
Nix: A Safe and Policy-Free System for Software
Deployment

Eelco Dolstra

Merijn de Jonge

Eelco Visser

Technical Report UU-CS-2004-045
Institute of Information and Computing Sciences

Utrecht University

December 9, 2004

Preprint of:
E. Dolstra, M. de Jonge and E. Visser. Nix: A Safe and Policy-Free System for Software Deployment. In
Proceedings of the 18th Large Installation System Administration Conference (LISA 2004), pages 79–92,
Atlanta, Georgia, USA. November 2004. USENIX Association.

Copyright c© 2004 Eelco Dolstra, Merijn de Jonge and Eelco Visser

ISSN 0924-3275

Address:
Eelco Dolstra
eelco@cs.uu.nl
http://www.cs.uu.nl/∼eelco

Merijn de Jonge
mdejonge@cs.uu.nl
http://www.cs.uu.nl/∼mdejonge

Eelco Visser
visser@acm.org
http://www.cs.uu.nl/∼visser

Institute of Information and Computing Sciences
Utrecht University
P.O.Box 80089
3508 TB Utrecht

mailto:eelco@cs.uu.nl
http://www.cs.uu.nl/~eelco
mailto:mdejonge@cs.uu.nl
http://www.cs.uu.nl/~mdejonge
mailto:visser@acm.org
http://www.cs.uu.nl/~visser

Nix: A Safe and Policy-Free System for Software Deployment

Eelco Dolstra, Merijn de Jonge and Eelco Visser
Utrecht University, P.O. Box 80089,
3508 TB Utrecht, The Netherlands
{eelco, mdejonge, visser}@cs.uu.nl

December 9, 2004

Abstract

Existing systems for software deployment are neither
safe nor sufficiently flexible. Primary safety issues
are the inability to enforce reliable specification of
component dependencies, and the lack of support for
multiple versions or variants of a component. This
renders deployment operations such as upgrading or
deleting components dangerous and unpredictable. A
deployment system must also be flexible (i.e., policy-
free) enough to support both centralised and local
package management, and to allow a variety of mech-
anisms for transferring components. In this paper
we present Nix, a deployment system that addresses
these issues through a simple technique of using cryp-
tographic hashes to compute unique paths for com-
ponent instances.

1 Introduction

Software deployment is the act of transferring soft-
ware to the environment where it is to be used. This
is a deceivingly hard problem: a number of require-
ments make effective software deployment difficult
in practice, as most current systems fail to be suf-
ficiently safe and flexible.

The main safety issue that a software deployment
system must address is consistency: no deployment
action should bring the set of installed software com-
ponents into an inconsistent state. For instance, an
installed component should never be able to refer to
any component not present in the system; and up-
grading or removing components should not break
other components or running programs [15], e.g., by
overwriting the files of those components. In partic-
ular, it should be possible to have multiple versions
and variants of a component installed at the same
time. No duplicate components should be installed:
if two components have a shared dependency, that
dependency should be stored exactly once.

Deployment systems must be flexible. They should
support both centralised and local package manage-
ment: it should be possible for both site adminis-
trators and local users to install applications, for in-
stance, to be able to use different versions and vari-
ants of components. Finally, it must not be diffi-
cult to support deployment both in source and binary
form, or to define a variety of mechanisms for trans-
ferring components. In other words, a deployment
system should provide flexible mechanisms, not rigid
policies.

Despite much research in this area, proper solu-
tions have not yet been found. For instance, a sum-
mary of twelve years of research in this field indicates,
amongst others, that many existing tools ignore the
problem of interference between components and that
end-user customisation has only been slightly exam-
ined [6]. Consequently, there are still many hard out-
standing deployment problems (see Section 2), and
there seems to be no general deployment system avail-
able that satisfies all the above requirements. Most
existing tools only consider a small subset of these
requirements and ignore the others.

In this paper we present Nix, a safe and flexible de-
ployment system providing mechanisms that can be
used to define a great variety of deployment policies.
The primary features of Nix are:

• Concurrent installation of multiple versions and
variants

• Atomic upgrades and downgrades

• Multiple user environments

• Safe dependencies

• Complete deployment

• Transparent binary deployment as an optimisa-
tion of source deployment

• Safe garbage collection

3

• Multi-level package management (i.e. different
levels of centralised and local package manage-
ment)

• Portability

These features follow from the fairly simple technique
of using cryptographic hashes to compute unique
paths for component instances.

The paper is structured as follows. Section 2 mo-
tivates the need for advanced software deployment
technology. We give a high-level overview of Nix in
Section 3 and describe its implementation in Sec-
tion 4. We address policies for deployment in Sec-
tion 5, and for user environment management in Sec-
tion 6. Our experience with Nix is discussed in Sec-
tion 7. Section 8 compares Nix to previous work. We
conclude with some remarks on future work in Sec-
tion 9.

2 Motivation

In this section we take a close look at the issues that a
system for software deployment must be able to deal
with.

Dependencies For safe software deployment, it is
essential that the dependencies of a component are
correctly identified. For correct deployment of a com-
ponent, it is necessary not only to install the com-
ponent itself, but also all components which it may
need. If the identification of dependencies is incom-
plete, then the component may or may not work,
depending on whether the omitted dependencies are
already present on the target system. In this case,
deployment is said to be incomplete.

As a running example for this paper we will use
the Subversion version management system (http:
//subversion.tigris.org/). It has several (optional) de-
pendencies, such as on the Berkeley DB database
library. When we package the Subversion compo-
nent for deployment, we must take this into account
and ensure that the Berkeley DB component is also
present on each target system. But it is easy to for-
get this! This is because such dependencies are of-
ten picked up “silently”. For instance, Subversion’s
configure script will detect and use Berkeley DB au-
tomatically if present on the build system. If it is
present on the target system, Subversion will hap-
pen to work; but if it is not, it won’t: an incomplete
deployment. Some existing deployment systems use
various tricks to automate dependency identification.
E.g., RPM [11] can use the ldd tool at packaging time
to scan for shared library dependencies. However,

such approaches are either not general enough or not
portable.

Variability Components may exist in many vari-
ants. Variants occur when different versions exist
(i.e., almost always), and when a component has op-
tional features that can be selected at build time.
This is known as variability [24]. The Subversion
component has several optional features, such as
whether we want support for OpenSSL encryption
and authentication, whether only a Subversion client
should be built, and whether an Apache server mod-
ule should be built so that Subversion can act as a
WebDAV server. Of course, there also exist many
different versions of Subversion, which we sometimes
want to use in parallel (for instance, to test a new
version before promoting it to production use on a
server). A flexible deployment system should support
the presence of multiple variants of a component on
the same system. For instance, on a multi-user sys-
tem different users may have different requirements
and therefore need different variants; on a server
system we may want to test a new component be-
fore upgrading critical server software to use it; or
other components may have conflicting requirements
on some component.

Consistency Unfortunately, most package man-
agement disciplines do not support variants very well.
Deployment operations (such as installing, upgrad-
ing, or renaming a component) are typically destruc-
tive: files are copied to certain locations within the
file system, possibly overwriting what was already
there. This can destroy the consistency among com-
ponents: if we upgrade or delete some component,
then another component that depends on it may cease
to work properly. Also, it makes it hard to have mul-
tiple variants of a component installed concurrently,
that is, different versions of the component, or a ver-
sion built with different parameters. For instance,
the RPM packages for Subversion contain files such
as /usr/bin/svn, making it impossible to have two ver-
sions installed at the same time. Worse, we might en-
counter unsatisfiable requirements, e.g., if two appli-
cations both require mutually incompatible versions
of some library.

Atomicity Component upgrades in conventional
systems are not atomic. That is, while a component
is being overwritten with a newer version, the com-
ponent is in an inconsistent state and may well not
work correctly. This lack of atomicity extends be-
yond the level of individual components. When up-
grading an entire system, for instance, it may be nec-

4

http://subversion.tigris.org/
http://subversion.tigris.org/

essary to upgrade shared components such as shared
libraries first. If they are not backwards compatible,
then there will be a timing window in which compo-
nents that use them fail to work properly.

Identification Variants make identification of de-
pendencies surprisingly hard. We may say that a
component depends on glibc-2.3.2, but what are the
exact semantics of such a statement? For instance,
it does not identify the build parameters with which
glibc has been built, nor is there any guarantee that
the identifier glibc-2.3.2 always refers to the same en-
tity in all circumstances. Indeed, versions of Red
Hat Linux and SuSE Linux both have RPM packages
called glibc-2.3.2, but these are not the same, not even
at the source level (they have vendor-specific patches
applied).

Source/binary deployment We must often cre-
ate both “source” and “binary” packages for a com-
ponent. Creating the latter manually is unfortunate,
since binary deployment can be considered an opti-
misation of source deployment because it uses fewer
resources on the target system. Ideally, the creation
of binary packages would happen automatically and
transparently, but in practice, the creation and dis-
semination of binary packages requires explicit effort.
This is particularly the case if multiple variants are
required (which variants do we build, and how do
users select them?).

The source/binary dichotomy complicates depen-
dency specification, since a component can have dif-
ferent dependencies at build time and at run time
that must be carefully identified. This is tricky, since
a build time dependency can become a run time de-
pendency if the construction process stores a refer-
ence to its dependencies in the build result—a re-
tained dependency. For instance, various libraries
such as OpenSSL are inputs to the Subversion build
process. If they are shared libraries, then their full
paths (e.g., /usr/lib/libssl.so.0.9.6) will be stored in
the resulting Subversion executables, causing these
build time dependencies to become run time depen-
dencies. However, if they are statically linked (which
is a build time option of Subversion), then this does
not occur. Thus, there is a subtle interaction between
variant selection and dependencies.

Centralised vs. local package management
To make software deployment efficient, system ad-
ministrators should not have to install each and ev-
ery application separately on every computer on a
network. Rather, software installation should be
managed centrally. On the other hand, computers

or individual users may have individual software re-
quirements. This requires local package management.
Software deployment should cater for both local and
centralised package management. It should not be
hard to define machine-local policies.

3 Overview

The Nix software deployment system is designed to
overcome the problems of deployment described in
the previous section. The main ingredients of the
Nix1 system are the Nix store for storing isolated in-
stallations of components; user environments, provid-
ing a user view of a selection of components in the
store; Nix expressions, specifying the construction of
a component from its sources; and a generic means of
sharing build results between machines. These ingre-
dients provide mechanisms for implementing a wide
variety of deployment policies. In this section we give
a high-level overview of these ingredients from the
perspective of users of the system. In the next sec-
tion their implementation is described.

3.1 Nix Store

The fundamental problem of current approaches to
software deployment is the confusion of user space
and installation space. An end-user interacts with the
applications installed on a computer through a cer-
tain interface. This may be the start menu on Win-
dows and other desktop environments, or the PATH
environment variable in command-line interfaces on
Unix-like systems. These interfaces form what we call
the user space. Deployment is concerned with mak-
ing applications available through such interfaces by
installing all files necessary for their operation in the
file system, i.e., in the installation space.

Mainly due to historical reasons—deployment was
often done manually—user space and installation
space are commonly identified. For instance, to keep
the list of directories in the PATH manageable, appli-
cations are installed in a few fixed locations such as
/usr/bin. Thus, management of the end-user inter-
face to applications is equal to physical manipulation
of installation space, entailing all the problems dis-
cussed in the previous section.

In Nix, user space and installation space are sep-
arated. User space is a view of installation space.
Applications and all programs and libraries used to
implement them are installed in the Nix store. Each

1The name Nix is derived from the Dutch word niks, mean-
ing nothing; build actions do not see anything that has not
been explicitly declared as an input.

5

{ clientOnly, apacheModule, sslSupport
, stdenv, fetchurl, openssl, httpd, db4 }:

assert !clientOnly -> db4 != null;
assert apacheModule -> !clientOnly;
assert sslSupport -> (openssl != null
&& (apacheModule ->

httpd.openssl == openssl));

derivation {
name = "subversion-0.32.1";
system = stdenv.system;

builder = ./builder.sh;
src = fetchurl {
url = http://.../subversion-0.32.1.tgz;
md5 = "b06717a8ef50db4b...";

};

Pass these to the builder.
inherit clientOnly apacheModule sslSupport;

stdenv openssl httpd db4;
}

Figure 1: Subversion component (subversion.nix)

component is installed in a separate directory in the
store. Directory names in the store are chosen so as
to uniquely identify revisions and variants of compo-
nents. This identification scheme goes beyond simple
name+version schemes, since these cannot cope with
variants of the same version of a component. Thus,
multiple versions of a component can coexist in the
store without interference.

3.2 Nix Expressions

Installation of components in the store is driven by
Nix expressions. These are declarative specifications
that describe all aspects of the construction of a
component, i.e., obtaining the sources of the com-
ponent, building it from those sources, the compo-
nents on which it depends, and the constraints im-
posed on those dependencies. Rather than having
specific built-in language constructs for these notions,
the language of Nix expressions is a simple functional
language for computing with sets of attributes. Fig-
ure 1 shows a Nix function that returns variants of
the Subversion system, based on certain parameters;
it features most typical constructs of the language.
Figure 2 shows a call to this function. We will use
these examples to explain the elements of the lan-
guage.

stdenv = import ...;
openssl = import ...;
... # other component definitions

subversion = (import subversion.nix) {
clientOnly = false;
apacheModule = false;
sslSupport = true;
inherit stdenv fetchurl openssl

httpd db4 expat;
};

Figure 2: Subversion composition (pkgs.nix)

Derivation The body of the expression is formed
by calling the primitive function derivation with an
attribute set {key=value;...}. The set contains two
attributes required by the derivation function: the
builder attribute indicates a script that builds the
component, while the system attribute specifies the
target platform on which the build is to be performed.
The other attributes define values for use in the build
process (such as dependencies) and are passed to the
build script as environment variables. The name at-
tribute is a symbolic identifier for use in the high-level
user interface; it does not necessarily uniquely iden-
tify the component.

Parameters In order to describe variants of a com-
ponent, an expression can be parameterised, i.e.,
turned into a function from Nix expressions to Nix
expressions. The syntax for functions is {k1, ...,
kn}: body, which defines a function that expects to
be called with an attribute set containing attributes
with names k1 to kn. Thus, the Subversion expres-
sion is parameterised with expressions describing the
components on which it depends (e.g., openssl, httpd,
stdenv), options that select features (e.g., clientOnly,
sslSupport), and a utility (fetchurl). The stdenv com-
ponent provides all the basic tools that one would ex-
pect in a Unix-like environment, e.g., a C compiler,
linker, and standard Unix utilities. Parameters are
instantiated in a function application. For example,
the expression in Figure 2 instantiates the Subversion
expression by assigning values to its parameters.

A subtle but important difference with most com-
ponent formalisms is that in Nix we explicitly de-
scribe not just components but also compositions of
components. For instance, an RPM spec file speci-
fies how to build a component, but not its dependen-
cies. It merely states fairly weak conditions on the
expected build environment (“a package called glibc-
2.3.2 should be present”). Thus, a spec file is always

6

buildInputs="$openssl $db4 $httpd"
Bring in GCC etc., set up the environment.
. $stdenv/setup

if ! test $clientOnly; then
extraFlags="--with-berkeley-db=$db4 \
$extraFlags"

fi

if test $sslSupport; then
extraFlags="--with-ssl \
--with-libs=$openssl $extraFlags"

fi

...

tar xvfz $src
cd subversion-*
./configure --prefix=$out $extraFlags
make
make install

Figure 3: Subversion build script (builder.sh)

incomplete, so there is no way to uniquely specify con-
crete components. The Subversion Nix expression in
Figure 1 is similarly incomplete, but the composition
in Figure 2 provides the whole picture — information
on how to build not just Subversion, but also all of
its dependencies.

The value of the src attribute is another example
of functional computation. Its value is the result of a
call to the function fetchurl (passed in as an argument
of the Subversion function) that downloads the source
from a specific URL and verifies that it has the right
MD5 checksum.

Assertions In order to restrict the values that can
be passed as parameters, a function can state as-
sertions over the parameters. For example, the db4
database is needed only when a local server is imple-
mented. Also, consistency between components can
be enforced. For instance, if both SSL and Apache
support are enabled, then Apache must link against
the same OpenSSL library as Subversion, since at
runtime the Subversion code will be linked against
Apache. If this were not enforced, link errors could
result.

Build Script When a derivation is built, the build
script indicated by the builder attribute is invoked. As
stated above, attributes of the derivation are passed
through environment variables to the builder. In the

case of attributes that refer to other derivations (i.e.
dependencies), the corresponding environment vari-
ables contain the paths at which they are stored. Nix
ensures that such dependencies are built prior to the
invocation of the builder, so the build script can as-
sume that they are present. The special variable out
conveys to the builder where it should store the build
result. Figure 3 shows the build script for Subversion.
The largest part of the script is used to compute the
configuration flags based on the features selected for
the Subversion instance. By using a user-definable
script for implementing the build of a component,
rather than building in a specific build sequence, no
requirements have to be made on the build interface
of source distributions.

3.3 User Environments

A Nix user environment consists of a selection of ap-
plications from the store currently relevant to a user.
“Users” can be human users, but also system users
such as daemons and servers that need a specific se-
lection to be visible. This selection may be imple-
mented in various ways, depending on the interface
used by the user. In the case of the PATH inter-
face, a user environment is implemented as a single
directory—the counterpart of /usr/bin—containing
symbolic links (or wrapper scripts on systems that do
not support them) to the selected applications. Thus,
manipulation of the user environment consists of ma-
nipulation of this collection of symbolic links, rather
than directories in the store. Installation of an appli-
cation in user space entails adding a symbolic link to
a file in the store and uninstallation entails removing
this symbolic link instead of physically removing the
corresponding file from the file system.

While other approaches (e.g., [4]) also use a direc-
tory with symbolic links, these are composed man-
ually and/or are only provided in a single location.
In Nix an environment is a component in the store.
Thus, any number of environments can coexist and
variant environments can be composed with tools.
This separation of user space and installation space
allows the realization of many different deployment
scenarios. The following are some typical examples:

• A user environment may be prescribed by a sys-
tem administrator, or may be adapted by indi-
vidual users.

• Different users on the same system can compose
different user environments, or can share a com-
mon environment.

• A single user can maintain multiple ‘profiles’ for
use in different working situations.

7

• A user can experiment with a new version of a
component while keeping the old (stable) version
around for regular tasks.

• Upgrading to a new version or rolling back to an
old one is a matter of switching environments.

• Removal of unused applications can be achieved
by automatic garbage collection, taking the ap-
plications in user environments as roots.

For instance, to add the Subversion component in
Figure 2 to the current user environment, we do:

$ nix-env -f pkgs.nix -i subversion

where pkgs.nix is the file containing the definition in
Figure 2. This will build Subversion and create a new
user environment, based on the old one, to which
Subversion has been added. If an expression for a
new Subversion release comes along, we can upgrade
as follows:

$ nix-env -f pkgs.nix -u subversion

which likewise creates a new user environment, based
on the old one, in which the old Subversion compo-
nent has been replaced by the new one. However, the
old user environment and the components included
in it are retained, so it is possible to return to the old
situation if necessary:

$ nix-env --rollback

There is no operation to physically remove compo-
nents from the system. They can only be removed
from a user environment, e.g.,

$ nix-env -e subversion

creates a new user environment from which the links
to Subversion have been removed. However, stor-
age space can be reclaimed by periodically running
a garbage collector:

$ nix-collect-garbage

which removes any component not reachable from
any user environment. (Therefore it is necessary to
periodically prune old user environments, e.g., once
we find that we do not need to roll back to old ones).
Garbage collection is safe because we know the full
dependency graph between components (Section 4).

3.4 Sharing Component Builds

The unique identification of a component in the store
is based on all the inputs to the build process, thus
capturing all special configurations of the particular

variant being built. Thus, components can be iden-
tified exactly and deterministically. Consequently a
component can be shared by all components that de-
pend on it. Indeed we even get maximal sharing: if
two components are the same, then they will occupy
the same location in the store. This means that builds
can be shared by users on the same machine.

Since the identification only depends on the inputs
to the build process and the location of the store,
store identifiers are even globally unique. That is, a
component build can be safely copied to a Nix store
on another machine. For this purpose, Nix provides
support for transparently maintaining a collection of
pre-built components on some shared medium such
as an FTP site or an installation CD-ROM. After
building a component in the store it can be pushed
to the shared medium.

For instance, the installation and upgrade opera-
tions above perform an installation from source. This
is generally not desirable since it is slow. However, it
is possible to safely and transparently re-use pre-built
components from a shared resource such as a network
repository. For instance, a component distributor or
system administrator can pre-build components, then
push (upload) them to a server using PUT requests:

$ nix-push http://example.org/cache \
pkgs.nix subversion

This will build Subversion (if necessary) and upload
it and all its dependencies to the indicated site. A
user can then make Nix aware of these:

$ nix-pull http://example.org/cache

Subsequent invocations of nix-env -i / -u will auto-
matically use these if they are exactly equal to what
the user is requesting to be installed. That is, if the
user changes any sources, flags, and so on, the pre-
built components will not be used, and Nix will revert
to building the components itself. Thus, Nix is both
a source and binary-based deployment system; de-
ployment of binaries is achieved transparently, as an
optimisation of a source-based deployment process.

3.5 Policies

Nix is policy-free. That is, the ingredients introduced
above are mechanisms for implementing software de-
ployment. A wide variety of policies can be based on
these mechanisms.

For instance, depending on the type of organisation
it may or it may not be desirable or possible that users
install applications. In an organisation where homo-
geneity of workspaces is important, the selection and

8

installation of applications can be restricted to sys-
tem administration. This can be achieved by restrict-
ing all the operations on the store, and the composi-
tion of user environments to system administration.
They may compose several prefab user environments
for different classes of users. On the other hand, for
instance in a research environment, where individ-
ual users have very specific needs, it is desirable that
users are capable of installing and upgrading applica-
tions themselves. In this situation environment op-
erations and the underlying store operations can be
made available to ordinary users as well. Similarly,
Nix enables deployment at different levels of granu-
larity, from a single machine, a cluster of machines
in a local network, to a large number of machines on
separate sites.

Many other policies are possible; some are dis-
cussed in Sections 5 and 6.

4 Implementation

In this section we discuss the implementation of the
Nix system. We provide an overview of the main
components of the system, which we then discuss in
detail.

4.1 The store

The two main design goals of the Nix system are
to support concurrent variants, and to ensure com-
plete dependency information which is necessary to
support completeness (the deployment process should
transmit all dependencies necessary for the correct
operation of a component). It turns out that the
solutions to these goals are closely related. Other
design goals are portability (we should not funda-
mentally rely on operating system specific features
or extensions) and storage efficiency (identical com-
ponents should not be stored more than once).

The first problem is dealing with variability, i.e.,
concurrent variants. As we hinted in the previous
section, we support this by storing each variant of a
component in a global store, where they have unique
names and are isolated from each other. For instance,
one version or variant of Subversion might be stored
in /nix/store/eeeeaf42e56b-subversion-0.32.12, while
another might end up in /nix/store/3c7c39a10ef3-
subversion-0.34. To ensure uniqueness, these names
are computed by hashing all inputs involved in build-
ing the component.

2The actual names use 32 hexadecimal digits (from a 128-
bit cryptographic hash), but they have been shortened here to
preserve space.

/nix/store

eeeeaf42e56b-subversion-0.32.1

bin

svn

lib

libsvn_wc.so

libsvn_ra_dav.so

a17fb5a6c48f-openssl-0.9.7c

lib

libssl.so.0.9.7

8d013ea878d0-glibc-2.3.2

lib

libc.so.6

Figure 4: The store

Thus, each object in the store has a unique name,
so that variants can co-exist. These names are called
store paths. In Autoconf [1] terminology, each com-
ponent has a unique prefix. The file system content
referenced by a store path is called a store object.
Note that a given store path uniquely determines the
store object. This is because two store objects can
only differ if the inputs to the derivations that built
them differ, in which case the store path would also
differ due to the hashing scheme used to compute it.
Also, a store object can never be changed after it has
been built.

Figure 4 shows a number of derivates in the store.
The tree structure simply denotes the directory hi-
erarchy. The arrows denote dependencies, i.e., that
the file at the start of the arrow contains the path
name of the file at the end of the arrow. E.g.,
the program svn depends on the library libc.so.6,
because it lists the file /nix/store/8d013ea878d0-
glibc-2.3.2/lib/libc.so.6 as one of the shared libraries
against which it links at runtime.

The use of these names also provides a solution
for the dependency problem. First, it prevents unde-
clared dependencies. While it is easy for hard-coded
paths (such as /usr/bin/perl) to end up in component
source, thereby causing a dependency that is easily
forgotten while preparing for deployment, no devel-
oper would manually write down these paths in the
source (indeed, being the hash of all build inputs,
they are much too “fragile” to be included). Second,
we can now actually scan for dependencies. For in-
stance, if the string 3c7c39... appears in a component,
we know that it has a dependency on a specific vari-
ant of Subversion 0.34. This in particular solves the

9

problem of retained dependencies (discussed in Sec-
tion 2): it is not necessary to declare explicitly those
build time dependencies that, through retention, be-
come run time dependencies, since we can find them
automatically.

With precise dependency information, we can
achieve the goal of complete deployment. The idea
is to always deploy component closures: if we deploy
a component, then we must also deploy its depen-
dencies, their dependencies, and so on. That is, we
must always deploy a set of components that is closed
under the “depends on” relation. Since closures are
self-contained, they are the units of complete soft-
ware deployment. After all, if a set of components is
not closed, it is not safe to deploy, since using them
might cause other components to be referenced that
are missing on the target system.

4.2 Building components

So how do we build components from Nix expres-
sions? This could be expressed directly in terms of
Nix expressions, but there are several reasons why
this is a bad idea. First, the language of Nix expres-
sions is fairly high-level, and as the primary interface
for developers, subject to evolution; i.e., the language
changes to accommodate new features. However, this
means that we would have to be able to deal with
variability in the Nix expression language itself: sev-
eral versions of the language would need to be able to
co-exist in the store. Second, the richness of the lan-
guage is nice for users but complicates the sorts of op-
erations that we want to perform (e.g., building and
deployment). Third, Nix expressions cannot easily be
identified uniquely. Since Nix expressions can import
other expressions scattered all over the file system,
it is not so straightforward to generate an identifier
(such as a cryptographic hash) that uniquely identi-
fies the expression. Finally, a monolithic architecture
makes it hard to use different component specifica-
tion formalisms on top of the Nix system (e.g., we
could retarget Makefiles to use Nix as a backend).

For these reasons Nix expressions are translated
into the much simpler language of store expressions,
just as compilers generally do the bulk of their work
on simpler intermediate representations of the code
being compiled, rather than on a full-blown language
with all its complexities. Store expressions describe
how to build one or more store paths. Realisation of
a store expressions means making sure that all those
paths are present in the store.

Derivation store expressions describe the building
of a single store component. They describe all in-
puts to the build process: other store expressions

that must be realised first (build time dependencies),
the build platform, the build script (which is one of
the dependencies), and environment variable bind-
ings. These are computed from calls to the derivation
function in the Nix expression language by recursively
translating all input derivations to derivation store
expressions, copying source files to the store, and
adding all attributes as environment variable bind-
ings.

To perform the build action described by a deriva-
tion, the following steps are taken:

1. Locks are acquired on the output path (the store
path of the component being built) to ensure cor-
rectness in case of parallel invocations of Nix.

2. Input store expressions are realised. This ensures
that all file system inputs are present.

3. The environment is cleared and initialised to the
bindings specified in the derivation.

4. The builder is executed.

5. If the builder was executed successfully, we build
a closure store expression that describes the re-
sulting closure, i.e., the output path and all store
paths directly or indirectly referenced by it. We
do this by scanning every file in the output path
for occurrences of the cryptographic hashes in
the input store paths. For instance, when we
build Subversion, the path /nix/store/a17fb5a...-
openssl-0.9.7c is passed as an input. After the
build, we find that the string a17fb5a... occurs
in the file libsvn_ra_dav.so (as shown in Figure 4).
Thus, we find that Subversion has a retained de-
pendency on OpenSSL. Build time dependencies
carried over to runtime are detected automati-
cally in this way. (This approach is discussed in
more detail in [9]).

6. The closure expression is written to the store.

The command nix-instantiate translates a Nix ex-
pression to a store expression:

$ nix-instantiate pkgs.nix
/nix/store/ce87...1095-subversion.store

The command nix-store --realise realises a derivation
store expression, returning the resulting closure store
expression:

$ nix-store --realise \
/nix/store/ce87...1095-subversion.store

/nix/store/ab1f...77ef.store

10

Nix users do not generally have to deal with store
expressions. For instance, the nix-env command hides
them entirely — the user interacts only with high-
level Nix expressions, which is really just a fancy
wrapper around the two commands above. However,
store expressions are important when implementing
deployment policies. Their relevance is that they give
us a way to uniquely identify a component both in
source and binary form, through the derivation and
closure store expression, respectively. This can be
used to implement a variety of deployment policies,
as we will see in Section 5.

A crucial operation for deployment is to query the
set of store paths referenced by a store expression.
This is the set of paths that must be copied to an-
other system to ensure that it can realised there. For
instance, for the derivation above we get:

$ nix-store --qR \
/nix/store/ce87...1095-subversion.store

/nix/store/ce87...1095-subversion.store
/nix/store/d1bc...0aa1-builder.sh
/nix/store/f184...3ed7-gcc.store
/nix/store/f199...0719-bash.store
...

That is, this set includes the derivation store expres-
sions for building Subversion itself and its direct and
indirect dependencies, a closure store expression for
the builder, and so on.

On the other hand, for the closure we get:

$ nix-store --qR \
/nix/store/ab1f...77ef.store

/nix/store/ab1f...77ef.store
/nix/store/eeee...e56b-subversion-0.32.1
/nix/store/a17f...c48f-openssl-0.9.7c
/nix/store/8d01...78d0-glibc-2.3.2
...

This set only includes the closure store expression
itself and the component store paths it references.

4.3 Substitutes

With just the mechanisms described above, Nix
would be a source-based deployment system (like the
FreeBSD Ports collection [2], or Gentoo Linux [3]),
since all target systems would have to do a full build
of all derivations involved in a component installa-
tion. This has the advantage of flexibility. Advanced
users or system administrators can adapt Nix expres-
sions to build a variant specifically tailored to their
needs. For instance, required functionality disabled
by default can be enabled, unnecessary functional-
ity can be disabled, or the components can be built

with specific optimisation parameters for the target
environment. The resulting derivates may be smaller,
faster, easier to support (e.g., due to reduced func-
tionality), and so on. On the other hand, the obvi-
ous disadvantages are that source-based deployment
requires substantial resources on the target system,
and that it is unsuitable for the deployment of closed-
source products.

The Nix solution is to allow source-based deploy-
ment to change transparently into binary-based de-
ployment through the mechanism of substitutes. For
any store path, a substitute expression can be regis-
tered, which is also just a store derivation expression.
Then, whenever Nix is asked to realise a closure that
contains path p, and p does not yet exist, it will first
try to build its substitute if available. The idea is
that the substitute performs the same build as the
original expression, but with fewer resources. Typi-
cally, this is done by fetching the pre-built contents of
the output path of the derivation from the network,
or from installation media such as a CD-ROM. This
mechanism is generic (policy-free), because it does
not force any specific deployment policy onto Nix.
Specific policies are discussed in Section 5.

5 Deployment policies

A useful aspect of Nix is that while it is conceptually
a source-based deployment system, it can transpar-
ently support binary deployment through the substi-
tute mechanism (Section 4.3). Thus, efficient deploy-
ment consists of two aspects:

• Source level: Nix expressions are deployed to the
target system, where they are translated to store
expressions and built (e.g., through nix-env).

• Binary level: Pre-built derivates are made avail-
able, and substitute expressions are registered
on the target system. This latter step is largely
transparent to the users. There is no apparent
difference between a “source” and a “binary” in-
stallation.

Source level deployment is unproblematic, since
Nix expressions tend to be small. Typical deploy-
ment policies are to obtain sets of Nix expressions
packaged into a single file for easier distribution, or
to fetch them from a version management system.
The latter is useful as it can easily allow automatic
upgrades of a system. For instance, we can periodi-
cally (e.g., from a cron job) update the Nix expres-
sions and build the derivations described by them.
Note that any subexpressions that have not changed
do not need to be rebuilt.

11

subversion = {apacheModule, stdenv}:
(import ./subversion.nix)
{ clientOnly = false, sslSupport = true
, apacheModule = apacheModule
, stdenv = stdenv, ... };

subversion’ = {stdenv}:
[(subversion {apacheModule = true})
(subversion {apacheModule = false})];

subversion’’ =
[(subversion’ {stdenv = stdenv-Linux})
(subversion’ {stdenv = stdenv-FreeBSD})];

Figure 5: Variant selection

Binary level deployment presents more interesting
challenges, since even small Nix expressions can, de-
pending on the variability present in the expressions,
yield an exponentially large set of possible store ob-
jects. Also, these store objects are large and may take
a long time to build. Thus, we have to decide which
variants are pre-built, who builds them, and where
they are stored.

Let us first look at the most simple deployment pol-
icy: a fixed selection of variants are pre-built, pushed
onto a HTTP server, from where they can then be
pulled by clients. To push a derivation, all elements
in the resulting closure are packaged (e.g., by placing
them into a .tar.gz archive). All of this is entirely
automatic: to push the derivations of some expres-
sion foo.nix the distributor merely has to issue the
command nix-push foo.nix.

The client issues the command nix-pull to obtain a
list of available pre-built components available from
a pre-configured URL (i.e., the HTTP server). For
each derivation available on the server, substitute ex-
pressions are registered that (when built) will fetch,
decompress, and unpack the packaged output path
from the server. Note that nix-pull is lazy: it will not
fetch the packages themselves, just some information
about them.

The issue of which variants to pre-build requires
the distributor to determine the set of variants that
are most likely to be useful. For instance, for the
Subversion component, it may never be useful to not
have SSL support, but it may certainly be useful to
leave out Apache server support, since that feature
introduces a dependency on Apache, which might be
undesirable (e.g., due to space concerns). Also, the
platform for which to build must be selected. Figure 5
shows how 4 variants of Subversion can be built. The
function subversion supplies all arguments of the ex-

pression in Figure 1, except apacheModule and stdenv
(which determines the build tools, and thus the target
platform). The function subversion’ uses this to pro-
duce two variants, given a stdenv: one with Apache
server support, and one without. This function is in
turn used by the variable subversion”, which calls it
twice, with a stdenv for Linux and FreeBSD respec-
tively. Hence, this evaluates to 2× 2 = 4 variants.

Pre-building and pushing to a shared network site
merely optimises deployment of common variant se-
lections; it does not preclude the use of variants that
are not pre-built. If a user selects a variant for which
no substitute exists, the variant will be built locally
from source. Also, input components such as compil-
ers that are exclusively build time dependencies (that
is, they appear in the derivation value but not in the
closure value) will only be fetched or built when the
variant must be built locally.

The tools nix-pull and nix-push are not part of the
Nix system as such; they are applications of the un-
derlying technology. Indeed, they are just short Perl
scripts, and can easily be adapted to support differ-
ent deployment policies. For instance, an entirely dif-
ferent policy is lazy construction, where clients push
derivates onto a server if they are not already present
there. This is useful if it is not known in advance
which derivates will be needed. An example is mass
installation of components in a heterogeneous net-
work. In a peer-to-peer architecture each client makes
its derivates available to all other clients (that is, it
pushes onto itself, and pulls from all other clients). In
this case there is no server, and thus, no need to pro-
vide central storage scaling in the number of clients.

6 User environment policies

The use of cryptographic hashes in store paths gives
us reliable identification of dependencies and non-
interference between components, but we can hardly
expect users to type, e.g., /nix/store/eeeeaf42e56b-
subversion-0.32.1/bin/svn when they want to start a
program! Clearly, we should hide these implementa-
tion details from users.

We solve this problem by synthesising user envi-
ronments. A user environment is the set of appli-
cations or programs available to the user through
normal interaction mechanisms, which in a Unix set-
ting means that they appear in a directory in the
user’s PATH environment variable. The user has in
her PATH variable the path /nix/links/current/bin.
/nix/links/current is a symbolic link (symlink) that
points to the current user environment generation.
Generations are symlinks to the actual user environ-

12

/nix/store

eeeeaf42e56b-subversion-0.32.1

bin

svn

/nix/links

current

42

43

27140513a0f9-mozilla-1.4

bin

mozilla

068150f63831-user-env

bin

svn

84c85f89ddbf-user-env

bin

svn

mozilla

58823d558a6a-subversion-0.34

bin

svn

switch

Figure 6: User environments

ment. They are needed to implement atomic up-
grades and rollbacks: when a derivation is added or
removed through nix-env, we build the new environ-
ment, and then create a generation symlink to it with
a number one higher than the previous generation.
User environments are just sets of symlinks to pro-
grams of activated components (similar to, e.g., GNU
Stow [4]), and are themselves computed using deriva-
tions.

This is illustrated in Figure 6 (dotted lines denote
symlinks), where the current symlink points to gen-
eration 42, which is in turn a symlink to a user envi-
ronment in the store. The user environment is simply
a tree of symlinks to activated components. Hence,
the path /nix/links/current/bin/svn indirectly refers
to /nix/eeee...-subversion-0.31.1/bin/svn.

Figure 6 also shows what happens when we up-
grade Subversion, and add Mozilla in a single atomic
action. A new environment is constructed in the store
based on the current generation (42), the new genera-
tion (43) is made to point to it, and finally the current
link is switched to point at generation 43. The seman-
tics of the POSIX rename() system call ensures that
this is an atomic operation. That is, users and pro-
grams always see the old set of activated programs,
or the new set, but never neither, both, or a mix.
Since old generations are retained, we can atomically
downgrade to them in the same manner.

The generation links are the only external links
into the store. This means that the only reachable
store paths are those in the closure of the targets of
the generation links. The closure can be found us-
ing the closure values computed in Section 4. Since
all store paths not in this closure are unreachable,

derivation {
name = "site-env";
builder = ./create-symlinks.pl;
inputs = [
((import ./subversion.nix) { ... })
((import ./mozilla.nix) { ... })
...];

}

Figure 7: A Nix expression to build a site-wide user
environment (site-wide.nix)

they can be deleted at will. This allows Nix to do au-
tomatic garbage collection of installed components.
Nix has no explicit operation to delete a store path—
that would be unsafe, since it breaks the integrity
of closures containing that path. Rather, it provides
operations to remove derivations from the user en-
vironment, and to garbage collect unreachable store
paths. Store paths reachable only from old genera-
tions can be garbage collected by removing the gen-
eration links.

This scheme, where a user environment is created
for the entire system, is just the simplest user envi-
ronment policy. The creation of a user environment is
itself a normal derivation, and the command nix-env
used in Section 3 is a simple wrapper that automati-
cally creates a derivation, builds it, and switches the
current generation to the resulting output path. The
build script used by nix-env for environment creation
is a fairly trivial Perl script that creates symlinks to
the files in its input closures. A simple modification
is to allow profiles—environments for specific users
or situations. This can be done by specifying a dif-
ferent link directory (e.g., /home/joe/.nixlinks). Also,
multiple versions of the same program in an environ-
ment can be accommodated through renaming (e.g.,
a symlink svn-0.34), which is a policy decision that
can be implemented by modifying the user environ-
ment build script.

A more interesting extension is stacked user envi-
ronments, where one environment links to the pro-
grams in another environment. This is easily accom-
modated: just as the inputs to the construction of
an environment can be concrete components (such as
Subversion), they can be other environments. The
result is another indirection in the chain of symlinks.
A typical scenario is a 2-level scheme consisting of
a site-wide environment specified by the site system
administrators, with user-specific environments that
augment or override the site-wide environment. Con-
cretely, the site administrator makes a Nix expression
as in Figure 7 (slightly simplified) and makes it avail-

13

able on the local network. Locally, a user can then
link this site-wide environment into her own environ-
ment by doing

nix-env -f site-wide.nix -i site-env
where site-wide.nix refers to the Nix expression. This
will replace any previously installed derivation with
the symbolic name site-env. To ensure that changes
to the site-wide environment are automatically prop-
agated, these commands can be run periodically (e.g.,
from a cron job), or initiated centrally (by having the
administrator remotely execute them on every ma-
chine and/or for every user).

Should components in the local environment over-
ride those in the site-wide environment? Again, this
is a policy decision, and either possibility is just a
matter of adapting the builder for the local user en-
vironment, for instance to give precedence to deriva-
tions called site-env.

Server configurations User environments (con-
trary to what the term implies) can not only be used
to specify environments for specific users, but also
for specific tasks or processes. In particular, they
can be used to specify complete server configura-
tions, which includes not only the software compo-
nents constituting some server, but also its configura-
tion and other auxiliary files. Consider, for instance,
an Apache/Subversion server (the Subversion server
runs as a module on top of Apache). It consists of sev-
eral components that are rather picky about specific
dependencies, e.g., Apache, Subversion, ViewCVS,
Python, and Perl, but also our repository manage-
ment CGI scripts, static HTML documents and im-
ages, the Apache httpd.conf configuration file, SSL
private keys, and so on. Since these are also compo-
nents (just not necessarily executable components)
they can be managed using Nix.

Figure 8 shows a (simplified) Nix expression for an
Apache/Subversion server. It takes a single argument
that specifies whether a test or production server is
to be built. The builder produces a component con-
sisting of an Apache configuration file, and a control
script to start and stop the server. The builder gener-
ates these by substituting values such as the desired
port number and the paths to the Apache and Sub-
version components into the given source files.

Now, given a simple script upgrade-server (not
shown here) that uses nix-env -u to build the new
server configuration, stop the server running in the
old generation, and start the new one, we can eas-
ily instantiate new server configurations by editing
source files such as httpd.conf.in, and calling upgrade-
server. For instance, the command upgrade-server test
instantiates the Nix expression by calling it with a

{productionServer}:
derivation {
builder = ./builder.sh;
configuration = ./httpd.conf.in;
controller = ./ctl.sh.in;
portNumber = if productionServer

then 80 else 8080;
inherit (import ...) httpd subversion;

}

Figure 8: A Nix expression to build a Subversion
server

false argument, thus producing a test server. If this
is found to work properly, we can issue upgrade-server
production to upgrade the production server. nix-env
--rollback can be used to go back to the previous gen-
eration, if necessary.

The server is started using the script controller.sh
which is part of the server configuration component.
It initialises PATH to point to a specific set of com-
ponents. This means that the server configuration
is self-contained: it does not depend on anything not
explicitly specified in the Nix expression. Such a con-
figuration is therefore pretty much immune to exter-
nal configuration changes, and can be relatively easily
transferred to another machine.

The only thing not under Nix control here is
state — things that are modified by the server, e.g.,
the actual Subversion repositories and user account
databases.

Thus, Nix can be used for the deployment of not
just software components, but also complete sys-
tem configurations — the domain of tools such as
Cfengine [7]. Note that Cfengine declaratively spec-
ifies destructive changes to be performed to realise
a desired configuration. This makes it hard to eas-
ily run several configurations in parallel on the same
machine, or to switch back and forth between con-
figurations. Also, Cfengine is typically not used to
manage the software components on a machine (al-
though this is possible, e.g., by installing the appro-
priate packages in an Cfengine action [20]).

7 Experience

We have applied Nix to a number of problem do-
mains.

Software deployment We have “nixified” 180 or
so existing Unix packages, including large ones such
as Mozilla Firefox with all its dependencies (which

14

includes the C compiler, basic Unix tools, X11,
etc.). They are prebuilt for Linux and made avail-
able through the push/pull mechanism described in
Section 5.

The fundamental limitation to Nix’s dependency
checking is that it will not prevent undeclared de-
pendencies on components outside of the store. For
instance, if a builder calls /bin/sh, we have no way
to detect this. To minimise the probability of such
undeclared dependencies, we use patched versions of
gcc, ld, and glibc that refuse to use header files and
libraries outside of the Nix store. In our experience
this works quite well. For instance, the prebuilt Nix
packages work on a variety of Linux distributions—
evidence that no (major) external components are
used. A common problem with these distributions
is that they often differ in subtle ways that cause
packages built on one system to fail on another, e.g.,
because of C library incompatibilities. However, our
Nix components are completely boot-strapped, that
is, they are built using only build tools, libraries, etc.,
that have themselves been built using Nix, and do not
rely on components outside of the Nix store (other
than the running kernel). Using our reliable depen-
dency analysis, any required libraries and other com-
ponents are deployed also. Thus, they just “work”.

The ability to very rapidly perform rollbacks is of-
ten a life-saver. For instance, it happens quite fre-
quently that we attempt to upgrade some bleeding-
edge software package, only to discover that it doesn’t
work quite as well as the previous version (or not
at all!). A simple nix-env --rollback saves the day.
In most package managers, recovery would be much
harder, since we would have to know exactly what
the previous configuration was, and we would have
to have a way to re-obtain the old versions of the
packages that were just upgraded.

Service deployment As described in Section 6,
Nix can be used for the deployment of not just soft-
ware components, but also complete configurations
of system services. For instance, our department’s
Subversion server is managed in this way. The main
advantages are that it is very easy to run multiple
instances of a service (e.g., for testing — and the test
server will in no way interfere with the production
server!), that it is easy to move a service to another
machine since we have full dependency information,
and again that we can rollback to earlier versions.

Build farms It is a good software engineering prac-
tice to build software systems continuously during the
development process [13]. In addition, if software is

to be portable, it should be built on a variety of ma-
chines and configurations. This requires a build farm
— a set of machines that sit in a loop building the
latest version obtained from the version management
system. Build farms are also important for release
management — the production of software releases
— which must be an automatic process to ensure re-
producibility of releases, which is in turn important
for software maintenance and support.

The management of a build farm is often highly
time-consuming. For instance, if the component be-
ing built in the build farm requires (say) Automake
1.7, we must install that version of Automake on each
machine in the build farm. If at some point we need
a newer version of Automake, we again must go to
each machine to perform the upgrade. So maintain-
ing a build farm scales badly. Worse, there may be
conflicting dependencies (e.g., some other component
in the build farm may only work with Automake 1.6).

Such management of dependencies is exactly what
Nix is good at, so we have implemented a build farm
on top of Nix. The main advantages over other build
farms (e.g., [12]) are:

• The Nix expression language makes it easy to
describe the build tasks, along with their depen-
dencies.

• Nix ensures that the dependencies are installed
on each machine in the build farm.

• The hashing scheme ensures that identical builds
(e.g., of dependencies) are performed only once.

• In Nix, each derivation has a system attribute
that specifies on what kind of platform the
derivation is to be performed (e.g., i686-linux). If
the attribute does not match the type of the plat-
form on which Nix is run, Nix can automatically
distribute the derivation to a different machine
of the intended platform type, if one exists. All
inputs to the derivation are copied to the store
of the remote machine, Nix is run on the remote
machine, and the result is copied back to the
local store. Thus, dealing with multi-platform
builds is fairly transparent: we can write a Nix
expression specifying derivations on a variety of
platforms and run it on a arbitrary machine.
There is no need to schedule the build separately
on each machine.

• The resulting builds can be used immediately by
other developers since they are made available
through nix-push.

15

A downside to a Nix-based build farm is that in-
stalling a package through Nix differs from the “na-
tive” way of installing a package on existing platforms
(e.g., by installing an RPM on a Red Hat machine).
Thus it is difficult for a Nix build farm to verify
whether a package works when built from source in
the native way. However, on Linux systems, we can
in fact build native packages (such as RPMs) without
affecting the host system by using User-Mode Linux
[5] in Nix derivations. In fact, this fits in quite well.
For instance, the synthesis of the UML disk images
for the various platforms for which we build packages
is just a normal Nix derivation that creates an Ext2
file system from an arbitrary set of RPMs constitut-
ing a Linux distribution.

8 Related work

Centralised and local package management
Package management should be centralised but each
machine must be adaptable to specific needs [26]. Lo-
cal package management is often ignored in favour of
centralised package management [19, 17]. In our ap-
proach, central configurations can easily be shared
and local additions can be made. Any user can
be allowed to deviate from a central configuration.
Software installation by arbitrary users is discussed
in [21]. In [25] policies are introduced that define
which installation tasks are permitted. This might be
a challenging extension to Nix. Modules [14] makes
software deployment more transparent by abstracting
from the details of software deployment. Application-
specific deployment details are captured in “module-
files”, which can be shared between large-scale dis-
tributed networks, similar to Nix expressions. Mod-
ules lack the safety properties of Nix. As a result,
correct operation of typical deployment tasks, as dis-
cussed in Section 2, cannot be guaranteed.

Non-interference Software packages should not
interfere with each other. Typical interference is
caused by attempting to have multiple versions of
a component installed. It is important that multi-
ple versions can coexist [21], but this is difficult to
achieve with current technology [6]. A common ap-
proach is to install software packages in separate di-
rectories, sometimes called collections [26]. In [18],
a directory naming scheme is used that restricts the
number of concurrent versions and variants of a pack-
age. Sharing is in most deployment systems either
unsafe due to implicit references, or not supported at
all because every application is made completely self-
contained [17, 19]. Sharing of data across platforms

using a directory structure that separates platform
specific from platform independent data is discussed
in [17], which is concerned with diversity in platform,
not diversity in feature sets. As a consequence how-
ever, exchange and sharing of packages is not truly
safe, as is the case for Nix.

Safe upgrading Many systems ignore this is-
sue [26]. Automatic rollback on failures is discussed
in [19]. This turned out to be undesirable in prac-
tice because it increased installation time and did not
increase consistency. RPM [11] has a notion of trans-
actions: if the installation of a set of packages failed,
the entire installation is undone. This is not atomic,
so the packages being upgraded are in an inconsis-
tent state during the upgrade. The approach dis-
cussed in [18] uses shortcuts to default package ver-
sions, e.g., emacs pointing to emacs-20.2. This is un-
safe because programs may now use emacs which ini-
tially corresponds to emacs-20.2, but after an upgrade
points to, e.g., emacs-20.3. Separation of production
and development software via directories is discussed
in [17]. Once an application has been fully tested un-
der the development tree it is turned into production.
This requires recompilation because path names will
change and may cause errors. Consequently, the ap-
proach is not really safe.

Garbage collection In [21] an approach for re-
moving old software is discussed. Basically, after
software is “removed” by making the directory un-
readable, one verifies whether other software fails by
running it. If so, the deletion is rolled back by mak-
ing the directory readable again. This is unsafe be-
cause the test executions may not reveal every de-
pendency, and because a time window is introduced
during which some components do not work.

Dependency analysis However, the same paper
also describes a pointer scanning mechanism similar
to ours: component directories are scanned for the
names of other component directories (e.g., tk-3.3).
However, such names are not very unique (contrary
to cryptographic hashes) and may lead to many false
positives. Also, component dependencies are scanned
for after the component has been made unreadable,
not before. In [23] a dependency analysis tool for dy-
namic libraries is discussed. In Nix this information
is already available when an application is installed,
and Nix is not restricted to detecting dependencies
on shared libraries only. Vesta [16] is a system for
configuration management that supports automatic
dependency detection. Like Nix, it detects only de-
pendencies that are actually needed, and dependen-

16

cies are complete, i.e., every aspect of the computing
environment is described and controlled by Vesta.

Safety In [25] common wrong assumptions of pack-
age managers are explained, including: i) package in-
stallation steps always operate correctly; ii) all soft-
ware system configuration updates are the result of
package installation. In Nix, software gets installed
safely, without affecting the environment. Thus, in
contrast to many other systems, Nix will never bring
a system in an unstable state. Unless a system admin-
istrator really wants to mess things up, all upgrades
to the Nix store are the result of package installa-
tion. Safe testing of applications outside production
environments is discussed in [21, 17]. In [15] it is
confirmed that software should be installed in pri-
vate locations to prevent interference between soft-
ware packages. Interference turns out to be a very
common cause of installation problems. In Nix, such
packages can safely coexist.

Packaging In [22] a generic packaging tool for
building bundles (i.e., collections of products that
may be installed as a unit) is discussed. Source tree
composition [8] is an alternative technique for auto-
matically producing bundles from source code com-
ponents. However, these bundling approaches do not
cater for sharing of components across bundles.

9 Conclusion

Seemingly simple tasks such as installing or upgrad-
ing an application often turn out to be much harder
than they should be. Unexpected failures and the
inability to perform certain actions affect users of
all levels of computing expertise. In this paper we
have pinpointed a number of causes of the deploy-
ment malady, and described the Nix system that ad-
dresses these by using cryptographic hashes to en-
force uniqueness and isolation between components.
It is successfully used to deploy software components
to several different operating systems, to manage
server configurations, and to support a build farm.

There are a number of interesting issues remaining.
Of particular interest is our expectation that Nix will
permit sharing of derivations between users. That
is, if user A has built some derivation, and user B
attempts to build the same derivation, B can trans-
parently reuse A’s result. Clearly, using code built
by others is not safe in general, since A may have
tampered with the result. However, our use of cryp-
tographic hashes can make this safe, since the hash

includes all build inputs, and therefore completely
characterises the result.

The problems of dependency identification and
dealing with variants also plague build managers such
as Make [10]. We believe that (with some extensions)
Nix can be used to replace these more low-level soft-
ware configuration management tools as well.

Availability Nix is free software and is available
online at http://www.cs.uu.nl/groups/ST/Trace/Nix.

Acknowledgements We wish to thank Martin
Bravenboer and Armijn Hemel for helping in the de-
velopment of the Nix system, and Martin Bravenboer
and our LISA shepherd Rudi van Drunen for com-
menting on this paper. This research was supported
by CIBIT | Serc and the NWO Jacquard program.

10 Author Information

Eelco Dolstra is a PhD student in the Software Tech-
nology group at Utrecht University, where he also ob-
tained his Master’s degree on the integration of func-
tional and strategic term-rewriting languages. His re-
search focuses on dealing with variability in software
systems and configuration management, in particular
software deployment.

Merijn de Jonge obtained his PhD degree from
the University of Amsterdam in the area of software
reuse. After a postdoc position at Eindhoven Univer-
sity, he currently works as a postdoc at Utrecht Uni-
versity. His research interests include software reuse,
configuration and build management, software vari-
ability, generative programming, component-based
software development, program transformation, and
language-centered software engineering.

Eelco Visser studied computer science at the Uni-
versity of Amsterdam where he obtained Master’s
and PhD degrees in the area of syntax definition and
language processing. As a postdoc at the Oregon
Graduate Institute in Portland he laid the foundation
for the Stratego program transformation language.
He is currently an assistant professor in the Soft-
ware Technology group at Utrecht University where
he leads research projects into program transforma-
tion and software configuration and deployment.

References

[1] Autoconf. http://www.gnu.org/software/
autoconf/.

17

http://www.cs.uu.nl/groups/ST/Trace/Nix
http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/autoconf/

[2] FreeBSD Ports Collection. http://www.freebsd.
org/ports/.

[3] Gentoo Linux. http://www.gentoo.org/.

[4] GNU Stow. http://www.gnu.org/software/stow/.

[5] User Mode Linux. http://user-mode-linux.
sourceforge.net/.

[6] E. Anderson and D. Patterson. A retrospective
on twelve years of LISA proceedings. Proceedings
of the 13th Systems Administration Conference
(LISA ’99), pages 95–107, November 1999.

[7] Mark Burgess. Cfengine: a site configuration
engine. USENIX Computing systems, 8(3), 1995.

[8] Merijn de Jonge. Source tree composition. In
Seventh International Conference on Software
Reuse, number 2319 in Lecture Notes in Com-
puter Science. Springer-Verlag, 2002.

[9] E. Dolstra, E. Visser, and M. de Jonge. Im-
posing a memory management discipline on soft-
ware deployment. In Proceedings of the 26th In-
ternational Conference on Software Engineering
(ICSE 2004), pages 583–592. IEEE Computer
Society, May 2004.

[10] Stuart I. Feldman. Make—a program for main-
taining computer programs. Software—Practice
and Experience, 9(4):255–65, 1979.

[11] Eric Foster-Johnson. Red Hat RPM Guide. John
Wiley and Sons, 2003.

[12] Mozilla Foundation. Tinderbox. http://www.
mozilla.org/tinderbox.html.

[13] Martin Fowler. Continuous integra-
tion. http://www.martinfowler.com/articles/
continuousIntegration.html.

[14] J. L. Furlani and P. W. Osel. Abstract yourself
with modules. Proceedings of the 10th Systems
Administration Conference (LISA ’96), pages
193–204, September 1996.

[15] John Hart and Jeffrey D’Amelia. An analysis of
RPM validation drift. In Proceedings of the 16th
Systems Administration Conference (LISA ’02),
pages 155–166. USENIX Association, November
2002.

[16] Allan Heydon, Roy Levin, Timothy Mann, and
Yuan Yu. The Vesta approach to software con-
figuration management. Technical Report Re-
search Report 168, Compaq Systems Research
Center, March 2001.

[17] K. Manheimer, B. A. Warsaw, S. N. Clark, and
W. Rowe. The Depot: A framework for sharing
software installation across organizational and
UNIX platform boundaries. Proceedings of the
4th Systems Administration Conference (LISA
’90), pages 37–46, October 1990.

[18] T. Oetiker. SEPP: Software installation and
sharing system. Proceedings of the 12th Systems
Administration Conference (LISA ’98), pages
253–259, December 1998.

[19] K. Oppenheim and P. McCormick. Deployme:
Tellme’s package management and deployment
system. Proceedings of the 14th Systems Admin-
istration Conference (LISA 2000), pages 187–
196, December 2000.

[20] D. Ressman and J. Valdés. Use of Cfengine for
automated, multi-platform software and patch
distribution. Proceedings of the 14th Systems
Administration Conference (LISA 2000), pages
207–218, December 2000.

[21] J. P. Rouillard and R. B. Martin. Depot-lite:
a mechanism for managing software. Proceed-
ings of the 8th Systems Administration Confer-
ence (LISA ’94), pages 83–91, 1994.

[22] C. Staelin. mkpkg: A software packaging tool.
Proceedings of the 12th Systems Administration
Conference (LISA ’98), pages 243–252, Decem-
ber 1998.

[23] Y. Sun and A. L. Couch. Global impact analy-
sis of dynamic library dependencies. Proceedings
of the 15th Systems Administration Conference
(LISA 2001), pages 145–150, November 2001.

[24] Jilles van Gurp, Jan Bosch, and Mikael Svahn-
berg. On the notion of variability in software
product lines. In Proceeedings of WICSA 2001,
August 2001.

[25] V. N. Venkatakrishnan, R. Sekar, T. Kamat,
S. Tsipa, and Z. Liang. An approach for secure
software installation. In Proceedings of the 16th
Systems Administration Conference (LISA ’02),
pages 219–226. USENIX Association, November
2002.

[26] W. C. Wong. Local disk depot: customizing
the software environment. Proceedings of the 7th
Systems Administration Conference (LISA ’93),
pages 49–53, November 1993.

18

http://www.freebsd.org/ports/
http://www.freebsd.org/ports/
http://www.gentoo.org/
http://www.gnu.org/software/stow/
http://user-mode-linux.sourceforge.net/
http://user-mode-linux.sourceforge.net/
http://www.mozilla.org/tinderbox.html
http://www.mozilla.org/tinderbox.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html

	Introduction
	Motivation
	Overview
	Nix Store
	Nix Expressions
	User Environments
	Sharing Component Builds
	Policies

	Implementation
	The store
	Building components
	Substitutes

	Deployment policies
	User environment policies
	Experience
	Related work
	Conclusion
	Author Information

