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Abstract

For real-valued continuous optimization problems various evolutionary
algorithms (EAs) have obtained promising results on benchmark problems.
The Iterated Density—Estimation Evolutionary Algorithm (IDEA) is an ex-
ample of one such algorithm. However, little is known about the practical
benefits of these algorithms even though Al-techniques are often favored in
practice because of their general applicability and good performance on com-
plicated real-world problems. In this paper we focus on one specific practical
medical application that imposes many optimization tasks. The application
is the simulation of minimally invasive vascular interventions. We compare
the use of a hybrid IDEA with the conjugate gradients algorithm and a
problem—specific optimization algorithm and indicate that although the ap-
plication of the conjugate gradients algorithm already leads to highly useful
results, IDEAs yet improve on these results in the area of scalability, making
a clear statement that IDEAs can indeed also be useful in practice.

1 Introduction

Our goal in this paper is to compare the use of three different optimization tech-
niques in a practical setting: a simulation system for minimally invasive vascular
interventions. To this end we have performed experiments with an implementation
of the conjugate gradients algorithm [9], an evolutionary algorithm (EA) [4, 5] and
a problem—specific algorithm [8]. Most real-valued EAs have only been thoroughly
tested on benchmark problems. Here we want to investigate the advantages and
disadvantages of the use of EAs in a real-world (medical) application.

A minimally invasive vascular intervention is a form of surgery in which the in-
struments of operation enter the body, specifically the vasculature, through a small
incision. These instruments are then navigated towards the vascular abnormality
to be treated. Although compared to traditional open vascular surgery, minimally
invasive vascular interventions have some important advantages for patients, it is
hard to master the required skills. Therefore, thorough training is needed. Sim-
ulation is becoming an accepted and established possibility for training. In this
paper we experiment with one such simulation system [2] that focuses on the main
instrument used during these interventions, the guide wire.



2 Modelling and optimization

At the heart of the simulation lies an optimization problem rooted in elementary
physics. The main idea is that the preferred configuration of the guide wire is one
in which the associated energy is minimal. To model this concept, a simplified
representation of energy is used that consists of only two sources. An internal
energy is associated with the flexibility of the guide wire and an external energy
is associated with the deformation properties of the vasculature. The objective of
the simulation now is to keep the guide wire in a state of minimal energy.

The simulation is based on quasi-—static mechanics, which means that the veloc-
ity and acceleration aspects associated with the propagation of the guide wire are
ignored. This is a valid approximation, as much of human movement is performed
at moderate speed, and is therefore essentially quasi—static [7].

2.1 Guide wire, vasculature and energy model

The guide wire is modelled using a set of joint positions (o, ..., Zr_1), where joint
x is the tip of the guide wire and joint x;_; is the bottom. Between each two
joints a straight, not bendable or compressible segment is defined with a predefined
constant length (\;). The thickness of the guide wire is taken into account by using
sample points on the outer hull of the guide wire instead of using the joint positions
when calculating the interaction with the vasculature (Figure 1).
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Figure 1: Representation of a guide wire. The angle (;) between the two segments
connected by joint ¢ as used in equation 1 is illustrated for joint 3. For joint 1 and
2 the sample points on the outer hull of the guide wire, which allow the modelling
of guide wires with different thickness, are drawn.

Hooke’s law [3] is used as a basis for modelling the flexibility of the guide
wire (internal bending energy) as well as for modelling the deformation of the
vasculature (external vessel-wall energy). The bending energy (Uy(4)) per joint i
and the total bending energy (Urp) for the guide wire are defined as follows:

1 k—2

Up(i) = §Ci9¢27 Uty = ; Uy (7) (1)
where 6; denotes the angle between two segments connected by joint ¢ and ¢; is a
spring constant related to the flexibility of the joint. The dependency between the
flexibility of the guide wire and the segment length has been described elsewhere [2,
8] and can be formulated as ¢; = % Here, EI denotes the flexural rigidity of
the guide wire, which is defined as the product of elasticity (F) and the second
moment of area (I).



The external vessel-wall energy per joint (Uyyw (7)) and the external vessel-wall
energy for the complete guide wire (Uryy,) are given by:

k—1
L1 ‘
Uyw (i) = 51(1?7 Urvw = »_ Usw(i) (2)
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The elasticity constant of the vessel wall is denoted by [ and the deformation of
the vessel wall by d;. Note that the total energy to be minimized in the simulation
is just the sum of Uy, and Uryy .

2.2 Processing of actions

To simulate the behavior of the guide wire as it is propagated inside the vasculature
a continuous propagation action is discretized into a sequence of small, forced
motions. To simulate the outcome of each small forced translation of size &internal,
first each joint position is moved in the propagation direction by a length of &ipernal,
i.e. as if there were no vasculature. Subsequently, the influence of the vasculature
must be taken into account. To this end, the total energy must be minimized
to return the simulation into a state of physical equilibrium. To this end, an
optimization problem must thus be solved. Therefore, an optimization algorithm
is called for, which is the subject we turn to next.

3 Optimization methods

In this section we discuss three different optimization methods for finding a con-
figuration of joint positions xg,x1,...,®r_3 that correspond to a minimal value
of Uty + Uryw. The bottom two joint positions may not be varied because they
define the propagation direction, which is fixed.

The dimensionality of the optimization problem can be reduced using a two—
dimensional parameterization (instead of the three-dimensional joint positions).
Such a parameterization is possible because the distance between two neighbouring
joints always remains constant; each subsequent joint must lie on the surface of
a sphere, which can be parameterized using only two dimensions. The actual
mapping can be constructed in various ways (see for instance [10]).

It is important to realize that the goal is not to globally minimize the value
of Uty + Uryw. The reason for this is that previous actions determine the path
followed in the vasculature so far. We do not want the guide wire to switch from
one branch of the vasculature to another one during optimization, because this is a
physical impossibility. Local search methods therefore seem a reasonable approach,
especially if &pternal is not too large and the nearest local optimum is the one that
would have been obtained if a continuous motion had been used.

3.1 First order analytical solution

An explicit analytical solution in the first order approximation has been derived to
minimize the energy per joint [8]. Instead of working with the joint positions, in
this approach a vector indicating the difference in displacement of two neighboring
joints is used. The solution indicates how a single joint should be displaced such



that the length of the segment between this joint and its predecessor is preserved.
An algorithm has been formulated that applies this analytical solution to each joint
in sequence, starting at the tip and moving towards the bottom of the guide wire.
As a result of displacing joint @; however, all joints x;, j € {i —1,i —2,...,0}
must also be displaced to preserve the segment lengths, possibly moving them
away from their optimal position. Therefore, to ensure convergence, this process
is repeated several times.

3.2 Conjugate gradients

The optimization problem to be solved is inherently real-valued and continuous.
Therefore, classical well-known gradient—based optimization methods can be ap-
plied. In this paper we have performed experiments with the well-known conjugate
gradients algorithm [6]. This algorithm makes efficient use of gradient information
to find a local minimum.

3.3 IDEAs and GLIDE

The field of evolutionary computation offers algorithms that are even more gener-
ally applicable for real-valued continuous optimization. They are less dependent
on smooth gradients for instance. A specific EA that has recently been shown
to give good results on a variety of benchmark problems is the Iterated Density—
Estimation Evolutionary Algorithm (IDEA) [4]. The main difference with tra-
ditional EAs is that in IDEAs a probabilistic model is learned on the basis of
the selected solutions. The probabilistic model can capture various structural
properties (e.g. regions of interest and correlations between variables) of the opti-
mization problem at hand. By drawing new solutions from the probabilistic model
these structural properties can be exploited to obtain more efficient optimization.
Especially if the probabilistic model is a low—complexity, highly—generalizing prob-
ability distribution such as the normal distribution, IDEAs tend to be good global
optimizers. To speed up convergence it has been shown that the hybridization of
such algorithms with local optimizers can be beneficial. For instance the Gradient—
Leveraged IDEA (GLIDE-EA) in which the conjugate gradients algorithm is ap-
plied to a small percentage of solutions in the population has been shown to give
superior results. In this paper we performed experiments with GLIDE based on
the normal distribution in which each variable is taken to be independent of all
the other variables. This means that for each variable the mean and standard
deviation of a one—dimensional normal distribution is estimated from the selected
solutions and that a new solution is constructed by sampling one value per vari-
able from the associated one-dimensional normal distribution. This approach was
previously observed to give good results [4].

Since EAs are by construction capable of escaping local optima to a certain
extent, additional precautions need to be taken to prevent physically incorrect
behavior of the simulation. Therefore, we have added a penalty term to the total
energy to be minimized. The penalty term increases exponentially if the guide
wire is displaced by more than a predefined distance.



4 Experiments

The accuracy of the simulation has been determined by comparing physical ex-
periments in which the guide wire was propagated over a distance of 175mm with
simulation results. A highly realistic elastrat normal abdominal aorta phantom
was used [1]. The vessels were extracted from a CT data set of this phantom by
means of segmentation. A CT data set however is a discretized representation of
the real world. Hence, the distance of a joint to the vessel wall as required in
Equation 2 can only be computed in a discretized fashion. This may pose a prob-
lem for algorithms based on continuous gradients such as conjugate gradients. The
first order analytical approximation (FOA) algorithm internally also works with
gradient information. Therefore, this algorithm is also hampered. Preliminary ex-
periments have shown however that using trilinear interpolation provides a smooth
enough representation for these algorithms to work.

Simulation results are evaluated based on a root—mean—square (RMS) error
measure. The RMS error is computed from the distances between the joint posi-
tions in the simulated guide wire and the corresponding points in a reference that
has been extracted from the physical experiments. For a guide wire with & joints

the error measure is defined as RMS = %Zf:_ol (d$R)2) where d5® = |25 — 2},

x$ denotes the simulated joint position and wZR the corresponding reference point.
All experiments were run on a 1.7 GHz Pentium with 512 Mb of RAM.

4.1 First—order analytical approximation algorithm

We have performed experiments with various values for &internal and for A;. A
selection of results is presented in Figure 3. For multiple combinations of parameter
settings the first-order analytical approximation (FOA) algorithm supplies a guide
wire configuration with an RMS error of around 1mm. The use of segment lengths
larger than 3mm resulted in erroneous results. In the derivation of the solution
that is adopted by the FOA algorithm some assumptions have been made that
enforce constraints on (combinations of) parameter values, limiting the range of
parameter values for which this algorithm supplies correct results. Hence, this
algorithm is mostly suited to obtain results using small steps and small segment
lengths. This brings the algorithm closer to the non—discretized real-world setting,
but renders it less practical.

Note that the use of a smaller segment length does not imply that a smaller
RMS error is obtained. An important reason for this may be that the actual
minimum of the optimization problem does not correspond to the minimum of
physical reality, caused by the simplified model of energy and kinetics. Therefore,
an error around 1mm is likely to be close to the optimally obtainable result using
this model. This remark holds of course for all three algorithms. The best result
is achieved for a segment length of 3mm, combined with an internal stepsize of
0.3mm. The required time to obtain this result was 92.04 seconds. This can be
reduced to 20.36 seconds by using less global iterations of the algorithm. However,
the RMS error then increases to 1.232mm.
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Figure 2: The RMS error (left) and the required time in seconds (right) as a
function of two algorithmic parameters for conjugate gradients.

4.2 Conjugate gradients

Based on the result of the FOA algorithm, we performed initial experiments with
the conjugate gradients algorithm in which the segment length was set to 3mm. We
varied the values for the stepsize with which to approximate the gradient, denoted
hgradient, and the maximum allowed number of evaluations. The maximum allowed
number of evaluations was set to ceyalk Where k is the number of joints that the
guide wire currently consists of. If convergence occurred before the maximum
number of evaluations was reached, termination was enforced also.

AS hgradient decreases and cevalk increases, the algorithm is allowed more preci-
sion and more time respectively to find a local optimum. It is to be expected that
precision comes at the cost of time. Indeed this relation can be seen in Figure 2
where lower errors are associated with larger execution times. Also the influence
of hgradiens and Cevalk can be seen clearly. The trade—off between precision and
time can be made even more clear in a scatterplot, which is presented in Figure 3.
The objective is to obtain an RMS error of 0, which corresponds to a simulation
that perfectly mimics the physical experiment. Generally however, the lower the
error, the larger the required time. Clearly, some algorithm settings lead to inferior
results (i.e. larger runtimes as well as higher errors). The best trade—off results
are found on the Pareto—front (i.e. the maximal set Pg of solutions for which
there exists no solution that is superior to any of the solutions in Pr). Based on
these results, the value of hgradient = 0.000001 was found to be appropriate for the
problem at hand. Moreover, it was observed that the algorithm often converges
quite rapidly, for which reason we set cCeya to the maximum tested value of 10000.

Using these settings we performed experiments with three different values for
the segment length and various different values for &internal. For similar settings
of the conjugate gradients algorithm for which the FOA algorithm succeeded, the
conjugate gradients algorithm was found to be able to obtain similar RMS results,
but required more time. Therefore, we chose to experiment with values such that
we can explore the part of the simulation settings that can speedup the results of
the FOA algorithm and to obtain results where the FOA algorithm failed. The
results are shown in Table 1. Clearly, conjugate gradients then is much faster.
Moreover, although the RMS error degrades, the results are still highly useful.
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Figure 3: Results of the FOA algorithm (left) and a scatterplot of results for
conjugate gradients and GLIDE for different simulation settings.

4.3 GLIDE

Since the conjugate gradients algorithm is used within GLIDE, the only room for
improvement is for those results where the conjugate gradients algorithm obtained
results with a much larger RMS error than around 1mm. Therefore we aimed at
performing experiments similar to the ones performed with conjugate gradients.

First, we performed experiments in which we varied the population size and
the value of ceva). However, this time we immediately performed experiments
with a much larger internal stepsize. Therefore, the results as shown in Figure 3
should not lead the reader to conclude superior performance of GLIDE compared
to conjugate gradients. The results do however indicate a similar trade—off be-
tween required time and obtainable RMS errors. Based on these experiments we
experimented further with population sizes of 20 and 50 and ceya € {50, 10000}.
The results are tabulated in Table 1. From these results we can conclude that
GLIDE is indeed the better optimizer since lower RMS errors can be found if ceyay
is set large enough. However, this greatly comes at the expense of time. Since the
final objective is to build a real-time simulator, these settings are not preferable.
However, by choosing for instance a population size of 20 combined with a ceya of
50, the EA is still able to come up with better results than the conjugate gradients
algorithm in most cases, but it takes only marginally more time to run it. More-
over, the EA can still find good solutions for extreme cases. In these cases, only a
few joints are required because the segment length is relatively large. Therefore,
as the guide wire is propagated further, the scalability of the EA is much better
as the optimization problem to solve contains less variables.

5 Discussion and conclusions

We have investigated the applicability of a hybrid real-valued IDEA to a practical
problem: the simulation of minimally invasive vascular interventions. We com-
pared the approach with the conjugate gradients algorithm and a problem—specific



X;  &int |Conjugate gradients| GLIDE 20-50 [ GLIDE 20-10000 [ GLIDE 50-50 [ GLIDE 50-10000
| RMS Time | RMS Time | RMS Time | RMS Time | RMS Time

3 3 1.789 3.703 1.697 12.344 1.715  106.328 0.930  12.360 1.381 531.140
3 6 1.678 3.093 1.289 6.281 1.678 78.562 1.619 6.313 1.652  256.360
3 8 1.453 2.718 1.808 5.000 1.618 81.704 4.043 5.016 1.666  270.438
3 12 1.571 2.046 1.701 3.469 2.416 6.344 1.273 3.500 1.628  126.187
3 14 8.313 0.718 1.118 2.984 1.787 55.328 4.753 3.015 1.395  179.578
3 21 | 15.782 0.437 12.424 2.172 | 14.360 91.187 | 14.308 2.187 | 12.991  273.234
9 3 1.923 0.532 1.894 1.344 1.970 12.688 1.552 1.375 2.037 70.907
9 6 3.058 0.312 2.892 0.688 2.275 8.765 2.987 0.703 2.036 35.313
9 8 1.845 0.266 1.923 0.547 2.433 6.547 2.496 0.546 2.424 36.329
9 12 2.492 0.203 2.773 0.391 1.654 37.031 2.707 0.391 2.417 21.328
9 14 2.338 0.219 2.656 0.328 2.397 3.672 4.055 0.344 2.235 19.875
9 21 7.028 0.109 6.602 0.235 2.458 3.156 6.648 0.250 2.344 12.438
i8 3 2.430 0.188 2.333 0.344 3.375 6.953 3.464 0.359 3.383 25.703
18 6 3.133 0.110 | 123.961 0.172 3.265 3.406 | 38.017 0.187 3.049 14.297
18 8 2.766 0.094 2.855 0.140 3.013 2.594 2.911 0.140 3.037 12.265
18 12 5.834 0.063 2.987 0.110 3.329 1.969 5.541 0.110 3.039 6.625
18 14 2.892 0.078 2.855 0.094 2.996 1.281 4.049 0.094 3.018 6.234
18 21 2.995 0.062 3.432 0.063 3.070 1.141 2.986 0.078 3.085 5.797

Table 1: Additional results for conjugate gradients and GLIDE. The RMS error in

mim

and the required time in seconds are shown. The index for GLIDE represents:

population size—ceyal.

optimization algorithm. The results indicate that although the application of the
conjugate gradients algorithm already leads to highly useful results, IDEAs can

yet i

mprove on these results in the area of scalability. This important observation

indicates that bringing IDEAs into practice is indeed a good idea.
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