change in the first version. Metaphorically speaking, in order to
change the grown-up compiler you may have to tweak its childhood.

In an ideal situation this would not have been necessary; but it would be unfair if we did not
mention the work that went into getting the stepwise built-up compilers to work as neatly as
is does now.

• Since we do not only want to sketch the approach but want to present a complete compiler we
also have to deal with many non-interesting details. The complete compiler text can be found
on the website accompanying this paper [8].

14 CHAPTER 1. INTRODUCTION AND OVERVIEW

Chapter 2

EH 1: typed λ-calculus

In this section we will build the first version of our series of compilers: the typed λ-calculus packaged
in Haskell syntax in which all values need explicitly be given a type. The compiler checks if the
specified types are in agreement with actual value definitions. For example

let i :: Int
i = 5

in i

is accepted, whereas

let i :: Char
i = 5

in i

produces a pretty printed version of the erroneous program, annotated with errors.

let i :: Char
i = 5
{- ***ERROR(S):

In ‘5’:
Type clash:
failed to fit: Int <= Char
problem with : Int <= Char -}

{- [i:Char] -}
in i

Although the implementation of a type system will be the main focus of this section, any such imple-
mentation lives in co-existence with the complete environment/framework needed to build a com-
piler. Therefore, aspects conveniently omitted from subsequent sections, like parsing, connection
with the abstract syntax, the use of the AG system and error reporting will also be touched upon.

First we will start with the EH language elements implemented and how they correspond to abstract
syntax, followed by the translation done by parsing from concrete syntax to abstract syntax. Our first
aspect described using the AG notation will be a pretty printed representation of the abstract syntax
tree, reflecting the original input as closely as possible. The second aspect concerns type checking,
which involves several attributes for computing a type associated with certain parts of the abstract
syntax tree.

15

16 CONTENTS

2.1 Concrete and abstract syntax

The concrete syntax of a (programming) language describes the structure of acceptable sentences for
that language, or more down to earth, it describes what a compiler for that language accepts with
respect to the textual structure. On the other hand, abstract syntax describes the structure used by the
compiler itself for analysis and code generation. Translation from the more user friendly concrete
syntax to the machine friendly abstract syntax is done by a parser; from the abstract to the concrete
representation is done by a pretty printer.

Let us focus our attention on the abstract syntax for EH, in particular the part defining the structure
for expressions (the full syntax can be found in figure 2.1). A DATA definition is the analogue of a
Haskell data definition, used to define a piece of the abstract syntax.

EHAbsSyn
DATA Expr
| IConst int : {Int}
| CConst char : {Char}
| Con nm : {HsName}
| Var nm : {HsName}
| App func : Expr

arg : Expr
| Let decls : Decls

body : Expr
| Lam arg : PatExpr

body : Expr
| AppTop expr : Expr

The notation of the AG system is used to define an expression Expr to be a range of alternatives (or
productions); for example a single variable Var represents the occurrence of an identifier (referring to
a value introduced by a declaration), or App represents the application of a function to an argument.
The EH fragment

let ic @(i, c) = (5, ’x’)
id = λx→ x

in id i

is represented by the following piece of abstract syntax tree:

Expr_Let
Decls_Cons
Decl_Val
PatExpr_VarAs ic
PatExpr_AppTop
PatExpr_App
PatExpr_App
PatExpr_Con ,2
PatExpr_Var i

PatExpr_Var c
Expr_AppTop
Expr_App
Expr_App
Expr_Con ,2
Expr_IConst 5

Expr_CConst ’x’
Decls_Cons
Decl_Val

2.1. CONCRETE AND ABSTRACT SYNTAX 17

PatExpr_Var id
Expr_Lam
PatExpr_Var x
Expr_Var x

Decls_Nil
Expr_AppTop
Expr_App
Expr_Var id
Expr_Var i

Note that the program is incorrect for this version of EH because type signatures are missing.

DATA AGItf
| AGItf expr : Expr

DATA Decl
| TySig nm : {HsName}

tyExpr : TyExpr
| Val patExpr : PatExpr

expr : Expr
TYPE Decls = [Decl]
SET AllDecl = Decl Decls

DATA PatExpr
| IConst int : {Int}
| CConst char : {Char}
| Con nm : {HsName}
| Var nm : {HsName}
| VarAs nm : {HsName}

patExpr : PatExpr
| App func : PatExpr

arg : PatExpr
| AppTop patExpr : PatExpr

SET AllPatExpr = PatExpr

DATA TyExpr
| Con nm : {HsName}
| App func : TyExpr

arg : TyExpr
| AppTop tyExpr : TyExpr

SET AllTyExpr = TyExpr

SET AllExpr = Expr

SET AllNT = AllTyExpr AllDecl
AllPatExpr AllExpr

Figure 2.1: Abstract syntax for EH (without Expr)

18 CONTENTS

Looking at this example and the rest of the abstract syntax in figure 2.1 we can make several obser-
vations of what is allowed to notate in EH and what can be expected from the implementation.

• Applications (App) and constants (Con) occur in expressions (Expr), patterns (PatExpr) and type
expressions (TyExpr). This similarity is sometimes exploited to factor out common code, and, if
factoring out cannot be done, leads to similarities between pieces of code. This is the case with
pretty printing, which is quite similar for the different kinds of constructs.

• In the abstract syntax an alternative belongs to a nonterminal (or DATA), for example “App of
Expr”. On request the AG system generates corresponding Haskell data types with the same
name as the DATA defined, alternatives are mapped to constructors with the name of the
DATA combined with the name of the alternative, separated by . For example: Expr App. If
necessary, the same convention will be used when referring to an alternative1.

• Type signatures (Decl TySig) and value definitions (Decl Val) may be mixed freely. However,
type signatures and value definitions for the same identifier are still related. For this version of
EH, each identifier introduced by means of a value definition must have a corresponding type
signature specification.

• Because of the textual decoupling of value definitions and type signatures, a type signature
might specify the type for an identifier occurring inside a pattern:

let a :: Int
(a, b) = (3, 4)

in ...

Currently we do not allow for this, but the following is allowed:

let ab :: (Int, Int)
ab @(a, b) = (3, 4)

in ...

because the specified type for ab corresponds to the top of a pattern of a value definition.

• Composite values are created by tupling, denoted by (. . , . .). The same notation is also used
for patterns (for unpacking a composite value) and types (describing the structure of the com-
posite). In all these cases the corresponding structure consists of a Con applied to the elements
of the tuple. On the value level a Con stands for a value constructor, on the type level for a type
constructor. For now there is only one constructor: for tuples.

• The constructor for tuples also is the one which needs special treatment because it actually
stands for a infinite family of constructors. This can be seen in the encoding of the name of the
constructor which is composed of a "," together with the arity of the constructor. For example,
the expression (3, 4) is encoded as an application App of Con ",2" to the two Int arguments: (,2
3 4). In our examples we will follow the Haskell convention, in which we write (,) instead of 2,.

By using this encoding we get the unit type () for free as it is encoded by the name ",0".
We also can encode the tuple with one element which is for tuples themselves quite useless
as tuples have at least two elements. However, later on, in chapter 5 , this turns out to be
convenient. This and other naming conventions are available via the following definitions for
Haskell names HsName.

EHCommon
data HsName = HNm String

deriving (Eq, Ord)

instance Show HsName where
show (HNm s) = s

EHCommon
1In this way we overcome a problem in Haskell, where it is required that the constructors for all data types are different.

2.2. PARSING: FROM CONCRETE TO ABSTRACT (SYNTAX) 19

hsnArrow, hsnUnknown, hsnInt, hsnChar :: HsName
hsnArrow = HNm "->"
hsnUnknown = HNm "??"
hsnInt = HNm "Int"
hsnChar = HNm "Char"

hsnProd :: Int→ HsName
hsnProd i = HNm (’,’ : show i)
hsnIsArrow, hsnIsProd :: HsName→ Bool
hsnIsArrow hsn = hsn ≡ hsnArrow
hsnIsProd (HNm (’,’ :)) = True
hsnIsProd = False
hsnProdArity :: HsName→ Int
hsnProdArity (HNm (: ar)) = read ar

• Each application is wrapped on top with an AppTop. This has no meaning in itself but as we
will see in section 2.3 it simplifies the pretty printing of expressions.

• AGItf is the top of a complete abstract syntax tree. The top of an abstract syntax tree is the place
where interfacing (hence the convention Itf) with the outside, that is, the Haskell world takes
place. At AGItf

– Initialization of inherited attributes takes place.

– Synthesized attributes are routed back into the tree as inherited attributes.

– Synthesized attributes are passed to the outside, to the Haskell world.

It is a convention in this paper to give all nonterminals in the abstract syntax a name with AGItf
in it, if it plays a similar role.

• The remaining alternatives for the non-terminal Expr stand for their EH counterparts, for ex-
ample IConst for an Int constant, and Lam for a λ-expression.

• Groups of nonterminals may be given a name through the SET directive. For example, AllNT
(All NonTerminals) is the name for all nonterminals occurring in the abstract syntax. This
provides an indirection when referring to nonterminals in attribute definitions (ATTR). Later
compiler versions can change the definition for AllNT without the need to also modify the list
of nonterminals for which an attribute definition ATTR is declared.

2.2 Parsing: from concrete to abstract (syntax)

An abstract syntax tree is obtained as the result of parsing. The parser combinator library used
(see [32] and figure 2.2) to specify the parser for EH allows us to simultaneously define the syntac-
tic structure and the connection to the abstract syntax. For example, the parser for the simplest of
expressions

pExprBase = sem Expr IConst 〈$〉 pInt
〈|〉 sem Expr CConst 〈$〉 pChr
〈|〉 sem Expr Var 〈$〉 pVar
〈|〉 sem Expr Con 〈$〉 pCon
〈|〉 pParenProd exprAlg pExpr

recognises variables via pVarid. The parser pVarid is defined in a general purpose scanner library [32]
about which we will say no more than that it provides basic parsers tailored towards the recognition
of Haskell lexical elements. All parsers from this library return their result as a string, which can
conveniently be passed as an argument to the semantic function for a variable, sem Expr Var. This

20 CONTENTS

latter function is generated by the AG system form the attribute grammar. This is also the case for
the recognition of integer and character constants with the help appropriate helper functions that
convert the string returned by the scanner parsers pInteger and pChar respectively.

pChr = head 〈$〉 pChar
pInt = read 〈$〉 pInteger
pKeyw k = pKey (show k)
pCon = HNm 〈$〉 pConid
pVar = HNm 〈$〉 pVarid

The use of semantic functions deserves some closer inspection. For each of the alternatives of a non-
terminal the AG system generates a semantic function, that takes as argument the semantic functions
corresponding to its right hand side, and constructs a function mapping inherited to synthesized
attributes. The structure of such a function, that is, its type is similar to its related and also generated
datatype. Similar in the sense that both take their components as their first arguments. For example,
both Expr Var as a data constructor and sem Expr Var take a string as their first argument. It is this
similarity we exploit because we shortcut the usual two-step process of first creating the abstract
syntax structure and then applying the semantic function. Instead the semantic function is applied
immediately, without creating the intermediate structure. For all practical purposes, for now, this is
all we need in order to be able to use these functions (see also [35]).

Combinator Meaning Result
p 〈∗〉 q p followed by q result of p applied to result of q
p 〈|〉 q p or q result of p or result of q
pSucceed r empty input ε r
f 〈$〉 p ≡ pSucceed f 〈∗〉 p
pKey "x" symbol/keyword x "x"
p 〈∗∗〉 q p followed by q result of q applied to result of p
p ‘opt‘ r ≡ p 〈|〉 pSucceed r
p 〈??〉 q ≡ p 〈∗∗〉 q ‘opt‘ id
p 〈∗ q, p ∗〉 q, f 〈$ p variants throwing away re-

sult of angle missing side
pFoldr listAlg p sequence of p’s foldr c n (result of all p’s)
pList p pFoldr ((:), []) p
pChainr s p p’s (>1) separated by s’s result of s’s applied to results of p’s aside

Figure 2.2: Parser combinators

From pExprBase the parser pExpr for the more complex expressions is built.
EHParser

exprAlg = (sem Expr Con, sem Expr App
, sem Expr AppTop)

pExpr = pExprPrefix 〈∗〉 pExpr
〈|〉 pExprApp

pExprPrefix = sem Expr Let 〈$ pKey "let"
〈∗〉 pDecls 〈∗ pKey "in"

〈|〉 sem Expr Lam 〈$ pKey "\\"
〈∗〉 pPatExprBase 〈∗ pKey "->"

pExprApp = pApp exprAlg pExprBase

An application pExprApp is a juxtapositioning of a non empty series of pExprBase’s. A pExprApp
itself can be prefixed with parsers making the expression into a let- or λ-expression. The parser
pExprPrefix which recognizes this prefix and returns a function doing this prefixing in terms of the
abstract syntax. The result of pExprPrefix is a function and can therefore be applied immediately to
pExprApp by the sequencing combinator 〈∗〉 .

2.2. PARSING: FROM CONCRETE TO ABSTRACT (SYNTAX) 21

Parser pExprApp is defined in terms of an algebra exprAlg and an abstract parser recognising appli-
cations

pApp alg p = mkApp alg 〈$〉 pList1 p

First, let us look at the algebra exprAlg, again referring to Swierstra [35] for a more thorough treat-
ment. The abstract syntax of EH (see figure 2.1, page 17) has Con, App and AppTop alternatives for
Expr, TyExpr and PatExpr. For all three kinds of expressions an application f x y maps to the same
structure AppTop (App (App f x) y), where for a 2-tuple pattern f ≡ Con ",2", and for a function
type f ≡ Con "->" (representing x → y). The Con, App and AppTop depend on the particular kind of
expression. The following function mkApp does this job of creating the application given a list of ele-
ments (here [f,x,y]) to make the application from, and the specific variants for Con, App and AppTop.
Note that no AppTop is placed around a singleton list as this is not an application and the function
mkApp is not used on an empty list.

EHCommon

type MkConAppAlg t = (HsName→ t, t→ t→ t, t→ t)
mkApp :: MkConAppAlg t→ [t] → t
mkApp (, app, top) ts

= case ts of
[t] → t
→ top (foldl1 app ts)

EHCommon

mkArrow :: MkConAppAlg t→ t→ t→ t
mkArrow alg @(con, ,) a r = mkApp alg [con hsnArrow, a, r]

EHCommon

mkConApp :: MkConAppAlg t→ HsName→ [t] → t
mkConApp alg @(con, ,) c ts = mkApp alg (con c : ts)

EHCommon

mkProdApp :: MkConAppAlg t→ [t] → t
mkProdApp alg ts = mkConApp alg (hsnProd (length ts)) ts

It is precisely the group of functions specifying what should be done for Con, App and AppTop which
is called an algebra.

The algebra is also used in the parser pParenProd recognising either a unit (), parentheses (pE) around
a more elementary parser pE or a tuple (pE, pE, ...) of elements pE.

pParenProd alg pE
= pParens pP

where
pP = mkProdApp alg 〈$〉 pSucceed []
〈|〉 pE
〈??〉 ((λes e→ mkProdApp alg (e : es))
〈$〉 pList1 (pComma ∗〉 pE)
)

The definition for pParenProd quite literally follows this enumeration of alternatives, where in case
of parentheses around a single pE the parentheses do not carry any semantic meaning. Note that the
parser is in a left factorized form in order to make parsing take linear time.

The parsers for patterns and type expressions also use these abstractions, for example, the parser for
type expressions

tyExprAlg = (sem TyExpr Con, sem TyExpr App
, sem TyExpr AppTop)

pTyExprBase = sem TyExpr Con 〈$〉 pCon
〈|〉 pParenProd tyExprAlg pTyExpr

pTyExpr = pChainr
(mkArrow tyExprAlg 〈$ pKeyw hsnArrow)

22 CONTENTS

pTyExprBase

defines a tyExprAlg to be used to recognise parenthesized and tupled type expressions. The parser
for pTyExpr uses pChainr to recognise a list of more elementary types separated by→.

The parser for patterns is because of its similarity with the previous expression parsers given without
further explanation

patExprAlg = (sem PatExpr Con, sem PatExpr App, sem PatExpr AppTop)
pPatExpr = pApp patExprAlg pPatExprBase

pPatExprBase = pVar 〈∗∗〉 (flip sem PatExpr VarAs 〈$ pKey "@" 〈∗〉 pPatExprBase
〈|〉 pSucceed sem PatExpr Var
)

〈|〉 sem PatExpr Con 〈$〉 pCon
〈|〉 pParenProd patExprAlg pPatExpr

Finally, the parsers for the program itself and declarations should have few surprises by now, except
for the use of pBlock recognising a list of more elementary parsers where the offside rule of Haskell is
used. We will not look at this any further.

pDecls = foldr sem Decls Cons sem Decls Nil
〈$〉 pBlock pOCurly pSemi pCCurly pDecl

pDecl = sem Decl Val 〈$〉 pPatExprBase 〈∗ pKey "=" 〈∗〉 pExpr
〈|〉 sem Decl TySig 〈$〉 pVar 〈∗ pKey "::" 〈∗〉 pTyExpr

pAGItf = sem AGItf AGItf 〈$〉 pExpr

Once all parsing results are passed to semantic functions we enter the world of attributes as offered
by the AG system. The machinery for making the compiler actually producing some output is not
explained here but can be found in the sources. From this point onwards we will forget about that
and just look at computations performed on the abstract syntax tree through the separate views as
provided by the AG system.

2.3 Pretty printing: from abstract to concrete

The first aspect we define is pp that constructs the pretty printed representation for the abstract syntax
tree, starting with the definition for Expr

EHPretty

ATTR AllNT AGItf [|| pp USE{>−<}{empty} : PP Doc]

SEM Expr
| IConst loc.pp = pp (show @int)
| CConst loc.pp = pp (show @char)
| Var loc.pp = pp @nm
| Con loc.pp = ppCon @nm
| Let loc.pp = "let"

>#< (@decls.pp >−< @ppExtra)
>−< @errDeclsPP
>−< "in" >#< @body.pp
>−< @errBodyPP

.ppExtra = ppCmt (ppGam @lValGam)
| App loc.pp = pp parens @func.pp

>#< pp parens @arg.pp
EHPretty

| AppTop loc.pp = ppParNeed @parNeed @lhs.parNeed
(ppAppTop (@expr.appFunNm, @expr.appFunPP)

2.3. PRETTY PRINTING: FROM ABSTRACT TO CONCRETE 23

@expr.appArgPPL)
| Lam loc.pp = ppParNeed ParNeeded @lhs.parNeed

("\\" >‖< @arg.pp >#< "->" >#< @body.pp)

The pp attribute is defined (via ATTR) as a synthesized (because after the two |) attribute for all
nonterminals of the abstract syntax. This output attribute will also be passed to “the outside world”
(because it is also defined for AGItf). If a rule for pp for an alternative of a nonterminal is missing,
the default definition is based on USE which provides a default value for alternatives without non-
terminals as children (here: empty) and a function used to compose new values based on the values
of the children (here: >−<).

Combinator Result
p1 >‖< p2 p1 besides p2, p2 at the right
p1 >#< p2 same as >‖< but with an additional space in between
p1 >−< p2 p1 above p2
pp parens p p inside parentheses
text s string s as PP Doc
pp x pretty print x (assuming instance PP x) resulting in a PP Doc

Figure 2.3: Pretty printing combinators

The computation of the pp attribute is straightforward in the sense that only a few basic combinators
are needed (see [32] and figure 2.3). The additional complexity arises from

• The encoding for applications. Straightforward printing prints as (2, 3) as , 2 2 3.

• Avoiding unnecessary parentheses. Without parentheses ‘f (f 2 (3, 4)) 5’ would print as
‘f f 2 (3, 4) 5’ whereas incorporation of explicit parentheses to clarify the priority of all ap-
plications, would print as ‘(f (f (2) (((3), (4)))) (5))’.

The first problem is solved at the AppTop alternative by gathering all arguments (here: [2, 3]) for a
function (here: tuple constructor , 2, or (,)) into appArgPPL:

EHPretty
ATTR Expr [|| appFunNm : {HsName} appFunPP : PP Doc appArgPPL : PP DocL]

SEM Expr
| Con lhs.appFunNm = @nm
| App lhs.appFunNm = @func.appFunNm

.appArgPPL = @func.appArgPPL ++ [@arg.pp]

.appFunPP = @func.appFunPP
| Var AppTop IConst CConst Lam

lhs.appFunNm = hsnUnknown
| Var Con AppTop IConst CConst Lam

lhs.appArgPPL = []
| Var Con AppTop IConst CConst Lam

lhs.appFunPP = @pp

The appArgPPL and the two other required attributes appFunNm for the name and appFunPP for the
pretty printing of the function which is applied all are used to gather information from deeper within
the syntax tree for further processing higher up in the tree by ppAppTop

EHCommon
ppAppTop :: PP arg⇒ (HsName, arg) → [arg] → PP Doc
ppAppTop (conNm, con) args

= if hsnIsArrow conNm then ppListSep "" "" (" "++ show hsnArrow ++ " ") args
else if hsnIsProd conNm then ppListSep "(" ")" "," args

else ppListSep "" "" " " (con : args)
EHCommon

24 CONTENTS

type PP DocL = [PP Doc]

ppListSep :: (PP s, PP c, PP o, PP a) ⇒ o→ c→ s→ [a] → PP Doc
ppListSep o c s pps = o >‖< hlist (intersperse (pp s) (map pp pps)) >‖< c
ppCon :: HsName→ PP Doc
ppCon nm = if hsnIsProd nm

then pp parens (text (replicate (hsnProdArity nm− 1) ’,’))
else pp nm

ppCmt :: PP Doc→ PP Doc
ppCmt p = "{-" >#< p >#< "-}"

Additionally, because the pretty printing with non-optimally placed parentheses resembles the struc-
ture of the abstract syntax tree more, this variant still is computed for the App and Con alternative
in a local pp attribute. This pp value is used for producing error messages (see section 2.6), but not
for the computation of pp at the AppTop alternative. For the App alternative parentheses are placed
without consideration if this is necessary and the Con alternative prints (via ppCpn) the constructor
following the Haskell convention.

The second problem, avoiding unnecessary parentheses, is solved by passing the need for paren-
theses as contextual information using the inherited attribute parNeed. However, as this part is not
necessary for understanding the implementation of a type system it can safely be skipped.

EHPretty

ATTR Expr [parNeed : ParNeed parNeedL : ParNeedL ||]
SEM Expr
| App (arg.parNeed, func.parNeedL) = hdAndTl @lhs.parNeedL
| Lam body.parNeed = ParNotNeeded
| AppTop (loc.parNeed, expr.parNeed, expr.parNeedL)

= parNeedApp @expr.appFunNm
SEM Decl
| Val expr .parNeed = ParNotNeeded

.parNeedL = []

SEM AGItf
| AGItf expr .parNeed = ParNotNeeded

.parNeedL = []

together with supporting Haskell definitions
EHCommon

data ParNeed = ParNotNeeded | ParNeededLow | ParNeeded | ParNeededHigh | ParOverrideNeeded
deriving (Eq, Ord)

type ParNeedL = [ParNeed]

parNeedApp :: HsName→ (ParNeed, ParNeed, ParNeedL)
parNeedApp conNm

= let pr | hsnIsArrow conNm = (ParNeededLow, ParNotNeeded, [ParNotNeeded, ParNeeded])
| hsnIsProd conNm = (ParOverrideNeeded, ParNotNeeded, repeat ParNotNeeded)
| otherwise = (ParNeeded, ParNeededHigh, repeat ParNeededHigh)

in pr
ppParNeed :: PP p⇒ ParNeed→ ParNeed→ p→ PP Doc
ppParNeed locNeed globNeed p

= par (pp p)
where par = if globNeed > locNeed then pp parens else id

The idea here is that an Expr and its context jointly determine whether parentheses are needed. This
need is encoded in ParNeed, the contextual need is passed to ppParNeed as the parameter globNeed and
the local need as locNeed. In ppParNeed parentheses are added if the contextual need is higher than
the local need. For example, at AppTop the printing of a tuple always adds parentheses via function

2.4. TYPES 25

ppAppTop, so no additional parentheses are needed. This is reflected in the result of parNeedApp
which tells us that for a product locally never (encoded by ParOverrideNeeded, first element of result
3-tuple) additional parentheses are needed, and for the function part of the application (which is
useless here since it is meant for the product constructor) and its arguments in principle not (encode
by ParNotNeeded, second element of result tuple). The list (third element of result tuple) is meant for
the arguments of the application.

A few observations are in place here

• This mechanism may look slightly overcomplicated but is also used for patterns, type expres-
sions and -later on- types too. In the case of types it is also necessary to take the right associa-
tivity of→ into account.

• The structure of the solution, that is, gather information bottom to top (e.g. appArgPPL) and
use it higher up in the tree, is a recurring pattern. The other way around, for example parNeedL
distributing the need for parentheses over the arguments of an application, is also a recurring
pattern.

• The pretty printed output is also merged with additional information, for example error mes-
sages and the binding of identifiers to types are also printed.

We will not look any further into these details as the code for patterns and type expressions is almost
an exact replica of the code for expressions. The rest of the pp related attribute computations are also
omitted as they are rather straightforward uses of >‖< and >−<.

2.4 Types

We will now turn our attention towards the way a type system is incorporated into EH. As we are
focussed more on implementation than theory, our point of view is a more pragmatic one in that a
type system is an aid or tool for program analysis and a way to ensure specific desirable properties
of a program.

2.4.1 What is a type

A type is a description of the interpretation of a value where value has to read here as a bitpattern.
This means in particular that machine operations such as integer addition, are only applied to pat-
terns that are to be interpreted as integers. The flow of values, that is, the copying between memory
locations, through the execution of a program may only be such that the a copy is allowed only if the
types of source and destination relate to each other in some proper fashion: a value from a source
must fit in a destination. If we copy or move a bit patterns it keeps its interpretation. This is to
prevent unintended use of bitpatterns, which might likely lead to the crash of a program.

A compiler uses a type system to analyse this flow and to make sure that built-in functions are only
applied to patterns that they are intended to work on. The idea is that if a compiler cannot find an
erroneous flow of values, with the notion of erroneous defined by the type system, the program is
guaranteed not to crash because of unintended use of bitpatterns.

In this section we start by introducing a type language: in a more formal setting for use in typing
rules, and in a more practical setting using the AG system, that gives us an implementation too. In
the following section we discuss the typing rules, the mechanism for enforcing the fitting of types and
the checking itself. Types will be introduced informally and from a practical point of view instead of
a more formal approach [36, 37, 28, 2].

Types are described using a type language. Our initial type language, for this first version of EH,
allows some basic types and two forms of composite types, functions and tuples. A type σ can be

26 CONTENTS

σ = Int | Char
| (σ, ..., σ)
| σ → σ

Actually, the following definition is close to the one used by the implementation

σ = Int | Char |→|, |, , | ...
| σ σ

This definition also introduces the possibility of describing types like Int Int. This being rather mean-
ingless the first version is to be preferred We nevertheless use the second one since it is used by the
implementation of later versions of EH. Here we just have to make sure no types like Int Int are
created.

The corresponding encoding using AG notation differs in the presence of an Any type. This type is
also denoted by>⊥ to indicate that it takes the role of⊥ as well as> usually present in type languages.

EHTyAbsSyn
DATA TyAGItf
| AGItf ty : Ty

DATA Ty
| Con nm : {HsName}
| App func : Ty

arg : Ty
| Any

No AppTop alternative is present since we want to keep this definition as simple as possible. Not
only will we define attributions for Ty, but we will also use it to define plain Haskell values of the
corresponding Haskell data type.

2.4.2 Type pretty printing

As before, TyAGItf is the place where interfacing with the Haskell world takes place. The AG system
also introduces proper data types to be used in the Haskell world, the following is the data type as
generated by the AG system:

-- Ty ----------------------------
data Ty = Ty_Any

| Ty_App (Ty) (Ty)
| Ty_Con (String)
deriving (Eq,Show)

-- TyAGItf -----------------------
data TyAGItf = TyAGItf_AGItf (Ty)

deriving (Eq,Show)

This allows us to create types as plain Haskell values, and to define functionality in the AG world
which is subsequently applied to types represented by Haskell data type values. As an demonstra-
tion of how this is done, pretty printing is used once again. Using the same design and tools as used
for pretty printing Expr (and pattern/type expressions) abstract syntax we can define pretty printing
for a type:

EHTyPretty
ATTR TyAGItf Ty [|| pp : PP Doc]

SEM Ty
| Con loc.pp = ppCon @nm
| App loc.pp = if @isSpineRoot

2.5. CHECKING TYPES 27

then ppParNeed @parNeed @lhs.parNeed
(ppAppTop (@appFunNm, @appFunPP) @appArgPPL)

else @func.pp >#< pp parens @arg.pp
| Any loc.pp = pp hsnUnknown

Some additional attributes are necessary to determine whether an App is at the top of the spine of
App’s

EHTyCommonAG

ATTR Ty [|| appFunNm : HsName]

SEM Ty
| Con lhs.appFunNm = @nm
| App loc.appFunNm = @func.appFunNm
| Any lhs.appFunNm = hsnUnknown

EHTyCommonAG

ATTR Ty [appSpinePos : Int ||]
SEM TyAGItf
| AGItf ty .appSpinePos = 0

SEM Ty
| App func.appSpinePos = @lhs.appSpinePos + 1

arg .appSpinePos = 0
loc .isSpineRoot = @lhs.appSpinePos ≡ 0

The remaining part, that is, finding out if and where parentheses are needed is similar to the way
this was done before and is therefore omitted. What remains, is the way the functionality is made
available to the Haskell world:

EHTyPretty

ppTy :: Ty→ PP Doc
ppTy ty

= let t = wrap TyAGItf
(sem TyAGItf (TyAGItf AGItf ty))
Inh TyAGItf

in pp Syn TyAGItf t

To make this work, we need to tell the AG system to generate a wrapper function and datatypes
Inh TyAGItf and Syn TyAGItf with selector functions for defined attributes to pass inherited and
synthesized attributes respectively:

EHTyPretty

WRAPPER TyAGItf

In the code that is generated by the AG system inherited attributes become function arguments and
synthesized attributes components of a cartesian product; in both cases they are identified by posi-
tion. This makes interfacing to the Haskell world cumbersome. In order to overcome these problems
so-called wrapper functions can be generated, which make it possible to access result e.g. by us-
ing functions generated acoording to a fixed naming convention. An example of such a fuction is
pp Syn TyAGItf , which when applied to t accesses the synthesized pp attribute at an attributed non-
terminal t of type TyAGItf .

2.5 Checking types

The type system of a programming language is usually described by typing rules. A typing rule

• Relates language constructs to types.

• Constrains the types of these language constructs.

28 CONTENTS

2.5.1 Type rules

For example, the following is the typing rule (taken from figure 2.4) for function application

Γ
expr
` e2 : σa

Γ
expr
` e1 : σa → σ

Γ
expr
` e1 e2 : σ

(e-app1)

It states that an application of e1 to e2 has type σ provided that the argument has type σa and the
function has a type σa → σ.

Γ
expr
` e : σ

Γ
expr
` e2 : σa

Γ
expr
` e1 : σa → σ

Γ
expr
` e1 e2 : σ

(e-app1)
[i 7→ σi] ++ Γ

expr
` e : σe

Γ
expr
` λi→ e : σi → σe

(e-lam1)

Γ
expr
` e2 : σ2

Γ
expr
` e1 : σ1

Γ
expr
` (e1, e2) : (σ1, σ2)

(e-prod1)

[i 7→ σi] ++ Γ
expr
` ei : σi

[i 7→ σi] ++ Γ
expr
` e : σe

Γ
expr
` let i :: σi; i = eiin e : σe

(e-let1)

(i 7→ σ) ∈ Γ

Γ
expr
` i : σ

(e-ident1)
Γ

expr
` minint . . maxint : Int

(e-int1)

Figure 2.4: Type checking for expression

All rules we will use are of the form

prerequisite1
prerequisite2

...

consequence
(rule-name)

with the meaning that if all prerequisitei can be proven we may conclude the consequence.

A prerequisite can take the form of any logical predicate or has a more structured form called a judge-
ment:

context
judgetype
` construct : property more results

This reads as

In the interpretation judgetype the construct has property property assuming context and
with optional additional more results.

2.5. CHECKING TYPES 29

Although the rule formally are to be interpreted purely equationally it may help to realise that from
an implementors point of view this (more or less) corresponds to an implementation template, either
in the form of a function

judgetype = λconstruct→
λcontext→ ...(property, more results)

or a piece of AG

ATTR judgetype [context : ... ||
property : ...more results : ...]

SEM judgetype
| construct

lhs.(property, more results) = ... @lhs.context ...

Typing rules and these templates for implementation however differ in that an implementation pre-
scribes the order in which the computation for a property takes place, whereas a typing rule simply
postulates relationships between parts of a rule without specifiying how this should be enforced or
computed. If it benefits clarity of explanation, typing rules presented throughout this paper will be
more explicit in the flow of information so as to be closer to the corresponding implementation.

2.5.2 Environment

The rules in figure 2.4 also refer to Γ, often called assumptions, the environment or a context because
it provides information about what may be assumed about, say, identifiers. Identifiers are distin-
guished on the case of the first character, capitalized I’s starting with an uppercase, uncapitalized i’s
otherwise

ξ = i
| I

Type constants use capitalized identifiers I for their names, whereas for identifiers bound to an ex-
pression in a let-expression we will use lower case identifiers such as i.

An environment Γ is a set of bindings notated as a list

Γ = [ξ 7→ σ]

Because we assume the reader to be familiar with Haskell we will also use Haskell operators like
concatenation ++ on lists in our type rules. We also make use of other behavior of lists, for example
when looking up something in a Γ. If two definitions for one identifier are present the first one will be
taken, therefore effectively shadowing the second. Only when the list notation becomes cumbersome
a vector notation · will be used instead.

A list structure is enough to encode the presence of an identifier in a Γ, but it cannot be used to detect
multiple occurrences caused by duplicate introductions. In the AG implementation a stack of lists is
used instead

EHCommon
type AssocL k v = [(k, v)]

EHGam
newtype Gam k v = Gam [AssocL k v]

emptyGam :: Gam k v
gamLookup :: Eq k⇒ k→ Gam k v→ Maybe v
gamPushNew :: Gam k v → Gam k v
gamPushGam :: Gam k v → Gam k v→ Gam k v
gamAdd :: k→ v → Gam k v→ Gam k v

EHGam

30 CONTENTS

emptyGam = Gam [[]]
gamLookup k (Gam ll) = foldr (λl mv→ maybe mv Just (lookup k l)) Nothing ll
gamPushNew (Gam ll) = Gam ([] : ll)
gamPushGam g1 (Gam ll2) = Gam (gamToAssocL g1 : ll2)
gamAdd k v = gamAddGam (k 7→ v)

Entering and leaving a scope is implemented by means of pushing and popping a Γ. Additions to a
Γ will take place on the top of the stack only. A gamUnit used as an infix operator will print as 7→.

A specialization ValGam of Gam is used to store and lookup the type of value identifiers.
EHGam

data ValGamInfo = ValGamInfo{vgiTy :: Ty} deriving Show
type ValGam = Gam HsName ValGamInfo

EHGam

valGamLookup :: HsName→ ValGam→ Maybe ValGamInfo
valGamLookup = gamLookup

Later on the variant valGamLookup will do some additional work, for now it does not differ from
gamLookup.

2.5.3 Checking Expr

The rules in figure 2.4 do not provide much information about how the type σ in the consequence of
a rule is to be computed; it is just stated that it should relate in some way to other types. However,
type information can be made available to parts of the abstract syntax tree either because the pro-
grammer has supplied it somewhere or because the compiler can reconstruct it. For types given by a
programmer the compiler has to check if such a type indeed correctly describes the value for which
the type is given. This is called type checking. If no type information has been given for a value the
compiler needs to reconstruct or infer this type based on the structure of the abstract syntax tree and
the semantics of the language as defined by the typing rules. This is called type inference. Here we
deal with type checking, the next version of EH (section 3) deals with type inference.

fit
` σl 6 σr : σ

fit
` σa

2 6 σa
1 : σa

fit
` σr

1 6 σr
2 : σr

fit
` σa

1 → σr
1 6 σa

2 → σr
2 : σa → σr

(f-arrow1)

fit
` σl

1 6 σl
2 : σl

fit
` σr

1 6 σr
2 : σr

fit
` (σl

1, σr
1) 6 (σl

2, σr
2) : (σl, σr)

(f-prod1)

I1 ≡ I2
fit
` I1 6 I2 : I2

(f-con1)

fit
` >⊥ 6 σ2 : σ2

(f-any-l1)
fit
` σ1 6 >⊥ : σ1

(f-any-r1)

Figure 2.5: Rules for fit

2.5. CHECKING TYPES 31

Γ, σk
expr
` e : σ

Γ, σa
expr
` e2 :

Γ,>⊥ → σk
expr
` e1 : σa → σ

Γ, σk
expr
` e1 e2 : σ

(e-app1B)
[i 7→ σi] ++ Γ, σr

expr
` e : σe

Γ, σi → σr
expr
` λi→ e : σi → σe

(e-lam1B)

Γ, σk
2

expr
` e2 : σ2

Γ, σk
1

expr
` e1 : σ1

Γ, (σk
1 , σk

2)
expr
` (e1, e2) : (σ1, σ2)

(e-prod1B)

[i 7→ σi] ++ Γ, σi
expr
` ei :

[i 7→ σi] ++ Γ, σk
expr
` e : σe

Γ, σk
expr
` let i :: σi; i = eiin e : σe

(e-let1B)

(i 7→ σi) ∈ Γ
fit
` σi 6 σk : σ

Γ, σk
expr
` i : σ

(e-ident1B)

fit
` Int 6 σk : σ

Γ, σk
expr
` minint . . maxint : σ

(e-int1B)

Figure 2.6: Type checking for expression (checking variant)

We now can tailor the type rules in figure 2.4 towards an implementation which performs type check-
ing, in figure 2.6. The rules now take an additional context, the expected (or known) type σk (attribute
knTy) as specified by the programmer. An additional type of judgement fit (figure 2.5) is needed to
check an actual type against a known type. For example, the rule e-int1B checks that its actual Int
type matches the known type σk. Both the definition of σk in terms of AG

EHInferExpr

ATTR Expr [knTy : Ty ||]

initialized on top by
EHInferExpr

SEM AGItf
| AGItf expr.knTy = Ty Any

and the implementation of the type rule e-int1B
EHInferExpr

ATTR Expr [|| ty : Ty]

SEM Expr
| CConst loc.fTy = tyChar
| IConst loc.fTy = tyInt
| IConst CConst

loc.fo = @fTy 6 @lhs.knTy
.ty = foTy @fo

correspond one-to-one to their formal counterpart together with definitions for type constants
EHTy

tyInt = Ty Con hsnInt
tyChar = Ty Con hsnChar

The local attribute fTy (by convention) contains the type as computed on the basis of the abstract
syntax tree. This type fTy is then compared to the expected type lhs.knTy via the implementation

32 CONTENTS

fitsIn of the rules for fit/6. In infix notation fitsIn prints as 6. fitsIn returns a FIOut (fitsIn output)
datastructure from which the resulting type can be retrieved by using the accessor function foTy. The
split into separate attributes has been made in this way so later redefinitions of fTy can be made
independently of the definition for fo.

The Haskell counterpart of
f it
` σ1 6 σ2 : σ is implemented by fitsIn. The function fitsIn checks if a

value of type σ1 can flow (that is, stored) into a memory location of type σ2. This is an asymmetric
relation because “a value flowing into a location” does not imply that it can flow the other way
around, so 6, or fitsIn conceptually has a direction, even though the following implementation in
essence is a test on equality of types.

The rule f-arrow1 in figure 2.5 for comparing function types compares the types for arguments in the
other direction relative to the function type itself. Only in section 5.2, page 67 when6 really behaves
asymmetrically we will discuss this aspect of the rules which is named contravariance. In the rules in
figure 2.5 the direction makes no difference; the correct use of the direction for now only anticipates
issues yet to come.

EHTyFitsIn
data FIOut = FIOut{ foTy :: Ty , foErrL :: ErrL}
emptyFO = FIOut{ foTy = Ty Any, foErrL = [] }

EHTyFitsIn
foHasErrs :: FIOut→ Bool
foHasErrs = ¬.null.foErrL

EHTyFitsIn
fitsIn :: Ty→ Ty→ FIOut
fitsIn ty1 ty2

= u ty1 ty2
where

res t = emptyFO{ foTy = t}
u Ty Any t2 = res t2
u t1 Ty Any = res t1
u t1 @(Ty Con s1)

t2 @(Ty Con s2)
| s1 ≡ s2 = res t2

EHTyFitsIn
u t1 @(Ty App (Ty App (Ty Con c1) ta1) tr1)

t2 @(Ty App (Ty App (Ty Con c2) ta2) tr2)
| hsnIsArrow c1 ∧ c1 ≡ c2
= comp ta2 tr1 ta1 tr2 (λa r→ [a] ‘mkTyArrow‘ r)

u t1 @(Ty App tf 1 ta1)
t2 @(Ty App tf 2 ta2)

= comp tf 1 ta1 tf 2 ta2 Ty App
u t1 t2 = err [Err UnifyClash ty1 ty2 t1 t2]
err e = emptyFO{ foErrL = e}
comp tf 1 ta1 tf 2 ta2 mkComp

= foldr1 (λfo1 fo2 → if foHasErrs fo1 then fo1 else fo2)
[ffo, afo, res rt]

where ffo = u tf 1 tf 2
afo = u ta1 ta2
rt = mkComp (foTy ffo) (foTy afo)

The function fitsIn checks if the Ty App structure and all type constants Ty Con are equal. If not, a
non-empty list of errors will be returned as well as type Ty Any (Any/>⊥).

The constant Ty Any denoted by Any/>⊥ plays two roles

• Ty Any plays the role of ⊥when it occurs at the lhs of >⊥ 6 σ because it is returned as the result
of an erroneous condition signaled by a previous fitsIn. It represents a value which never can

2.5. CHECKING TYPES 33

or may be used. In that case it does not matter how it will be used because an error already has
occurred.

• Ty Any plays the role of > when it occurs at the rhs of σ 6 ⊥. This happens when nothing is
known about the type of the memory location a value will be put in. In that case we conclude
that that location has type σ. This is the case for rule e-app1 where we cannot determine what
the expected type for the argument of the function in the application is.

Ty Any represents “don’t care” and “don’t know” respectively. Even if a correspondence with >
and ⊥ from type theory is outlined, one should be aware that Ty Any is used to smoothen the type
checking, and is not meant to be a (new) type theoretic value.

The type rules leave in the open how to handle a situation when a required constraint is broken. For
a compiler this is not good enough, being the reason fitsIn gives a “will-do” type Any back together
with an error for later processing (in section 2.6). Errors themselves are also described via AG

EHErrorAbsSyn
DATA Err
| UnifyClash ty1 : Ty ty2 : Ty

ty1detail : Ty ty2detail : Ty
| NamesNotIntrod nmL : { [HsName]}

The Error datatype is available as a datatype in the same way a Ty is. The error datatype is also used
for signalling undeclared identifiers:

EHInferExpr
SEM Expr
| Var loc.(gTy, nmErrs)

= case valGamLookup @nm @lhs.valGam of
Nothing→ (Ty Any

, [Err NamesNotIntrod [@nm]])
Just vgi → (vgiTy vgi, [])

.fTy = @gTy

.fo = @fTy 6 @lhs.knTy

.ty = foTy @fo

Again, the error condition is signalled by a non empty list of errors if a lookup in the Γ fails.

Typing rule e-ident1B uses the environment Γ to retrieve the type of an identifier. This environment
valGam for types of identifiers simply is declared as an inherited attribute, initialized at the top of the
abstrcat syntax tree. The update with bindings for identifiers will be dealt with later.

EHInfer
ATTR AllDecl AllExpr [valGam : ValGam ||]
SEM AGItf
| AGItf expr.valGam = emptyGam

One may wonder why the judgement
f it
` σ1 6 σ2 : σ and its implementation fitsIn do return a type

at all. For the idea of checking was to only pass explicit type information σk (or knTy) from the top
of the abstract syntax tree to the leaf nodes. However, this idea breaks when we try to check the
expression id 3 in

let id :: Int→ Int
id = λx→ x

in id 3

Application App. What is the knTy against which 3 will be checked? It is the argument type of
the type of id. However, in rule e-app1B and its AG implementation, the type of id is not the (top-to-
bottom) σk (or knTy), but will be the argument of the (bottom-to-top) resulting type of e1 (or @func.ty)

EHInferExpr
SEM Expr

34 CONTENTS

| App loc .knFunTy = [Ty Any] ‘mkTyArrow‘ @lhs.knTy
func.knTy = @knFunTy
(arg.knTy, loc.fTy) = tyArrowArgRes @func.ty
loc .ty = @fTy

The idea here is to encode as >⊥ → σk (passed to func.knTy) the partially known function type and
let fitsIn fill in the missing details, that is find a type for >⊥. From that result the known/expected
type of the argument can be extracted. For this to work, some additional convenience functions for
constructing a type and deconstructing it are required.

EHTy

algTy :: MkConAppAlg Ty
algTy = (Ty Con, Ty App, id)

mkTyArrow :: TyL→ Ty→ Ty
mkTyArrow = let mk = mkArrow algTy in flip (foldr mk)
mkTyApp :: TyL→ Ty
mkTyApp = mkApp algTy
mkTyConApp :: HsName→ TyL→ Ty
mkTyConApp = mkConApp algTy

EHTy

mkTyProdApp :: TyL→ Ty
mkTyProdApp = mkProdApp algTy

EHTy

tyArrowArgRes :: Ty→ (Ty, Ty)
tyArrowArgsRes :: Ty→ (TyL, Ty)
tyAppFunArgs :: Ty→ (Ty, TyL)
tyProdArgs :: Ty→ TyL

EHTy

tyArrowArgRes t
= case t of

(Ty App (Ty App (Ty Con nm) a) r)
| hsnIsArrow nm→ (a, r)

→ (Ty Any, t)
tyArrowArgsRes t

= case t of
(Ty App (Ty App (Ty Con nm) a) r)
| hsnIsArrow nm→ let (as, r′) = tyArrowArgsRes r in (a : as, r′)

→ ([], t)
tyAppFunArgs

= extr []
where extr as t

= case t of
Ty App f a→ extr (a : as) f

→ (t, as)
EHTyThe algebra based mkArrow used for building abstract syntax trees during parsing is now reused to

build type structures.

Constructor Con, tuples. Apart from constructing function types only tupling allows us to build
composite types. The rule e-prod1B for tupling has no immediate counterpart in the implementation
because a tuple (a, b) is encoded as the application (,) a b. The alternative Con takes care of producing
a type a→ b→ (a, b) for (,).

EHInferExpr

SEM Expr
| Con loc.ty = let resTy = snd (tyArrowArgsRes @lhs.knTy)

in tyProdArgs resTy ‘mkTyArrow‘ resTy

2.5. CHECKING TYPES 35

This type can be constructed from knTy which by definition has the form >⊥ → >⊥ → (a, b) (for this
example). The result type of this function type is taken apart and used to produce the desired type.
Also by definition (via construction by the parser) we know the arity is correct.

λ-expression Lam. Finally, for rule e-lam1B the check if knTy has the form σ → σ is done by let-
ting fitsIn match the knTy with >⊥ → >⊥. The result (forced to be a function type) is split up by
tyArrowArgRes.

EHInferExpr
SEM Expr
| Lam loc.funTy = [Ty Any] ‘mkTyArrow‘ Ty Any

.foKnFun = @funTy 6 @lhs.knTy
(arg.knTy, body.knTy) = tyArrowArgRes (foTy @foKnFun)
arg .valGam = gamPushNew @lhs.valGam
loc.ty = @lhs.knTy

2.5.4 Checking PatExpr

Before we can look into more detail at the way new identifiers are introduced in let- and λ-expressions
we have to look at patterns. The rule e-let1B is too restrictive for the actual language construct sup-
ported by EH. The following program allows inspection of parts of a composite value by naming its
components through pattern matching:

let p :: (Int, Int)
p @(a, b) = (3, 4)

in a

The rule e-let1C from figure 2.7 together with the rules for patterns from figure 2.8 reflect the desired
behaviour. These rules differ from those in figure 2.6 in that a pattern instead of a single identifier is
allowed in a value definition and argument of a λ-expression.

Γ, σk
expr
` e : σ

Γp ++ Γ, σi
expr
` ei :

Γp ++ Γ, σk
expr
` e : σe

σi
pat
` p : Γp

p ≡ i ∨ p ≡ i @...

Γ, σk
expr
` let i :: σi; p = eiin e : σe

(e-let1C)

Γp ++ Γ, σr
expr
` e : σe

σp
pat
` p : Γp

Γ, σp → σr
expr
` λp→ e : σp → σe

(e-lam1C)

Figure 2.7: Type checking for let-expression with pattern

Again the idea is to distribute a known type over the pattern and dissect it into its constituents.
However, patterns do not return a type but type bindings for the identifiers inside a pattern instead.
The bindings are subsequently used in let- and λ-expressions.

A tuple pattern with rule p-prod1 is encoded in the same way as tuple expressions, that is, pattern
(a, b) is encoded as an application (,) a b with an AppTop on top of it.

EHInferPatExpr
ATTR PatExpr [knTy : Ty knTyL : TyL ||]

36 CONTENTS

σk
pat
` p : Γp

σk
pat
` i : [i 7→ σk]

(p-var1)

dom (Γp
1) ∩ dom (Γp

2) = ∅

σk
2

pat
` p2 : Γp

2

σk
1

pat
` p1 : Γp

1

(σk
1 , σk

2)
pat
` (p1, p2) : Γp

1 ++ Γp
2

(p-prod1)

Figure 2.8: Building environments from patterns

SEM PatExpr
| AppTop loc.knProdTy

= @lhs.knTy
.(knTyL, aErrs)

= case tyProdArgs @knProdTy of
tL | @patExpr.arity ≡ length tL
→ (reverse tL, [])

tL → (reverse.take @patExpr.arity
.(++repeat Ty Any) $ tL

, [Err PatArity
@knProdTy @patExpr.arity])

| App loc.(knArgTy, knTyL)
= hdAndTl @lhs.knTyL

arg .knTy = @knArgTy
EHInferPatExpr

SEM Decl
| Val patExpr.knTyL = []

SEM Expr
| Lam arg .knTyL = []

For this version of EH the only pattern is a tuple pattern. Therefore, we can use this (current) limita-
tion to unpack a known product type knTy into its elements distributed over its arguments via knTyL.
The additional complexity arises from repair actions in case the arity of the pattern and its known
type do not match. In that case the subpatterns are given as many >⊥’s as known type as necessary,
determined by the actual arity of the application.

EHInferPatExpr

ATTR PatExpr [|| arity : Int]
SEM PatExpr
| App lhs.arity = @func.arity + 1
| Con Var AppTop IConst CConst

lhs.arity = 0

As a result of this unpacking, at a Var alternative knTy holds the type of the variable name introduced.
The type is added to the valGam threaded through the pattern, gathering all introduced bindings.

EHInferPatExpr

ATTR PatExpr [| valGam : ValGam |]
SEM PatExpr
| Var VarAs loc.ty = @lhs.knTy

.addToGam = if @lhs.inclVarBind

2.5. CHECKING TYPES 37

then gamAdd @nm
(ValGamInfo @ty)

else id
| Var lhs.valGam = @addToGam @lhs.valGam
| VarAs lhs.valGam = @addToGam @patExpr.valGam

2.5.5 Checking declarations

In a let-expression type signatures, patterns and expressions do meet. Rule e-let1C from figure 2.7
shows that the idea is straightforward: take the type signature, distribute it over a pattern to ex-
tract bindings for identifiers and pass both type signature (as knTy) and bindings (as valGam) to the
expression. This works fine for single combinations of type signature and the corresponding value
definition for a pattern. It does not work

• For mutually recursive value definitions.

let f :: ...
f = λx→ ...g ...
g :: ...
g = λx→ ...f ...

in ...

In the body of f the type g must be known and vice-versa. There is no ordering of what can be
defined and checked first. In Haskell this would make f and g together a binding group.

• For textually separated signatures and value definitions.

let f :: ...
...
f = λx→ ...

in ...

Syntactically the signature and value definition for an identifier need not be defined adjacently
or in any specific order.

In Haskell dependency analysis determines that f and g form a so-called binding group, which con-
tains declarations that have to be subjected to type analysis together. However, due to the presence
of the type signatures it is possible to gather all signatures first and only then type check the value
definitions. Therefore, for this version of EH it is not really an issue as we always require a signature
to be defined. For later versions of EH it actually will become an issue, so for simplicity all bindings
in a let-expression are analysed together as a single (binding) group.

Though only stating something about one combination of type signature and value definition, rule e-
let1C still describes the basic strategy. First extract all type signatures, then distribute those signa-
tures over patterns followed by expressions. The difference lies in doing it simultaneously for all
declarations in a let-expression. So, first all signatures are collected:

EHInfer
ATTR AllDecl [tySigGam : ValGam | gathTySigGam : ValGam |]
SEM Decl
| TySig lhs .gathTySigGam = gamAdd

@nm (ValGamInfo @sigTy)
@lhs.gathTySigGam

SEM Expr
| Let decls.gathTySigGam = emptyGam

.tySigGam = @decls.gathTySigGam

38 CONTENTS

EHInfer

SEM Decl
| Val loc.(sigTy, hasTySig) = case @patExpr.mbTopNm of

Nothing→ (Ty Any, False)
Just nm → case gamLookup nm @lhs.tySigGam of

Nothing→ (Ty Any, False)
Just vgi → (vgiTy vgi, True)

EHInfer

SEM Decl
| TySig loc.sigTy = @tyExpr.ty

Attribute gathTySigGam is used to gather type signatures. Attribute tySigGam is used to distribute
the gathered type signatures over the declarations. In a value declaration we check if a pattern has a
type signature which is to be used as the known type of the pattern and the expression.

EHInfer

SEM Decl
| Val loc.knTy = @sigTy

If the pattern has an identifier at the top level (pattern (a, b) has not, ab @(a, b) has) and a signature
for this top level identifier everything is in order, indicated by a True value in hasTySig.

EHInfer

ATTR PatExpr [|| mbTopNm : {Maybe HsName} topNm : HsName]

SEM PatExpr
| Var VarAs lhs.mbTopNm = Just @nm

.topNm = @nm
| Con CConst IConst App AppTop

lhs.mbTopNm = Nothing
.topNm = hsnUnknown

The value of hasTySig is also used to decide to what the top level identifier of a pattern should be
bound, via inclVarBind used at page 36.

EHInfer

ATTR PatExpr [inclVarBind : Bool ||]
SEM PatExpr
| AppTop patExpr.inclVarBind = True

SEM Decl
| Val patExpr.inclVarBind = ¬ @hasTySig

SEM Expr
| Lam arg .inclVarBind = True

If a type signature for an identifier is already defined there is no need to rebind the identifier via an
addition of a binding to valGam (see).

New bindings are not immediately added to valGam but are first gathered in a separately threaded
attribute patValGam, much in the same way as gathTySigGam is used.

EHInfer

ATTR AllDecl [| patValGam : ValGam |]
SEM Decl
| Val patExpr.valGam = @lhs.patValGam

lhs .patValGam = @patExpr.valGam
expr .valGam = @lhs.valGam

EHInfer

SEM Expr
| Let decls.patValGam = @decls.gathTySigGam

‘gamPushGam‘ @lhs.valGam
loc .(lValGam, gValGam) = gamPop @decls.patValGam
decls.valGam = @decls.patValGam
body.valGam = @decls.patValGam

2.6. REPORTING PROGRAM ERRORS 39

Newly gathered bindings are stacked on top of the inherited valGam before passing them on to both
declarations and body. Note that this implicitly makes this a three-pass algorithm over declarations.

Some additional functionality for pushing and popping the stack valGam is also needed
EHGam

gamUnit :: k→ v → Gam k v
gamPop :: Gam k v → (Gam k v, Gam k v)
gamToAssocL :: Gam k v → AssocL k v
assocLToGam :: AssocL k v→ Gam k v
gamAddGam :: Gam k v → Gam k v→ Gam k v

EHGam
gamUnit k v = Gam [[(k, v)]]
gamPop (Gam (l : ll)) = (Gam [l], Gam ll)
gamToAssocL (Gam ll) = concat ll
assocLToGam l = Gam [l]
gamAddGam g1 (Gam (l2 : ll2)) = Gam ((gamToAssocL g1 ++ l2) : ll2)

Extracting the top of the stack patValGam gives all the locally introduced bindings in lValGam. An
additional error message is produced (later on, section 2.6) if any duplicate bindings are present in
lValGam.

2.5.6 Checking TyExpr

All that is left to do now is to use the type expressions to extract type signatures. This is straight-
forward; since type expressions (abstract syntax for what the programmer specified) and types (as
internally used by the compiler) have almost the same structure.

EHInferTyExpr
ATTR AllTyExpr [| tyGam : TyGam |]
SEM TyExpr
| Con loc.(tgi, nmErrs) = case tyGamLookup @nm @lhs.tyGam of

Nothing→ (TyGamInfo Ty Any, [Err NamesNotIntrod [@nm]])
Just tgi → (tgi, [])

ATTR TyExpr [|| ty : Ty]

SEM TyExpr
| Con lhs.ty = Ty Con @nm
| App lhs.ty = Ty App @func.ty @arg.ty

2.6 Reporting program errors

Errors are defined by AG too (see also page 33).
EHErrorAbsSyn

DATA Err
| NamesDupIntrod nmL : { [HsName]}
| PatArity ty : Ty arity : {Int}
| NestedIn wher : {PP Doc} errL : ErrL

TYPE ErrL = [Err]

Errors are gathered and at convenient places grouped made part of the pretty printing pp.
EHGatherError

ATTR AllNT [|| errL USE{++}{ []} : ErrL]

SEM Expr
| App lhs.errL = mkNestErr @pp

(@func.errL ++ @arg.errL)

40 CONTENTS

| Lam lhs.errL = mkNestErr @pp
(foErrL @foKnFun ++ @arg.errL

++ @body.errL)
| Var lhs.errL = mkNestErr @pp

(@nmErrs ++ foErrL @fo)
| AppTop lhs.errL = mkNestErr @pp (@expr.errL)
| IConst CConst

lhs.errL = mkNestErr @pp (foErrL @fo)
EHGatherError

SEM TyExpr
| Con lhs.errL = mkNestErr @pp (@nmErrs)

SEM PatExpr
| AppTop lhs.errL = mkNestErr @pp (@patExpr.errL ++ @aErrs)

SEM Decl
| Val lhs.errL = @patExpr.errL ++ @expr.errL ++ @sigMissErrs

EHError

mkNestErr :: PP Doc→ ErrL→ ErrL
mkNestErr wher errL

= if null errL then [] else [Err NestedIn wher errL]

The pretty print of collected errors is made available for inclusion in the pretty printing of the abstract
syntax tree (see page 22) We have chosen to only report the collected errors at the end of a group of
declaration or at a specific declaration. Many different choices are possible here, depending on the
output medium.

EHGatherError
SEM Decls
| Cons loc.errPP = ppErrs @hd.errL

lhs.errL = []

SEM Expr
| Let loc.errDeclsPP = ppErrs @dupErrs

.errBodyPP = ppErrs @body.errL
lhs.errL = []

Errors themselves also need to be pretty printed, but we have omitted this part. The issue here is to
keep the generated output reasonably compact because the nesting can give a long trace of locations
where the error did occur.

2.7 Tying it all together

Finally, all needs to be tied together to obtain a working program. This involves a bit of glue code to
(for example) combine scanner (not discussed here), parser, semantics, passing compiler options and
the generation of output. Though not always trivial at times it mainly is non-trivial because glueing
the pieces can mean that many missing details have to be specified. For brevity, these details are
omitted.

Chapter 3

EH 2: monomorphic type inference

The next version of EH drops the requirement that all value definitions need to be accompanied by
an explicit type signature. For example, repeating the example from the introduction

let i = 5
in i

gives

let i = 5
{- [i:Int] -}

in i

The idea is that the type system implementation has an internal representation for “knowing it is a
type, but not yet which one” which can be replaced by a more specific type if that becomes known.
The internal representation for a yet unknown type is called a type variable, similar to mutable
variables for values.

The implementation attempts to gather as much information as possible from a program to recon-
struct (or infer) types for type variables. However, the types it can reconstruct are limited to those
allowed by the used type language, that is, basic types, tuples and functions.

So

let id = λx→ x
in let v = id 3

in id

will give

let id = \x -> x
{- [id:Int -> Int] -}

in let v = id 3
{- [v:Int] -}

in id

If the use of id to define v is omitted less information (namely the argument of id is an int) to infer a
type for id is available

41

42 CONTENTS

let id = \x -> x
{- [id:v_1_1 -> v_1_1] -}

in id

On the other hand, if contradictory information is found we will have

let id = \x -> x
{- [id:Int -> Int] -}

in let v = (id 3,id ’x’)
{- ***ERROR(S):

In ‘(id 3,id ’x’)’:
... In ‘’x’’:

Type clash:
failed to fit: Char <= Int
problem with : Char <= Int -}

{- [v:(Int,Int)] -}
in v

This may look a bit strange for a Haskell programmer, but we will concern ourselves with polymor-
phism no sooner then with the next version of EH (chapter 4).

Partial type signatures are also allowed. A partial type signature specifies a type only for a part,
allowing a cooperation between the programmer who specifies what is (e.g.) already known about a
type signature and the type inferencer filling in the unspecified details. For example:

let id :: ...→ ...
id = λx→ x

in let f :: (Int→ Int) → ...
f = λi→ λv→ i v
v = f id 3

in let v = f id 3
in v

The type inferencer pretty prints the inferred type instead of the explicity type signature:

let id :: ...→ ...
id = λx→ x

in let f :: (Int→ Int) → ...
f = λi→ λv→ i v
v = f id 3

in let v = f id 3
in v

The discussion of the implementation of this feature is postponed until section 3.6 in order to demon-
strate the effects of an additional feature on the compiler implementation.

3.1 Type variables

In order to be able to represent yet unknown types the type language needs type variables to represent
this.

σ = Int | Char

3.2. CONSTRAINTS 43

| (σ, ..., σ)
| σ → σ
| v

The type structure Ty also needs to be extended with an alternative for a variable
EHTyAbsSyn

DATA Ty
| Var tv : {TyVarId}

The AG system allows us to separately describe the extension with a new variant as well as describe
separately the additionaly required attribution, for example the pretty printing of the type

EHTyPretty
SEM Ty
| Var loc.pp = pp ("v_"++ show @tv)

SEM Ty
| Var lhs.appArgPPL = []

.appFunPP = @pp

A type variable is identified by a unique identifier, a UID.
EHCommon

newtype UID = UID [Int] deriving (Eq, Ord)
EHCommon

type UIDL = [UID]

instance Show UID where
show (UID (l : ls)) = foldl (λls l→ show l ++ "_"++ ls) (show l) ls

EHTy
type TyVarId = UID

EHTy
type TyVarIdL = [TyVarId]

Generation of unique identifiers is not explained here, it can be found in the source code itself. For
now we will ignore this aspect and just assume a unique UID can be obtained.

3.2 Constraints

Although the typing rules at figure 2.7, page 35 still hold we need to look at the meaning of 6 (or
fitsIn) in the presence of type variables. The idea here is that what is unknown may be replaced by
that which is known. For example, if the check v 6 σ is encountered making the previously unknown
type v equal to σ is the easiest way to make v 6 σ true. An alternative way to look at this is that v 6 σ
is true under the constraint that v equals σ.

3.2.1 Remembering and applying constraints

Next we can observe that once a certain type v is declared to be equal to a type σ this fact has to be
remembered.

C = [v 7→ σ]

A set of constraints C is a set of bindings for type variables, represented as
EHCnstr

newtype C = C (AssocL TyVarId Ty) deriving Show
cnstrLookup :: TyVarId→ C → Maybe Ty
cnstrLookup tv (C s) = lookup tv s

EHCnstr
emptyCnstr :: C

44 CONTENTS

emptyCnstr = C []

cnstrUnit :: TyVarId→ Ty→ C
cnstrUnit tv t = C [(tv, t)]

If cnstrUnit is used as an infix operator it is printed as 7→ in the same way as used in type rules.

Different strategies can be used to cope with constraints [11, 23]. Here constraints C are used to re-
place all other references to v by σ, for this reason often named a substitution. Mostly this will be
done immediately after constraints are obtained as to avoid finding a new and probably conflicting
constraint for a type variable. Applying constraints means substituting type variables with the bind-
ings in the constraints, hence the class Substitutable for those structures which have references to type
variables hidden inside and can replace, or substitute those type variables

EHCnstr
infixr 6 �
class Substitutable s where

(�) :: C → s→ s
ftv :: s→ TyVarIdL

The operator � applies constraints C to a Substitutable. Function ftv extracts the free type variable
references as a set of TVarId’s.

A C can be applied to a type
EHCnstr

instance Substitutable Ty where
s � ty = st ty

where st t = case t of
Ty App fn arg→ Ty App (st fn) (st arg)
Ty Var v → maybe t id (cnstrLookup v s)
otherwise → t

ftv t = case t of
Ty App fn arg → ftv fn ∪ ftv arg
Ty Var tv → [tv]
otherwise → []

and is lifted straightforwardly to lists
EHCnstr

instance Substitutable a⇒ Substitutable [a] where
s � l = map (s�) l
ftv l = unionL.map ftv $ l

A C can also be applied to another C
EHCnstr

instance Substitutable C where
s1 @(C sl1) � s2 @(C sl2) = C (sl1 ++ map (λ(v, t) → (v, s1 � t)) sl′2)

where sl′2 = deleteFirstsBy (λ(v1,) (v2,) → v1 ≡ v2) sl2 sl1
ftv (C sl) = ftv.map snd $ sl

but one must be aware that � is non-commutative as constraints s1 in s1 � s2 take precedence over s2.
To make this even clearer all constraints for type variables in s1 are removed from s2, even though
for a list implementation this would not be required.

3.2.2 Computing constraints

The only source of constraints is the check fitsIn which finds out if a type can flow into another.
The previous version of EH had one option in case a type could not fit in another: report an error.
Now, if one of the types is unknown, that is, a type variable we have the additional option to return
a constraint on that type variable. The implementation fitsIn of 6 has to be rewritten to include
additional cases for type variables and the return of constraints

EHTyFitsIn

3.2. CONSTRAINTS 45

data FIOut = FIOut{ foTy :: Ty , foCnstr :: C
, foErrL :: ErrL
}

EHTyFitsIn
emptyFO = FIOut{ foTy = Ty Any, foCnstr = emptyCnstr

, foErrL = []
}

EHTyFitsIn
fitsIn :: Ty→ Ty→ FIOut
fitsIn ty1 ty2

= u ty1 ty2
where

res t = emptyFO{ foTy = t}
EHTyFitsIn

bind tv t = (res t){ foCnstr = tv 7→ t}
occurBind v t | v ∈ ftv t = err [Err UnifyOccurs ty1 ty2 v t]

| otherwise = bind v t
EHTyFitsIn

comp tf 1 ta1 tf 2 ta2 mkComp
= foldr1 (λfo1 fo2 → if foHasErrs fo1 then fo1 else fo2)

[ffo, afo, rfo]
where ffo = u tf 1 tf 2

fs = foCnstr ffo
afo = u (fs � ta1) (fs � ta2)
as = foCnstr afo
rt = mkComp (as � foTy ffo) (foTy afo)
rfo = emptyFO{ foTy = rt, foCnstr = as � fs}

EHTyFitsIn
u Ty Any t2 = res t2
u t1 Ty Any = res t1
u t1 @(Ty Con s1)

t2 @(Ty Con s2)
| s1 ≡ s2 = res t2

EHTyFitsIn
u t1 @(Ty Var v1) (Ty Var v2)

| v1 ≡ v2 = res t1
u t1 @(Ty Var v1) t2 = occurBind v1 t2
u t1 t2 @(Ty Var v2) = occurBind v2 t1

EHTyFitsIn
u t1 @(Ty App (Ty App (Ty Con c1) ta1) tr1)

t2 @(Ty App (Ty App (Ty Con c2) ta2) tr2)
| hsnIsArrow c1 ∧ c1 ≡ c2
= comp ta2 tr1 ta1 tr2 (λa r→ [a] ‘mkTyArrow‘ r)

u t1 @(Ty App tf 1 ta1)
t2 @(Ty App tf 2 ta2)

= comp tf 1 ta1 tf 2 ta2 Ty App
u t1 t2 = err [Err UnifyClash ty1 ty2 t1 t2]
err e = emptyFO{ foErrL = e}

Although this version of the implementation of fitsIn resembles the previous one it differs in the
following aspects

• The datatype FIOut returned by has an additional field foCnstr holding found constraints.

• The function bind creates a binding for a type variable to a type. The use of bind is shielded by
occurBind which checks if the type variable for which a binding is created does not occur free
in the type bound to. This is to prevent (e.g.) a 6 a → a to succeed. This is because it is not

46 CONTENTS

clear if a 7→ a → a should be the resulting constraint or a 7→ (a → a) → (a → a) or one of
infinitely many other possible solutions. A so called infinite type like this is inhibited by the so
called occur check.

• An application App recursively fits its components with components of another App. The con-
straints from the first fit ffo are applied immediately to the following component before fitting
that one. This is to prevent a → a 6 Int → Char from finding two conflicting constraints
[a 7→ Int, a 7→ Char] instead of properly reporting an error.

3.3 Reconstructing types for Expr

Constraints are used to make found knowledge about previously unknown types explicit. The typing
rules in figure 2.4 (and figure 2.6, figure 2.7) in principle need to be changed. The only reason to adapt
some of the rules to the variant in figure 3.1 is to clarify the way constraints are used.

Γ, σk
expr
` e : σ C

Γ, σa
expr
` e2 : C2

Γ, v→ σk
expr
` e1 : σa → σ C1
v fresh

Γ, σk
expr
` e1 e2 : C2σ C2..1

(e-app2)

Γp ++ Γ, σr
expr
` e : σe C3

σp
pat
` p : , Γp C2

fit
` v1 → v2 6 σk : σp → σr C1

vi fresh

Γ, σk
expr
` λp→ e : C3σp → σe C3..1

(e-lam2)

(i 7→ σi) ∈ Γ
fit
` σi 6 σk : σ C

Γ, σk
expr
` i : σ C

(e-ident2)

fit
` (v1, v2, ..., vn) 6 σr : (σ1, σ2, ..., σn) C

→ ...→ σr ≡ σk

vi fresh

Γ, σk
expr
` ,n : σ1 → ...→ σn → (σ1, σ2, ..., σn) C

(e-con2)

fit
` Int 6 σk : σ C

Γ, σk
expr
` minint . . maxint : σ C

(e-int2)

Figure 3.1: Type inferencing for expressions (using constraints)

The type rules in figure 3.1 enforce an order in which checking and inferring types has to be done.

Actually, the rules in figure 3.1 are more cluttered with constraints flowing around if we want to
approximate the corresponding AG description, for example for expression application

SEM Expr
| App loc .knFunTy = [Ty Any] ‘mkTyArrow‘ @lhs.knTy

func.knTy = @knFunTy
(arg.knTy, loc.fTy) = tyArrowArgRes @func.ty
loc .ty = @fTy

3.3. RECONSTRUCTING TYPES FOR EXPR 47

EHInferExpr
ATTR AllExpr [| tyCnstr : C |]

EHInferExpr

SEM Expr
| App loc.knFunTy := [mkNewTyVar @lUniq]

‘mkTyArrow‘ (@lhs.tyCnstr � @lhs.knTy)
.ty := @arg.tyCnstr � @fTy

This definition builds on top of the previous version by redefining some attributes (indicated by �
instead of =), the appearance on screen or paper should have a different color or shade of gray to
indicate it is a repetition from a previous appearance elsewhere in the text.

To correspond better with the related AG code the rule e-app2 should be

C1, Γ, σa
expr
` e2 : C2

Ck, Γ, v→ Ckσk
expr
` e1 : σa → σ C1

v fresh

Ck, Γ, σk
expr
` e1 e2 : C2σ C2

(e-app2B)

The flow of constraints is made explicit as they are passed through the rules, from the context (left
of `) to a result (right of). We feel this does not benefit clarity, even though it is correct. It
is our opinion that typing rules serve their purpose best by providing a basis for proof as well as
understanding and discussion. An AG description serves its purpose best by showing how it really
is implemented. Used in tandem they strengthen eachother.

An implementation by necessity imposes additional choices to make a typing rule into an algorithmic
solution. For example, our description preserves the invariant

• A resulting type has all known constraints applied to it, here ty.

but as this invariant is not kept for knTy and valGam it requires to

• Explicitly apply known constraints to the inherited known type knTy.

• Explicitly apply known constraints to types from a Γ, here valGam.

The type rules in figure 3.1 do not mention the last two constraint applications (rule e-app2B does),
this will also be omitted for later typing rules. However, the constraint applications are shown by
the AG code for the App alternative and the following Var alternative

SEM Expr
| Var loc.(gTy, nmErrs)

= case valGamLookup @nm @lhs.valGam of
Nothing→ (Ty Any

, [Err NamesNotIntrod [@nm]])
Just vgi → (vgiTy vgi, [])

.fTy = @gTy

.fo = @fTy 6 @lhs.knTy

.ty = foTy @fo
EHInferExpr

SEM Expr
| Var loc.fTy := @lhs.tyCnstr � @gTy

.fo := @fTy 6 (@lhs.tyCnstr � @lhs.knTy)
lhs.tyCnstr = foCnstr @fo � @lhs.tyCnstr

48 CONTENTS

The rules for constants all resemble the one for Int, rule e-int2. Their implementation additionaly
takes care of constraint handling

ATTR Expr [|| ty : Ty]

SEM Expr
| CConst loc.fTy = tyChar
| IConst loc.fTy = tyInt
| IConst CConst

loc.fo = @fTy 6 @lhs.knTy
.ty = foTy @fo

EHInferExpr
SEM Expr
| IConst CConst

loc.fo := @fTy 6 (@lhs.tyCnstr � @lhs.knTy)
lhs.tyCnstr = foCnstr @fo � @lhs.tyCnstr

The handling of products does not differ much from the previous implementation. A rule e-con2 has
been included in the typing rules, as a replacement for rule e-prod1B (figure 2.6) better resembling
its implementation. Again the idea is to exploit that in this version of EH tupling is the only way to
construct an aggregrate value. A proper structure for its type is (again) forced by fitsIn.

SEM Expr
| Con loc.ty = let resTy = snd (tyArrowArgsRes @lhs.knTy)

in tyProdArgs resTy ‘mkTyArrow‘ resTy
EHInferExpr

SEM Expr
| Con loc.fo = let gTy = mkTyFreshProdFrom @lUniq (hsnProdArity @nm)

foKnRes = gTy 6 (@lhs.tyCnstr � snd (tyArrowArgsRes @lhs.knTy))
in foKnRes{ foTy = tyProdArgs (foTy foKnRes) ‘mkTyArrow‘ (foTy foKnRes)}

.ty := foTy @fo
lhs.tyCnstr = foCnstr @fo � @lhs.tyCnstr

Finally,

SEM Expr
| Lam loc.funTy = [Ty Any] ‘mkTyArrow‘ Ty Any

.foKnFun = @funTy 6 @lhs.knTy
(arg.knTy, body.knTy) = tyArrowArgRes (foTy @foKnFun)
arg .valGam = gamPushNew @lhs.valGam
loc.ty = @lhs.knTy

EHInferExpr
SEM Expr
| Lam loc.funTy := let [a, r] = mkNewTyVarL 2 @lUniq

in [a] ‘mkTyArrow‘ r
.foKnFun := @funTy 6 (@lhs.tyCnstr � @lhs.knTy)

arg .tyCnstr = foCnstr @foKnFun � @lhs.tyCnstr
loc.ty := [@body.tyCnstr � @arg.ty] ‘mkTyArrow‘ @body.ty

which uses some additional functions for creating type variables
EHTy

mkNewTyVar :: UID→ Ty
mkNewTyVar u = let (, v) = mkNewUID u in mkTyVar v

EHTy

mkNewTyVarL :: Int→ UID→ TyL
mkNewTyVarL sz u = let (, vs) = mkNewUIDL sz u in map mkTyVar vs

Some observations are in place

3.4. RECONSTRUCTING TYPES FOR PATEXPR 49

• The main difference with the previous implementation is the use of type variables to represent
unknown knowledge. Previously >⊥ was used for that purpose, for example, the rule e-lam2
and its implementation show that fresh type variables vi in v1 → v2 are used instead of >⊥ → >⊥
to enforce a . . → . . structure. If >⊥ still would be used, for

let id = λx→ x
in id 3

the conclusion would be drawn that id ::>⊥ → >⊥, whereas id :: v→ v would later on have bound
v 7→ Int (at the application id 3). So, >⊥ represents “unknown knowledge”, a type variable v
represents “not yet known knowledge” to which the inferencing process later has to refer to
make it “known knowledge”.

• Type variables are introduced under the condition that they are “fresh”. For a typing rule this
means that these type variables are not in use elsewhere, often more concretely specified with
a condition v /∈ ftv (Γ). Freshness in the implementation is implemented via unique identifiers
UID.

3.4 Reconstructing types for PatExpr

In the previous version of EH we were only interested in bindings for identifiers in a pattern. The
type of a pattern was already known via a corresponding type signature. For this version this is no
longer the case so the structure of a pattern reveals already some type structure. Hence we compute
types for patterns too and use this type as the known type if no type signature is available.

σk
pat
` p : σ, Γp C

fit
` C1σk 6 σd : σ C2

σd → () ≡ σp

pat
` p : σp, Γp C1

p ≡ p1 p2 ... pn, n > 1

σk
pat
` p : σ, Γp C2..1

(p-apptop2)

dom (Γp
1) ∩ dom (Γp

2) = ∅

σa
1

pat
` p2 : , Γp

2 C2
pat
` p1 : σd → (σa

1 , σa
2 , ..., σa

n), Γp
1 C1

pat
` p1 p2 : C2(σd → (σa

2 , ..., σa
n)), Γp

1 ++ Γp
2 C2..1

(p-app2)

σk 6≡ >⊥

σk
pat
` i : σk, [i 7→ σk] []

(p-var2)
vi fresh

pat
` I : σ, (v1, v2, ..., vn) → (v1, v2, ..., vn) []

(p-con2)

Figure 3.2: Type inferencing for pattern (using constraints)

50 CONTENTS

Computation of the type of a pattern is similar to and yet more straightforward than for expressions.
The rule e-pat2 from figure 3.2 binds the identifier to the known type and if no such known type is
available it invents a fresh one, by means of tyEnsureNonBotTop

EHInferPatExpr

ATTR PatExpr [| tyCnstr : C | ty : Ty]

SEM PatExpr
| Var VarAs loc .ty := tyEnsureNonBotTop @lUniq @lhs.knTy
| VarAs patExpr.knTy = @ty

EHTy

tyEnsureNonBotTop :: UID→ Ty→ Ty
tyEnsureNonBotTop u t = if t 6≡ Ty Any then t else mkNewTyVar u

For tuples we again make use of the fact that the Con alternative will always represent a tuple. When
datatypes are introduced (not part of this paper) this will no longer be the case. Here, we already
make the required rule p-con2 more general than is required here in that it will reflect the idea of
a pattern. A pattern (in essence) can be represented by a function taking a value of some type and
dissecting it into a tuple containing all its constituents. For now, because we have only tuples to
dissect, the function returned by the Con alternative is just the identity on tuples of the correct size.
The application rule p-app2 consumes an element of this tuple representing the dissected value and
uses it for checking and inferring the constituent.

The implementation of this representation convention returns the dissecting function type in patFunTy
EHInferPatExpr

ATTR PatExpr [|| patFunTy : Ty]

SEM PatExpr
| Con loc.patFunTy = let prTy = mkTyFreshProdFrom @lUniq (hsnProdArity @nm)

in ([prTy] ‘mkTyArrow‘ prTy)
| App lhs.patFunTy = @func.patFunTy
| IConst CConst Var AppTop

lhs.patFunTy = Ty Any

which is at the top distributed as described for the previous version.

ATTR PatExpr [knTy : Ty knTyL : TyL ||]
SEM PatExpr
| AppTop loc.knProdTy

= @lhs.knTy
.(knTyL, aErrs)

= case tyProdArgs @knProdTy of
tL | @patExpr.arity ≡ length tL
→ (reverse tL, [])

tL → (reverse.take @patExpr.arity
.(++repeat Ty Any) $ tL

, [Err PatArity
@knProdTy @patExpr.arity])

| App loc.(knArgTy, knTyL)
= hdAndTl @lhs.knTyL

arg .knTy = @knArgTy
EHInferPatExpr

SEM PatExpr
| AppTop loc.patFunTy = @patExpr.patFunTy

.(knResTy, knProdTy) := tyArrowArgRes @patFunTy

Finally, the type itself and additional constraints are returned
EHInferPatExpr

SEM PatExpr
| IConst loc .ty = tyInt

3.5. DECLARATIONS 51

| CConst loc .ty = tyChar
| AppTop loc .fo = @lhs.knTy 6 @knResTy

.ty = foTy @fo
patExpr.tyCnstr = foCnstr @fo � @lhs.tyCnstr
lhs .ty = @patExpr.tyCnstr � @ty

| App arg .knTy := @func.tyCnstr � @knArgTy
| Con loc .ty = Ty Any

The careful reader may have observed that the direction of 6 for fitting actual (synthesized, bottom-
up) and known type (inherited, top-down) is the opposite of the direction used for expressions. This
is a result of a difference in the meaning of an expression and a pattern. An expression builds a value
from bottom to top as seen in the context of an abstract syntax tree. A pattern dissects a value from
top to bottom. The flow of data is opposite, hence the direction of 6 also.

3.5 Declarations

Again, at the level of declarations all is tied together. Because we first gather information about pat-
terns and then about expressions two separate threads for gathering constraints are used, patTyCnstr
and tyCnstr respectively.

EHInfer
SEM Expr
| Let decls.patTyCnstr = @lhs.tyCnstr

.tyCnstr = @decls.patTyCnstr
EHInfer

ATTR AllDecl [| tyCnstr : C patTyCnstr : C |]
SEM Decl
| Val patExpr.tyCnstr = @lhs.patTyCnstr

lhs .patTyCnstr = @patExpr.tyCnstr
expr .tyCnstr = @lhs.tyCnstr

SEM AGItf
| AGItf expr .tyCnstr = emptyCnstr

If a type signature has been given it is used as the known type for both expression and pattern. If
not, the type of a pattern is used as such.

EHInfer
SEM Decl
| Val expr.knTy = if @hasTySig then @knTy else @patExpr.ty

3.6 Partial type signatures: a test case for extendibility

Partial type signatures allow the programmer to specify only a part of a type in a type signature. The
description of the implementation of this feature is separated from the discussion of other features
to show the effects of an additional feature on the compiler. In other words, an impact analysis.

First, both abstract syntax and the parser contain an additional alternative for parsing the ”...”
notation chosen for unspecified type information designated by Wild for wildcard:

EHAbsSyn
DATA TyExpr
| Wild

EHParser
tyExprAlg = (sem TyExpr Con, sem TyExpr App

, sem TyExpr AppTop)
pTyExprBase = sem TyExpr Con 〈$〉 pCon

〈|〉 sem TyExpr Wild 〈$ pKey "..."

52 CONTENTS

〈|〉 pParenProd tyExprAlg pTyExpr
pTyExpr = pChainr

(mkArrow tyExprAlg 〈$ pKeyw hsnArrow)
pTyExprBase

A wildcard type is treated in the same way as a type variable as it also represents unknown type
information:

EHInferTyExpr
SEM TyExpr
| Wild loc.tyVarId = @lUniq

.tgi = TyGamInfo (mkNewTyVar @tyVarId)
EHInferTyExpr

SEM TyExpr
| Wild lhs.ty = tgiTy @tgi

Changes also have to be made to omitted parts of the implementation, in particular the pretty print-
ing and generation of unique identifiers. We mention the necessity of this but omit the relevant code.

Finally, in order to decide which type to pretty print all ‘wild’ type variables are gathered so we can
check if any wild type variables were introduced.

EHInferTyExpr
SEM TyExpr [|| tyVarWildL USE{++}{ []} : TyVarIdL]
| Wild lhs.tyVarWildL = [@tyVarId]

Pretty printing then uses the final type which has all found constraints incorporated.
EHInfer

ATTR AllDecl [finValGam : ValGam ||]
ATTR AllNT [finTyCnstr : C ||]
SEM Expr
| Let decls.finValGam = @lhs.finTyCnstr � @lValGam

SEM Decl
| TySig loc .finalTy = vgiTy.fromJust.valGamLookup @nm

$ @lhs.finValGam
SEM AGItf
| AGItf expr .finTyCnstr = @expr.tyCnstr

Chapter 4

EH 3: polymorphic type inference

The third version of EH adds polymorphism, in particular so-called parametric polymorphism which
allows functions to be used on arguments of differing types. For example

let id :: a→ a
id = λx→ x
v = (id 3, id ’x’)

in v

gives v :: (Int, Char) and id :: ∀ a.a → a. The polymorphic identity function id accepts a value of any
type a, giving back a value of the same type a. Type variables in the type signature are used to specify
polymorphic types. Polymorphism of a type variable in a type is made explicit in the type by the use
of a universal quantifier forall, or ∀. The meaning of this quantifier is that a value with a universally
quantified type can be used with different types for the quantified type variables.

The type signature may be omitted, in that case the same type will still be inferred. However, the
reconstruction of the type of a value for which the type signature is omitted has its limitations, the
same as for Haskell98 [25]. Haskell98 also restricts what can be described by type signatures.

Polymorphism is allowed for identifiers bound by a let-expression, not for identifiers bound by an-
other mechanism such as parameters of a lambda expression. The following variant of the previous
example is therefore not to be considered correct:

let f :: (a→ a) → Int
f = λi→ i 3
id :: a→ a

in f id

It will give the following output:

let f :: (a -> a) -> Int
f = \i -> i 3
{- ***ERROR(S):

In ‘\i -> i 3’:
... In ‘i’:

Type clash:
failed to fit: c_2_0 -> c_2_0 <= v_6_0 -> Int
problem with : c_2_0 <= Int -}

id :: a -> a
{- [id:forall a . a -> a, f:forall a . (a -> a) -> Int] -}

in f id

53

54 CHAPTER 4. EH 3: POLYMORPHIC TYPE INFERENCE

The problem here is that the polymorphism of f in a means that the caller of f can freely choose what
this a is for a particular call. However, from the viewpoint of the body of f this limits the choice of
a to no choice at all. If the caller has all the freedom to make the choice, the callee has none. This is
encoded as a type constant c_ chosen for a during type checking the body of f . This type constant
by definition is a type a programmer can never define or denote. The consequence is that an attempt
to use i in the body of f , which has type c_..→c_.. cannot be used with an Int. The use of type
constants will be explained later.

Another example of the limitations of polymorphism in this version of EH is the following variation

let f = λi→ i 3
id :: a→ a

in let v = f id
in f

for which the compiler will infer types

let f = \i -> i 3
id :: a -> a
{- [f:forall a . (Int -> a) -> a, id:forall a . a -> a] -}

in let v = f id
{- [v:Int] -}

in f

EH version 3 allows parametric polymorphism but not polymorphic parameters. The parameter i
has a monomorphic type, which is made even more clear when we make an attempt to use this i
polymorphically in

let f = λi→ (i 3, i ’x’)
id = λx→ x

in let v = f id
in v

for which the compiler will infer types

let f = \i -> (i 3,i ’x’)
{- ***ERROR(S):

In ‘\i -> (i 3,i ’x’)’:
... In ‘’x’’:

Type clash:
failed to fit: Char <= Int
problem with : Char <= Int -}

id = \x -> x
{- [id:forall a . a -> a, f:forall a . (Int -> a) -> (a,a)] -}

in let v = f id
{- [v:(Int,Int)] -}

in v

Because i is not allowed to be polymorphic it can either be used on Int or Char, but not both.

However, the next version (chapter 5) does permit polymorphic parameters.

The “monomorphic parameter” problem could have been solved by allowing a programmer to ex-
plicitly specify a ∀ for the type of the parameter i of f . The type of f would then be (∀ a.a → a) →

4.1. TYPE LANGUAGE 55

(Int, Char) instead of ∀ a.(a → a) → (Int, Char). In this version of EH (resembling Haskell98) it is not
permitted to specify polymorphism explicitly, but the next version of EH does permit this.

The reason not to allow explicit types is that Haskell98 and this version of EH have as a design prin-
ciple that all explicitly specified types in a program are redundant. That is, after removal of explicit
type signatures, the type inferencer can still reconstruct all types. It is guaranteed that all recon-
structed types are the same as the removed signatures or more general, that is, the type signatures
are a special case of the inferred types. This guarantee is called the principal type property [6, 20, 12].

However, type inferencing also has its limits. In fact, the richer a type system becomes, the more
difficulty a type inferencing algorithm has in making the right choice for a type. In the next version
it is allowed to specify types which otherwise could not have been found by a type inferencing
algorithm.

4.1 Type language

The type language for this version of EH adds quantification with the universal quantifier ∀

σ = Int | Char
| (σ, ..., σ)
| σ → σ
| v | f
| ∀ α.σ

A f stands for a fixed type variable, a type variable which may not be constrained but still stands for
an unknown type. A series of consecutive quantifiers in ∀ α1.∀ α2. ... σ is abbreviated to ∀α.σ.

The corresponding abstract syntax for type expressions also need an additional alternative
EHTyAbsSyn

DATA Ty
| Var tv : {TyVarId}

categ : TyVarCateg
DATA TyVarCateg
| Plain
| Fixed

DATA Ty
| Quant tv : {TyVarId}

ty : Ty

together with a convenience function for making such a quantified type
EHTy

mkTyVar :: TyVarId→ Ty
mkTyVar tv = Ty Var tv TyVarCateg Plain

mkTyQu :: TyVarIdL→ Ty→ Ty
mkTyQu tvL t = foldr (λtv t→ Ty Quant tv t) t tvL

The discussion of type variable categories is postponed until section 4.2.1.

However, the syntax of this version of EH only allows type variables to be specified as part of a type
signatures. The quantifier ∀ cannot be explicitly denoted.

EHAbsSyn
DATA TyExpr

56 CONTENTS

| Var nm : {HsName}

As a consequence the parser for type expressions has to include an alternative in pTyExprBase to parse
type variables.

EHParser

tyExprAlg = (sem TyExpr Con, sem TyExpr App
, sem TyExpr AppTop)

pTyExprBase = sem TyExpr Con 〈$〉 pCon
〈|〉 sem TyExpr Var 〈$〉 pVar
〈|〉 sem TyExpr Wild 〈$ pKey "..."
〈|〉 pParenProd tyExprAlg pTyExpr

pTyExpr = pChainr
(mkArrow tyExprAlg 〈$ pKeyw hsnArrow)
pTyExprBase

The type language suggests that a quantifier may occur anywhere in a type. This is not the case,
quantifiers may only be on the top of a type. A second restriction is that quantified types are present
only in a Γ whereas no ∀’s are present in types used throughout type inferencing expressions and
patterns. This is to guarantee the principle type property .

4.2 Type inference

Compared to the previous version the type inferencing process does not change much. Because
types used throughout the type inferencing of expressions and patterns do not contain ∀ quantifiers,
nothing has to be changed there.

Changes have to be made to the handling of declarations and identifiers though. This is because
polymorphism is tied up with the way identifiers for values are introduced and used.

A quantified type, or also often named type scheme, is introduced in rule e-let3 and rule e-let-tysig3
and instantiated in rule e-ident3, see figure 4.1. We will first look at the instantiation.

4.2.1 Instantiation
EHInferExpr

SEM Expr
| Var loc.fTy := @lhs.tyCnstr � tyInst @lUniq @gTy

A quantified type is used whenever a value identifier having that type is referred to in an expression.
We may freely decide what type the quantified type variables may have as long as each type variable
stands for a monomorphic type. However, at this point it is not known which type a type variable
stands for so fresh type variables are used instead. This is called instantiation, or specialization. The
resulting instantiated type partakes in the inference process as usual.

The removal of the quantifier and replacement with all quantified type variables is done by tyInst:
EHTyInstantiate

tyInst′ :: (TyVarId→ Ty) → UID→ Ty→ Ty
tyInst′ mkFreshTy uniq ty

= s � ty′

where i u (Ty Quant v t) = let (u′, v′) = mkNewUID u
(s, t′) = i u′ t

in ((v 7→ (mkFreshTy v′)) � s, t′)
i t = (emptyCnstr, t)
(s, ty′) = i uniq ty

tyInst :: UID→ Ty→ Ty
tyInst = tyInst′ mkTyVar

4.2. TYPE INFERENCE 57

Γ, σk
expr
` e : σ C

Γq ++ Γ, σk
expr
` e : σe C3

Γq ≡ [(i 7→ ∀α.σ) | (i 7→ σ) ← C2..1Γp, α ≡ ftv (σ)− ftv (C2..1Γ)]

Γp ++ Γ, σp
expr
` ei : C2

>⊥
pat
` p : σp, Γp C1

Γ, σk
expr
` let p = eiin e : σe C3..1

(e-let3)

(Γq − [i 7→] ++ [i 7→ σq]) ++ Γ, σk
expr
` e : σe C3

Γq ≡ [(i 7→ ∀α.σ) | (i 7→ σ) ← C2..1Γp, α ≡ ftv (σ)− ftv (C2..1Γ)]

(Γp − [i 7→] ++ [i 7→ σq]) ++ Γ, σj
expr
` ei : C2

σq ≡ ∀α.σi

σj ≡ [αj 7→ fj] σi, fj fresh
α ≡ ftv (σi)

p ≡ i ∨ p ≡ i @...

σi
pat
` p : , Γp C1

Γ, σk
expr
` let i :: σi; p = eiin e : σe C3..1

(e-let-tysig3)

(i 7→ ∀ [αj].σi) ∈ Γ
fit
` [αj 7→ vj] σi 6 σk : σ C

vj fresh

Γ, σk
expr
` i : σ C

(e-ident3)

Figure 4.1: Type inferencing for expressions with quantifier ∀

58 CONTENTS

Function tyInst strips all quantifiers and substitutes the quantified type variables with fresh ones.

4.2.2 Quantification

The other way around, quantifying a type, happens when a type is bound to a value identifier and
added to a Γ. The way this is done varies with the presence of a type signature. Rule e-let3 and
rule e-let-tysig3 (figure 4.1) differ only in the use of a type signature, if present.

SEM Decl
| TySig loc.sigTy = @tyExpr.ty

EHInfer
SEM Decl
| TySig loc.sigTy := tyQuantify (∈ @tyExpr.tyVarWildL) @tyExpr.ty

A type signature simply is quantified over all free type variables in the type using
EHTyQuantify

tyQuantify :: (TyVarId→ Bool) → Ty→ Ty
tyQuantify tvIsBound ty = mkTyQu (filter (¬.tvIsBound) (ftv ty)) ty

EHTyQuantify
tyQuantifyClosed :: Ty→ Ty
tyQuantifyClosed = tyQuantify (const False)

Type variables introduced by a wildcard may not be quantified over.

We now run into a problem which will be solved no sooner than the next version of EH. The type
signature acts as a known type knTy against which checking takes place. Which type do we use for
that purpose, the quantified sigTy or the unquantified tyExpr.ty?

• Suppose the tyExpr.ty is used. Then, for the erroneous

let id :: a→ a
id = λx→ 3

in ...

we end up with fitting v1 → Int 6 a → a. This can be done via constraints [v1 7→ Int, a 7→ Int].
However, a was supposed to be chosen by the caller of id while now it is constrained by the
body of id to be an Int. Somehow constraining a whilst being used as part of a known type for
the body of id must be inhibited.

• Alternatively, sigTy may be used. However, the inferencing process and the fitting done by
fitsIn cannot (yet) handle types with quantifiers.

For now, this can be solved by replacing all quantified type variables of a known type with type
constants

SEM Decl
| Val loc.knTy = @sigTy

EHInfer
SEM Decl
| Val loc.knTy := tyInstKnown @lUniq @sigTy

by using a variant of tyInst
EHTyInstantiate

tyInstKnown :: UID→ Ty→ Ty
tyInstKnown = tyInst′ (λtv→ Ty Var tv TyVarCateg Fixed)

This changes the category of a type variable to ‘fixed’. A fixed type variable is like a plain type variable
but may not be constrained, that is, bound to another type. This means that fitsIn has to be adapted

4.2. TYPE INFERENCE 59

to prevent that from happening. The difference with the previous version only lies in the handling
of type variables. Type variables now may be bound if not fixed and are equal only if their categories
match too. For brevity the new version of fitsIn is omitted.

4.2.3 Generalization/quantification of inferred types

How do we determine if a type for some expression is polymorphic? If a type signature is given,
the signature itself describes the polymorphism via type variables explicitly. However, if for a value
definition a corresponding type signature is missing, the value definition itself gives us all the infor-
mation we need. We make use of the observation that a binding for a value identifier acts as a kind
of boundary for that expression.

let id = λx→ x
in ...

The only way the value associated with id ever will be used outside the body expression bound to
id, is via the identifier id. So, if the inferred type v1 → v1 for the expression λx → x has free type
variables (here: [v1]) and these type variables are not used in the types of other bindings, in particular
those in the global Γ, we know that the expression λx→ x nor any other type will constrain those free
type variables. The type for such a type variable apparently can be freely chosen by the expression
using id, which is exactly the meaning of the universal quantifier. These free type variables are the
candidate type variables over which quantification can take place, as described by the typing rules
for let-expressions in figure 4.1 and its implementation

SEM Expr
| Let decls.patValGam = @decls.gathTySigGam

‘gamPushGam‘ @lhs.valGam
loc .(lValGam, gValGam) = gamPop @decls.patValGam
decls.valGam = @decls.patValGam
body.valGam = @decls.patValGam

SEM Expr
| Let decls.patTyCnstr = @lhs.tyCnstr

.tyCnstr = @decls.patTyCnstr

EHInfer
SEM Expr
| Let loc .lSubsValGam = @decls.tyCnstr � @lValGam

.gSubsValGam = @decls.tyCnstr � @gValGam

.gTyTvL = ftv @gSubsValGam

.lQuValGam = valGamQuantify @gTyTvL @lSubsValGam
body.valGam := @lQuValGam

‘gamPushGam‘ @gSubsValGam

All available constraints in the form of decls.tyCnstr are applied to both global (gValGam) and local
(lValGam) Γ. All types in the resulting local lSubsValGam are then quantified over their free type
variables, with the exception of those available more globally, the gTyTvL.

EHGam
valGamQuantify :: TyVarIdL→ ValGam→ ValGam
valGamQuantify globTvL

= gamMap (λ(n, t) → (n, t{vgiTy = tyQuantify (∈ globTvL) (vgiTy t)}))
EHGam

gamMap :: ((k, v) → (k′, v′)) → Gam k v→ Gam k′ v′

gamMap f (Gam ll) = Gam (map (map f) ll)

The condition that quantification only may be done for type variables not occurring in the global Γ
is a necessary one. Take for example,

60 CONTENTS

let h :: a→ a→ a
f = λx→ let g = λy→ (h x y, y)

in g 3
in f ’x’

If the type g :: a→ (a, a) would be concluded, g can be used with y an Int parameter, as in the example.
Function f can then be used with x a Char parameter. This would go wrong because h assumes the
types of its parameters x and y are equal. So, this justifies the error given by the compiler for this
version of EH:

let h :: a -> a -> a
f = \x -> let g = \y -> (h x y,y)

{- [g:v_13_1 -> (v_13_1,v_13_1)] -}
in g 3

{- [f:Int -> (Int,Int), h:forall a . a -> a -> a] -}
in f ’x’
{- ***ERROR(S):

In ‘f ’x’’:
... In ‘’x’’:

Type clash:
failed to fit: Char <= Int
problem with : Char <= Int -}

All declarations in a let-expression together form what in Haskell is called a binding group. Inference
for these declarations is done together and all the types of all identifiers are quantified together. The
consequence is that a declaration that on its own would be polymorphic, may no be so in conjunction
with an additional declaration which uses the previous declaration

let id1 = λx→ x
id2 = λx→ x
v1 = id1 3

in let v2 = id2 3
in v2

The types of the function id1 and value v1 are inferred in the same binding group. However, in this
binding group the type for id1 is v1 → v1 for some type variable v1, without any quantifier around
the type. The application id1 3 therefore infers an additional constraint v1 7→ Int, resulting in type
Int→ Int for id1

let id1 = \x -> x
id2 = \x -> x
v1 = id1 3
{- [v1:Int, id2:forall a . a -> a, id1:Int -> Int] -}

in let v2 = id2 3
{- [v2:Int] -}

in v2

On the other hand, id2 is used after quantification, outside the binding group, with type ∀ a.a → a.
The application id2 3 will not constrain id2.

In Haskell binding group analysis will find groups of mutually dependent definitions, each of these
called a binding group. These groups are then ordered according to “define before use” order. Here,

4.2. TYPE INFERENCE 61

for EH, all declarations in a let-expression automatically form a binding group, the ordering of to
binding groups d1 and d2 has to be done explicitly by let d1 in let d2 in....

Being together in a binding group can create a problem for inferencing mutually recursive defini-
tions, for example:

let f1 = λx→ g1 x
g1 = λy→ f1 y
f2 :: a→ a
f2 = λx→ g2 x
g2 = λy→ f2 y

in f1 3

This results in

let f1 = \x -> g1 x
g1 = \y -> f1 y
f2 :: a -> a
f2 = \x -> g2 x
g2 = \y -> f2 y
{- [g2:forall a . a -> a, g1:forall a . forall b . a -> b

, f1:forall a . forall b . a -> b, f2:forall a . a -> a] -}
in f1 3

For f1 it is only known that its type is v1 → v2. Similarly g1 has a type v3 → v4. More type information
cannot be constructed unless more information is given as is done for f2. Then also for g2 may the
type ∀ a.a→ a be reconstructed.

4.2.4 Type expressions

Finally, type expressions need to return a type where all occurrences of type variable names (of type
HsName) coincide with type variables (of type TyVarId). Type variable names are identifiers just
as well so a TyGam similar to ValGam is used to map type variable names to freshly created type
variables.

EHGam
data TyGamInfo = TyGamInfo{tgiTy :: Ty} deriving Show

EHGam
type TyGam = Gam HsName TyGamInfo

EHInferTyExpr
SEM TyExpr
| Var (loc.tgi, lhs.tyGam) = case tyGamLookup @nm @lhs.tyGam of

Nothing→ let t = mkNewTyVar @lUniq
tgi = TyGamInfo t

in (tgi, gamAdd @nm tgi @lhs.tyGam)
Just tgi → (tgi, @lhs.tyGam)

SEM TyExpr
| Var lhs.ty = tgiTy @tgi

Either a type variable is defined in tyGam, in that case the type bound to the identifier is used, other-
wise a new type variable is created.

62 CONTENTS

Chapter 5

EH 4: ∀ and ∃ everywhere

This version of EH adds explicit types with quantifiers at all positions in a type, existential quantifi-
cation and an interpretation of unquantified types to quantified types.

Higher ranked explicit polymorphism. For example in

let f :: (a→ a) → (Int, Char)
f = λi→ (i 3, i ’x’)
id :: a→ a
v = f id

in f

f has type f :: (∀ a.a → a) → (Int, Char), which means that i has type ∀ a.a → a in the body of f .
Therefore i can be used polymorphically in the body of f .

The quantifier ∀ in the type of f is on a so called higher ranked position in the type, rank 1 being in
front of the type or in front of a result of a function type. A rank 2 position is in front of the argument
of a function type. Higher ranked positions are defined recursively by the same definition. So, in

∀1 a.a→ (∀2 b.b→ b) → ((∀3 c.c→ c) → (∀4 d.d→ d)) → ∀5 e.e→ e→ a

∀1 and ∀5 are on a rank 1 position, ∀2 and ∀4 on rank 2 and ∀3 on rank 3.

Standard Hindley-Milner inferencing as described for the previous version of EH can infer rank 1
universal quantifiers. We will not do better than that, but the inferencer described for this version
of EH will not throw away any type information about higher ranked quantifiers defined via a type
signature. No attempt is made to be smart in reconstructing higher ranked types, only smartness is
implemented by not forgetting higher ranked type information.

Existentially quantified types. Quantifiers on higher ranked positions are also necessary to make
existential types useful

let id :: ∀ a.a→ a
xy :: ∃ a.(a, a→ Int)
xy = (3, id)
ixy :: (∃ a.(a, a→ Int)) → Int
ixy = λ(v, f) → f v
xy′ = ixy xy
pq :: ∃ a.(a, a→ Int)
pq = (’x’, id) -- ERROR

63

64 CHAPTER 5. EH 4: ∀ AND ∃ EVERYWHERE

in xy′

An existentially quantified type is specified with keyword exists, or ∃. The type variable which is
existentially quantified represents a type but we do not know which one. Existential quantification
hides, or forgets, more specific type information. In the given example xy is a tuple for which we have
forgotten that its first component is an Int. All we know is that we can apply the second component
to the first component (as done by ixy). This constraint is not upheld for pq, so an error is produced:

let id :: forall a . a -> a
xy :: exists a . (a,a -> Int)
xy = (3,id)
ixy :: (exists a . (a,a -> Int)) -> Int
ixy = \(v,f) -> f v
xy’ = ixy xy
pq :: exists a . (a,a -> Int)
pq = (’x’,id)
{- ***ERROR(S):

In ‘(’x’,id)’:
... In ‘id’:

Type clash:
failed to fit: forall a . a -> a <= Char -> Int
problem with : Char <= Int -}

{- [xy’:Int, pq:(C_0_3_0,C_0_3_0 -> Int)
, ixy:(exists a . (a,a -> Int)) -> Int
, xy:(C_0_1_0,C_0_1_0 -> Int), id:forall a . a -> a] -}

in xy’

Opening an existentially quantified type. The inverse of existential quantification of a type vari-
able is often called ‘opening’. It means that we get to know the original type. This of course cannot
be done as this information was forgotten in the first place. Instead, the compiler ‘invents’ a fresh
new type, a type constant, which acts as a placeholder for the opened type variable. This fresh type is
guaranteed to be different from any type the programmer can construct. Only if functions accepting
parameters of this type are available anything useful can be done with it, as in the example.

It also means that we can create values with which we cannot do much useful. For example

let v1 :: ∃ a.a
v2 = v1

in v2

gives

let v1 :: exists a . a
v2 = v1
{- [v2:C_0_0_0, v1:C_0_0_0] -}

in v2

Both examples also demonstrate the place where opening an existentially quantified type is done.
Opening an existential type is done when the type is bound to an identifier. However, only the type
variables for the top level existential quantifiers are opened. If an existentially quantified type is
buried in a composite type it will only be opened if bound to a value identifier. For example:

65

let v1 :: (∃ a.a, ∃ b.b)
v2 = v1
(a, b) = v1
(c, d) = v1

in v2

gives

let v1 :: (exists a . a,exists b . b)
v2 = v1
(a,b) = v1
(c,d) = v1
{- [d:C_1_5_0, c:C_1_4_0, b:C_1_3_0, a:C_1_2_0

, v2:(exists a . a,exists b . b)
, v1:(exists a . a,exists b . b)] -}

in v2

Also, opening the same type twice, as done in the given example for v1, will twice give fresh type
constants too.

This behavior simplifies the use of existential types in that no additional language construct for open-
ing is necessary.

Guessing locations for quantifiers. Quantifiers need not always be specified. For example in

let id :: a→ a
ixy = λ(v, f) → f v
pq = (’x’, id)
xy :: (a, a→ Int)
xy = (3, id)

in let xy′ = ixy xy
pq′ = ixy pq

in xy′

no quantifiers are specified in the type signatures, for ixy a type signature is even absent. The follow-
ing interpretation of the meaning of a type is used to determine where a quantifier should be inserted
when a type is quantified.

• If a type variable a occurs somewhere in σ1 and σ2 in σ1 → σ2 but not outside the function type,
a will be universally quantified, i.e. with ∀.

• If a type variable a occurs somewhere in σ1 and σ2 in (σ1, σ2) but not outside the tuple type, a
will be existentially quantified, i.e. with ∃.

The idea is that the first rule covers the notion that if an a is passed in and comes out a function, this
function will work for all a, hence the universal quantification. On the other hand, the second rule
covers the notion that if an a is stored together with another and nothing more is known about a we
might as well hide a, hence the existential quantification. More rules are needed but we will look into
this further when we look at the implementation.

For the given example the following will be concluded

66 CONTENTS

let id :: a -> a
ixy = \(v,f) -> f v
pq = (’x’,id)
xy :: (a,a -> Int)
xy = (3,id)
{- [pq:(Char,forall a . a -> a)

, ixy:forall a . (exists b . (b,b -> a)) -> a
, xy:(C_0_1_0,C_0_1_0 -> Int), id:forall a . a -> a] -}

in let xy’ = ixy xy
pq’ = ixy pq
{- [pq’:Char, xy’:Int] -}

in xy’

Note that an explicit type is needed to hide type information (as for xy), but is not required to pass it
to a function expecting an existential.

Outline of the rest. First we will look at the type structure (section 5.1). The fitsIn function will
have to be redesigned almost completely (section 5.2), partly because of the presence of quantifiers
everywhere, partly because fitsIn now really is asymmetric because (e.g.) forgetting type informa-
tion is one-way only. Quantification as well as instantiation become more complicated because of the
presence of quantifiers anywhere in a type (section 5.4, section 5.3). Finally type inferencing expres-
sions and patterns will have to be modified (section 5.5), luckily not much because the hard work is
done in fitsIn.

5.1 Type language

The type language for this version of EH adds quantification with the existential quantifier ∃

σ = Int | Char | c
| (σ, ..., σ)
| σ → σ
| v | f
| Q α.σ,Q ∈ {∀, ∃}

We also need an infinite supply of type constants c. Quantifiers Q may now appear anywhere in a
type.

The Quant alternative of the type structure has to made more general to be able to encode ∃ too.
EHTyAbsSyn

DATA Ty
| Quant qu : TyQu

tv : {TyVarId}
ty : Ty

DATA TyQu
| Forall
| Exists

Some additional functions on quantifiers TyQu are defined here too. These may seem unnecessary
but the extra layer of abstraction is convenient when the range of quantifiers is extended later on (not
included in this paper):

EHTy
tyquForall TyQu Exists = TyQu Forall
tyquForall q = q

5.2. FITTING, SUBSUMPTION 67

tyquExists TyQu Forall = TyQu Exists
tyquExists q = q
tyquIsForall TyQu Forall = True
tyquIsForall = False
tyquIsExists TyQu Exists = True
tyquIsExists = False

These functions inquire the kind of quantifier and flip between universal and existential quantifier.

5.2 Fitting, subsumption

First we will look at the issues arising with the presence of quantifiers in a type. Next we will look at
the implementation.

5.2.1 Issues

6 is a partial ordering. With the presence of quantifiers during type inferencing, the function fitsIn,
implementating the so called subsumption relation 6 between types, now becomes a partial ordering
on types. For example,

let v1 :: ∃ a.a
v1 = 3
v2 :: Int
v2 = v1

in v1

makes the type inferencer check Int 6 ∃ a.a, if the type of the actual value 3 fits in the specified
type ∃ a.a. This corresponds to the flow of 3 into some location, which in turn is then later on used
elsewhere. This checks out well, but not the other way around because we cannot assume that some
unknown type is an Int.

Similarly for universal quantification the check ∀ a.a → a 6 Int → Int holds as we can use a more
generally applicable function id in the more restricted required setting Int→ Int.

let ii :: Int→ Int
ii = id
id :: ∀ a.a→ a
id = ii

in ii

Losing generality, or specialization/instantiation to a specific type is ok, but the other way around,
for the definition of id it is not.

So, in a nutshell

∀ a.a 6 σ 6 ∃ a.a

meaning that a universally quantified type can be used at a place where any other type is expected,
say some type σ (e.g. an Int), which in turn can be used at a place where all is forgotten about a type.
Or, in other words, first we choose some type for a, then we forget this choice.

Let us look at some other examples to get a better idea of what fitsIn/6 has to deal with.

68 CONTENTS

Impredicativeness. The following example (from Botlan [4])

let choose :: a→ a→ a
id :: a→ a
v = choose id

in v

demonstrates a choice we can make. This choice coincides with the question what the type of v is.

• v :: ∀ b.(b → b) → b → b. This is Haskell’s answer. This answer is given because all types
are monomorphic, that is, without quantifiers during inferencing. The type variable a of the
type of choose is bound to the instantiated type if id. So, id is instantiated to v1 → v1, giving
choose id :: (v1 → v1) → v1 → v1 resulting in the given quantified type. Function v can safely be
applied to a function of type Int→ Int.

• v :: (∀ c.c→ c) → (∀ d.d→ d). This is system-F’s answer [29]. This answer is given because the
type variable a of choose is bound to the type of the parameter as it is known, with quantifiers,
in its uninstantiated original form. Now v cannot be applied to a function of type Int → Int
because this function is not general enough to be used as if it were of type ∀ a.a → a. Para-
doxically enough a more general function will be returned; this relates to a phenomenon called
contravariance which we will discuss later.

Allowing type variables to be bound to, or instantiated with, quantified types is called impredicative-
ness .

The critical observation for this version of EH is that it is difficult to infer that a type variable should
be bound to a quantified type, but that it is relatively easy not to forget that a type is quantified if we
already knew in the first place that it was quantified. The latter is what we do except in situations
where it would break Haskell’s choice, thereby still inferring types in a standard Hindley-Milner
way but using fitsIn/6 to allow richer types still to match properly.

Subsumption 6 needs to instantiate types. These examples also demonstrate that fitsIn needs to
instantiate types. In the previous version of EH all types partaking in the inference process were
expected to be fully instantiated. By definition this can no longer be done if as much as possible
type information is to be retained. Still, at some point instantiation has to be done, in particular at
the latest moment possible. This latest moment is the place where a type really is compared with
another one, in fitsIn.

Subsumption6 depends on context. fitsIn is used as a tool to enforce the6 relation between types.
It is used to check the type of an actual parameter with its expected one, as in the previous example
for choose (page 68). It is also used to check the type of a value against its known type as in the earlier
example with ii and id (page 67). However, the precise use of fitsIn in these contexts differs slightly
in the way instantiation is done.

• For an application f a of f :: σ2 → ... to a :: σ1 we have to check the type σ1 of an actual argument
against the type σ2 of an expected via σ1 6 σ2. As we learned from looking at the choose
example, Haskell’s convention is to instantiate σ1 before binding it to a type variable v in the
case σ2 ≡ v. This information is passed as an additional parameter to fitsIn, notated by νil ,
named an instantiating context.

• For checking an expression e :: σ2 of a declaration v :: σ1; v = e to its known type σ1 we check
σ2 6 σ1. In this case we want to avoid instantiating σ2. The necessity of avoiding this becomes
clear if we look at a situation where σ2 ≡ (∃ a.a, ...) and σ1 ≡ (v, ...), coinciding with a situation
where an explicit type signature is absent. Now, if ∃ a.a is instantiated with type constants

5.2. FITTING, SUBSUMPTION 69

before it is bound to v all information about the existential is irretrievably lost, something we
do only when an existential is bound to an identifier. So, in this case we say that fitsIn needs to
told it is checking types in a strong context, notated by νs.

• A third context will also be mentioned here for completeness, a so called weak context νw. It is
used whenever an expression can have >1 alternative expressions as a result, which is the case
for case-expressions, to be dealt with no sooner than the introduction of datatypes in the next
version of EH (not included in this paper).

fitsIn/6 therefore needs an option ν to describe these variations

ν = νs -- strong context
| νil -- instantiating context, for expr App
| νi -- instantiating context, for patterns

These contextual variations actually are configurations of lowlevel boolean flags for fitsIn

fioBindRFirst = f i+r−bind -- prefer binding of a rhs tvar over instantiating
| f i−r−bind

fioBindLFirst = f i+l−bind -- prefer binding of a lhs tvar over instantiating
| f i−l−bind

fioLeaveRInst = f i+r−inst -- leave rhs (of fitsIn) instantiated
| f i−r−inst

where the + variants stand for True. A True value for the flag fioBindRFirst states that in case of σ 6 v a
constraint (v 7→ σ) will result, otherwise first σ will be instantiated and v be bound to the instantiated
σ. Similary we have fioBindLFirst for v 6 σ. Finally, fioLeaveRInst determines if an instantiation done
for σ in ... 6 σ will return the instantiated σ or σ itself. Summarizing, fioBindRFirst and fioBindLFirst
turn off greedy instantiating and fioLeaveRInst leaves visible what has been instantiated.

Context variations and these flags relate as follows

fioBindRFirst fioBindLFirst fioLeaveRInst
νs f i+r−bind f i+l−bind f i−r−inst
νil f i−r−bind f i+l−bind f i−r−inst
νi f i−r−bind f i−l−bind f i+r−inst

So, for example the νi context variant used for an expression application has as its effect that instan-
tiation will be done a la Hindley-Milner.

Finally, all of this is encoded as follows
EHTyFitsIn

data FIOpts = FIOpts{fioLeaveRInst :: Bool , fioBindRFirst :: Bool
, fioBindLFirst :: Bool , fioUniq :: UID
, fioCoContra :: CoContraVariance
} deriving Show

νs :: FIOpts
νs = FIOpts {fioLeaveRInst = False, fioBindRFirst = True

, fioBindLFirst = True , fioUniq = startUID
, fioCoContra = ⊕
}

νil :: FIOpts
νil = νs{fioBindRFirst = False}
νi :: FIOpts
νi = νil{fioLeaveRInst = True, fioBindLFirst = False}

70 CONTENTS

Co- and contravariance. For tuples the check (σ1, σ2) 6 (σ3, σ4) will break down into σ1 6 σ3 and
σ2 6 σ4 because conceptually a tuple value can be put into a location if that location expects a tuple
and the elements of the tuple also fit.

For functions this works differently. Checking σ1 → σ2 6 σ3 → σ4 means that a f :: σ3 → σ4 is
expected but a g :: σ1 → σ2 is available. This happens for example in

let g :: σ1 → σ2
f :: σ3 → σ4
f = g
a :: σ3

in f a

So, what happens when f is called and what does it mean in terms of types σ? The caller of f in
the application f a expects that the function f accepts a σ3. However, g is invoked instead, so a
value of type σ3 is passed to a function expecting a σ1, which in terms of fitting means σ3 6 σ1. The
observation here is that the direction of 6 for fitting the argument types of f and g is opposite to the
direction of fitting f and g. This behavior is called contravariance.

In general, fitting a composite type breaks down into fitting the components of the composite type.
If the direction of 6 for fitting a component is the same as for the composite type, it is said that that
component of the type is covariant, if the direction is opposite the component is contravariant.

The following notation is used to denote this variance

V = ⊕ -- CoVariant
| 	 -- ContraVariant
| � -- CoContraVariant (both co/contra)

with a corresponding Haskell definition
EHCommon

data CoContraVariance = ⊕ | 	 | � deriving (Show, Eq)

in which the same notation is used for the alternatives of CoContraVariance.

5.2.2 Implementation

Typing rules. Let us look more precisely at 6 which we now also will describe with rules, in fig-
ure 5.2 and figure 5.1. Rule f-prod4 and rule f-arrow4 both follow the discussion about co- and con-
travariance. These rules are both instances of the by now usual App structure which will be used by
fitsIn.

The fine detail here lies with rule f-arrow4 which specifies a strong context νs for fitting its arguments.
This means that for higher ranked positions in a type any implicit instantiation of types is inhibited,
that is, it is not visible for the inference process.

The rules for quantified types also deserve a bit more attention.

• Rule f-forall-r2 applies in

let ii :: Int→ Int
ii = id
id :: ∀ a.a→ a
id = ii

in ii

to the check Int → Int 6 ∀ a.a → a which has to be done for id = ii. If ∀ a.a → a is instantiated
with type variables v, the check would succeed with a constraint (v 7→ Int). This is not correct.

5.2. FITTING, SUBSUMPTION 71

ν
fit
` σl 6 σr : σ C

νs
fit
` C1σa

2 6 C1σa
1 : σa C2

ν
fit
` σr

1 6 σr
2 : σr C1

ν
fit
` σa

1 → σr
1 6 σa

2 → σr
2 : σa → C2σr C2..1

(f-arrow4)

ν
fit
` C1σl

1 6 C1σl
2 : σl C2

ν
fit
` σr

1 6 σr
2 : σr C1

ν
fit
` (σl

1, σr
1) 6 (σl

2, σr
2) : (σl, C2σr) C2..1

(f-prod4)

Figure 5.1: Fitting/subsumption for type applications

ν
fit
` σl 6 σr : σ C

ν
fit
` ρi 6 σ2 : σ C

(, ρi) ≡ instv(α, ρ1)

ν
fit
` ∀α.ρ1 6 σ2 : σ C

(f-forall-l)

f i+r−inst

fit
` σ1 6 ρi : σ C

(, ρi) ≡ instv(β, ρ2)

f i+r−inst

fit
` σ1 6 ∀β.ρ2 : σ C

(f-forall-r1)

f i−r−inst

fit
` σ1 6 ρi : C

(, ρi) ≡ instf (β, ρ2)

f i−r−inst

fit
` σ1 6 ∀β.ρ2 : C (∀β.ρ2) C

(f-forall-r2)

ν
fit
` ρi 6 σ2 : σ C

(, ρi) ≡ instc(α, ρ1)

ν
fit
` ∃α.ρ1 6 σ2 : σ C

(f-exists-l)

f i+r−inst

fit
` σ1 6 ρi : σ C

(, ρi) ≡ instc(β, ρ2)

f i+r−inst

fit
` σ1 6 ∃β.ρ2 : σ C

(f-exists-r1)

f i−r−inst

fit
` σ1 6 ρi : σ C

(v, ρi) ≡ instv(β, ρ2)

f i−r−inst

fit
` σ1 6 ∃β.ρ2 : C (∃β.ρ2) C \dom

v

(f-exists-r2)

Figure 5.2: Fitting/subsumption for quantified types

72 CONTENTS

Recall that by succesfully passing this check Int → Int will be used as if it were a ∀ a.a → a,
which definitely will not work for all types. So, in order to let this check fail we instantiate with
the fixed variant f of type variables, indicated by instf . These fixed type variables cannot be
further constrained but quantification over them is allowed (see ...).

• Dually, rule f-exists-r2 applies in

let f :: (∃ a.a) → Int
v = f 3

in v

to the check Int 6 ∃ a.a for the application f 3. The body of f only knows it gets passed a value
of some unknown type, no assumptions about it are made in the body of f . Consequently, type
variable may be instantiated with any type by the caller of f . This is simulated by instantiating
with fresh constrainable type variables v, via instv. In that case we also are not interested in
any found constraints concerning the fresh type variables, so these are removed.

Co- and contravariance. The encoding of co- and contravariance behavior is solved a bit more gen-
eral then really is required at this point. The idea is that for a type application c a b... the c determines
how the fitting of its arguments should be done. For example, for c ≡→, the first argument should
be fitted with the opposite variance and options ν should be made strong. This is described via a
environment encoding this information

EHTyFitsIn
type CoCoInfo = [(CoContraVariance→ CoContraVariance, FIOpts→ FIOpts)]
data CoCoGamInfo = CoCoGamInfo{ccgiCoCoL :: CoCoInfo}
type CoCoGam = Gam HsName CoCoGamInfo
mkStrong :: FIOpts→ FIOpts
mkStrong fi = fi{fioLeaveRInst = False, fioBindRFirst = True, fioBindLFirst = True}
cocoGamLookup :: Ty→ CoCoGam→ CoCoInfo
cocoGamLookup ty g

= case ty of
Ty Con nm→ case gamLookup nm g of

Just ccgi → ccgiCoCoL ccgi
Nothing | hsnIsProd nm→ take (hsnProdArity nm) (repeat (id, id))

→ unknownCoCoL
→ unknownCoCoL

where unknownCoCoL = repeat (const �, id)
EHTyFitsIn

cocoGam :: CoCoGam
cocoGam = assocLToGam [(hsnArrow, CoCoGamInfo [(cocoOpp, mkStrong), (id, id)])]

It also shows that only for function and tuple types we know what to do in such a situation. Compli-
cations in this area will arise with the introduction of datatypes later on (not included in this paper).

fitsIn parameters and result. So, let us know finally look at the implementation of 6, and redo the
implementation of fitsIn. First, fitsIn needs to pass information both up and downwards. Upwards
was already implemented via

EHTyFitsIn
data FIOut = FIOut{ foCnstr :: C , foTy :: Ty

, foUniq :: UID , foCoContraL :: CoCoInfo
, foErrL :: ErrL
}

emptyFO = FIOut{ foCnstr = emptyCnstr, foTy = Ty Any
, foUniq = startUID , foCoContraL = []

5.2. FITTING, SUBSUMPTION 73

, foErrL = []
}

which is extended with � information and threads a UID value needed for instantiating types to-
gether with the downward information stored in

EHTyFitsIn

data FIIn = FIIn{fiFIOpts :: FIOpts, fiUniq :: UID
, fiCoContra :: CoContraVariance
}

emptyFI = FIIn{fiFIOpts = νs , fiUniq = startUID
, fiCoContra = ⊕
}

The parameter fiCoContra is used to indicate if the comparison 6 is flipped.

The fitting. The preliminaries of fitsIn have not changed much compared to the previous version
(page 45). All internally defined functions now take an additional top-down fi :: FIIn parameter and
some work has to be done for extracting and passing variance information (in function res).

EHTyFitsIn

fitsIn :: FIOpts→ UID→ Ty→ Ty→ FIOut
fitsIn opts uniq ty1 ty2

= fo
where

res fi t = emptyFO{ foUniq = fiUniq fi, foTy = t
, foCoContraL = cocoGamLookup t cocoGam}

err fi e = emptyFO{ foUniq = fioUniq opts, foErrL = e}
manyFO fos = foldr1 (λfo1 fo2 → if foHasErrs fo1 then fo1 else fo2) fos
bind fi tv t = (res fi t){ foCnstr = tv 7→ t}
occurBind fi v t
| v ∈ ftv t = err fi [Err UnifyOccurs ty1 ty2 v t]
| otherwise = bind fi v t

The fitting of quantified types uses unquant which removes all top level quantifiers.
EHTyFitsIn

unquant fi t @(Ty Quant) hide howToInst
= let (u, uq) = mkNewLevUID (fiUniq fi)

(uqt, rtvs) = tyInst1Quants uq howToInst t
back = if hide thenλfo→ let s = cnstrFilter (const.¬.(∈ rtvs)) (foCnstr fo)

in fo{ foCnstr = s, foTy = s � t}
else id

in (fi{fiUniq = u}, uqt, back)

The instantiation is parameterized a flag hide telling if any found constraints for the fresh type vari-
ables rtvs should be hidden. A second parameter howToInst :: HowToInst specifies how to instantiate.
When discussing the implementation for quantifiers we will look at this further.

The first cases of the actual implementation of 6 are similar to the previous version with the excep-
tion of an alternative for flipping t1 6 t2 into t2 6 t1 if the variance is 	, and an additional guard on
fioBindLFirst and fioBindRFirst.

EHTyFitsIn

u fi t1 t2
| fiCoContra fi ≡ 	 = u (fi{fiCoContra = ⊕

, fiFIOpts = fioSwapVariance (fiFIOpts fi)})
t2 t1

u fi Ty Any t2 = res fi t2
u fi t1 Ty Any = res fi t1
u fi t1 @(Ty Con s1) t2 @(Ty Con s2)

74 CONTENTS

| s1 ≡ s2 = res fi t2
u fi t1 @(Ty Var v1 f1) (Ty Var v2 f2)
| v1 ≡ v2 ∧ f1 ≡ f2 = res fi t1

u fi t1 @(Ty Var v1 f) t2
| fioBindLFirst (fiFIOpts fi) ∧ f ≡ TyVarCateg Plain

= occurBind fi v1 t2
u fi t1 t2 @(Ty Var v2 f)
| fioBindRFirst (fiFIOpts fi) ∧ f ≡ TyVarCateg Plain

= occurBind fi v2 t1

The order in which all these case are listed is now important as the cases for f i−l−bind and f i−r−bind will
be executed only after types are stripped of their top level quantifiers.

Compared to the rules in figure 5.2 an additional case has been included for an exact match of two
quantified types when we want t1 6 t2 and t2 6 t1 both to hold. We will postpone discussion until
later (not included in this paper).

EHTyFitsIn

u fi t1 @(Ty Quant q1) t2 @(Ty Quant q2)
| fiCoContra fi ≡ � ∧ q1 ≡ q2

= u fi2 uqt1 uqt2
where (fi1, uqt1,) = unquant fi t1 False instCoConst

(fi2, uqt2,) = unquant fi1 t2 False instCoConst

The function unquant has to be told how to do the instantiation, this is specified by a function which
creates a type from a type variable and a quantifier.

EHTyInstantiate

type HowToInst = TyQu→ TyVarId→ Ty
instCoConst, instContra :: HowToInst
instCoConst q v = if tyquIsForall q then Ty Var v TyVarCateg Plain else mkTyCon ("C_"++ show v)
instContra q v = if tyquIsForall q then Ty Var v TyVarCateg Fixed else Ty Var v TyVarCateg Plain

The rules in figure 5.2 indicate for different combinations of options and quantifiers how to instanti-
ate type variables. For example, the first case of

EHTyFitsIn

u fi t1 t2 @(Ty Quant)
| fiCoContra fi 6≡ � ∧ fioLeaveRInst (fiFIOpts fi)

= back2 (u fi2 t1 uqt2)
where (fi2, uqt2, back2) = unquant fi t2 False instCoConst

u fi t1 t2 @(Ty Quant)
| fiCoContra fi 6≡ � ∧ ¬ (fioLeaveRInst (fiFIOpts fi))

= back2 (u fi2 t1 uqt2)
where (fi2, uqt2, back2) = unquant fi t2 True instContra

implements rule f-forall-r1 and rule f-exists-r1. The behavior with respect to the different ways of
instantiating is encoded in instCoConst which tells us that the universally quantified types should be
instantiated with type variables, and existentially quantified types with type constants. The second
case similarly covers rule f-forall-r2 and rule f-exists-r2 while

EHTyFitsIn

u fi t1 @(Ty Quant) t2
| fiCoContra fi 6≡ � = u fi1 uqt1 t2

where (fi1, uqt1, back1) = unquant fi t1 False instCoConst

covers the remaining rule f-forall-l and rule f-exists-l.

Checking two application of types, implementing both rule f-prod4 and rule f-arrow4, has changed
with respect to the handling of co- and contravariance. From the resulting foCoContraL the first
element describes the co- and contravariance behavior, as such it is used to update the fi :: FIIn ac-
cordingly.

EHTyFitsIn

5.3. INSTANTIATION 75

u fi t1 @(Ty App tf 1 ta1) t2 @(Ty App tf 2 ta2)
= manyFO [ffo, afo, rfo]

where ffo = u fi tf 1 tf 2
fs = foCnstr ffo
((coUpd, fiUpd) : cor) = foCoContraL ffo
fi′ = fi{fiCoContra = coUpd (fiCoContra fi), fiFIOpts = fiUpd (fiFIOpts fi)

, fiUniq = foUniq ffo}
afo = u fi′ (fs � ta1) (fs � ta2)
as = foCnstr afo
rt = Ty App (as � foTy ffo) (foTy afo)
rfo = afo{ foTy = rt, foCnstr = as � fs, foCoContraL = cor}

All is left of fitsIn are the remaining cases for type variables, now for the f i−l−bind and f i−r−bind cases
EHTyFitsIn

u fi t1 @(Ty Var v1 f) t2
| f ≡ TyVarCateg Plain = occurBind fi v1 t2

u fi t1 t2 @(Ty Var v2 f)
| f ≡ TyVarCateg Plain = occurBind fi v2 t1

and starting it all
EHTyFitsIn

u fi t1 t2 = err fi [Err UnifyClash ty1 ty2 t1 t2]

fo = u (emptyFI{fiUniq = uniq, fiFIOpts = opts, fiCoContra = fioCoContra opts}) ty1 ty2

5.3 Instantiation

Function fitsIn is now one of the two places where instantiation of a type occurs.

• In fitsIn the instantiation of a quantified type now is entangled with matching two types. fitsIn
peels off top level quantifiers layer by layer during the matching of types.

• When a type is bound to an identifier, we have to instantiate top level ∃’s to open the type.

These variants are implemented by tyInst1Quants and tyInst1Exists respectively:
EHTyInstantiate

tyInst :: UID→ Bool→ HowToInst→ Ty→ (Ty, TyVarIdL)
tyInst uniq onlyExists howToInst ty

= (s � ty′, tvl)
where i u (Ty Quant q v t) | ¬ (tyquIsForall q ∧ onlyExists)

= let (u′, v′) = mkNewUID u
(s, t′, tvl′) = i u′ t

in ((v 7→ (howToInst q v′)) � s, t′, v′ : tvl′)
i t = (emptyCnstr, t, [])
(s, ty′, tvl) = i uniq ty

tyInst1Quants :: UID→ HowToInst→ Ty→ (Ty, TyVarIdL)
tyInst1Quants uniq howToInst ty = tyInst uniq False howToInst ty
tyInst1Exists :: UID→ Ty→ Ty
tyInst1Exists uniq ty = fst (tyInst uniq True instCoConst ty)

An additional onlyExists :: Bool is passed to the more general function tyInst to inhibit quantification
of ∀’s.

Note that in the previous version of EH instantiation was done explicitly, as indicated by type rules.
In this version instantiation is done implicitly by fitsIn.

76 CONTENTS

5.4 Quantification

Quantification is more complicated because the place of omitted quantifiers has to be guessed. This
guessing is done according to the rules in figure 5.3. The structure of a type and the occurrences of
type variables are used to determine where which quantifier is inserted during the quantification of
a type.

bv,V
qu
` σ : σq fv

v /∈ bv

bv,⊕
qu
` v : ∀ v.v [v]

(q-var-co)
v /∈ bv

bv,	
qu
` v : ∃ v.v [v]

(q-var-contra)

v ∈ (fv1 ∩ fv2)− bv

[v] ∪ bv,	
qu
` σ1 : σ

q
1 fv1

[v] ∪ bv,⊕
qu
` σ2 : σ

q
2 fv2

bv,
qu
` σ1 → σ2 : ∀ v.σq

1 → σ
q
2 (fv1 ∪ fv2)− [v]

(q-arrow)

v ∈ (fv1 ∩ fv2)− bv

[v] ∪ bv,⊕
qu
` σ1 : σ

q
1 fv1

[v] ∪ bv,⊕
qu
` σ2 : σ

q
2 fv2

bv,
qu
` (σ1, σ2) : ∃ v.(σ

q
1 , σ

q
2) (fv1 ∪ fv2)− [v]

(q-prod)

v ∈ (fv1 ∩ fv2)− bv

[v] ∪ bv,�
qu
` σ1 : σ

q
1 fv1

[v] ∪ bv,�
qu
` σ2 : σ

q
2 fv2

Q ≡ if V ≡ ⊕ then ∀ else ∃
V ∈ {⊕,	}

bv,V
qu
` σ1 σ2 :Q v.σq

1 σ
q
2 (fv1 ∪ fv2)− [v]

(q-app)

v /∈ bv

[v] ∪ bv,V
qu
` σ : σq fv

bv,V
qu
` Q v.σ :Q v.σq fv− [v]

(q-quant)

Figure 5.3: Quantifier location inferencing

Informally, the following rules are obeyed

• The first step is to find for a type variable a the smallest part of a type where a occurs. For
example, for a → (a, b, b, b → c → (b, c)) this is the complete type for a, (a, b, b, b → c → (b, c))
for b and c→ (b, c) for c.

5.4. QUANTIFICATION 77

bv,V
quGam
` Γ : Γq

bv,V
qu
` σ : σq

bv,V
quGam
` Γ : Γq

bv,V
quGam
` [ξ 7→ σ, Γ] : [ξ 7→ σq, Γq]

(qg-cons4)

Figure 5.4: Quantifier location inferencing for types in a Gamma

• If this smallest part is a function type it is assumed that universal quantification is the right
choice (rule q-arrow).

• If this smallest part is a tuple type the type variable is existentially quantified (rule q-prod).

• For the remaining cases the position of the smallest part as part of a function type determines
which quantifier is put in front. For example, in a→ b the type variable a occurs in a contravari-
ant (argument) position, b in a covariant position. Here the observation is that a apparently is
not used at all by the corresponding function because it does not show up in the result type.
So, we might as well hide a, hence the ∃ in rule q-var-contra. Conversely, the choice of what b is
apparently is up to the caller of the function, hence the ∀ in rule q-var-co.

• The rule q-app covers remaining type constructors, which is irrelevant for this version of EH
as there are no other type constructors. It becomes relevant for the next version of EH, when
datatypes are introduced later on (not included in this paper).

Because these rules represent a form of syntactic sugar they always can be overruled by explicit
quantifiers, as indicated by rule q-quant. The quantification is lifted to a Γ in a straightforward way
as specified by figure 5.4.

The implementation, in terms of AG, follows the rules with the exception of some details. First all
free type variables are gathered:

EHTyQuantify

ATTR Ty [|| frTvLL : { [TyVarIdL]}]
SEM TyAGItf
| AGItf loc.frTvL = head @ty.frTvLL

SEM Ty
| Var loc.frTvL = [@tv]
| App loc.frTvLL = @arg.frTvLL ++ @func.frTvLL

.frTvL = listCombineUniq @frTvLL
lhs.frTvLL = if @isSpineRoot then [@frTvL] else @frTvLL

| Quant loc.frTvL = head @ty.frTvLL \\ @introTVarL
| Quant Var lhs.frTvLL = [@frTvL]
| Any Con lhs.frTvLL = [[]]

EHCommon

listCombineUniq :: Eq a⇒ [[a]] → [a]
listCombineUniq = nub.concat

At the top of a type application, say App (App (Con "->") (Var 1)) (Var 1) representing a → a we
need to be able to determine which type variables occur in both arguments of the type constructor
→. Therefore a list frTvLL : [TyVarIdL] of type variables is gathered, each element corresponding with

78 CONTENTS

the free type variables of an argument. This list corresponds to the fv’s in the rules in figure 5.3. For
the given example this would be [[1], [1]].

Next we determine which locations in the type structure are a candidate for quantification:
EHTyQuantify

ATTR Ty [V : CoContraVariance ||]
SEM Ty
| App func.V = �

arg .V = if @appIsLikeProd ∨ @isArrowRoot then ⊕
else if@appIsArrow then 	

else �
SEM TyAGItf
| AGItf ty .V = ⊕

EHTyQuantify
SEM Ty
| Var App Quant loc.isQuLoc = @lhs.V 6≡ �

Quantifiability of a location is based on co- and contravariance information as passed from top to
bottom, as prescribed by the rules in figure 5.3. We also need to know what an App represents, that
is, if it is a function type (appIsArrow) or tuple type (appIsLikeProd):

EHTyCommonAG
SEM Ty
| App loc.isArrowRoot = @appIsArrow ∧ @isSpineRoot

If a location in the type structure is a place where quantification may take place, the candidate free
type variables qHereTvL are computed:

EHTyQuantify
SEM TyAGItf
| AGItf loc.qHereTvL = []

SEM Ty
| Var loc.qHereTvL = if @isQuLoc then [@tv] else []
| App loc.qHereTvL = if @isQuLoc

then if @appIsArrow ∨ @appIsLikeProd
then tvarOccurGE2 @frTvLL
else @frTvL

else []
EHTyQuantify

tvarOccurCount :: [TyVarIdL] → AssocL TyVarId Int
tvarOccurCount = map (λvl @(v :) → (v, length vl)).group.sort.concat
tvarOccurGE2 :: [TyVarIdL] → TyVarIdL
tvarOccurGE2 = map fst.filter ((>1).snd).tvarOccurCount

The auxiliary function tvarOccurGE2 selects those type variables which occur at least twice in the
arguments of a type constructor.

From the top of the type downwards then the function tvIsBound is constructed, ensuring that candi-
date free type variables are not in the bv of the rules in figure 5.3.

EHTyQuantify
ATTR TyAGItf Ty [tvIsBound : {TyVarId→ Bool} ||]
SEM TyAGItf
| AGItf loc.(qBndTvL, tvIsBound) = tvarsToQuant True @lhs.tvIsBound @qHereTvL

SEM Ty
| App Var loc.(qBndTvL, tvIsBound) = tvarsToQuant @isQuLoc @lhs.tvIsBound @qHereTvL
| Quant loc.tvIsBound = tvBoundAdd @lhs.tvIsBound @introTVarL

EHTyQuantify
tvBoundAdd :: (TyVarId→ Bool) → TyVarIdL→ TyVarId→ Bool
tvBoundAdd tvIsBound tvL = λv→ v ∈ tvL ∨ tvIsBound v
tvarsToQuant :: Bool→ (TyVarId→ Bool) → TyVarIdL→ (TyVarIdL, TyVarId→ Bool)

5.5. TYPE INFERENCE 79

tvarsToQuant isQuLoc tvIsBound tvL
= if isQuLoc

then let boundables = filter (¬.tvIsBound) tvL
in (boundables, tvBoundAdd tvIsBound boundables)

else ([], tvIsBound)

The resulting selection of type variables qBndTvL is then used with the quantifier hereQu which in
turn is based on qExists, telling us if it is a location where ∃ is to be used:

EHTyQuantify
SEM TyAGItf
| AGItf loc.hereQu = TyQu Forall

SEM Ty
| App loc.qAsExist = @appIsLikeProd ∨ @lhs.V ≡ 	 ∧ ¬ @appIsArrow
| Var loc.qAsExist = @lhs.V ≡ 	
| App Var loc.hereQu = if @qAsExist then TyQu Exists else TyQu Forall
| Quant loc.hereQu = @qu.self

Finally the quantified type quTy is constructed:
EHTyQuantify

ATTR TyAGItf [|| quTy : Ty]
ATTR Ty TyQu TyVarCateg [|| quTy : SELF]

SEM TyAGItf
| AGItf lhs.quTy = mkTyQu @hereQu @qBndTvL @ty.quTy

SEM Ty
| Var lhs.quTy = mkTyQu @hereQu @qBndTvL (Ty Var @tv @categ.quTy)
| App lhs.quTy = mkTyQu @hereQu @qBndTvL (Ty App @func.quTy @arg.quTy)
| Quant lhs.quTy = Ty Quant @qu.self @tv @ty.quTy

concluding with wrapping the AG functionality in the function tyQuantify which can be used in the
Haskell world:

EHTyQuantify
tyQuantify :: (TyVarId→ Bool) → Ty→ Ty
tyQuantify tvIsBound ty

= let t = wrap TyAGItf
(sem TyAGItf (TyAGItf AGItf ty))
(Inh TyAGItf{tvIsBound Inh TyAGItf = tvIsBound})

in quTy Syn TyAGItf t

5.5 Type inference

Type inferencing for this version of EH and the previous version are very similar. Figure 5.5 holds
the adapted rules for expressions, figure 5.6 for patterns. The main differences are as follows:

• All rules are passed an additional context parameter indicating the way 6 has to be done with
respect to strength ν. See page 69 for the relevant discussion.

• The ν is mostly passed on unchanged, except in the argument of an expression application
(rule e-app4) and a pattern Con (rule p-con4). The latter is due to a different way of handling
tuple constructors. Instantiation in a pattern rule p-con4 instantiates as greedily as possible.

• Types of tuple constructors (and destructors) are now stored in the Γ for types, valGam. The
lookup for types in valGam (valGamLookup) now takes care of returning a proper quantified
type for tuples, thereby resembling more the normal retrieval of types from a Γ. The rule p-var4
now covers the case for (tuple)constructors too. This change also prepares for the introduction
of datatypes in the next version of EH.

80 CONTENTS

ν, Γ, σk
expr
` e : σ C

νil , Γ, σa
expr
` e2 : C2

ν, Γ, v→ σk
expr
` e1 : σa → σ C1
v fresh

ν, Γ, σk
expr
` e1 e2 : C2σ C2..1

(e-app4)

ν, Γp ++ Γ, σr
expr
` e : σe C3

ν, Γ, σp
pat
` p : , Γp C2

ν
fit
` v1 → v2 6 σk : σp → σr C1

vi fresh

ν, Γ, σk
expr
` λp→ e : C3σp → σe C3..1

(e-lam4)

(ξ 7→ σ) ∈ Γ

ν
fit
` σ 6 σk : σ C

ν, Γ, σk
expr
` ξ : σ C

(e-ident4)

ν, Γq ++ Γ, σk
expr
` e : σe C3

Γq ≡ map (λ(n, σ) → (n, inst∃ (σ))) Γp′

ftv (C2..1Γ),⊕
quGam
` Γp : Γp′

νs, Γp ++ Γ, σp
expr
` ei : C2

νs, Γ,>⊥
pat
` p : σp, Γp C1

ν, Γ, σk
expr
` let p = eiin e : σe C3..1

(e-let4)

ν, (Γq − [i 7→] ++ [i 7→ σq]) ++ Γ, σk
expr
` e : σe C3

Γq ≡ map (λ(n, σ) → (n, inst∃ (σ))) Γp′

ftv (C2..1Γ),⊕
quGam
` Γp : Γp′

νs, (Γp − [i 7→] ++ [i 7→ σq]) ++ Γ, σq
expr
` ei : C2

[],⊕
qu
` σi : σq

p ≡ i ∨ p ≡ i @...

νs, Γ, σi
pat
` p : , Γp C1

ν, Γ, σk
expr
` let i :: σi; p = eiin e : σe C3..1

(e-let-tysig4)

ν
fit
` Int 6 σk : σ C

ν, Γ, σk
expr
` minint . . maxint : σ C

(e-int4)

Figure 5.5: Type checking/inferencing for expression

5.5. TYPE INFERENCE 81

ν, Γ, σk
pat
` p : σ, Γp C

ν
fit
` C1σk 6 σd : σ C2

σd → () ≡ σp

ν, Γ,
pat
` p : σp, Γp C1

p ≡ p1 p2 ... pn, n > 1

ν, Γ, σk
pat
` p : σ, Γp C2..1

(p-apptop4)

dom (Γp
1) ∩ dom (Γp

2) = ∅

ν, Γ, σa
1

pat
` p2 : , Γp

2 C2

ν, Γ,
pat
` p1 : σd → (σa

1 , σa
2 , ..., σa

n), Γp
1 C1

ν, Γ,
pat
` p1 p2 : C2(σd → (σa

2 , ..., σa
n)), Γp

1 ++ Γp
2 C2..1

(p-app4)

σ ≡ inst∃ (σk)

ν, Γ, σk
pat
` i : σ, [i 7→ σ] []

(p-var4)

(unI 7→ σu) ∈ Γ

νi

fit
` σu 6 v1 → v2 : σ

vi fresh

ν, Γ,
pat
` I : σ, [] []

(p-con4)

Figure 5.6: Type checking/inferencing for pattern

82 CONTENTS

• A let-expression in rule e-let4 and rule e-let-tysig4 quantify bindings via the rules in figure 5.4
and figure 5.3. Additionaly, to take care of always opening existentially quantified types bound
by a value identifier, a function inst∃ is used. Function inst∃ corresponds to tyInst1Exists.

Changes in the implementation are also small, mostly to take care of the additional parameters to
fitsIn (ν, a UID for instantiations) and the previous remarks.

5.5.1 Handling of tuples

The alternative for Con looks up the value associated with the tuple constructor name in valGam.
EHInferExpr

SEM Expr
| Con loc.(gTy, nmErrs) := case valGamLookup @nm @lhs.valGam of

Nothing→ (Ty Any, [Err NamesNotIntrod [@nm]])
Just vgi → (vgiTy vgi, [])

.fTy := @lhs.tyCnstr � @gTy

.fo := fitsIn @lhs.fiOpts @lUniq2 @fTy (@lhs.tyCnstr � @lhs.knTy)

Previously, the type was constructed in situ, now it is delegated to valGamLookup:
EHGam

valGamLookup :: HsName→ ValGam→ Maybe ValGamInfo
valGamLookup nm g

= case gamLookup nm g of
Nothing
| hsnIsProd nm

→ let pr = mkPr nm in mkRes (tyProdArgs pr ‘mkTyArrow‘ pr)
| hsnIsUn nm ∧ hsnIsProd (hsnUnUn nm)

→ let pr = mkPr (hsnUnUn nm) in mkRes ([pr] ‘mkTyArrow‘ pr)
where mkPr nm = mkTyFreshProd (hsnProdArity nm)

mkRes t = Just (ValGamInfo (tyQuantifyClosed t))
Just vgi→ Just vgi

→ Nothing

This modification also introduces a new convention where valGam contains for a value constructor
X a binding for the type of the function which constructs the value, and a type of the function which
dissects the value into a tuple of all fields of the value. The convention is that the constructor has
name X, the dissector/deconstructor has name unX. For tuples these bindings are created on the fly.
For example,for a 3-tuple the following bindings are simulated to be present in valGam:

, 3 :: ∀ a.a→ ∀ b.b→ ∀ c.c→ (a, b, c)
un, 3 :: ∀ a b c.(a, b, c) → (a, b, c)

The unX binding corresponds to the type created in the rule p-con2 (figure 3.2, page 49). The Con
alternative now also uses the valGam to find a binding for a tuple dissector/destructor:

EHInferPatExpr

SEM PatExpr
| Con loc.(knUnTy, nmErrs) = case valGamLookup (hsnUn @nm) @lhs.valGam of

Nothing→ (Ty Any, [Err NamesNotIntrod [@nm]])
Just vgi → (vgiTy vgi, [])

.patFunTy := let [a, r] = mkNewTyVarL 2 @lUniq
fo = fitsIn νi @lUniq2 @knUnTy ([a] ‘mkTyArrow‘ r)

in foTy fo

5.5. TYPE INFERENCE 83

5.5.2 Declarations and options

Declarations als need some modifications to take care of the quantification and instantiation of
toplevel existential quantifiers as specified in rule e-let4 and rule e-let-tysig4:

EHInfer

SEM Expr
| Let decls.patValGam := gamPushGam (valGamInst1Exists @lUniq @decls.gathTySigGam)

@lhs.valGam
loc .lQuValGam := valGamInst1Exists @lUniq2.valGamQuantify @gTyTvL $ @lSubsValGam

ATTR AllExpr AllPatExpr [fiOpts : FIOpts ||]
SEM Expr
| App func .fiOpts = νs

arg .fiOpts = νil

SEM Decl
| Val expr .fiOpts = νs

patExpr.fiOpts = νs

SEM AGItf
| AGItf expr .fiOpts = νs

Setting up proper values for the “strength” ν is also done here.

5.5.3 Type expressions

Type signatures may include quantifiers. This requires additional abstract syntax for type expres-
sions:

EHAbsSyn

DATA TyExpr
| Quant qu : {TyQu}

tyVar : {HsName}
tyExpr : TyExpr

and additional parsing
EHParser

pTyExprPrefix = sem TyExpr Quant
〈$〉 (TyQu Forall 〈$ pKey "forall" 〈|〉 TyQu Exists 〈$ pKey "exists")
〈∗〉 pVar 〈∗ pKey "."

EHParser

tyExprAlg = (sem TyExpr Con, sem TyExpr App
, sem TyExpr AppTop)

pTyExprBase = sem TyExpr Con 〈$〉 pCon
〈|〉 sem TyExpr Var 〈$〉 pVar
〈|〉 sem TyExpr Wild 〈$ pKey "..."
〈|〉 pParenProd tyExprAlg pTyExpr

pTyExpr = pTyExprPrefix 〈∗〉 pTyExpr
〈|〉 pTyExprBase 〈??〉 (flip (mkArrow tyExprAlg) 〈$ pKeyw hsnArrow 〈∗〉 pTyExpr)

The parser pTyExpr is slightly complicated because of the right associativity of the function type
constructor→ in combination with quantifiers. For example, the type

∀ a.a→ ∀ b.b→ (a, b)

parses to an abstract syntax fragment corresponding to

∀ a.(a→ (∀ b.(b→ (a, b))))

84 CONTENTS

Rewriting to a form similar to the parser for expressions, with a prefix would lead to a parser with
common prefixes (the pTyExprBase) in its alternatives. For LL(k) parsers such as the parser combi-
nators used here this is not a good idea. Hence the construction where the quantifier is parsed as a
prefix of the parts between→ but still applies right associatively.

EHInferExpr
SEM Expr
| Var loc.fTy := @lhs.tyCnstr � @gTy
| IConst CConst Var

loc.fo := fitsIn @lhs.fiOpts @lUniq @fTy (@lhs.tyCnstr � @lhs.knTy)
| Lam loc.foKnFun := let fo = fitsIn @lhs.fiOpts @lUniq2 @funTy (@lhs.tyCnstr � @lhs.knTy)

in fo{ foTy = foCnstr fo � @funTy}
EHInferPatExpr

SEM PatExpr
| AppTop Con loc.fo := fitsIn @lhs.fiOpts @lUniq @lhs.knTy @knResTy
| Con loc.(knResTy,) = tyArrowArgRes @patFunTy

.ty := foTy @fo
lhs.tyCnstr = foCnstr @fo � @lhs.tyCnstr

| Var VarAs loc.ty := tyInst1Exists @lUniq2 (tyEnsureNonBotTop @lUniq @lhs.knTy)

Bibliography

[1] The Glasgow Haskell Compiler. http://www.haskell.org/ghc/, 2004.

[2] Martin Abadi and Luca Cardelli. A Theory of Objects. Springer, 1996.

[3] Arthur Baars. Attribute Grammar System. http://www.cs.uu.nl/groups/ST/twiki/bin/view/Center/AttributeGrammarSystem,
2004.

[4] Didier Botlan, Le and Didier Remy. ML-F, Raising ML to the Power of System F. In ICFP, 2003.

[5] Luis Damas and Robin Milner. Principal type-schemes for functional programs. In Proceedings
of Principles of Programming Languages (POPL), pages 207–212. ACM, ACM, 1982.

[6] Luis Damas and Robin Milner. Principal type-schemes for functional programs. In 9th sympo-
sium Principles of Programming Languages, pages 207–212. ACM Press, 1982.

[7] Iavor S. Diatchki, Mark P. Jones, and Thomas Hallgren. A Formal Specification of the Haskell
98 Module System. In Haskell Workshop, pages 17–29, 2002.

[8] Atze Dijkstra. EHC Web. http://www.cs.uu.nl/groups/ST/Ehc/WebHome, 2004.

[9] Karl-Filip Faxen. A Static Semantics for Haskell. Journal of Functional Programming, 12:295, 2002.

[10] Cordelia Hall, Kevin Hammond, Simon Peyton Jones, and Philip Wadler. Type Classes in
Haskell. ACM TOPLAS, 18:109–138, mar 1996.

[11] Bastiaan Heeren, Jurriaan Hage, and S. Doaitse Swierstra. Generalizing Hindley-Milner Type
Inference Algorithms. Technical report, Institute of Information and Computing Science, Uni-
versity Utrecht, Netherlands, 2002.

[12] J.R. Hindley. The principal type-scheme of an object in combinatory logic. Transactions of the
American Mathematical Society, 146:29–60, Dec 1969.

[13] Trevor Jim. Rank 2 type systems and recursive definitions. Technical report, MIT, 1995.

[14] Mark P. Jones. Typing Haskell in Haskell. In Haskell Workshop, 1999.

[15] Mark P. Jones. Typing Haskell in Haskell. http://www.cse.ogi.edu/ mpj/thih/, 2000.

[16] A.J. Kfoury and J.B. Wells. A Direct Algorithm for Type Inference in the Rank-2 Fragment of
Second-Order lambda-Calculus. In Proceedings of the 1994 ACM conference on LISP and functional
programming, pages 196–207, 1994.

[17] A.J. Kfoury and J.B. Wells. Principality and Decidable Type Inference for Finite-Rank Intersec-
tion Types. In Principles of Programming Languages, pages 161–174, 1999.

[18] A.J. Kfoury and J.B. Wells. Principality and Type Inference for Intersection Types Using Expan-
sion Variables. Theoretical Computer Science, 311:1–70, 2003.

85

86 BIBLIOGRAPHY

[19] Konstantin Laufer and Martin Odersky. Polymorphic Type Inference and Abstract Data Types.
Technical report, Loyola University of Chicago, 1994.

[20] R. Milner. A theory of type polymorphism in programming. Journal of Computer and System
Sciences, 17, 1978.

[21] John C. Mitchell and Gordon D. Plotkin. Abstract Types Have Existential Type. ACM TOPLAS,
10:470–502, Jul 1988.

[22] Martin Odersky and Konstantin Laufer. Putting Type Annotations to Work. In Principles of
Programming Languages, pages 54–67, 1996.

[23] Martin Odersky, Martin Sulzmann, and Martin Wehr. Type Inference with Constrained Types.
In Fourth International Workshop on Foundations of Object-Oriented Programming (FOOL 4), 1997.

[24] Nigel Perry. The Implementation of Practical Functional Programming Languages, 1991.

[25] Simon Peyton Jones. Haskell 98, Language and Libraries, The Revised Report. Cambridge Univ.
Press, 2003.

[26] Simon Peyton Jones and Mark Shields. Practical type inference for arbitrary-rank types, 2003.

[27] Simon L. Peyton Jones. The Implementation of Functional Programming Languages. Prentice Hall,
1987.

[28] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[29] J.C. Reynolds. Towards a theory of type structure. In Proc. Coll. sur la Programmation, LNCS,
pages 408–425, 1974.

[30] Martijn Schrage. Proxima. A generic presentation-oriented XML editor.
http://www.cs.uu.nl/groups/ST/Center/Proxima, 2004.

[31] Mark Shields and Simon Peyton Jones. First-class Modules for Haskell. In Ninth International
Conference on Foundations of Object-Oriented Languages (FOOL 9), Portland, Oregon, Dec 2001.

[32] Utrecht University Software Technology Group. UUST library.
http://cvs.cs.uu.nl/cgi-bin/cvsweb.cgi/uust/, 2004.

[33] S. Doaitse Swierstra. Parser Combinators, from Toys to Tools. In Haskell Workshop, Electronic
Notes in Theoretical Computer Science. Elsevier Science Publishers, 2000.

[34] S. Doaitse Swierstra and Pablo R. Azero Alcocer. Fast, Error Correcting Parser Combinators: A
Short Tutorial. In SOFSEM’99 Theory and Practice of Informatics, LNCS, pages 111–129, Nov 1999.

[35] S.D. Swierstra, P.R. Azero Alocer, and J. Saraiava. Designing and Implementing Combinator
Languages. In Doaitse Swierstra, Pedro Henriques, and José Oliveira, editors, Advanced Func-
tional Programming, Third International School, AFP’98, LNCS, pages 150–206. Springer-Verlag,
1999.

[36] Simon Thompson. Type Theory and Functional Programming. Addison-Wesley, 1991.

[37] Phil Wadler. Theorems for free! In 4’th International Conference on Functional Programming and
Computer Architecture, sep 1989.

Index

λ-calculus, 10

abstract syntax, 16
algebra, 21
assumptions, 29

binding group, 37

concrete syntax, 16
constraint, 43
context, 29
contravariance, 32, 68, 70
contravariant, 70
covariant, 70

environment, 29
existential quantification, 64

fixed type variable, 58
fresh type variable, 49

impredicativeness, 68
infinite type, 46
instantiating context, 68
instantiation, 56

judgement, 28

occur check, 46

partial type signature, 12

semantic function, 20
specialization, 56
strong context, 69
substitution, 44
subsumption, 67

type, 25
type checking, 30
type inference, 30
type scheme, 56
type variable, 42
typing rule, 27

weak context, 69

87

	I Type checking, inference and polymorphism
	Introduction and overview
	Purpose
	A short tour
	Haskell language elements not described
	About the presented code

	EH 1: typed -calculus
	Concrete and abstract syntax
	Parsing: from concrete to abstract (syntax)
	Pretty printing: from abstract to concrete
	Types
	What is a type
	Type pretty printing

	Checking types
	Type rules
	Environment
	Checking Expr
	Checking PatExpr
	Checking declarations
	Checking TyExpr

	Reporting program errors
	Tying it all together

	EH 2: monomorphic type inference
	Type variables
	Constraints
	Remembering and applying constraints
	Computing constraints

	Reconstructing types for Expr
	Reconstructing types for PatExpr
	Declarations
	Partial type signatures: a test case for extendibility

	EH 3: polymorphic type inference
	Type language
	Type inference
	Instantiation
	Quantification
	Generalization/quantification of inferred types
	Type expressions

	EH 4: and everywhere
	Type language
	Fitting, subsumption
	Issues
	Implementation

	Instantiation
	Quantification
	Type inference
	Handling of tuples
	Declarations and options
	Type expressions

	References
	Index

