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Abstract. Genetic Programming (GP) provides evolutionary methods
for problems with tree representations. A recent development in Genetic
Algorithms (GAs) has led to principled algorithms called Estimation—of—
Distribution Algorithms (EDAs). EDAs identify and exploit structural
features of a problem’s structure during optimization. Here, we investi-
gate the use of a specific EDA for GP. We develop a probabilistic model
that employs transformations of production rules in a context—free gram-
mar to represent local structures. The results of performing experiments
on two benchmark problems demonstrate the feasibility of the approach.

1 Introduction

GP [5,7] offers algorithms to search highly expressive classes of functions, and
has been applied to a diverse range of problems including circuit design, sym-
bolic regression, and control. Most GP methods employ the subtree-crossover
operator, which exchanges randomly selected subtrees between individuals. Due
to the particular structure of trees, subtrees (rather than e.g. any combination
of nodes and arcs) appear a reasonable choice as the form of the partial solutions
that will be exchanged since the functionality of a subtree is independent of its
place within the tree. However, basic GP does not make informed choices as to
which partial solutions will be exchanged; both the size of the removed subtree
and the position where it will be inserted are chosen randomly.

Several subtree encapsulation methods exist that make more specific choices
as to which partial solutions are selected to be further propagated, e.g. GLiB
[1], ADFs [8], and ARL [14]. Subtree encapsulation methods have been found to
substantially improve performance on a variety of problems. Yet, the criteria for
the selection of partial solutions they employ are still heuristic; typically, either
the fitness of the tree in which a subtree occurs is used as an indication of its
value, or the partial solution is itself subject to evolution.

Here, we explore whether a more principled approach to the selection of
partial solutions and their recombination is possible. If the distribution of high-
fitness trees can be estimated, this would directly specify which combinations of
elements are to be maintained in the creation of new individuals and thus which
combinations of partial solutions may be fruitfully explored. We investigate how
the principle of distribution estimation may be employed in the context of tree-
based problems. In GAs, the development of EDAs and other linkage learning



techniques has yielded a better insight into the design of competent GAs by ren-
dering the assumptions implicitly made by algorithms explicit. Our aim is that
the application of distribution estimation techniques to tree-based problems may
likewise clarify the design of principled methods for GP. This paper represents
a first step in that direction.

To estimate distributions over the space of trees, a representation must be
chosen. In Probabilistic Incremental Program Evolution (PIPE) [15], trees are
matched on a fixed-size template, such that the nodes becomes uniquely identifi-
able variables. The size of the template may increase over time however as trees
grow larger. Using this representation, all nodes are treated equally. While this
permits the encapsulation of any combination of nodes, it does not exploit the
particular non—fixed—size and variable—child—arity structure of trees. The com-
plexity of such an algorithm is determined by the maximally allowed shape for
the trees, which must be chosen in advance. In PIPE the distribution is the same
for each node, which corresponds to a univariately factorized probability distri-
bution over all nodes. In Extended Compact Genetic Programming (ECGP) [16],
trees are represented in the same way as in PIPE. However, the probability dis-
tribution that is estimated is a marginal-product factorization that allows the
modelling of dependencies between multiple nodes that are located anywhere in
the fixed—size template. Moreover, the size of the template is fixed beforehand in
ECGP and does not increase over time. In this paper, a method will be employed
that estimates the distribution of trees based on the subtrees that actually oc-
cur. The representation specifies a set of rules whose expansion leads to trees.
The rules capture local information, thereby offering a potential to exploit the
specific structure of trees, while at the same time their use in an EDA offers a
potential for generalization that is not provided by using fixed—size templates.
Shan et al. [17] use a similar approach (based on stochastic grammars). The main
difference is that their approach starts from an explicit description of a specific
set of trees and then generalizes the description to represent common subtrees.
In our approach we do the reverse. Our approach starts from a description of all
possible trees and then tunes it to more specifically describe the set of trees.

The remainder of this paper is organized as follows. In Section 2 we introduce
basic notation and terminology. In Section 3 we define the probability distribu-
tion over trees that we work with. We also show how to draw new samples from
the distribution and how the distribution is estimated from data. In Section 4 we
perform experiments on two benchmark problems and compare the performance
of standard GP and an EDA based on the proposed distribution. We present
our conclusions and a discussion of future research in Section 5.

2 Terminology

A grammar G is a vector of [, production rules R;,j € {0,1,...,l, — 1}, that
iS, G = (RQ,Rl, ey er—l)-

A production rule is denoted by R; : 8 — E;, where 8y, is a symbol that can
be replaced with the expansion F; of the production rule. Let K be the number
of available symbols, then k € {0,1,..., K — 1}. We will use only one symbol
and allow ourselves to write 8§ instead of 8.



An expansion E; of production rule R; is a tree. We will therefore generally
call F; an expansion tree. The internal nodes of an expansion tree are functions
with at least one argument. The leaves are either symbols, constants or input
variables. An example of an expansion tree is E; = +(sin(8), (—(log(8), cos(8)))
which, in common mathematical notation, represents sin(8) + (log(8) — cos(8)).

A sentence is obtained from a grammar if a production rule is chosen to
replace a symbol repeatedly until all symbols have disappeared. Sentences can
therefore be seen as trees. We denote a sentence by s. We will denote a subtree
of a sentence by t and call it a sentence subtree.

A sentence subtree ¢ is said to be matched by an expansion tree £}, denoted
t € E; if and only if all nodes of E; coincide with nodes found in ¢ following the
same trails, with the exception of symbol nodes, which may be matched to any
non—-empty sentence subtree.

The following grammar G = (Rg, R1, ..., R51,) with [, = 6-+n is an example
of a grammar that describes certain n—dimensional real-valued functions:

Ry : 8 — ¢ (a constant € R) Rui1:8 — +(8,8)

R; : 8 — ip (input variable 0) Rui2:8—+(8,8)
Ryy4q:8 —sin(8)

R, : 8 — i,_1 (input variable n-1) Ryy5: 8 — cos(8)

3 Probability distribution

3.1 Definition

To construct a probability distribution over sentences, we introduce a random
variable S that represents a sentence and a random variable T' that represents
a sentence subtree. Because sentence subtrees are recursive structures we define
a probability distribution for sentence subtrees recursively. To do so, we must
know where the tree terminates. This information can be obtained by taking the
depth of a sentence subtree into account. Let P¥(T = t|D = d) be a probability
distribution over all sentence subtrees ¢ that occur at depth d in a sentence.
Now, we define the probability distribution over sentences s by:

PG(S =s)=P%T =s|D=0) (1)

Since sentence subtrees are constructed using production rules, we can define
PG (T = t|D = d) using the production rules. Since there is only one symbol,
we can also focus on the expansion trees. Although depth can be used to model
the probability of terminating a sentence at some node in the tree, sentences
can be described more precisely if depth is also used to model the probability
of occurrence of functions at specific depths. Preliminary experiments indicated
that this use of depth information leads to better results.

We define PJE (J = j|D = d) to be a discrete conditional probability distribu-
tion that models the probability of choosing expansion tree E;, j € {0,1,...,1,}
at depth d when constructing a new sentence.

We assume that the values of the constants and the indices of the input
variables in an expansion tree are not dependent on the depth. Conforming to



this assumption we define 2/, multivariate probability distributions that allow
us to model the use of constants and inputs inside production rules other than
the standard rules 8§ — ¢ and 8 — ix, k € {0,1,...,n— 1}:

- PJ-C(Cj), j€{0,1,...,1, — 1}, a probability distribution over all constants
in expansion tree E;, where C; = (Cjo, Cj1, .. .,Cj(ncj,l)). Each Cj, is a
random variable that represents a constant in Ej.

- PjI(Ij)7 j € {0,1,...,l. — 1}, a probability distribution over all inputs in
expansion tree E;, where I; = (10,1, ... )Ij(nzjfl))- Each I, is a random

variable that represents all input variables, i.e. I;; € {0,1,...,n —1}.

The above definition of PjI (I;) enforces a single production rule § — 4,
where ¢ represents all input variables, instead of n production rules 8§ — i,
j €{0,1,...,n—1}. This reduces the required computational complexity for es-
timating the probability distribution, especially if n is large. However, it prohibits
the introduction of production rules that make use of specific input variables.

We will enforce that any sentence subtree ¢ can be matched by only one
expansion tree F;. The probability distribution over all sentence subtrees at
some given depth D = d is then the product of the probability of matching the
sentence subtree with some expansion tree E; and the product of all (recursive)
probabilities of the sentence subtrees located at the symbol-leaf nodes in E;.

Let 81 be the k~th symbol in expansion tree E;, k € {0,1,...,ns, —1}. Let
stree(8x,t) be the sentence subtree of sentence subtree ¢ at the same location
where 8, is located in the expansion tree E; that matches t. Let depth(8;x) be
the depth of §;; in expansion tree E;. Finally, let match(t) be the index of the
matched expansion tree, i.e. match(t) = j < t € E;. We then have:

PE(T =tD=d) = (2)

PP(J = j|D = d)PF(C;)P}(I;) [] PE(T = stree(S;x,t)|D = d+ depth(S;x))
k=0

where j = match(t)

Summarizing, formulating a probability distribution for sentences requires:

— PZ(J|D); a univariate discrete conditional probability distribution over all
possible production rules, conditioned on the depth of occurrence.

— P]-C(C 4); I multivariate probability distributions over ng; variables.

— le (I;); I, multivariate probability distributions over ny; variables.

3.2 Estimation from data

General greedy approach We choose a greedy approach to estimate P%(S)
from a set 8 of sentences. Greedy approaches have been used in most EDAs
so far and have led to good results [2,9-11]. The algorithm starts from a given
initial grammar. Using transformations, the grammar is made more involved. A



transformation results in a set of candidate grammars, each slightly different and
each more involved than the current grammar. The goodness of each candidate
grammar is then evaluated and the best one is accepted if it is better than the
current one. If there is no better grammar, the greedy algorithm terminates.

Transformations The only transformation that we allow is the substitution of
one symbol of an expansion tree with one expansion tree from the base grammar.
The base grammar is the grammar that is initially provided. To ensure that after
a transformation any sentence subtree can be matched by only one expansion tree
we assume that the base grammar has this property. To transform the grammar
we only allow to substitute symbols with expansion trees of the base grammar.
Here is an example of expanding the base grammar (first column) using a single
expansion (second column):

Base grammar Single expansion Full expansion
Ry:8—¢ Ry:8—¢ Ry:8—¢
R128—>i R128—>’i R128—>i
Ry : 8 — f(8,8) Ry : 8 — f(8,8) Ry : 8 — f(8,8)
R3:8 — ¢g(8,8) R3:8 —¢g(8,8) R3:8 — g(c,8)
Ry :8—g(f(8,8),8) Ry 8 —g(i,8)
R5:8 — g(f(S,S),S)

Rs : 8 — g(g(8,8),8)

Note that the set of expansion trees can now no longer be matched uniquely
to all sentence trees. For instance, sentence g(f(c,c),c) can at the top level
now be matched by expansion trees 3 and 4. To ensure only a single match, we
could expand every expansion tree from the base grammar into a production
rule and subsequently remove the original production rule that has now been
expanded (third column in the example above). However, this rapidly increases
the number of production rules in the grammar and may introduce additional
rules that aren’t specifically interesting for modelling the data at hand. To be
able to only introduce the rules that are interesting, we equip the symbols with
a list of indices that indicate which of the production rules in the base grammar
may be matched to that symbol. Once a substitution occurs, the symbol that
was instantiated may no longer match with the expansion tree that was inserted
into it. For example:

Base grammar Expanded grammar
Ro:8—¢ Ro:8 —¢

Ri:8—1 Ry :8—1

Rg SN f(80’1’2’3,80’1’2’3) Rg -8 f(80’1’2’3,80’1’2’3)
R3 SN g(80’1’2’3,80’1’2’3) RS -8 — g(80’1’3,80’1’2’3)

R4 -8 - g(f(SO,l,ZB S(],1,2,3) 8(),1,2,3)

A sentence can now be preprocessed bottom—up in O(n) time to indicate
for each node which expansion tree matches that node, where n is the number
of nodes in the tree. The sentence can then be traversed top—down to perform
the frequency count for the expansion trees. It should be noted that this ap-
proach means that if a symbol list does not contain all indices of the base



grammar, then it represents only the set of the indicated rules from the base
grammar. In the above example for instance 8%!3 represents § — ¢, § — 4 and
§ — g(8%1:2:3 /809:1.2:3)  Therefore, the probability associated with this particu-
lar symbol is not the recursive application of the distribution in equation 2, but
is uniform over the indicated alternatives. This is comparable to the approach
of default tables for discrete random variables in which instead of indicating a
probability for all possible combinations of values for the random variables, only
a subset of them is explicitly indicated. All remaining combinations are assigned
an equal probability such that the distribution sums to 1 over all possible values.

Goodness measure The goodness of a grammar is determined using its asso-
ciated probability distribution. This distribution can be estimated by traversing
each sentence and by computing the proportions of occurrence for the expansion
trees at each depth. Probability distributions P{’(C;) and PJ(I;) can be esti-
mated after filtering the sentences to obtain for each expansion tree a set of sets
of constants and a set of sets of variables (one set of constants or variables for
each match of the expansion tree). From these sets, the distributions ch (eh)
and PjI (I;) can be estimated using well-known density estimation techniques
(such as proportion estimates for the discrete input variable indices).

Once all parameters have been estimated, the probability—distribution value
of each sentence in the data can be computed to obtain the likelihood (or the
negative log-likelihood). The goodness measure that we ultimately use to distin-
guish between probability distributions is the MDL metric [13], which is a form
of likelihood penalization, also known as the extended likelihood principle [4]:

ISs|-1
1
MDL (P4(8)) = = > In (PE(S = 8:)) + 5In(IS])|0] + ¢ (3)
=0
where |0] denotes the number of parameters that need to be estimated in proba-

bility distribution P& (T') and ¢ denotes the expected additional number of bits
required to store the probability distribution. In our case, |@| equals:

I,—1 I,—1
0] = 2dmax + 1 —4+ [ > 18] — PE(Cy) | + | D™ —1 (4)
=0 =0

Since in the latter case, the number of parameters grows exponentially with
the number of input variables in an expansion tree, this is likely to be a strong
restriction on the number of input variables that the greedy algorithm will al-
low into any expansion tree. As an alternative, independence can be enforced
between input variables. The resulting distribution can then no longer model
correlation between multiple input variables in one expansion tree. The number
of parameters to be estimated reduces drastically however and this in turn will
allow more input variables to be incorporated into the expansion trees. Effec-

tively, we thus enforce ij (I;) = H:I:’Voil PjI (Ijk), which changes the last term

in the number of parameters |0 into Z;:_Ol (n—1)ng;.



The expected additionally required number of bits ¢ in our case come from
the production rules. The more production rules, the more bits are required.
Moreover, longer production rules require more bits. The number of bits required
to store a production rule is In(l,, . ) times the number of internal nodes in the
expansion tree where [, . is the number of production rules in the base grammar.
Finally, symbols have lists of production—rule indices. To store one such list, the
number of required bits equals In(l,, . ) times the length of that list. The value
of ¢ equals the sum of these two terms over all production rules.

3.3 Sampling

Initialize the sentence tree of the new sentence: a single symbol as the root.
Set d = 0.

Visit the symbol at the root.

Draw an integer j € {0,1,...,l. — 1} randomly from P¥(J|D = d) if the list
of production—rule indices associated with the visited symbol is complete, or
draw a random integer from the list otherwise.

Make a copy of expansion tree F;.

Draw all constants in the copied tree randomly from PjC(C i)

Ll e

Draw all input indices in the copied tree randomly from le (I).

Expand the current sentence tree by replacing the symbol that is being
visited with the copied tree.

Extract the symbols from the copied tree and their relative depths.

10. Recursively visit each symbol in the copied tree after setting the depth d
properly (current depth plus relative symbol depth).

®© N oo

©

4 Experiments

We have performed experiments with the probability distribution from Section 3
by using it in an EDA. We compared the performance of the resulting EDA with
a standard GP algorithm that only uses subtree—swapping crossover. Both algo-
rithms select 50% of the population and apply recombination (i.e. either distribu-
tion estimation and sampling or crossover) to obtain new solutions that replace
the remaining 50% of the population. We applied the algorithms to two GP—
benchmarking problems, namely the royal tree problem by Punch, Zongker and
Goodman [12] and the tunable benchmark problem by Korkmaz and Ucoluk [6],
which we will refer to as the binary—functions problem. A more detailed de-
scription of these problems may be found in the aforementioned references or
in related work [3]. Both problems are non—functional, which means that fitness
is defined in terms of the structure of the sentence and input variables have an
empty domain. The binary—functions problem is harder because it contains a
higher order of dependency and it has multiple (sub)optima.

For both problems, we have computed convergence graphs for both algo-
rithms and three different population sizes. The curves in the graphs are aver-
aged over 25 runs. For the Royal Tree problem (see Fig. 1, left), GP achieves



reasonable results for population sizes 500 and 1000, but does not reliably find
the optimum. The EDA algorithm identifies the optimal solution in every sin-
gle run and for all population sizes. The Royal Tree problem is a benchmark
problem for GP that features a depth—wise layered structure. Clearly, the use of
depth information therefore renders the EDA particularly appropriate for prob-
lems of this kind. Still, this result demonstrates the feasibility of our EDA to
GP. Figure 1 (right) shows the results when recombination is performed in only
90% of the cases, and copying a random parent is performed in the remaining
10%. Although GP is in this case also able to reliably find the optimum this
is only the case for a population size of 1000 whereas the EDA is still able to
reliably find the optimum for all population sizes. Although lowering the proba-
bility of recombination normally speeds up convergence, in this case the EDA is
only hampered by it because the distribution can perfectly describe the optimum
and therefore using the distribution more frequently will improve performance.
Moreover, copying introduces spurious dependencies that are estimated in the
distribution and will additionally hamper optimization.

Figure 2 shows the results for the binary—functions problem (maximum fitness
is 16). This problem has dependencies that are much harder for the distribution
to adequately represent and reliably reproduce. Very large subfunctions are re-
quired to this end. Moreover, the multiple (sub)optima slow down convergence
for the EDA as can be seen in Figure. 2 on the left. Crossover in GP is much
more likely to reproduce large parts of parents. Hence, crossover automatically
biases the search towards one of these solutions, allowing for faster convergence.
The use of copying leads to faster convergence of the EDA. However, the defi-
ciency of the distribution with respect to the dependencies in the problem still
hamper the performance of the EDA enough to not be able to improve over
standard GP. Additional enhancements may be required to make the distribu-
tion used more suited to cope with dependencies such as those encountered in
the binary—functions problem, after which an improvement over standard GP
may be expected similar to the improvement seen for the Royal Tree problem.

5 Discussion and conclusions

In this paper we have proposed a probability distribution over trees to be used
in an EDA for GP. The distribution basically associates a probability with each
production rule in a context—free grammar. More involved production rules or
subfunctions can be introduced using transformations in which one production
rule is expanded into another production rule. This allows the probability dis-
tribution to become more specific and to express a higher order of dependency.
We have performed experiments on two benchmark problems from the literature.
The results indicate that our EDA for GP is feasible. It should be noted however
that learning advanced production rules using the greedy algorithm proposed in
this paper can take up a lot of time, especially if the number of production rules
and the arity of the subfunctions increase. To speed up this greedy process,
only a single rule can be randomly selected into which to expand each pro-
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Fig. 2. Results for the binary—functions problem.

duction rule from the base grammar instead of expanding each production rule
from the base grammar into each currently available production rule. Although
this significantly reduces the number of candidate distributions in the greedy
algorithm, it also significantly improves the running time. Moreover, since the
greedy algorithm is iterative and the probability distribution is estimated anew
each generation, the most important subfunctions are still expected to emerge.

Because our approach to estimating probability distributions over trees does
not fix or bound the tree structure beforehand, our approach can be seen as a
more principled way of identifying abitrarily—sized important subfunctions than
by constructing subfunctions randomly (e.g. GLiB [1]) or by evolving them (e.g.
ADFs [8] and ARL [14]). As such, this paper may provide one of the first steps
in a new and interesting direction for GP that allows to detect and exploit sub-
structures in a more principled manner for enhanced optimization performance.
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