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Abstract. The parameter contraction degeneracy — the maximum minimum degree over
all minors of a graph — is a treewidth lower bound and was first defined in [3]. In experiments
it was shown that this lower bound improves upon other treewidth lower bounds [3]. In this
note, we examine some relationships between the contraction degeneracy and connected
components of a graph, blocks of a graph and the genus of a graph. We also look at chordal
graphs, and we study an upper bound on the contraction degeneracy. A data structure
that can be used for algorithms computing the degeneracy and similar parameters, is also
described.

1 Introduction

Since their introduction by Robertson and Seymour about twenty years ago, the notions of
treewidth and treedecomposition have received a growing interest. An important reason for the
popularity of these notions is the fact that many problems that are NP -hard to solve on gen-
eral graphs, can be solved in linear or polynomial time (in the size of the input graph), using
dynamic programming on a treedecomposition. However, this dynamic programming approach
has a running time that is typically exponential in the width of the used treedecomposition. The
smallest possible width of a treedecomposition of a graph is the treewidth of this graph. Therefore,
lower bounds for treewidth inform us about the running times to be expected for such a dynamic
programming approach.

One lower bound for treewidth is the contraction degeneracy — the maximum minimum degree
over all minors of a graph. It was first defined in [3, 4] wherein also the NP -completeness of the
corresponding decision problem was shown. The contraction degeneracy is not only a successful
treewidth lower bound as was shown in experiments in [3, 4], but it also appears to be an interesting
parameter on its own, due to its elementary formulation. In [5], we describe an algorithm to
compute the contraction degeneracy in polynomial time on cographs.

In this note, we examine some basic properties of the parameter contraction degeneracy related
to connected components and blocks, see Section 3. In Section 4, we will see that computing the
contraction degeneracy of a chordal graph is easy. We already observed in [3, 4] that the contraction
degeneracy is at most 5 for planar graphs. In Section 5, we generalise this to graphs with genus
γ, and we obtain an upper bound on the contraction degeneracy based on the genus of a graph.
Another upper bound on the contraction degeneracy based on the average degree is considered
in Section 6. The running times of many algorithms that compute degree-based treewidth lower
bounds (e.g. some of the algorithms in [4, 17]), might be reduced by using the data structure that
we describe in Section 7.

? This work was partially supported by the DFG research group ”Algorithms, Structure, Randomness”
(Grant number GR 883/9-3, GR 883/9-4), and partially by the Netherlands Organisation for Scientific
Research NWO (project Treewidth and Combinatorial Optimisation).
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2 Preliminaries

Throughout the paper G = (V, E) denotes a simple undirected graph. Most of our terminology
is standard graph theory/algorithm terminology. We use the following notation: n(G) := |V (G)|,
m(G) := |E(G)| and for a vertex v and an edge e, we write G − v := G[V (G) \ v] and G − e :=
(V, E \ e). The open neighbourhood NG(v) or simply N(v) of a vertex v ∈ V is the set of vertices
adjacent to v in G. As usual, the degree in G of vertex v is dG(v) or simply d(v), and we have
d(v) = |N(v)|. N(S) for S ⊆ V denotes the open neighbourhood of S, i.e. N(S) =

⋃

s∈S N(s) \S.
We define:

δ(G) := min
v∈V (G)

d(v)

Treewidth. A treedecomposition of G = (V, E) is a pair ({Xi | i ∈ I}, T = (I, F )), with {Xi | i ∈
I} a family of subsets of V and T a tree, such that

⋃

i∈I Xi = V , for all {v, w} ∈ E, there is
an i ∈ I with v, w ∈ Xi, and for all i0, i1, i2 ∈ I : if i1 is on the path from i0 to i2 in T , then
Xi0 ∩ Xi2 ⊆ Xi1 . The width of treedecomposition ({Xi | i ∈ I}, T = (I, F )) is maxi∈I |Xi| − 1.
The treewidth tw(G) of G is the minimum width among all treedecompositions of G.

Edge-Contraction. A more formal approach to edge contractions as well as basic lemmas, which
are summarised here, can be found in [23]. Contracting edge e = {u, v} in the graph G = (V, E),
denoted as G/e, is the operation that introduces a new vertex ae and new edges, such that ae is
adjacent to all the neighbours of v and u, and deletes vertices u and v and all edges incident to u
or v:

G/e := (V ′, E′), where

V ′ = {ae} ∪ V \ {u, v}

E′ = { {ae, x} | x ∈ N({u, v})} ∪ E \ {e′ ∈ E | e′ ∩ e 6= ∅}

A contraction-set is a cycle free set E ′ ⊆ E(G) of edges. Note that after each single edge-contraction
the names of the vertices are updated in the graph. Hence, for two adjacent edges e = {u, v} and
f = {v, w}, edge f will be different after contracting edge e, namely in G/e we have f = {ae, w}.
Thus, we let f represent the same edge in G and in G/e. For a contraction-set E ′ = {e1, e2, . . . , ep},
we define G/E′ := G/e1/e2/ . . . /ep. Furthermore, note that the order of edge-contractions to
obtain G/E′ is not relevant. A contraction H of G is a graph such that there exists a contraction-
set E′ with: H = G/E′.

Subgraphs and Minors. After deleting vertices of a graph and their incident edges, we get
an induced subgraph. A subgraph is obtained, if we additionally allow deletion of edges. (We use
G′ ⊆ G to denote that G′ is a subgraph of G.) If we furthermore allow edge-contractions, we get
a minor G′ of G (following [9], denoted as G′ � G). We explicitely exclude the null graph (the
empty graph on 0 vertices), as a subgraph or minor of a graph. It is known that the treewidth of
a minor of G is at most the treewidth of G (see e.g. [2]).

Degeneracy. In [1], the degeneracy of a graph is defined as follows:

Definition 1 (See [1]). The degeneracy s(G) of a graph G is the minimum number s such that
G can be reduced to an empty graph by the successive deletion of vertices with degree at most s.

We define the parameter δD of a graph G, and we show that s(G) = δD(G).

δD(G) := max
G′

{δ(G′) | G′ ⊆ G}

Lemma 1 (folklore). For a graph G holds: s(G) = δD(G).
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Proof. In each G′ ⊆ G, there is a vertex with degree at most δD(G). Therefore, we can reduce G to
an empty graph by successively deleting a vertex of degree at most δD(G). Hence, s(G) ≤ δD(G).

On the other hand, let be G′ ⊆ G, such that δ(G′) = δD(G). Now, consider a sequence S of
vertex deletion, such that the deleted vertices have degree at most s(G). Let v ∈ V (G′) be the
first vertex that is deleted in S. At this moment of deletion, v has degree at least dG′(v) ≥ δ(G′),
since v is the first vertex deleted in G′. Furthermore, we know that at the moment of deleting v,
we have that the degree of v is at most s(G). Hence, altogether, we have that s(G) ≥ dG′(v) ≥
δ(G′) = δD(G). ut

In the following, we use δD(G) to denote the degeneracy of a graph. The minimum degree
of a graph is a lower bound for its treewidth and the treewidth of G cannot increase by taking
subgraphs. Hence, the treewidth of G is at least its degeneracy (see also [16]). It is interesting
that Definition 1 reflects an algorithm to compute the degeneracy: Successively delete a vertex of
minimum degree and return the maximum of the encountered minimum degrees.

Contraction Degeneracy. The parameter δC — the contraction degeneracy — was first defined
in [3] as a lower bound for treewidth.

As mentioned above, the degeneracy lower bound for treewidth can be computed by repeatedly
deleting minimum degree vertices, and keeping track of the encountered maximum minimum
degree.

Instead of deleting these vertices and edges while recording the minimum degree of the occurring
subgraphs, contracting edges incident to those vertices experimentally proved to be a very good
idea for better treewidth lower bounds [3, 11]. Inspired by this lower bound, the parameter δC and
the according decision problem were defined.

Definition 2. The contraction degeneracy δC of a graph G is defined as follows:

δC(G) := max
G′

{δ(G′) | G′ � G ∧ |V (G′)| ≥ 1}

Note that δC(G) is defined as the maximum over all minors G′ of G of the minimum degree of G′.
Using contractions instead of minors in this definition does not lead to an equivalent notion, unless
the considered graph G is connected. If G is not connected, it might be necessary to delete one or
more connected components, to obtain a minor G′ of G with maximum minimum degree. Apart
from its role as a treewidth lower bound, it is an interesting problem also due to its elementary
formulation, but little is known about it. The decision problem corresponding to δC is formulated
as usual:

Problem: Contraction Degeneracy

Instance: Graph G = (V, E) and integer k ≥ 0.
Question: Is the contraction degeneracy of G at least k?

Contraction Degeneracy is NP -complete for bipartite graphs [3]. That is why we look at
special graph classes in Section 4 and in [5].

3 Connected Components and Blocks

In this section, we consider the contraction degeneracy of connected components and blocks of a
graph, compared to the contraction degeneracy of the graph itself. The following lemma is easy
to see.

Lemma 2. For a graph G holds:

δC(G) = max
Gc

{δC(Gc) | Gc is a connected component of G}
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The maximal 2-connected subgraphs of G are the blocks of G (blocks are also called 2-connected
components or biconnected components). Separating the graph into smaller subgraphs can help
to solve problems or to compute graph parameters. That is why we are interested whether we can
compute the contraction degeneracy of a graph, given the contraction degeneracy of the blocks of
a graph. For the treewidth of a graph, we have the following lemma.

Lemma 3 (e.g. [2, 21]). For a graph G holds:

tw(G) = max{tw(G′) | G′ is a block of G}

Unlike the treewidth, the contraction degeneracy of a graph does not equal the maximum con-
traction degeneracy over its blocks, as we can see from the example in Figure 1. It is easy to see
that δC(G) = 5 and δC(G1) = δC(G2) = 4. However, we can prove the following lemma.

G

G
G

1
2

Fig. 1. Graph G with two blocks G1 and G2.

Lemma 4. For a graph G holds:

δC(G) ≥ max{δC(G′) | G′ is block of G}

Proof. This is easy to see, since all vertices and edges not belonging to the block G′ with maximum
contraction degeneracy, can be deleted in G′. Hence, G′ is a minor of G and therefore δC(G) ≥
δC(G′). ut

This has interesting consequences for the second smallest degree of a contraction or minor. The
parameter δC(G) is defined to be the maximum over all minors G′ of G of the smallest degree in
G′. We can define the analogous parameter δ2C for the second smallest degree and prove that this
is also a lower bound for the treewidth. See [17], for an alternative proof of δ2C being a treewidth
lower bound, and also for an experimental evaluation.

Definition 3.

δ2(G) := is the second smallest degree of G

δ2C(G) := max
G′

{δ2(G
′) | G′ � G ∧ n(G′) ≥ 2}

Lemma 5. For a graph G, it holds that:

δ2C(G) ≤ tw(G)
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Proof. Consider a minor G′ of G. Let v be a vertex of minimum degree in G′. If dG′(v) = 0, then
δ2(G

′) = δ(G′ − v) ≤ tw(G′ − v) ≤ tw(G), since the minimum degree of a graph is a lower bound
for its treewidth.

If dG′(v) ≥ 1, then let v1, v2, ...v|V (G′)| be the sequence of vertices of G′ ordered according to

nondecreasing degree. We take c :=
⌈

dG′ (v2)
dG′ (v1)

⌉

copies of G′, and we identify all vertices correspond-

ing to v1 as a single vertex v. Call the resulting graph G′′. Let u be a vertex in G′′ corresponding
to a v2 in G′. Clearly, we have that c · dG′(v1) = dG′′(v) ≥ dG′′(u) = dG′(v2). Therefore, u is a
vertex of smallest degree in G′′. From Lemma 3 follows that tw(G′) = tw(G′′). Because u is a
vertex with smallest degree, we have that dG′′(u) ≤ tw(G′′) = tw(G′) ≤ tw(G).

Since this holds for all minors G′ of G, we have δ2C(G) ≤ tw(G). ut

4 Chordal Graphs

Chordal graphs (also called triangulated graphs) form a special class of graphs that can be rep-
resented by a tree. In a chordal graph, each cycle C = v1, ..., vp of length p ≥ 4 has a chord,
i.e. an edge connecting two non-consecutive vertices of C. In other words, chordal graphs do not
contain any Cp as an induced subgraph for p ≥ 4. All maximal cliques of a chordal graph can be
arranged in a tree structure, such that a set of pairwise non-disjoint cliques forms a subtree of the
tree (see e.g. [2]). This clique tree is often very useful to solve problems. However, exploiting this
clique tree to compute the contraction degeneracy is not necessary. Note that chordal graphs can
be recognised in linear time, and also a maximum clique of a chordal graph can be computed in
that time (see e.g. [12]).

Lemma 6. Let G = (V, E) be a chordal graph and let W ⊆ V be a maximum clique in G. Then
we have:

δC(G) = |W | − 1

Proof. For any graph G it holds: δC(G) ≤ tw(G), see [3]. If G is a chordal graph with maximum
clique W , we have (see e.g. [2]): tw(G) = |W | − 1, and therefore: δC(G) ≤ |W | − 1. Note that
G[W ] is a minor of G and δC(G) ≥ δ(G[W ]) = |W | − 1. ut

As mentioned in the previous proof, it holds for a chordal graph with maximum clique W that
tw(G) = |W | − 1 (see e.g. [2]). Therefore with Lemma 6, we have the following corollary.

Corollary 1. For a chordal graph G holds:

δC(G) = tw(G)

5 Graphs of Genus γ

Harary writes in [14] that every planar graph G with at least four vertices has at least four vertices
of degree not exceeding five. Therefore, we have for a planar graph G that δ(G) ≤ δ2(G) ≤ 5.
As a consequence of this, we have that δC(G) ≤ δ2C(G) ≤ 5, since planar graphs a closed under
taking minors. This fact could also be observed in [3, 4, 17] in experiments computing δC. In this
section, we examine a few basic observations, similar to the result above and related to the genus
of a graph: the number of handles needed on a sphere to embed the graph.

A graph G is embeddable in a surface S when it can be drawn on S in such a way that no
two edges intersect apart from intersecting at vertices. G is planar, iff G can be embedded in the
plane or in the sphere. We can generalise this concept by changing the underling surface S. One
way of changing S is to add a handle to it. A handle is a kind of bridge over which an edge can
go to avoid crossing the edge below the handle, see e.g. [13, 14]. The closed orientable surfaces S0,
S1, S2, ... are defined as follows. S0 is the sphere, and Sn+1 is obtained by adding a handle to Sn.
The genus of Si is i, for all i ≥ 0. A region of a graph embedding is a component of the surface the
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graph is embedded in, obtained by deleting the image of the graph from the surface. A cellular
embedding of a graph G in S is an embedding such that each region is topologically equivalent
to an open disk. A face of an embedding is the union of a region and its boundary. Introductory
chapters to planarity and generalisations to higher genus can be found in e.g. [13, 14]. See [18, 19]
for more details about graphs on surfaces.

Definition 4. The genus γ(G) of the graph G is defined as follows.

γ(G) := min{i | G can be embedded in Si}

The corresponding decision problem: ‘Given a graph G and an integer k ≥ 0, is γ(G) ≤ k?’ is
NP -complete (see [22]). However, if k is fixed, there is a polynomially bounded algorithm for
computing the genus (see [10]). The most well known and well studied case are the planar graphs,
i.e. graphs of genus 0 (see e.g. [8, 15, 6]). Given a graph G and a minor G′ of G, it is easy to see
that γ(G′) ≤ γ(G).

Theorem 1 (see e.g. [13]). Let G = (V, E) be a connected graph with n vertices and m edges,
and let G be cellularly embedded in Sγ . Let f be the number of faces of this embedding. Then we
have that n−m + f = 2− 2 · γ.

Since each face is surrounded by at least three edges, and each edge separates at most two faces,
we have the edge-face inequality 3 · f ≤ 2 ·m (see e.g. [13]). With the last two formulas together,
we obtain an upper bound on the number of edges of a graph with genus γ and n vertices (see
e.g. [19]):

m ≤ 3 · (n− 2 + 2 · γ) (1)

Lemma 7. Given a graph G with n vertices and genus γ, the following holds:

1. δ(G) ≤ 6 + 12·γ−12
n

2. δ2(G) ≤ 6 + 12·γ−6
n−1

Proof. (1.) It is obvious that G has at least δ(G)·n
2 edges. Hence, we have δ(G)·n

2 ≤ 3 · (n−2+2 ·γ),

from which we can derive δ(G) ≤ 6 + 12·γ−12
n

. (2.) At least n− 1 vertices have degree δ2(G) in G.

Therefore, G has at least δ2(G)·(n−1)
2 edges, which implies δ2(G) ≤ 6 + 12·γ−6

n−1 . ut

Theorem 2 (see e.g. [19]). If n ≥ 3 then

γ(Kn) =

⌈

(n− 3) · (n− 4)

12

⌉

Lemma 8. For any given graph G with at least two vertices, it holds:

δ2C(G) ≤ 5 + γ(G)

Proof. With Lemma 7, we have:

δ2C(G) = max
G′�G, n(G′)≥2

δ2(G
′) ≤ max

G′�G, n(G′)≥2

(

6 +
12 · γ(G′)− 6

n(G′)− 1

)

We first consider minors with at least 13 vertices. The following is easy to see:

max
G′�G, n(G′)≥13

(

6 +
12 · γ(G′)− 6

n(G′)− 1

)

≤

(

6 +
12 · γ(G)− 6

12

)

= 5.5 + γ(G)

We will show the same result for minors G′ with at most 12 vertices in a case distinction, using
Lemma 7, the fact that the genus does not increase when taking minors and that δ(G′) ≤ δ2(G

′) ≤
n(G′)− 1. Let G′ be a minor of G with at least 2 and at most 12 vertices.
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Case 0: γ(G′) = 0. We have that δ2(G
′) ≤ 6 − 6

n(G′)−1 , which implies δ2(G
′) ≤ 5 for all G′.

Therefore, δ2(G
′) ≤ 5 ≤ 5 + γ(G).

Case 1: γ(G′) = 1. Here, we have that δ2(G
′) ≤ 6 + 6

n(G′)−1 . If n(G′) ≤ 7, then δ2(G
′) ≤ 6; and

if 8 ≤ n(G′) ≤ 12, then δ2(G
′) ≤ 6 + 6

n(G′)−1 < 7. Hence, δ2(G
′) ≤ 6 ≤ 5 + γ(G).

Case 2: γ(G′) = 2. To show δ2(G
′) ≤ 7 ≤ 5 + γ(G), we distinguish subcases.

Subcase 2a: n(G′) ≤ 8. It is clear that δ2(G
′) ≤ 7.

Subcase 2b: n(G′) = 9. G′ 6= K9, since γ(K9) = 3 (see Theorem 2), therefore, G′ ⊆ K9 − e for an
edge e. The two endpoints of e have degree at most 7 in G′, hence δ2(G

′) ≤ 7.

Subcase 2c: n(G′) = 10. If δ2(G
′) ≥ 8, then there are at least 9 vertices of degree at least 8

in G′. Thus, there are at least 8·9
2 = 36 edges. However, with inequality (1), there are at most

3 ·(n−2+2 ·γ) = 36 edges. Hence, G′ = K1∪K9, and therefore, γ(G′) ≥ 3. This is a contradiction,
so δ2(G

′) ≤ 7.

Subcase 2d: n(G′) = 11. We have δ2(G
′) ≤ 6 + 18

n(G′)−1 < 8. Hence, δ2(G
′) ≤ 7.

Case 3: γ(G′) = 3. Again, we use subcases to show δ2(G
′) ≤ 8 ≤ 5 + γ(G).

Subcase 3a: n(G′) ≤ 9. It is clear that δ2(G
′) ≤ 8.

Subcase 3b: n(G′) = 10. G′ 6= K10, since γ(K10) = 4 (see Theorem 2), therefore, G′ ⊆ K10 − {e}
for an edge e. The two endpoints of e have degree at most 8 in G′, hence δ2(G

′) ≤ 8.

Subcase 3c: n(G′) = 11. If δ2(G
′) ≥ 9, then there are at least 10 vertices of degree at least 9

in G′. Thus, there are at least 9·10
2 = 45 edges. However, with inequality (1), there are at most

3·(n−2+2·γ) = 45 edges. Hence, G′ = K1∪K10, and therefore, γ(G′) ≥ 4. This is a contradiction,
so δ2(G

′) ≤ 8.

Subcase 3d: n(G′) = 12. We have δ2(G
′) ≤ 6 + 30

n(G′)−1 < 9. Hence, δ2(G
′) ≤ 8.

Case 4: γ(G′) = 4. Once more, considering subcases helps to show δ2(G
′) ≤ 9 ≤ 5 + γ(G).

Subcase 4a: n(G′) ≤ 10. It is clear that δ2(G
′) ≤ 9.

Subcase 4b: n(G′) = 11. G′ 6= K11, since γ(K11) = 5 (see Theorem 2), therefore, G′ ⊆ K11 − {e}
for an edge e. The two endpoints of e have degree at most 9 in G′, hence δ2(G

′) ≤ 9.

Subcase 4c: n(G′) = 12. We have δ2(G
′) ≤ 6 + 42

n(G′)−1 < 10. Hence, δ2(G
′) ≤ 9.

Case 5: γ(G′) = 5. In this case, we have that δ2(G
′) ≤ 6+ 54

n(G′)−1 . If n(G′) ≤ 11, then δ2(G
′) ≤ 10;

and if n(G′) = 12, then δ2(G
′) ≤ 10, since in that case 6 + 54

n(G′)−1 < 11. Hence, δ2(G
′) ≤ 10 ≤

5 + γ(G).
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Case 6: γ(G′) = 6. For n(G′) ≤ 12, we automatically have that δ2(G
′) ≤ 11 ≤ 5 + γ(G).

This case distinction is exhaustive, since a graph with at most 12 vertices can have genus at
most 6, as can be derived from Theorem 2. The lemma now follows. ut

It is easy to see that for any graph G with at least two vertices, it holds that δC(G) ≤ δ2C(G)
(see e.g. [17]). Therefore, we have:

δC(G) ≤ δ2C(G) ≤ γ(G) + 5

Note that ∀G : δC(G) ≤ γ(G) + 5 can be proven directly by a similar and easier version of the
proof of Lemma 8.

Ramachandramurthi defined in [20] the parameter γR(G), and he proved that this is a lower
bound on the treewidth of G (see [20]).

γR(G) := min(n− 1, min
v,w∈V,v 6=w,{v,w}6∈E

max(d(v), d(w)))

The γR-contraction degeneracy γRC(G) of a graph was first defined in [17].

γRC(G) := max
G′

{γr(G
′) | G′ is a minor of G ∧ |V (G′)| ≥ 2}

To prove a similar statement as in Lemma 8 for γRC might be more complicated, because it
seems to be difficult to combinatorially capture the property that the considered vertices must be
nonadjacent. However, we can prove the following.

Lemma 9. Let G be a graph of genus γ. Then there exists a function c(γ), such that γR(G) ≤ c(γ).

Proof. Let be given an ordering v1, ..., vn of the vertices of G, such that d(vi) ≤ d(vi+1), for all
i ∈ {1, ..., n− 1}. We define δi(G) := dG(vi), for all i ∈ {1, ..., n}.

Let x(γ) be the minimum number, such that every graph of genus γ does not contain Kx(γ) as
a subgraph. (For example, for planar graphs, i.e. γ = 0, we have x(0) = 5.) Now, note that any
x(γ) vertices in G do not form a clique. This is also true for the x(γ) vertices that have smallest
degree in G and hence, we have that γR(G) ≤ δx(γ)(G).

We observe that G has at least n− (x(γ)− 1) vertices of degree at least δx(γ)(G). Therefore, G

has at least
δx(γ)(G)·(n−(x(γ)−1))

2 edges. Furthermore, with inequality (1), G has at most 3(n−2+2·γ)
edges. Altogether, this yields for a graph G with at least x(γ) vertices:

γR(G) ≤ δx(γ)(G) ≤ 6 ·
n− 2 + 2 · γ

n− x(γ) + 1

If the graph G has at most x(γ) − 1 vertices, then δx(γ)(G) is not defined and γR(G) ≤ x(γ)− 2.
Since γ and x(γ) are constant, it is easy to see that:

lim
n→∞

6 ·
n− 2 + 2 · γ

n− x(γ) + 1
= 6

Therefore, we define:

c(γ) := max
n≥x(γ)

⌊

6 ·
n− 2 + 2 · γ

n− x(γ) + 1
, x(γ)− 2

⌋

< ∞ (2)

From the above-mentioned, it easily follows that γR(G) ≤ c(γ). ut

It is interesting to note that we can conclude from the previous proof that for any fixed γ and
x(γ), δx(γ)(G) will be at most 6, when n is increased towards infinity. Since the genus does not
increase when taking minors and x(γ) is monotone in γ, we have the following corollary.
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Corollary 2. Let G be a graph of genus γ. Then γRC(G) ≤ c(γ), where c(γ) is as in equation (2).

That the genus γ(G) of a graph G determines an upper bound on γR(G) can also be derived
from the fact that γRC(G) ≤ 2 · δ2C(G) (see [17]) and Lemma 8. Taking both together, we have
γRC(G) ≤ 10 + 2 · γ(G).

These upper bounds on δC(G), δ2C(G) and γR(G) are not always sharp in the following sense.
For a graph G on n vertices, we have that δC(G) ≤ n − 1 = O(n), while there are graphs G on
n vertices (e.g. Kn, see Theorem 2), such that γ(G) = Θ(n2). The same is true for δ2C(G) and
γR(G), since δ2C(G), γR(G) = O(δC(G)) (see [17]).

The genus of a graph determines not only an upper bound on δC(G) and δ2C(G); it also
determines a lower bound. Graph G is a minimal forbidden minor for S, if G cannot be embedded
in S, but every proper minor of G can be embedded in S. The next theorem is the excluded minor
theorem, due to Robertson and Seymour.

Theorem 3 (see e.g. [19]). For each surface S, the set of all minimal forbidden minors for S
is finite.

Lemma 10. Let G be a graph of genus γ. Then there exist functions c1(γ), c2(γ) and c3(γ), such
that:

c1(γ) ≤ δC(G); c2(γ) ≤ δ2C(G); c3(γ) ≤ γRC(G);

Proof. Let F (S) denote the set of all minimal forbidden minors for S. We know that G can be
embedded in Sγ , but not in Sγ−1. Therefore, G contains a minor G′, such that G′ ∈ F (Sγ−1).
Since F (Si) is finite (Theorem 3), we can easily define c1(γ) to be the minimum over all graphs
in F (Sγ−1) of the minimum degree of the graph. It is easy to see that we have:

c1(γ) := min
G1∈F (Sγ−1)

δ(G1) ≤ δ(G′) ≤ δC(G)

Hence, c1(γ) only depends on γ and it is a lower bound on δC(G) for any graph G of genus γ. In the
same way, we can use c2(γ) := minG1∈F (Sγ−1) δ2(G1) ≤ δ2C(G) and c3(γ) := minG1∈F (Sγ−1) γR(G1) ≤
γRC(G). ut

Note that the proof of Lemma 10 is nonconstructive, due to its use of the excluded minor theorem.
Even though F (S) is finite for each surface S, its size can grow rapidly when the genus of

the surface increases. For example, F (S0) = {K5, K3,3}. Therefore, c1(1) = c2(1) = c3(1) = 3.
However, Cattell et al. and Mohar and Thomassen mention in [7, 19] that F (S1) probably contains
more than 2000 graphs.

6 An Upper Bound on the Contraction Degeneracy

The contraction degeneracy is a very successful treewidth lower bound. However, as we have seen,
it has its limits, e.g. on planar graphs (see also Section 5). For every planar graph G, we have that
δC(G) ≤ 5, whilst the treewidth of G can be arbitrarily large. Therefore, it is very interesting
to have upper bounds on the contraction degeneracy. Such upper bounds on lower bounds can
inform us about the perspective to improve these lower bounds. As seen in Section 5, the genus
of the graph determines an upper bound for the contraction degeneracy. However, it is NP -hard
to compute the genus of a graph [22]. Another idea for a contraction degeneracy upper bound is
to take the maximum over all minors of G = (V, E) of the average degree d̄ of the minor.

d̄(G) :=
2 ·m(G)

n(G)
d̄C(G) := max

G′

{d̄(G′) | G′ is a minor of G}

It is clear that δC(G) ≤ d̄C(G) for all graphs G. Unfortunately, computing this parameter is also
NP -hard.
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Lemma 11. Let be given a graph G and an integer k ≥ 0. The problem to decide whether d̄(G) ≥ k
is NP -complete.

Proof. The proof is very similar to the proof that the problem Contraction Degeneracy is
NP -complete, see [4]. Let (G, k) be a Vertex Cover instance, with G = (V, E), n := |V |, n > 2,
1 ≤ k < n, m := |E|, m ≥ 1. We construct the graph G′ as in Figure 2.

G′ := (V ′, E′) where

V ′ = {u1, ..., uk} ∪ V ∪ {w1, ..., w4n}

E′ = { {ui, v} | i ∈ {1, ..., k}, v ∈ V } ∪

{ {vi, vj} | vi, vj ∈ V, vi 6= vj , {vi, vj} 6∈ E} ∪

{ {v, wi} | v ∈ V, i ∈ {1, ..., 4n}} ∪ { {wi, wj} | i 6= j, i, j ∈ {1, ..., 4n}}

uk

G

w2

w1

u

u1

2

w4n

clique

Fig. 2. Graph G′

The constructed instance of the problem stated in the lemma is (G′, 5n−1). We will now show
that there is a vertex cover for G of size at most k, if and only if d̄C(G′) ≥ 5n− 1.

Claim. If there is a vertex cover for G of size at most k, then d̄C(G′) ≥ 5n− 1.

Proof. Let be given a vertex cover of size at most k; add some vertices to it to obtain a vertex cover
V1 = {v1, ..., vk} of size exactly k. Now we define the contraction-set E1 := { {ui, vi} | i = 1, ..., k}.
We will show that G′/E1 is a clique. Assume there is a non-edge e in G′/E1. By the construction
this can only be between two vertices x and y in V . Hence, let be e = {x, y}. Therefore, e is an
edge in G, and that is why e∩V1 6= ∅. W.l.o.g. let be x ∈ V1. That means there is an i ∈ {1, ..., k},
with x = vi ∈ V1. Note that ui was contracted to x = vi, and thus, vi is adjacent to any vertex
in V . This is a contradiction. Therefore, G′/E1 is a clique with exactly 5n vertices, and hence,
d̄C(G′) ≥ d̄(G′/E1) = 5n− 1. �

Claim. If d̄C(G′) ≥ 5n− 1, then there is a vertex cover for G of size at most k.

Proof. Note that n′ := |V ′| = k + 5n and m′ := |E′| = kn + n2−n
2 − m + 4n(4n−1)

2 . Since
d̄C(G′) ≥ 5n− 1, there is a minor G1 with d̄(G1) ≥ 5n− 1, such that G1 = G′/E1. Furthermore,
note that we can assume w.l.o.g. that G1 is a contraction of G′, i.e. there is a contraction-set E1,
because deleting edges does not increase the average degree, and instead of deleting vertices we
can contract them to a neighbour.

In G′, all vertices in V ∪{w1, ..., w4n} have degree at least 4n, while the vertices in {u1, ..., uk}
have degree exactly n. In a series of derivations, we will now show that even deleting vertices in
{u1, ..., uk} increases the average degree. Let G2 be a minor of G′ with at least 5n vertices, such
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that ∃i ∈ {1, ..., k} with ui ∈ V (G2), n2 = n(G2) and m2 = m(G2).

2 < n
⇒ n2 < 2n2 − 2n
⇒ n2 < 8n2 − 2n− n(6n)
⇒ n2 < 8n2 − 2n− k(k + 5n− 1)

⇒ nk + 4n2 + n2 < nk + 4n2 + 16n2−4n
2 − k(k + n + 4n− 1)

⇒ n · n2 ≤ n(k + 4n + n) < nk + 4n2 + 4n(4n−1)
2 − k(k + n + 4n− 1) ≤ m2

Using just a few transformations, we see that n2 · n < m2 is equivalent to 2m2

n2
< 2(m2−n)

n2−1 , and
hence, we have:

d̄(G2) =
2m2

n2
<

2(m2 − n)

n2 − 1
≤

2(m2 − dG2(ui))

n2 − 1
= d̄(G2 − ui)

This means that the average degree in G2 is smaller than the average degree in G2 − ui. We now
examine the structure of G1. G1 has at least 5n vertices, otherwise it could not have average
degree at least 5n− 1. If G1 contains a vertex from {u1, ..., uk}, we can delete it, which increases
the average degree of G1. If the new G1 still has at least 5n vertices, we can iterate this process,
stepwise delete a vertex from {u1, ..., uk} and increasing the average degree. At the end, we obtain
a graph with at most 5n vertices and hence, with average degree at most 5n−1. Therefore, we can
conclude that G1 must have at most 5n vertices, otherwise it contains a vertex in {u1, ..., uk}. To
have average degree 5n− 1, G1 must be a complete graph on 5n vertices. Hence, the contraction-
set E1 (with G′/E1 = G1) contains exactly k edges to contract all vertices in {u1, ..., uk} to a
neighbour in V to turn V into a clique. We define V1 :=

⋃

e∈E1
e∩V , and show that V1 is a vertex

cover for G. Clearly, |V1| ≤ k. Assume that there is an edge e := {x, y} ∈ E with e∩V1 = ∅. Thus,
e 6∈ E′. Since e is an edge in G1, there was an edge {ui, x} or {ui, y} contracted to obtain G1.
Hence, this edge is in E1, and therefore x ∈ V1 or y ∈ V1, which is a contradiction. �

The transformation above is a polynomial time transformation. Furthermore, membership in NP
of the considered problem is obvious. Hence, the lemma follows. ut

It is interesting to note that the above proof is also true when replacing the average degree d̄
by the minimum degree δ, because it is easy to see that d̄(G′) = δC(G′), for G′ as in the proof.

The origin of the upper bound, examined in this section, was the consideration of the following
strategy. Successively contract an edge {x, y} in a graph G, such that x and y have as least as
possible common neighbours, and record the maximum mad (G) of the average degree encountered
during this process. It is clear that this strategy gives a lower bound on d̄C(G). Unfortunately, it
is probably not an upper bound on the contraction degeneracy. If mad(G) would also be an upper
bound on the contraction degeneracy δC(G), then we would have δC(G) ≤ mad(G) ≤ d̄C(G). In
the previous proof, however, we constructed an instance G′ with δC(G′) = mad(G′) = d̄C(G′),
and therefore, if mad (G) would be an upper bound on the contraction degeneracy, then we could
compute d̄C(G′) or δC(G′) in polynomial time, solving Vertex Cover in polynomial time.
Summarising, we can say that if δC(G) ≤ mad(G) for all graphs G, then P = NP .

7 A Bucket Adjacency List Data Structure

In this section, we describe a data structure that can be used in algorithms computing the degen-
eracy δD or similar parameters (e.g. in [4, 17]). It extends the graph adjacency-list data structure
by a bucket structure (similar to bucket sort, sorted on vertex degree), enabling fast operations on
this structure. It avoids a logarithmic factor that is typical for tree-structures (as used e.g. in [16]).



A Note on Contraction Degeneracy 13

Description. Starting from the standard-adjacency-list of G = (V, E), an advanced-adjacency-
list is an extension that stores in a doubly linked list the adjacent vertices for every vertex of the
graph. Furthermore, we use cross pointers for each edge {vi, vj}. Such a cross pointer connects
vertex vi in the list for vertex vj directly with vertex vj in the list for vertex vi.

In addition to this advanced-adjacency-list, we create n = |V | buckets that can be implemented
by doubly-linked lists B0, ..., Bn−1. List Bd contains exactly those vertices (or pointers to them)
with degree d in the current graph. We associate to every vertex v a pointer p(v) that points to
the exact position in the list Bd that contains v for the appropriate d. We also maintain a value
d(v) for every vertex v that simply is the degree of v.

n−1

vid( )

p( )vj

i

j

0

jd

n

1

cross pointer

i

j

i

n

1

j d

Fig. 3. Data structure with doubly-linked adjacency-lists and cross pointers; buckets as doubly-linked lists
(in the middle of the figure); j in bucket d means d(vj) = d which can also be seen in the array on the
right.

Cost of Operations. Here, we briefly describe how the graph operations that are interesting for
us can be carried out on our data structure and how much running time they need.

Construction. Given a graph G = (V, E) with n = |V | and m = |E| as a standard adjacency
list, the advanced-adjacency-list structure described above can be constructed in time O(n + m)
by traversing the standard-adjacency-list and constructing doubly-linked lists and cross pointers
while the traversal. Applying a bucket sort and building the pointers p(vi) for all i = 1, ..., n can
also be done in time O(n + m). It is an easy task to compute the values d(vi) for all i = 1, ..., n in
the required time.

Degree Update. Let be given a vertex vi. Changing the degree of vi can be done in constant time
in the following way. With d(vi), we know the bucket vi is contained in. Using this and the change
in degree, we can compute the new bucket vi has to be inserted in. This insertion (at the start
or end of the corresponding doubly linked list), the deletion in the old bucket-list (using pointer
p(vi)) and also updating d(vi) can all be done in constant time.

Vertex Deletion. Deleting a vertex vi means deactivating it in the advanced-adjacency-list struc-
ture. For every vertex vj in the adjacency list of vi, we have to delete vi in the adjacency list of vj

(using cross pointers), and we also have to update the degree of vj . All can be done in constant
time per neighbour vj of vi. Also, deleting vi from its corresponding bucket list can be done in
constant time using p(vi). Therefore, deleting vertex vi takes time O(d(vi)). Note that also d(vi)
edges are deleted in the graph.

Edge Contraction. Contraction an edge {vi, vj} can be done as follows. First, we traverse the
list of neighbours of vj and for each such neighbour v, we exchange vj by vi in the adjacency
list of v (using cross pointers). We concatenate the adjacency list of vj to the one of vi, and we
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deactivate (i.e. delete) vj . In order O(d(vi)+d(vj)), we can check this list for multiple occurrences
and delete them and occurrences of vi and vj (this can be done using a temporary array counting
the occurrences of a vertex in this list). On vertices occurring more than once a degree update has
to be done. Furthermore, the degree of the new vertex (also called vi) has to be updated. All can
be done in O(d(vi) + d(vj)) time.

Find a vertex of smallest degree. Maintaining a pointer δB to the nonempty bucket Bi with
smallest index i helps to find a vertex with minimum degree in constant time. Also this pointer
may have to be updated when a vertex is deleted or an edge is contracted. Note that in either case
the degree of any vertex can only decrease by one, and the number of vertices is also decreased
by one. Hence, pointer δB can make at most n single steps to the left, i.e. from Bd to Bd−1 (if
the buckets are sorted B0, ..., Bn−1). Thus this pointer can make at most 2 · n single steps to the
right, and therefore altogether it needs O(n) time for a sequence of n operations (vertex deletions
or edge contractions). Hence, we have amortised time O(1) per operation.

Find a vertex of second smallest degree. To find a vertex with second smallest degree in constant
time, we use a pointer δ2B. Also this pointer makes amortised O(1) single steps per operation, for
a sequence of n operations.

Lemma 12. Let be given a graph G = (V, E) with n = |V | and m = |E|. A sequence of O(n)
vertex deletions, searches for of a vertex with smallest or second smallest degree costs O(n + m)
time.

Proof. Using the data structure described in this section, the result follows directly from the
paragraphs considering the time of the corresponding operations. ut

If we have a sequence of operations that involve edge-contractions, then the running time might be
asymptotically higher, since repetitively concatenate adjacency lists and check for doubly occurring
vertices takes O(n) time.

Experimental Comparison. We implemented the data structure and compared the resulting
running times to those obtained with a tree-based priority queue as used in e.g. [3, 4, 16]. The
experimental setup is the same as in [3, 4, 17]. In Table 1, we see the results of the δD, δ2D and
δC lower bounds algorithms and heuristics for a selection of input graphs. For more details on the
algorithms and heuristics that are used here, see [3, 4, 17]. We also see the running times obtained
with the tree-based priority queue (see columns ‘tree’ in Table 1) and the bucket-based priority
queue (see columns ‘bucket’ in Table 1).

The running times of the algorithm for computing δD are nearly equal, no matter which
data structure is used. This might be explained by the fact that these running times are very
small anyway. Hence, large absolute improvements are not possible and relative improvements are
difficult to observe.

Similar behaviour can be observed in the columns representing the running times of the heuris-
tic computing δC. Also these values are very small and a clear trend is difficult to be identified.
It is interesting that a different lower bound value for ‘graph04’ is obtained with the two different
data-structures. This is possible, because the considered algorithm is a heuristic and does not
always compute the exact value. Therefore, different data-structures may lead to a different order
in which the vertices are processed. This, on its turn, can lead to different results.

The running times of the algorithm computing δ2D are the largest, and here, we can see the
following trend (that can also be observed in the other columns in a much smaller degree): If the
graph is rather sparse (like the first 8 graphs in Table 1), then the bucket-based priority queue
gives the faster algorithms. On the other hand, if the graph is rather dense (as the last 3 graphs
in Table 1), then the tree-based priority queue is to be preferred.
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instance size δD δ2D δC (least-c)
tree bucket tree bucket tree bucket

|V | |E| LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU

link 724 1738 4 0.01 4 0.01 4 5.22 4 3.15 11 0.04 11 0.04
munin1 189 366 4 0.00 4 0.00 4 0.29 4 0.19 10 0.01 10 0.01
munin3 1044 1745 3 0.01 3 0.01 3 11.02 3 5.65 7 0.03 7 0.02
pignet2 3032 7264 4 0.05 4 0.03 4 108.91 4 64.28 38 0.21 38 0.22
celar06 100 350 10 0.00 10 0.00 11 0.09 11 0.09 11 0.01 11 0.00
celar07pp 162 764 11 0.00 11 0.01 12 0.30 12 0.24 15 0.01 15 0.01
graph04 200 734 6 0.01 6 0.01 6 0.42 6 0.31 19 0.02 20 0.02
rl5934-pp 904 1800 3 0.01 3 0.01 3 9.18 3 5.13 5 0.04 5 0.04
school1 385 19095 73 0.03 73 0.04 74 7.61 74 10.15 122 0.84 122 0.94
school1-nsh 352 14612 61 0.02 61 0.03 62 5.55 62 7.14 106 0.62 106 0.70
zeroin.i.1 126 4100 48 0.01 48 0.01 48 0.58 48 0.76 50 0.05 50 0.05

Table 1. Comparison of running times of basic algorithms with two different data-structures: tree-based
and bucket-based priority queues
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