
A first attempt at type class directives

Bastiaan Heeren

Jurriaan Hage

institute of information and computing sciences, utrecht university

technical report UU-CS-2004-039

www.cs.uu.nl

A first attempt at type class directives

Bastiaan Heeren Jurriaan Hage
Institute of Information and Computing Sciences, Utrecht University

P.O.Box 80.089, 3508 TB Utrecht, The Netherlands

{bastiaan,jur}@cs.uu.nl

Abstract

Building on earlier work on type inference directives for scripting
a compiler to improve type error messages, we present extensions
to those directives to deal with type classes. Our work is mainly
motivated by the need for better type error messages, especially for
domain specific languages. Type inference directives can bridge
the gap between embedded domain specific languages andHaskell
by their ability to lift error messages to the conceptual level of the
domain, without a need to know anything about how the compiler
works on the inside.

We consider both special type class directives, which help to im-
prove type error messages in the presence of type classes, and we
show how existing type inference directives can be extended to cope
with overloading. We also describe a heuristic where type class in-
formation is used to pinpoint more precisely the most likely source
of a unification error in a program.

Categories and Subject Descriptors

D.3.2 [Programming Languages]: Applicative (Functional) Pro-
gramming; D.3.4 [Programming Languages]: Processors—de-
buggers; F.3.3 [Logics and Meanings of Programs]: Studies of
Program Constructs—type structure

General Terms

Languages

Keywords

constraints, type inference, type classes, type errors, directives,
domain-specific programming

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

1 Introduction

Improving the type error messages for higher-order polymorphic
functional programming languages continues to be an area of ac-
tivity. In a previous paper on the subject [HHS03b], we described
a number of methods to improve the type error messages reported
by theHelium compiler [HLvI03] (which implements a significant
subset of theHaskell 98 language) by the introduction of type in-
ference directives which are placed in special files to accompany
the usualHaskell source code.

The main advantage of the type inference directives is that people,
and especially developers of (combinator) libraries in use by others,
can tune the type inference process to their liking without needing
to know anything about the compiler’s internals: all modifications
to the type inference process are described at the level of type in-
ference rules, and are given in separate files. For example, we can
define the following specialized type rule for applications of the
map function from the Prelude1.

f :: t1; xs :: t2;

map f xs :: t3;

t2 == [t4]: map needs @xs.pp@ to be a list
t1 == t5 -> t6: first argument to map should be a function
t4 == t5: the function @f@ cannot be applied to

elements of @xs.pp@
t3 == [t6]: result type should be a list of @t6@

The order in which the equality constraints are listed in the special-
ized type rule corresponds to the order of type inference. This re-
ordering strongly determines which error message is reported for an
ill-typed expression. Note that this also helps giving more precise,
domain-specific messages. For instance, in the third error message
we can use the fact that we already knowxs to be a list andf to
be a function. Needless to say, the lack of domain specificity in
map avoids doing very interesting things, but it should suffice to
illustrate the concept.

A second advantage of our setup is that specialized type rules can-
not change the underlying type system in the sense that the same set
of programs is accepted as type correct (and with the same types).
User-defined type rules that do not correspond with the built-in type
system are rejected.

In our previous work, both the type system and the implementation
could not cope with type classes in any way. This is a large draw-

1Our convention in this paper is to write all type inference di-
rectives on a light gray background.

1

back since mostHaskell programs use the predefined type classes
Eq, Show etc., and some more advanced combinator languages de-
fine and use their own type classes. Since the type inference di-
rectives were designed especially for the purpose of improving the
error messages in the presence of combinator languages, this is a se-
rious inconvenience. Therefore, it seems natural to want to extend
our work to encompass type classes as well.

However, the introduction of type classes has some serious con-
sequences for the quality of the reported error messages. Ad-hoc
polymorphism increases the problem to report concise error mes-
sages significantly, and not much attention has been devoted to this
topic so far. A simple observation is that less errors will be exposed
because the types become more general. This is illustrated by the
following three well-typed2 definitions.

f1 xs = map -1 xs
f2 xs = map (-1) xs
f3 xs = map (\x -> x-1) xs

Here, subtraction (f1 andf3), negation (f2), as well as the inte-
ger literal, are overloaded. The class assertions that appear in the
inferred types forf1 andf2 will never be met, likely causing prob-
lems at the site where these functions are used.

Our work in this paper takes two forms: first of all, we have devised
a number of type class directives to improve type error messages in
the presence of type classes. An illustrative example is7 + True,
for which Hugs mentions “unresolved top-level overloading” and
GHC (version 6.2) that it finds no instance forNum Bool. Such an
error message can easily confuse a novice functional programmer,
who might not even have heard of type classes, instances and over-
loading. For these programmers at least, one would like to be able
to give the compiler some extra information so that it can come
up with better error messages. A directive that specifies thatBool
will never be a member of the type classNum can help the com-
piler to give more precise error messages, i.e., saying that a value
of type Bool may not be used in an addition. In this paper, our
main focus will be type classes according to theHaskell 98 spec-
ification, without considering extensions such as overlapping in-
stances, multi-parameter type classes, and functional dependencies,
although this would be an appealing direction for future research.

Second, we investigate how information about type classes can help
improve the type error messages for unification errors. For exam-
ple, suppose that function types cannot be part of theEq type class.
When a programmer writes(\x -> x) == "identity", then this
could result in an error message which puts all the blame on the
left operand of the equality, since the type of the right operand is
a member ofEq. Although we shall refrain from doing so in this
paper, one could go further and construct a heuristic which, based
on the expected typeString and the inferred type for the lambda
abstraction, returns a hint how to modify the left operand such that
it fits in this context.

The paper is structured as follows. We start with the introduction of
various type class directives in Section 2. In Section 3, we consider
extensions to earlier defined heuristics which make use of type class
information. In the following sections, we describe our type infer-
encing framework and show where the various facilities discussed

2GHC accepts these definitions without any warning.Hugs, on
the other hand, reports an illegal Haskell 98 class constraint, when
started inHaskell 98 mode. The monomorphism restriction will
reject the first two definitions ifmap is only partially applied.

in this paper fit into the framework. We end with a discussion of
related work, a summary of our results, and suggestions for future
work.

2 Motivating examples

In this section we consider each of the directives we have devised
in turn. We stay at the level of examples, and show how these direc-
tives can be used to improve the accuracy of type error messages.
We finally discuss possible interactions between the directives, and
how a compiler can use the directives to modify its behavior in their
presence.

2.1 Thenever directive

The simplest form of a type class directive is thenever directive,
which excludes a type from becoming a member of a type class.
The benefit of this directive is twofold. During the normalization
of class assertions we can reject certain assertions, and immedi-
ately generate an error message. Assertions that make no sense can
no longer show up in types inferred by the compiler. The second
advantage is that we can supply an error message for a directive,
which is reported if the type class directive applies. We illustrate
the never directive with an example. For the sake of brevity, we
keep the error messages in our examples rather terse.

never Eq (a -> b):
functions cannot be tested for equality

never Num Bool:
arithmetic on booleans is forbidden

wrong = if id == id then 3 else 2 + True

The overloading in the definition ofwrong cannot be resolved
at two locations. In particular, instances forEq (a -> b) and
Num Bool are missing. In fact, this is the content of the message
given by theHugs interpreter.

ERROR "Ex1.hs":1 - Unresolved top-level overloading
*** Binding : wrong
*** Outstanding context : (Eq (b -> b), Num Bool)

The error message emitted byGHC 6.2 is more detailed.

Ex1.hs:1:
No instances for (Num Bool, Eq (a -> a))
arising from the literal ‘3’ at Ex1.hs:1

In the definition of ‘wrong’:
wrong = if id == id then 3 else 2 + True

Ex1.hs:1:
No instances for (Num Bool, Eq (a -> a))
arising from use of ‘==’ at Ex1.hs:1

In the predicate expression: id == id
In the definition of ‘wrong’:

wrong = if id == id then 3 else 2 + True

This message is definitely informative, although it is misleading
that in both messages the two irreducible class assertions are men-
tioned. The two special purpose error messages would have been
reported if we had taken thenever directives into account.

Thenever directive is subjected to the same restrictions as any in-
stance declaration inHaskell 98: a class name followed by a type
constructor and a list of unique type variables (we took the liberty
of writing function arrow infix).Haskell 98 does not allow over-
lapping instances, and similarly we prohibit overlappingnevers.

2

The main reason is that when we generate an error message, we
want to explain which directive was responsible and give the corre-
sponding error message. For example, if overlapping is allowed we
do not know which message to generate forwrong in the following
example.

never Eq (Int -> b): message #1
never Eq (a -> Bool): message #2

wrong = (even == even)

The example illustrates that in this case we need some kind of prior-
itizing system to be added to the directives do determine which mes-
sage is reported. Of course, this can be simply the order in which
they are specified. Another way to cope with this situation is that
we require a third directive, namelynever Eq (Int -> Bool),
which is the overlapping case. This assures us that we can always
find a most specific directive. Note that we have to postpone report-
ing a violating class assertion in the context of overlappingnever
directives since more information about a type variable in this as-
sertion may make a more specific directive a better candidate.

2.2 Theclose directive

The second type class directive we consider is theclose directive.
It is stronger than the previousnever directive, in that it forbids
any new instance for a certain type class. To be more precise: if a
class assertion for a closed type class cannot be reduced, then this
will not be possible later on as a consequence of a new instance
declaration that is provided. Many of the considerations applying
to never also apply toclose. An advantage ofclose is that the
compiler can assume to know all instances of the given type class.
Similar to the case-by-case directive, this allows the compiler to
decide early on that some class assertion is in error.

The compiler should warn the programmer when a new instance
is defined for a closed type class. Because the set of instances is
known and fixed after the directive is encountered, a list of all pos-
sible instances which do exist can be presented. The advantage of
never would be much higher if theHaskell 98 restrictions on the
context of a type are somewhat relaxed, as shown by the following
example.

close Similar:
the instances of Similar are @insts@.

class Similar a where
(˜=) :: a -> a -> Bool

instance Similar Int where
(˜=) = (==)

f x xs = [x] ˜= xs

Note that GHC (version 6.2, without extensions) accepts the
program above, because it allows more general contexts in
case the types are inferred (although not if they are explic-
itly given). In the example, the inferred type forf is
f :: forall a. (Similar [a]) => a -> [a] -> Bool. To
actually use this function in a different module, an instance
Similar [a] still has to be provided. Theclose directive tells
us, however, that this cannot be the case, so we can generate an
error forf at this point.

In this fashion, theclose directive may become a way to mod-
erate the power of some of the language extensions by specifying

cases where such generality is not allowed, and benefiting from tai-
lor made error message in the process. One could also choose to
keepHaskell 98 as a starting point, but to devise type class di-
rectives which allow some of the language restrictions to be selec-
tively overruled. For instance, a directive such asgeneral X could
tell the compiler not to complain about certain class assertions that
cannot be reduced to normal form. This would be a situation where
the set of allowable programs grows due to a type directive. Which
manner is chosen, depends solely on one’s preference. The main
lesson to learn is that type class directives give an easy and flexible
way to specify these “local” extensions or restrictions.

We conclude our discussion of this directive by a more extensive
example which shows in detail the error message attributes which
we can use in a type error message that is associated with aclose
directive. These attributes, like@insts@ in the previous example,
help us to show context dependent information. Similar attributes
can be defined for the other directives. Take a look at the following
incorrect definition.

main = print (const 3)

When we generate an error message for an expression based on
information from aclose directive, we would like to have the fol-
lowing information available.

• The name of the overloaded function, in this example
print, and its type scheme, hereShow a => a -> IO ().
Furthermore, we may also want to refer to the in-
stantiated type of this specific occurrence, which is
Show (v1 -> v2) => (v1 -> v2) -> IO ().

• The type which should be a member of theShow type class,
in this casev1 -> v2. Note that this type contains the same
(internal) type variables as the instantiated type.

• The definition for which context reduction was taking place,
which ismain = print (const 3).

• For all of these, we want their location (file name and line-
column number), including the location of theclose direc-
tive.

With this information we can write down the following type error
message template.

close Show:
Due to the close at @dir.loc@, the instances of
Show are @insts@. In @expr.pp@, the identifier
@id@ :: @id.gentype@ is responsible for the
introduction of the assertion ...

A more advanced facility would also describe reductions
which have already taken place before the error was dis-
covered. For instance, if we have the class assertion
Eq [(String, Int -> Int)], then we get into trouble after we
have reduced it toEq (Int -> Int). At this point, we would like
to communicate this reasoning to the programmer as well, perhaps
by showing some of the reduction steps.

2.3 Thedisjoint directive

The disjoint directive specifies that the instances of two type
classes are disjoint, i.e., that no type in a certain class is
shared with a certain other class. A typical example of two
type classes that are intentionally disjoint areIntegral and
Fractional. If, after reduction, we end up with a type

3

(Fractional a, Integral a) =>, then we can immedi-
ately generate an error message, which can also explain that “frac-
tions” are necessarily distinct from “integers”. Note that without
this directive, a context containing these two class assertions is
happily accepted by the compiler, although it undoubtedly results
in problems at a later stage. A programmer should be warned if
new instance declarations make that a type becomes an inhabitant
of both classes. Take a look at the following example which mixes
fractions and integrals.

disjoint Integral Fractional:
something which is fractional can never be integral

wrong = div 2 3 + 2/43

The disjoint directive helps to report an appropriate error mes-
sage for the definition ofwrong. In fact, without this directive we
end up with the type(Integral a, Fractional a) => a. Un-
fortunately,GHC reports an ambiguous type variable as a result of
the monomorphism restriction.Hugs produces a similar error mes-
sage.

Disjoint.hs:1:
Ambiguous type variable ‘a’ in these top-level constraints:

‘Integral a’ arising from use of ‘div’ at Disjoint.hs:1
‘Fractional a’ arising from use of ‘/’ at Disjoint.hs:1

Possible cause: the monomorphism restriction applied
to the following:

wrong :: a (bound at Disjoint.hs:1)
Probable fix: give these definition(s) an explicit type

signature

Ironically, it is the combination of the class assertions about
Integral and Fractional that make the defaulting mechanism
fail (there is no numeral type instance of both classes), which in
turn activates the monomorphism restriction rule.

2.4 Thedefault directive

A default declaration is already included as special syntax in
Haskell 98. This defaulting helps to disambiguate overloaded
numeric operations (see Section 4.3.4 of the RevisedHaskell 98
Report[Has03]). A programmer can specify an ordering on numeric
types in a default declaration (one per module). In this way we
can specify that the overloaded literal constant2 gets typeInt or
Integer, depending on our preference. We think that adefault
declaration is nothing but a type class directive, and that it should
be placed amongst the other directives instead of being considered
part of the programming language. In fact, we could drop the re-
striction that we can only default to numeric types, and we could
allow other (more complex) defaulting strategies as well.

2.5 A possible generalization

The previous directives are all instances of a more general ap-
proach, which considers a type class to be a set of types (its in-
stances). Over this we may specify all kinds of predicates with
some added (comparison) operators on sets such as equality, sub-
set, union, intersection, and difference.

Even if a complete language is included for specifying type class
directives to which all the other directives can be mapped (exclud-
ing possibly theclose anddefault directive), then we expect to
continue supporting sugared notation for often used directives, both
from the viewpoint of user-friendliness as well the hope that they
might be amenable to more efficient implementations.

We close this section with a small selection of interesting examples,
which show what could be gained by extending the language.

Monad = {Maybe, [], IO}
intersect Integral Fractional = {}
intersect X Y <= union A B
RealFloat = intersect RealFrac Floating
intersect Eq Ord = Ord
Read = Show

The first directive prevents new instances for theMonad class, while
the second is equivalent todisjoint Integral Fractional.
The third expresses that all instances in the intersection ofX
and Y are in either A or B (or both). RealFloat is de-
fined as the intersection of two other type classes. The direc-
tive intersect Eq Ord = Ord could also have been written as
Ord <= Eq, while finally we demand thatRead and Show in-
stance declarations come in pairs. Note that a directive such as
Read = Show demands that in this module (and all modules that
import it) instances for exactly the same types are defined forShow
andRead.

Obviously, there is a need for analyzing these general type class di-
rectives when we give the programmer such a rich language. It is,
for instance, quite easy to pose different predicates which contradict
each other, and it is also possible to phrase the same condition in
many different ways, let alone directives which are mutually incon-
sistent and which are likely to burden the programmer with loads of
broken directives. As a result, we are likely to take a conservative
approach again, allowing what we deem necessary.

2.6 Discussion

Many of the type class directives we have seen thus far specify that
the set of instances of a class has some property. For instance, in
the case of theclose directive, the set of instances is fixed. Es-
sentially, such properties should be validated once when they are
encountered. From that point on the properties become invariants
of the program, and each time a certain property might become
invalid (we need to be very precise in stating when a property is
violated), we have to check whether it does. However, since every
constraint explicitly mentions the type classes involved, we know
which directives to check, for each class assertion that is consid-
ered at reduction time.

The main idea of thenever, close, anddisjoint directives is to
detect some errors that involve overloading at an earlier stage, and
to report precise messages for these errors. Contrary to what was
the case for the type inference directives of [HHS03b], the type
class directives presented in this paper can actually change the type
system. Some of the errors would remain unnoticed without the
presence of the type class directives. Furthermore, it remains de-
batable what to do if, for instance, anever directive is followed by
the instance it forbids. Should we reject the instance declaration?
Or perhaps ignore the directive?

These considerations lead to a design space of the type class di-
rectives for which any implementor should make some choices. A
conservative approach would be to give warnings instead of error
messages, having the advantage that the same set of programs is
accepted compared to the situation without type class directives.

Another reasonable approach is to distinguish between the “defin-
ing” side of type classes and their instances, and the use of an over-
loaded function in an expression. We could raise a warning for a

4

declared instance that breaks a class directive. If we then continue,
we may choose to report an error if we use this instance during con-
text reduction. For example, if we encounterinstance Num X for
someX after the directiveclose Num, then we can emit a warn-
ing saying that such an instance is in conflict with the type class
directive (in which case one would expect to see the location of
this directive). If we encounter a class assertionNum X later on, we
issue an error, again referring to the type class directive which is
responsible.

In any case, we expect that a compiler will be at least as stringent
on the “usage” side as it is on the “defining” side: we do not expect
a compiler to give errors for forbidden instances, and only warnings
when these are used.

A final complication of the presented directives is that a single in-
stance declaration, sayNum Bool, may invalidate various direc-
tives, such asclose Num, never (Num Bool), or even weird di-
rectives such asdisjoint Num Num. The bottom line is that a de-
cision should be made about how to deal with such a situation: do
we list all violations, do we prioritize and if so, how?

3 Extending existing directives and heuristics

Now that we have shown the new type class directives, we can sim-
ilarly discuss the directives described in [HHS03b] when extended
to cope with class assertions. We start with presenting a special
heuristic for ill-typed applications and show how type class infor-
mation can improve type error messages for unification errors.

3.1 The application heuristic

Consider an application of the following form:

wrong :: Bool
wrong = (\x -> x) == 2

The application as a whole is in error, while on the other hand, the
various components, the operator(==) and its right and left argu-
ment are themselves type correct. A heuristic can be defined which
first checks that the function or operator in question does not have
more arguments than it can possibly need (for some functions, like
the identity function, this number is infinite). If such is not the case,
we line up two types: the type of the function (in this case an instan-
tiation ofEq a => a -> a -> Bool, sayv9 -> v9 -> Bool to-
gether with the class assertionEq v9), and the inferred types of the
arguments (herev5 -> v5 andInt) combined with the type that is
expected by the expression’s surrounding context (in this caseBool
from the explicit type). This results in the following situation.

function: v9 -> v9 -> Bool
arguments + context: (v5 -> v5) Int Bool

The function application is in error because the function type can-
not be unified withInt via the type variablev9. The next best
thing to do is to see if the blame can be laid on one of the two argu-
ments. This is done by “forgetting” one column that corresponds to
an argument, and test whether the other columns can be unified. In
both cases unification will succeed, and as a result we cannot blame
either of the two arguments. The resulting type error message ef-
fectively says that the application as a whole is at fault.

(2,9): Type error in infix application
expression : (\x -> x) == 2
operator : ==
type : a -> a -> Bool
does not match : (b -> b) -> Int -> Bool

However, in the presence of type classes there is an extra demand
on v9, which is that it should be in theEq class. In the presence of
a type class directive specifying thatEq (a -> b) is not allowed,
there is more evidence that the left argument is at fault. Therefore,
we could give a more precise error messages which focuses on the
left operand of==. Note that if a directive is used to establish this
bias, then it should be mentioned along with the unification error
message.

(2,9): Type error in left operand of an infix application
expression : (\x -> x) == 2
operator : ==
type : Eq a => a -> a -> Bool

left operand : \x -> x
type : a -> a
does not match : Int

This example shows that type class assertions can be used to give a
more accurate error location. Observe also that the two conflicting
types do not any longer contain irrelevant information, such as the
result type.

3.2 Siblings

The siblings type inference directive can be used if it is discovered
that programmers often mix up the names of two or more func-
tions. This may be due to the fact that the names and functionality
are similar, or the operators have similar functionality in different
programming languages, or because the programmers in question
are new to the language. The idea is that we locally replace a func-
tion which is involved in a type error with a sibling function to see
if that solves the inconsistency. If a sibling directive is used, then a
hint is added to the usual type error message, to the effect that he is
advised to replace an identifier by a certain sibling.

An example is(++), (+) and(.) for possible confusion among the
(string) append operators in various programming languages.

siblings +, ++, .

f :: String
f = "2" . "1"

(2,9): Type error in identifier
operator : .
type : (a -> b) -> (c -> a) -> c -> b
expected type : String -> String -> String

probable fix : use ++ instead

After extending the compiler to cope with type classes, the siblings
facility should be properly extended as well, in the sense that re-
placing an identifier with a sibling should not lead to invalid class
assertions.

Consider the following code fragment.

5

siblings f, g, h, i

f :: a -> a -> Int
g :: Num a => a -> a -> Bool
h :: Eq a => a -> a -> Bool
i :: a -> a -> Bool

main = if (f True False) then 2 else 3

Obviously, the use off results in a type error. One expects that
siblingg fails as a replacement for this particularf since there is no
instanceNum Bool at this point. The other two siblings, namelyh
andi, both fit in this case. Note that checking whether a sibling fits
is restricted to its binding group: if the inferred type of a definition
is changed by following the probable fix, then things may go wrong
in a subsequent binding group (explicit type annotations prevent
this from happening).

A further complication arises when the erroneous expression is part
of an explicitly typed definition. Care must be taken here to make
sure that acting upon the hint does not result in an “explicit type
too general” error. A way around this would be to push down (a
skolemized version of) the explicit type into the expression so that
this can be immediately verified. Take a look at the following ex-
ample.

siblings f, g, h

f :: a -> a -> Int
g :: Bool -> Bool -> Bool
h :: Eq a => a -> a -> Bool

main :: a -> Bool
main x = f x x

Clearly, the identifierf in the definition ofmain is in error. We
do not expectg to be suggested as a replacement, becausemain
would then no longer be polymorphic in its first argument. Also the
sibling h does not fit, because thenmain’s type should have been
Eq a => a -> Bool.

3.3 The permutation heuristic

The case of the permutation heuristic is in many ways similar to that
of the siblings, so we only consider the aspects in which it differs.
For a function application that contributes to a type error, we look at
all permutations of the arguments. If there isone singlepermutation
of the arguments which resolves the type inconsistency, then we add
this as a hint to the type error message. Again we have to take the
class assertions that we come across into account.

f :: Num a => Bool -> a -> a

yes :: [a] -> Int
yes xs = f (length xs) True

no :: [a] -> [Int]
no xs = f [length xs] False

For the definition ofyes we can suggest to flip the arguments. The
class assertionNum Int that would arise as a result of permuting
the arguments trivially holds. However, we should not suggest a
permutation for the definition ofno since we cannot validate the
class assertionNum [Int] that would otherwise arise.

3.4 Specialized type rules

The major change to the specialized type rules is that we can now
list class assertions among the equality constraints in such a type
rule. The soundness check can be appropriately generalized to
make sure that the underlying type system does not change (more
on this in Section 5).

We continue with an example of a specialized type rule for the
functionspread. This function returns the difference between the
smallest and largest value of a list.

spread :: (Ord a, Num a) => [a] -> a
spread xs = maximum xs - minimum xs

We can give the following specialized type rule for this function,
consisting of a deduction rule and a list of constraints.

xs :: t1;

spread xs :: t2;

t1 == [t3]: @xs.pp@ must be a list
t3 == t2: @expr.pp@ should return a value of type @t3@
Eq t2: @t2@ is not an instance of Eq, let alone Ord or Num
Ord t2: @t2@ should have a linear ordering imposed on it

Hint: make it an instance of the type class Ord.
Num t2: @t2@ should allow numerical operations

Hint: make it an instance of the type class Num.

Although membership of theOrd or Num class fort2 implies mem-
bership ofEq, we first check the latter, and give a more precise
error message in case it fails. Only then do we consider the asser-
tionsOrd andNum, in which case we can use thatEq t2 holds. Note
that including the assertionEq t2 does not change the validity of
the rule, and such should be discovered by the soundness check of
this specialized type rule.

Context reduction amounts to reducing the class assertions to head
normal form, along the way removing trivially satisfied and du-
plicate assertions, and generating error messages for unsatisfiable
assertions. In many compilers, context reduction is postponed un-
til we come to a point where generalization takes place. This ap-
proach implies that for a given expression the equality constraints
have been handled before class assertions are considered. Such an
order was also apparent in the specialized type rule given above.

Theoretically, there is no reason to keep the separation between
equality constraints and class assertions. However, there is a practi-
cal reason not to lift the restriction. The complicating factor here is
that contrary to equality constraints, a class assertion may be justi-
fied, it may not be justified, but it is also possible that it is too early
to tell whether it is justified or not.

Compare for instance the constraintNum v1, followed by either
v1 == Bool or v1 == Int. If nothing else is known aboutv1,
then, at worst, we have to delay solving the class assertion until we
have considered all the subsequent equality constraints.

This is in fact the reason why context reduction is delayed until
the next generalization point: then we can be sure that all informa-
tion necessary for reduction is available, while nothing is lost by
postponing it until that point. During context reduction, some of
the class assertions can be justified (e.g.,Num Int), while we gen-
erate an error message for assertions that cannot be reduced (e.g.,
Num Bool). In the setting ofHaskell 98, we know that the remain-

6

ing assertions are in head normal form (see also “Typing Haskell in
Haskell” [Jon99]). Some of these assertions will become a part of a
type scheme as a result of generalization (to be more precise: the as-
sertions about type variables over which we generalize). The other
predicates still have to be justified at a later point. In the end, an
ambiguity will be reported for each unjustified class assertion.

One of the main aspects of specialized type rules is that if one con-
siders a given type constraint listed below the rule, then all con-
straints above it have indeed been satisfied. The information im-
plicit in these preceding constraints is often used when constructing
the tailor made error messages. The ability to put class assertions
in between the equality constraints, so that they may be put in po-
sitions where their consistency cannot yet be determined, can eas-
ily lead to unexpected situations where a type error message uses
information about class assertions, whose justification is not yet es-
tablished. Misleading the programmer is the worst of crimes, so we
tend to be conservative and advocate that class assertionsmustbe
listed below the equality constraints.

A concession which could be made is to allow class assertions in
the type rule (also in this case, the user is not allowed to assume
that the truthfulness of the assertion is established). An example of
such an abbreviated rule follows.

xs :: [t3]; Eq t2;

spread xs :: t2;

t3 == t2: @expr.pp@ should return a value of type @t3@
Ord t2: @t2@ should have a linear ordering imposed on it

Hint: make it an instance of the type class Ord.
Num t2: @t2@ should allow numerical operations,

Hint: make it an instance of the type class Num.

The ordering of constraints is in fact the same as in the previous
version. The only difference is that we do not give special error
messages for two of the constraints, since they have been included
into the type rule. A default error message is associated with these
“implicit” constraints.

In summary, two separate lists of constraints are kept: one for
equality constraints and one for class assertions. We expect to start
on the class assertions of a binding group only after all the equality
constraints for the same binding group have been solved.

Note, though, that it is very well possible to use the idea of phasing
introduced in our previous paper [HHS03b] so that context reduc-
tion might be done at the end of each phase, refining our approach
somewhat. Then class assertions belonging to a certain phase can
be reduced, before the constraints of a later phase are considered.
Since this can only be done explicitly, and hence consciously, we
feel that the chances for making mistakes is quite a bit smaller.

4 The type inference framework

In this section, we describe our type inference framework in which
all of the above can be incorporated with relatively little effort. In
the next section, we show how the various aspects of the type (class)
inference directives can be implemented.

In our view, the type inference process takes the following form.

i. Generatethe constraints in a syntax directed fashion in the
abstract syntax tree.

ii. Order the constraints into a list.

iii. Solvethe list of constraints.

The strength and flexibility of the approach lies in the separa-
tion of these concerns, which is hard-wired in the framework.
How these various concerns are instantiated is largely a matter of
choice. In fact, ourHelium compiler, which is implemented in
the described fashion, has different implementations for the various
phases, which can be regarded as plug-ins, enabling us to easily
experiment with different instantiations of the framework. More-
over, many of the plug-ins (such as the type graph constraint solver)
themselves have plug-ins, e.g., for choosing a collection of heuris-
tics to determine which type error message is reported.

We now consider each of the three phases in turn.

Generation

The generation phase is a type-rule-by-type-rule translation of a
collection of bottom-up, constraint based type rules [HHS03a],
which essentially defines the type system.

We formulate the type inference process using three sorts of con-
straints [HHS03a]: equality constraints, which also appear in spe-
cialized type rules and which can be solved by unification, and the
implicit and explicit instance constraints. The latter is used in deal-
ing with explicit type annotations from a program, while the former
is used to deal with let-polymorphism: to obtain a full decoupling
of the generation and solving of constraints, we cannot yet know
the polymorphic type of a let-defined identifier before generating
the constraints for the body.

There are other ways of dealing with let-polymorphism such as du-
plicating the constraints of a let-definition for each of its occur-
rences. We want to avoid duplication of constraints (to avoid dupli-
cation of effort and type errors). Therefore we insist that there are
generalization points in the solving process, where we can be sure
that we have the polymorphic (generalized) type, such that we can
instantiate it. The information necessary to determine whether that
point has arrived is present in the implicit instance constraint (see
[HHS03a] for more details).

Ordering

The result of the generation phase is a constraint tree that follows
the shape of the abstract syntax tree. Each node is decorated with a
set of constraints generated for that node.

The ordering of the constraints in the abstract syntax tree can now
be formulated as a walk over the constraint tree. In principle, any
walk is allowed, except for the restriction that constraints arising
from a let-definition always come before constraints generated for
the body of a let-expression. The transition between these two is
what is referred to as ageneralization point: this is the point where
all the information necessary to compute the generalized type of a
let-defined identifier is known. More specifically, we know of each
type variable whether it is monomorphic or polymorphic.

The ordering phase allows a programmer to choose his favourite
type of inferencing: bottom-up, top-down and so on, simply by
choosing a certain walk over the tree to convert the various sets
of constraints into a list. For instance, a pre-order treewalk roughly
corresponds to algorithmM , and a post-order treewalk to algorithm
W (except that we have to mimic that types of identifiers are passed

7

down via an environment, instead of collected upwards as is the
case in the bottom-up type inference rules; this is calledspreading
of type constraints in [HHS03a]).

Solving

A solver is an algorithm which, when given a list of constraints,
returns a substitution that satisfies a subset of the constraints in the
list, and for each of the constraints which it does not satisfy, a suit-
able error message.

The most straightforward solver is thegreedysolver, which com-
putes a substitution by considering the constraints one by one. If
the next constraint is consistent with the result so far, then it is in-
corporated into the substitution. If it is not, then it is assumed to be
incorrect and an error message is generated. (Note that a constraint
has some extra information associated with it to generate such an
error message.) It is a matter of taste whether one wants to continue
after an error has been found to search for more inconsistencies. A
greedy solver can be quite fast, but it suffers from a bias introduced
by the treewalk chosen in the ordering phase. Although there is a
certain freedom in choosing a preferred treewalk, a more flexible
way of dealing with order is to let the constraints decide amongst
themselves who is the likely culprit.

A type graph was invented for exactly this reason: it is a data struc-
ture which can represent substitutions, i.e. consistent sets of con-
straints, but also inconsistent ones. A graph can be constructed
from a list of equality constraints in which everything which should
be equivalent ends up in the same component of the graph. Some
of these equivalences are inherited from others, e.g., ifa -> b and
c -> d are equivalent, thena andc as well asb andd are also
equivalent. After we have added the constraints to the graph, we
search for components which contain two different type construc-
tors. If this is the case, a number of heuristics have been defined
which try to pinpoint the most likely edge(s) (in other words, con-
straints) to cut out of the graph. Repeatedly doing this should result
in a consistent type graph. Each such graph represents a substitu-
tion, while each of the cut-edges corresponds to an invalid equality
constraint, which is used to generate appropriate error messages. In
some cases, the heuristics can influence the message, for instance
by adding a hint.

There may be various heuristics, each with their own weight, and
each with their own measure of trust in the correctness (or invalid-
ity) of a constraint. A tunable voting mechanism is present in the
compiler, to obtain the best mix of heuristics for a given program-
mer.

After processing all the generated constraints for a program, we
proceed to verify that for each explicitly typed function, its explicit
type is an instance of its inferred type. If this is not the case, then a
“declared type too general” error message is displayed. Finally, if
there are no error messages, then we may generate a list of warn-
ings, such as missing explicit types.

Summarizing, the final outcome of the type inferencing process is a
substitution, a list of warnings and a list of errors for the constraints
which were found to be inconsistent with the others. When giving
feedback, we usually start with the unifications errors, followed by
the type class errors, then the “declared type too general” errors,
and if we have none of either of these, the warnings.

5 Implementation issues

The concern of this section lies in explaining how our implemen-
tation deals with the extensions described in the first part of this
paper, by pointing out where these fit into the type inference pro-
cess described in the previous section. In some cases, we can be
quite concrete, because of our experiences with theHelium com-
piler [HLvI03].

We do not discuss the implementation of the type class directives
here. Once some design decisions have been made, we expect the
implementation to be rather straightforward. The extent and con-
sequences of these design decisions were explained at the end of
Section 2.

5.1 The specialized type rules

There are two important aspects to the specialized type rules. The
first is, how can they be elegantly implemented, and, secondly, how
can we avoid that a given specialized type rule changes the under-
lying type system?

We consider the former question first. The idea behind the special-
ized type rule is, conceptually, that certain expressions are treated
in special way. For instance, an application ofmap is dealt with
differently from an ordinary application of a binary function to its
arguments, in the sense that the ordering of the constraints for this
expression (and the generated error messages) differ from the de-
fault.

During a top-down traversal of the abstract syntax tree, we look for
expressions (which may in fact be arbitrarily complicated, as long
as they do not change the scope) for which a specialized type rule
has been defined. If this is the case, then we make sure that the con-
straints are generated in the specified order, and that each constraint
“knows” its specialized error message (if one is given). Obviously,
specialized type rules are dealt with in the generation phase, and
locally override the treewalk chosen for the tree as whole.

Note that the fact that a specialized type rule uses the same type
environment above and below the type rule (in other words, new
bindings may not be introduced in such a rule) simplifies matters
greatly, also notationally for the programmer.

The second part concerns the sanity check on specialized type rules,
which verifies that the underlying type system is not changed. This
is done by defining an entailment relation on sets of constraints.
Consider the following type rule again.

xs :: [t3]; Eq t2;

spread xs :: t2;

t3 == t2
Ord t2
Num t2

Now we can compute two sets of type constraints (including class
assertions). One, sayS1, is based on the set of constraints in and
below the rule, where we have to unfold the typingxs :: [t3]
in the type rule toxs :: v1 (for some freshv1) and a constraint
v1 == [t3].

A second set of constraints, sayS2, is based on the expression
spread xs where we use the default type rule for application.

8

Here, we make sure that each of the meta-variables (xs), the re-
sult type (t2), and the instantiated type of the identifiers taken from
the environment (spread), are the same for the two sets (or, if not,
that the renaming between these type variables in the two sets is
known).

Now, a set of constraintsS1 entails a set of constraintsS2, if every
substitution which satisfiesS1 also satisfiesS2. Entailment is easily
decided by computing a most general substitution satisfyingS1, and
to verify that it also satisfiesS2. If S1 entailsS2 and vice versa, then
we can be sure that the underlying type system remains unchanged.
If this is not the case, then we expect an error message explaining
this fact. Note that we insist that the type system is unchanged. This
could be relaxed by insisting only on soundness: in that case every
substitution which satisfiesS1 should satisfyS2, but not the other
way around.

5.2 Siblings, permutation and application
heuristics

Many of the heuristics we have described in this paper are possi-
ble because we use a type graph in which it is easy to experiment
with slightly different sets of constraints. Consider the permutation
heuristic. Assume we are given a type graph for a certain ill-typed
expression, and we suspect that this may be due to a permutation
of the arguments of a certain function. We can now easily modify
the graph by rearranging some edges in the graph such that it repre-
sents the same expression, except that the arguments to the suspect
application are permuted in some way. Then, we can check that
the result becomes consistent, and if no other reordering has the
same effect, then we have some confidence that this is the preferred
correction of the program.

The siblings directive is performed in the same way: if we replace
a functionf by its siblingg, then we remove the edges/constraints
for which the type off was responsible, add in those ofg, and see
whether that solves the problem. If so, then the sibling directive
nominates the constraint which determines thatf is the function to
be applied, and adds a hint to the error message.

Note that the permutation heuristic and sibling heuristic are com-
petitors: their outcome is weighted in some way to obtain the most
likely candidate for removal. The weighting is subject to change,
depending on the preferences of the programmer.

The application heuristic was described in some detail in Section 3,
which already corresponds quite closely to its implementation.

6 Related work

A number of papers address the problem of poor type error mes-
sages that are produced by most modern compilers for functional
programming languages. We believe that this is a serious obsta-
cle to value such a language, and that it results in a steep learning
curve. Various propositions to extendHaskell, such as higher-
ranked types, implicit arguments, and various extensions to the
class system, complicate the type system and increase the size of
the problem to report concise and helpful error messages.

Different approaches to improve on the quality of error mes-
sage have been suggested. One of the first proposals is by
Wand [Wan86], who suggests to modify the unification algorithm
such that it keeps track of reasons for deductions about the types
of type variables. Many papers that followed elaborate on his idea.

At the same time, Walz and Johnson [WJ86] suggested to use max-
imum flow techniques to isolate and report the most likely source
of an inconsistency. This can be considered the first heuristic-based
system.

More recently, Yang, Michaelson and Trinder [YMT02] have re-
ported on a human-like type inference algorithm which mimics
the manner in which an expert would explain a type inconsistency.
This algorithm produces explanations in plain English for inferred
(polymorphic) types. McAdam [McA01] suggested to use unifi-
cation of types modulo linear isomorphism to automatically repair
ill-typed programs. To our knowledge, this is the only work that
addresses constructive advice to correct a program. Haack and
Wells [HW03] compute a minimal set of program locations (a type
error slice) that contribute to a type inconsistency. Stuckey, Sulz-
mann, and Wazny [SSW03] present theChameleon type debugger,
which helps to locate type errors in an interactive way.

Despite all the attention to improve the type error messages, far
too few ideas have been suggested to tackle the complications that
extensions to the language (such as type classes) introduce.

Several type inference frameworks follow a constraint-based ap-
proach. Aiken and Wimmers [AW93] propose a constraint solving
system that can handle inclusion constraints over type expressions.
The Hindley-Milner type system, including let-polymorphism, can
be formulated in terms of these constraints. Another interesting
direction is the HM(X) framework by Odersky, Sulzmann, and
Wehr[OSW99]. This framework is a constraint-based formulation
of the Hindley-Milner type system including let-polymorphism,
which is parameterized over some constraint system X. All kinds
of extensions to the type system can be captured via this abstrac-
tion.

7 Conclusion and future work

This paper discusses the effect that the introduction of overload-
ing (type classes) has on the quality of reported error messages. In
general, the types of overloaded functions are less restrictive, and
therefore some errors may remain undetected. At the same time,
a different kind of error message is produced for unresolved over-
loading, and these errors are often hard to interpret.

To remedy the loss of clarity in error messages, a number of type
class directives have been proposed. Type inference directives that
have been described in an earlier paper [HHS03b] are generalized
to cope with class constraints. Summarizing, this paper offers the
following contributions and improvements over work on type infer-
ence directives.

• We have devised type class directives that help to reject pro-
grams that contain a class context that is unlikely to be ful-
filled. For instance, an instance forEq (a -> b) will only be
supplied in exceptional cases. Because these directives pre-
vent some programs to compile that could otherwise be legal,
we also considered the question how one may deal with this
fact. Special domain-specific error messages can be reported
by such a directive.

• Some type class directives can help to disambiguate overload-
ing, which leads to more programs being accepted (or well-
typed). In particular, thedefault directive helps to resolve
overloading, and could be a directive instead of some special
syntax of the language.

• Class assertions have been added to the specialized type rules

9

and the soundness check has been appropriately generalized.
The implementation of the other inference directives has been
generalized to cope with class constraints, and to prevent mis-
leading suggestions to correct a program.

• We have hinted how type classes and class assertions can be
added to a constraint-based type inference framework. Here,
we have followed theHaskell 98 standard [Has03].

• We have presented a heuristic which uses class information
about type variables to decide which part of the program is
the most likely cause of error. This is a generalization of the
minority isolation proposed by Walz and Johnson [WJ86].

We see several possible directions for future research. The most
obvious direction is to explore directives for a number of the pro-
posed extensions to the type class system (see Peyton Jones, Jones
and Meijer [JJM97] for an exploration of the design space of type
classes). More specifically, we want to investigate how directives
may remove the reason for not having those extensions.

The more expressive the directives become, the more need there is
for some form of analysis for these directives. In particular, the
generalization of type class directives described in Section 2.5 ne-
cessitate a closer look in this direction. It may be possible to come
up with a nice language for specifying predicates over sets of in-
stances for type classes. We need more practical experience to see
what functionality is necessary and helpful.

Notwithstanding all our efforts, we hope that every compiler also
supports the possibility to turn type classes off altogether.

Acknowledgements

We thank Doaitse Swierstra for his suggestions and comments on
an earlier version of this paper.

8 References

[AW93] A. Aiken and E. Wimmers. Type inclusion constraints
and type inference. InProceedings of Functional
Programming Languages and Computer Architecture,
pages 31–41, 1993.

[DM82] L. Damas and R. Milner. Principal type schemes for
functional programs. InPrinciples of Programming
Languages (POPL ’82), pages 207–212, 1982.

[Has03] Haskell 98: The revised report, January 2003. Si-
mon Peyton Jones (editor),http://haskell.org/
onlinereport/.

[HHS03a] Bastiaan Heeren, Jurriaan Hage, and S. Doaitse Swier-
stra. Constraint based type inferencing in Helium. In
M.-C. Silaghi and M. Zanker, editors,Workshop Pro-
ceedings of Immediate Applications of Constraint Pro-
gramming, pages 59 – 80, Cork, September 2003.

[HHS03b] Bastiaan Heeren, Jurriaan Hage, and S. Doaitse Swier-
stra. Scripting the type inference process. InEighth
ACM Sigplan International Conference on Functional
Programming, pages 3 – 13, New York, 2003. ACM
Press.

[HLvI03] Bastiaan Heeren, Daan Leijen, and Arjan van IJzen-
doorn. Helium, for learning Haskell. InACM Sig-
plan 2003 Haskell Workshop, pages 62 – 71, New York,
2003. ACM Press.

[HW03] Christian Haack and J. B. Wells. Type error slicing in
implicitly typed higher-order languages. InProceed-
ings of the 12th European Symposium on Programming,
pages 284–301, April 2003.

[JJM97] Simon Peyton Jones, Mark Jones, and Erik Meijer.
Type classes: an exploration of the design space. In
Haskell Workshop, June 1997.

[Jon99] Mark Jones. Typing Haskell in Haskell. InHaskell
Workshop, September 1999.

[McA01] Bruce McAdam. How to repair type errors auto-
matically. In 3rd Scottish Workshop on Functional
Programming, pages 121–135. Stirling, U.K., August
2001.

[OSW99] Martin Odersky, Martin Sulzmann, and Martin Wehr.
Type inference with constrained types.Theory and
Practice of Object Systems, 5(1), 1999.

[SSW03] Peter Stuckey, Martin Sulzmann, and Jeremy Wazny.
Interactive type debugging in Haskell. InHaskell Work-
shop, pages 72 – 83, New York, 2003. ACM Press.

[Wan86] M. Wand. Finding the source of type errors. InCon-
ference Record of the 13th Annual ACM Symposium on
Principles of Programming Languages, pages 38–43,
St. Petersburg, FL, January 1986.

[WJ86] J. A. Walz and G. F. Johnson. A maximum flow ap-
proach to anomaly isolation in unification-based incre-
mental type inference. InConference Record of the
13th Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 44–57, St. Petersburg, FL,
January 1986.

[YMT02] Jun Yang, Greg Michaelson, and Phil Trinder. Ex-
plaining polymorphic types.The Computer Journal,
45(4):436–452, 2002.

10

