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1 Introduction

This chapter describes the Lazy Virtual Machine (lvm). Just like the JVM [12], it defines
a portable instruction set and file format. However, it is specifically designed to execute
languages with non-strict (or lazy) semantics. Is there need for such system? After all,
there are many compilers and interpreters for lazy languages, for example, GHC developed
at the Glasgow university, the HUGS interpreter by Mark Jones, NHC from York university
(UK), the HBC compiler developed at Chalmers, and Clean from Nijmegen. One may think
that with this diversity of systems there is no need anymore for other compilers, as most
implementation issues have been resolved.

However, the current compilers and interpreters have become large systems that are hard to
adapt – it has become difficult to experiment with new type systems, language constructions,
compiler transformations, profiling, or debugging tools. In particular, the work on embedded
languages as described in the previous two chapters gave rise to experimentation with various
extensions to the Haskell language. Eventually, this lead to the development of the LVM:

• A small portable system that can be easily adapted to support different (experimental)
languages and type systems.

• A simple and robust instruction set that is an easy target for compiler front-ends.

• Efficient interpretation or JIT compilation is possible.

• A toolkit that translates an untyped , rich intermediate language (λcore) to lvm instruc-
tions. Note that we use untyped expressions in order to experiment with extensions
that are hard to type at this level, examples include type indexed records [25] and
dependent types [1].

The lvm is currently implemented on top of the OCaml runtime system [10, 11]. The system
runs on many platforms, including Windows, various Unix’s, MacOSX and 64-bit platforms
like the DEC alpha. The lvm is used as a backend for the experimental HX system [26]
and the Helium compiler – this compiler implements a very large subset of Haskell and is
currently used to teach first year students Haskell at Utrecht University.

The design and implementation of the lvm is as simple and modular as possible. However,
simplicity does not imply that it is a toy system; the implementation is full fledged including
support for exotic features as (asynchronous) exceptions, concurrency, a foreign function
interface, generational garbage collection, and execution traces.

This chapter will focus on the translation of the intermediate language to lvm instructions,
and on the operational semantics of the instructions themselves. Many items of this chapter
have been described before, and the main contribution of this chapter is the design of a
‘real world’ instruction set, operational semantics, and translation scheme as a whole. More
specifically:
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• We define a naive and straightforward translation scheme from the low-level λlvm

language to lvm instructions. Instead of defining many optimized translation schemes
[14, 6, 23], we define a small set of rewrite rules on instructions that achieve the
same effect. The correctness of the rewrite rules is relatively easy to prove with the
operational semantics. In contrast, an optimized translation scheme is much harder to
prove correct, as one has to show a correspondence between the operational semantics
of the λlvm language and the generated instructions. Furthermore, the rewrite rules
are most of the time even more effective than optimized translation rules, as the
rewrite rules sometimes find optimization opportunities between instructions that are
unrelated at the language level.

• The low-level λlvm language has an operational reading and directly reflects the capa-
bilities of the abstract machine. As such, we are able to reason about denotationally
equivalent expressions that have a different operational behaviour.

• We define simple operational semantics for the instructions. A state is determined by
just three items: the current code, the heap, and the stack. Besides being simpler than
many other instruction sets [15, 14, 6, 23], the instructions also map directly onto C
instructions, reducing the number of bugs in an implementation and improving our
understanding of the relationship between abstract machine and concrete implemen-
tation.

• As the instructions can be so closely related to an actual implementation, we can
reason about implementation techniques that are normally only described informally,
or explained via pictures. Examples are exception handling, returning constructors in
registers, and the reason why seq frames are a necessary addition to the STG machine
[15].

2 An overview

The compilation of a high level functional language to lvm instructions goes via a number of
intermediate languages: λcore, λlvm, and extended lvm instructions. The process is sketched
in figure 1. The actual compilation steps involved are:

• Translate the source language to λcore; an enriched lambda calculus that corresponds
closely to the intermediate core language of the GHC compiler [15, 21].

• Normalise: translate the λcore language to the λlvm language, a more restricted form
of λcore that maps conveniently to lvm instructions.

• Compile: translate λlvm to lvm instructions that contain pseudo instructions. These
pseudo instructions are used in the next phases to calculate correct stack and code
offsets, but should be removed completely when generating the final instruction stream.

3



Haskell

λcore

λlvm

lvm + pseudo + structured

lvm + structured

lvm + structured

lvm

?
translate

?
normalise

compile

-

?
resolve

?
rewrite

?
flatten

run!

Figure 1: Compilation scheme

• Resolve: use and remove pseudo instructions that resolve stack offsets of local variables
and arguments.

• Rewrite: optimize the instruction stream using rewrite rules.

• Flatten: remove all structure from the instructions and generate a flat stream of
instructions that can efficiently be interpreted. This phase uses (and removes) the last
pseudo instructions by calculating code offsets for jumps.

• Execute: execute the instruction streams according to the state transition rules.

The next sections describe all these steps in detail, but to give a feel of what each of these
steps do, we describe each step in the context of a small example. We start with the following
Haskell program:

main = const inc (λ x → x ) 42
where

inc x = x + 1
const x y = x

The front-end language, in this case Haskell, is translated into an enriched lambda calculus,
called λcore. In this example, only the Haskell specific where binding is translated into a let
binding but in general more transformation can be necessary; pattern matching compilation
for example. Here is the translated program in λcore:

main = let inc x = x + 1
const x y = x

in const inc (λ x → x ) 42
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The Normalise step translates λcore to a restricted form, called λlvm. The λlvm language is
specifically designed to reflect the capabilities of the abstract machine and maps easily onto
lvm instructions. In our example, all functions are lifted to top-level and binary application
is translated into vector application:

id x = x
inc x = x + 1
const x y = x
main = const inc id 42

Finally, the program is in a form where it can be compiled to lvm instructions, here are the
instructions for the id function:

id 7→ instr(ArgChk(1);Atom(Param(x ); PushVar(x ); NewAp(1)); Enter)

However, the compiled program does not just consist of lvm instructions, but also contains
pseudo instructions like Param and Atom. These instructions are used during the next phases
to calculate stack and code offsets. The stack offsets are determined in the resolve step:

id 7→ instr(ArgChk(1);PushVar(0); NewAp(1);Slide(1, 1); Enter)

As we can see, the pseudo instructions Param and Atom have dissappeared, and variable
references are replaced by a stack offset. After the stack offsets have been resolved, the
instruction stream is rewritten according to simple rewrite rules. This step is strictly used
to optimize the instruction stream. It is interesting to see that just few rewrite rules suffice
to completely replace complicated translation schemes [22, 6, 23]. The optimized instruction
stream is:

id 7→ instr(ArgChk(1);Enter)

The final step flattens the instruction stream by calculating code offsets and it removes the
remaining pseudo instructions. The complete code for our example becomes1:

id 7→ instr(ArgChk(1); Enter)
inc 7→ instr(ArgChk(1); PushInt(1);PushVar(1); AddInt;Return)
const 7→ instr(ArgChk(2); PushVar(0);Slide(1, 2); Enter)
main 7→ instr(ArgChk(0); PushInt(42);PushCode(id);

PushCode(inc); EnterCode(const))

The program can now be executed by the abstract lvm machine. The state of the machine
is determined by the current code, the stack, and the heap. The initial state of the machine
is always the Enter instruction with the value main on the stack. In our example, the initial
heap hp just consists of the compiled functions. Note that we write hp[p 7→ x ] if the heap
hp contains a pointer p that points to value x . Here is a complete execution trace of our
example:

1Actually, some functions are compiled into more efficient code, but for clarity we use the unoptimized
version.
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Code Stack Heap

=⇒ Enter [main] hp[main 7→ instr(...)]

=⇒ ArgChk(0); PushInt(42); ... [main] hp
=⇒ PushInt(42); PushCode(id); ... [] hp
=⇒ PushCode(id); PushCode(inc); ... [42] hp
=⇒ PushCode(inc); EnterCode(const) [id , 42] hp
=⇒ EnterCode(const) [inc, id , 42] hp[const 7→ instr(...)]
=⇒ PushVar(0); Slide(1, 2); ... [inc, id , 42] hp
=⇒ Slide(1, 2); Enter [inc, inc, id , 42] hp
=⇒ Enter [inc, 42] hp[inc 7→ instr(...)]
=⇒ ArgChk(1); PushInt(1); ... [inc, 42] hp
=⇒ PushInt(1); AddInt; ... [42] hp
=⇒ AddInt; Return [1, 42] hp
=⇒ Return [43] hp
=⇒ terminate with an integer [43] hp

The next section describes the abstract machine and instructions in detail. Section 4 de-
scribes the λlvm and λcore languages. Section 5 describes the translation from λlvm to lvm
instructions, together with the rewrite rules. The chapter closes with an assessment of a real
implementation of the lvm and is followed by conclusions and two appendices that describe
the format of binary lvm files.
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3 The abstract machine

In this section we look at the operational semantics of the lvm instructions. The semantics
of the lvm is given by state transitions [24]. The state of the lvm is determined by a triple:
the current instructions is, the stack st , and the heap hp.

The instruction sequence is consists of instructions and arguments of instructions. The
empty sequence is written as [] and an initial instruction with arguments x and y , is written
as Instr(x , y) : is. Arguments and instructions have the same size and the previous expression
is equivalent to Instr : x : y : is.

The stack st is a sequence of values. The empty stack is written as [] and a non-empty stack
with an initial value x as x : st . The nth value on the stack is written as st [n] where st [0] is
the top of the stack. Besides values, the stack also contains a chain of stack markers, each
taking two stack slots. A marker is associated with the value next on the stack. A marker
together with its value is called a frame. There exist three kinds of markers, update markers
(upd), continuation markers (cont), and catch markers (catch).

The heap hp is a map from pointers p to heap values. We write hp[p 7→ x ] if the heap hp
contains a pointer p that points to value x . The extension of the heap with a fresh pointer
p to value x is written as hp ◦ [p 7→ x ]. The update of an existing pointer p with value x is
written as hp • [p 7→ x ].

Heap values are tagged and have varying sizes. Although we give a short description, the
exact meaning of each heap value becomes clear during the description of the instruction
set. There exist six kinds of heap values:

instr(is) A sequence of instructions is.
ap(x1, ..., xn) An updateable application block.
nap(x1, ..., xn) A non-updateable application block.
cont(x1, ..., xn) A constructor with tag t and arguments x1 to xn .
invn An invalid block of size n.
raise(x ) An exception block, raises exception x when entered.

The initial heap contains all global values. All instruction arguments that refer to a global
value are fixed by the runtime loader to contain the proper heap pointer. The special value
inv will point to an invalid block of size 0: inv 7→ inv0

The initial state of the abstract machine consists of: the Enter instruction, a stack that just
contains (a pointer to) the function main, and the initial heap.

Since the state of the abstract machine is so simple, it maps directly onto current hardware.
Instruction streams can be modelled with a simple instruction pointer as instructions are
never modified. The stack can be modelled with an array and a stack pointer. Only the
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heap requires extensive runtime support, but that seems unavoidable in any garbage collected
language.

3.1 Basic instructions

We first introduce a minimal set of instructions that support a minimal subset of λlvm. New
instructions are introduced as the need arises by taking new language features into account.
We first treat a minimal useful subset of the λlvm language, just consisting of top-level values
with (partial) function applications.

All let-bound local variables and function parameters reside on the stack. Three instruc-
tions manipulate the stack: PushVar pushes a copy of a value that resides on the stack (i.e.
a local variable or parameter), PushCode pushes a pointer to a top-level value, and Slide
slides out unused values.

Code Stack Heap

PushCode(f ) : is st hp

=⇒ is f : st hp

PushVar(ofs) : is st hp
=⇒ is st [ofs] : st hp

Slide(n,m) : is x1 : ... : xn : ... : xn+m : st hp
=⇒ is x1 : ... : xn : st hp

The parameters of a function are pushed on the stack in a right-to-left order. This is dual to
most imperative languages that use left-to-right order, like Java and ML. The most notable
exception is the C language that uses a right-to-left calling convention in order to support
functions with a variable number of arguments. However, for any higher-order language
that allows partial applications, it is necessary to use this calling convention. The following
example illustrates why partial applications force a right-to-left order.

id x = x
const x y = x
apply f x = f x
main = apply (const id) const

With a right-to-left order, everything works well – inside apply , the argument x is pushed
(which is const) and f is entered. This is actually the expression const id that pushes id
and enters const with a proper stack: id : const : [], where parameter x is id and parameter
y is const . If a left-to-right order is used, the partial application const id somehow has to
insert its argument between arguments already residing on the stack. This can not be done
without whole-program analysis and might even be impossible to do in general.

Partial applications combined with polymorphism also lead to the famous argument check .
In a higher-order, polymorphic language it is not always possible to determine at a call
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site if a function is partially applied or not. In the previous example, this is the case for
the parameter f in the apply function. For this reason, each function checks the number
of arguments itself with the ArgChk instruction, which is always the first instruction of a
top-level value. If there are enough arguments on the stack, execution continues. If there
are not enough arguments on the stack, we immediately return with a functional value as a
result.

Code Stack Heap

n ≤ m ArgChk(n) : is f : x1 : ... : xm : st hp

=⇒ is x1 : ... : xm : st hp

(1) n > m ArgChk(n) : is f : x1 : ... : xm : [] hp
=⇒ [] f : x1 : ... : xm : [] hp

(1) termination with a functional value.

Due to polymorphism, it is not always possible to determine at a call site which particular
function is called. Therefore, the Enter instruction is able to enter any kind of value that
resides on top of the stack. Right now, we only have instruction values but we will later add
more values that can be entered.

Code Stack Heap

Enter : is f : st hp[f 7→ instr(isf )]

=⇒ isf f : st hp

Note that we enter a function instead of calling it. Every function application in λlvm is
a tail call and, since we don’t need to return, there is no need to push a return address
either. It is necessary however to remove any local variables and parameters of the calling
function that are still on the stack with the Slide instruction. Besides keeping the stack from
growing, it is essential for our definition of the ArgChk instruction – if the local variables
or parameters are not squeezed out, they are misinterpreted by the argument check as if
they are extra parameters! This subtle requirement was first observed by Mountjoy in the
context of the STG machine [13].

Here are some examples of functions that can be compiled with the current instruction set:

id x = x
swap x f = f x
main = swap id id

The final value of this program is the functional value id . With the compilation scheme
from section 5 we get the following initial heap:

id 7→ instr(ArgChk(1);Enter)
swap 7→ instr(ArgChk(2);PushVar(0);PushVar(2); Slide(2, 2); Enter)
main 7→ instr(ArgChk(0);PushCode(id); PushCode(id);

PushCode(swap); Enter)
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In the above program, it is clear that the swap function is called with sufficient arguments.
This special case can be optimized with the EnterCode instruction. If a known function is
called with sufficient arguments, the argument check of the called function can be skipped.
This is called the ‘direct entry point’ convention in the STG machine [15]. The EnterCode in-
struction performs this optimization and enters a known function with sufficient arguments.

Code Stack Heap

EnterCode(f ) : is st hp[f 7→ instr(ArgChk(n) : isf )]

=⇒ isf st hp

This instruction is essentially what a C compiler would use to implement tail calls: a jump!
In contrast, the Enter instruction performs an indirect jump based on the kind of value that
is entered – object oriented people would probably call this a ‘virtual method tail-call’.

3.2 Local definitions

In this section we extend the instruction set to deal with local let and letrec bindings.
A let binding is non-strict and delays evaluation of its right-hand side. The NewNap
instruction allocates a (non-updateable) application node in the heap that contains the
function to be called and its arguments.

Code Stack Heap

NewNap(n) : is x1 : ... : xn : st hp

=⇒ is p : st hp ◦ [p 7→ nap(x1, ..., xn)]

Now that we have introduced a new heap value, we need to extend the Enter instruction to
deal with this new value. When the Enter instruction sees a (non-updateable) application
node, the values are moved to the stack, and the top of the stack is entered again.

Code Stack Heap

Enter : is p : st hp[p 7→ nap(x1, ..., xn)]

=⇒ Enter : is x1 : ... : xn : st hp

3.3 Sharing

Although the NewNap instruction delays the evaluation of an expression, it is not lazy since
it doesn’t share the result. Take for example the following program:

main = let x = nfib 10 in x + x

The expression nfib 10 is calculated twice if the let binding uses the NewNap instruction.
To share the computation, we use graph reduction instead of simple tree reduction. The
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NewAp instruction allocates an updateable application node in the heap. When this node is
evaluated it is updated with its evaluated value, thus sharing the result of the computation.
The Enter instruction puts a special update marker on the stack as a reminder that the node
has to be updated with its evaluated value. The ArgChk instruction looks for these update
frames – if there are insufficient arguments, the updateable application node is overwritten
with a non-updateable one. At the moment, the only weak-head-normal-form values are
functional values, but in the following sections we will see how updateable application nodes
can also be overwritten by integers for example.

Code Stack Heap

NewAp(n) : is x1 : ... : xn : st hp

=⇒ is p : st hp ◦ [p 7→ ap(x1, ..., xn)]

Enter : is p : st hp[p 7→ ap(x1, ..., xn)]
=⇒ Enter : is x1 : ... : xn :upd : p : st hp

n > m ArgChk(n) : is f : x1 : ... : xm :upd : p : st hp
=⇒ ArgChk(n) : is f : x1 : ... : xm : st hp • [p 7→ nap(f , x1, ..., xm)]

The argument check instruction suddenly looks expensive: previously, the number of argu-
ments on the stack was equal to the depth of the stack, but now it seems the argument
check has to search the stack for an update marker to determine the number of arguments!
Fortunately, we can use some conventional compiler technology to overcome this inefficiency.

An implementation uses a frame pointer fp that points to the top frame on the stack. Now
we also see why a marker takes up two stack slots: one slot is the real marker while the
second is a link back to the previous stack frame. When a frame is pushed, the current
frame pointer is saved in the marker and the frame pointer is updated to point to the new
top frame. When a frame is popped, the frame pointer is updated with the back-link. The
argument check can now substract the frame pointer from the stack pointer to obtain the
number of arguments on the stack.

Not only local values should be shared but top-level values that take no arguments should
be shared too. These values are called constant applicative forms or caf’s. The initial heap
contains an ap node for each caf. In the previous example, main takes no arguments and
its initial heap nodes are:

main 7→ ap(main ′)
main ′ 7→ instr(ArgChk(0); ...)

Note that we can’t generate an EnterCode instruction for function calls with zero arguments:
their values point to either an ap node, or to any other value with which they are updated!
We can certainly not jump to their instructions directly.
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3.4 Recursive values

Recursive values are constructed in two steps: dummy values are allocated first, and later
initialized. This allows the values to refer to each other. The AllocAp instruction allocates
an application node without initializing its fields. Later the Pack(N)Ap instruction initializes
the fields.

Code Stack Heap

AllocAp(n) : is st hp

=⇒ is p : st hp ◦ [p 7→ invn ]

p = st [ofs − n] PackAp(ofs,n) : is x1 : ... : xn : st hp
=⇒ is st hp • [p 7→ ap(x1, ..., xn)]

p = st [ofs − n] PackNap(ofs,n) : is x1 : ... : xn : st hp
=⇒ is st hp • [p 7→ nap(x1, ..., xn)]

3.5 Algebraic data types

The lvm supports open ended algebraic data types. Constructor blocks are allocated just like
application blocks. The AllocCon and PackCon are used to construct recursive constructor
definitions.

Code Stack Heap

NewCon(t ,n) : is x1 : ... : xn : st hp

=⇒ is p : st hp ◦ [p 7→ cont(x1, ..., xn)]

AllocCon(t ,n) : is st hp
=⇒ is p : st hp ◦ [p 7→ cont(...)]

p = st [ofs − n] PackCon(ofs,n) : is x1 : ... : xn : st hp[p 7→ cont(...)]
=⇒ is st hp • [p 7→ cont(x1, ..., xn)]

When the Enter instruction sees a constructor value, it behaves like the Return instruction:

Code Stack Heap

Enter : is p : st hp[p 7→ cont(x1, ..., xn)]

=⇒ Return : is p : st hp

Return : is p :upd : u : st hp[p 7→ cont(x1, ..., xn)]
=⇒ Return : is p : st hp • [u 7→ cont(x1, ..., xn)]

(1) Return : is p : [] hp
=⇒ [] p : [] hp

(1) Termination with a constructor value.

The Return instruction is used when the final value is known to be a constructor. Just like
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the ArgChk instruction, the Return instruction looks for frames on the stack where an update
frame causes the value to be updated with the constructor value. When the stack is empty,
execution stops with the constructor value as the result.

Note that we have two instructions that look at the stack configuration, ArgChk and Return,
and one instruction that looks at the type of an heap value, Enter.

3.6 Strict evaluation

Before describing how values of algebraic data types are matched, we first look at their
evaluation. The let! binding strictly evaluates its right-hand side before evaluating the
body. A continuation marker is pushed on the stack before the evaluation of the right-hand
side. When the right-hand side is evaluated, execution resumes at the instructions in the
continuation frame.

Code Stack Heap

PushCont(n) : is st hp

=⇒ is cont : drop n is : st hp

Return : is p : cont : is ′ : st hp
=⇒ is ′ p : st hp

n > m ArgChk(n) : is f : x1 : ... : xm : cont : is ′ : st hp
=⇒ is ′ p : st hp ◦ [p 7→ nap(f , x1, ..., xm)]

Continuation frames resemble conventional calling conventions closely – a C compiler pushes
a return address before calling a function. The STG machine [15] also uses plain return
adresses instead of continuation frames. This seems impossible at first sight – The argu-
ment check builds a partial application block if there are insufficient arguments, which is
checked by looking at the top frame. If only a plain return address is pushed instead of
a frame, the number of arguments can’t be determined as the return address is misinter-
preted as just another argument! However, the STG machine only evaluates expressions
that are scrutinized by a case expression. These expressions can never have a functional
type, and the STG machine therefore never reaches this machine configuration – quite a
subtly dependency on the host language. Indeed, the STG machine has special seq frames
to support the polymorphic seq function of Haskell that can take functional values as its
argument. The seq frames are treated like our continuation frames. As we always use ex-
plicit continuation frames, the seq function can be expressed directly in the λlvm language:
seq x y = let! z = x in y

3.7 Matching

Once a value is evaluated to weak head normal form, it can be matched. The MatchCon
instruction matches on algebraic datatypes.
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Code Stack Heap

∃i . t = ti MatchCon(n, o, t1, o1, ..., tn , on) : is p : st hp[p 7→ cont(x1, ..., xm)]

=⇒ drop oi is x1 : ... : xm : st hp

∀i . t 6= ti MatchCon(n, o, t1, o1, ..., tn , on) : is p : st hp[p 7→ cont(x1, ..., xm)]
=⇒ drop o is p : st hp

The MatchCon instruction pops the argument p when a constructor matches. This opens up
the possibility of an important optimization. Many constructors are allocated in the heap
and immediately deconstructed with a match. The ReturnCon instruction tries to avoid
many of these allocations. ReturnCon behaves denotationally exactly like a NewCon followed
by a Return:

ReturnCon(t ,n) ⇒ NewCon(t ,n); Return

However, there exist a more efficient implementation that sometimes avoids an expensive
heap allocation. This is called the ‘return in registers’ convention in the STG machine [15].

Code Stack Heap

(1) ReturnCon(t ,n) : is x1 : ... : xn : cont : is ′ : st hp

=⇒ drop oi is ′′ x1 : ... : xn : st hp

ReturnCon(t ,n) : is st hp
=⇒ NewCon(t ,n) :Return : is x1 : ... : xn : st hp

(1) is ′ = MatchCon(n, o, t1, o1, ..., tn , on) : is ′′ ∧ ∃ i . t = ti

In the special but common case that a constructor returns immediately into a MatchCon
instruction, the ReturnCon instruction avoids the allocation of the constructor in the heap.
In all other cases, it behaves like a NewCon/Return pair. This happens for example when
there is an update frame before the continuation or when the constructor is not immediately
matched after being evaluated. The ‘return in register’ convention is no longer used in GHC
as it lead to too much complexity in the generated code. For the lvm this doesn’t seem the
case and the lvm interpreter uses this optimization on every constructor that is returned.

3.8 Synchronous exceptions

Any robust programming language needs to handle exceptional situations. The lvm instruc-
tion set supports exception handling at a fundamental level for two reasons. The first reason
is efficiency – since exceptional situations are exceptional, normal execution shouldn’t be
penalized. Furthermore, lvm instructions, like division, can raise exceptions themselves and
thus, the lvm needs a standard mechanism for raising exceptions.

The Catch instruction installs an exception handler. The instruction pushes a catch frame
on the stack. When an exception is raised, execution is continued at the exception handler.
When no exception is raised, the catch frame is simply ignored by other instructions that
look for stack frames, i.e. ArgChk and Return.
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Code Stack Heap

Catch : is h : st hp

=⇒ is catch : h : st hp

n > m ArgChk(n) : is x1 : ... : xm : catch : h : st hp
=⇒ ArgChk(n) : is x1 : ... : xm : st hp

Return : is x : catch : h : st hp
=⇒ Return : is x : st hp

Note that a catch frame should immediately follow another frame or the end of the stack.
If this is not the case, the Return instruction could end up in an undefined configuration.
In practice, an implementation can actually deal quite easily with catch frames that don’t
follow another frame directly. When the Return instruction pops the catch frame, it also
pops any values up to the next frame on the stack.

An exception is raised explicitly with the Raise instruction. It unwinds the stack until it
finds a catch frame. Execution is continued at the exception handler with the exception as
its argument.

Code Stack Heap

Raise : is x : catch : h : st hp

=⇒ Enter : is h : x : st hp

(1) Raise : is x : [] hp
=⇒ [] x : [] hp

Raise : is x :upd : p : st hp
=⇒ Raise : is x : st hp • [p 7→ raise(x )]

Raise : is x : cont : is ′ : st hp
=⇒ Raise : is x : st hp

Raise : is x : y : st hp
=⇒ Raise : is x : st hp

(1) Termination with an exceptional value.

Again, we assume that there is another frame immediately following the Catch frame. Oth-
erwise, the Raise instruction has to pop any values following the Catch frame to prevent
that they are treated as extra arguments by the Enter instruction. Note that having explicit
continuation frames helps out in practice to find more information about the exception at
runtime. In our lvm implementation we have special functions that inspect the stack when
an exception occurs – the update and continuation markers give the execution trace that
lead to the exception. This proved especially useful in the Helium compiler that is used
mainly for educational purposes where good error messages are highly important.

When the Raise instruction encounters an update frame it updates the value with a raise
block – indeed, if a value raises an exception once, it will always raise that exception when
evaluated, and should be updated with that exception. When a raise block is entered, it
raises the exception again.
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Code Stack Heap

Enter : is p : st hp[p 7→ raise(x )]

=⇒ Raise : is x : st hp

An example of an exceptional situation is a stack overflow. In the lvm the ArgChk instruction
conservatively checks for thousand available stack slots. If there are fewer, a stack overflow
exception is raised.

Code Stack Heap

free(st) < 1000 ArgChk(n) : is st hp

=⇒ Raise : is p : st hp ◦ [p 7→ stackoverflow ]

The stackoverflow heap block is just a constructor of the predefined Exception data type and
contains for example the source and line number of the function where the stack overflowed.
Together with the execution trace, this normally pins down an unbounded recursion.

3.9 Blackholing

Certain forms of infinite loops can be detected at runtime. In particular, if we enter an
updateable application node, we should not re-enter that node again during the update. To
prevent this kind of infinite loop, we can overwrite an application node with a raise node
when we enter it. When the value is finally updated, the raise node is overwritten again
with the computed value. Whenever the value is re-entered during the update, a black hole
exception is raised automatically. Here is the refined Enter rule for application nodes.

Code Stack Heap

Enter : is p : st hp[p 7→ ap(x1, ..., xn)]

=⇒ Enter : is x1 : ... : xn :upd : p : st hp • [p 7→ raise(blackhole)]

However, it is fairly expensive to overwrite all application nodes whenever they are entered.
A more efficient technique is to delay the overwrite, called lazy blackholing. With this
technique, execution is sometimes stopped to do lazy blackholing, where every value in an
update frame on the stack is overwritten with a blackhole. Since this kind of infinite loop
always grows the stack, a good moment to do this is when the stack needs to be extended,
but it can also be done during garbage collection or when a thread yields. We can describe
this technique formally by a generic rule that allows us to execute a Blackhole instruction
at any time. This instruction saves the current stack pointer and then walks the stack,
updating any update frames with a blackhole.
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Code Stack Heap

is st hp

=⇒ Blackhole(st) : is st hp

Blackhole(st) : is [] hp
=⇒ is st hp

Blackhole(st ′) : is upd : p : st hp
=⇒ Blackhole(st ′) : is st hp • [p 7→ raise(blackhole)]

Blackhole(st ′) : is : st hp
=⇒ Blackhole(st ′) : is st hp

3.10 Garbage collection

Another generic rule that can be applied at any time is the garbage collection rule. This
rule models a garbage collector as part of the abstract machine.

Code Stack Heap

(1) is st hp

=⇒ is st hp′

(1) Where hp′ is constrained to the reachable pointers:

hp′ = [ p 7→ x | p 7→ x ∈ hp ∧ p ∈ reachable(st , hp) ]

The reachable(st,hp) predicate returns all pointers that can be reached from the stack st
in the heap hp. Note that the reachable set includes all pointers can potentially be used
later, and it is a superset of the live pointers that encompasses the set the pointers that are
actually used later on. As such it is a conservative estimate of liveness.

However, we should always try to keep the reachable set as small as possible to avoid space
leaks. For one thing, we can see that it is actually a good strategy to perform lazy blackholing
just before a garbage collection as it makes the reachable set potentially smaller. This was
first observed by Jones [8]. Other techniques are stack stubbing where we overwrite values
in the stack with dummy values if we can statically determine that the values are never
referenced again. This happens often in alternatives of a match statement:

Code Stack Heap

Stub(n) : is x0 : ... : xn−1 : st hp

=⇒ is x0 : ... : inv : st hp

The garbage collection rule is also essential to prove the correctness of the rewrite rules
presented in the next section. As an illustrative example, we show that the important rule
for avoiding allocation of application nodes is correct:

NewAp(n); Slide(1,m); Enter ⇒ Slide(n,m); Enter
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We can prove that this transformation is correct by showing that it leads to the same
machine configuration at runtime. Here, we need the garbage collection rule to discard the
intermediate application node.

Code Stack Heap

NewAp(n); Slide(1,m); Enter x1 : ... : xn : ... : xn+m : st hp

=⇒ Slide(1,m); Enter p : ... : xn+m : st hp ◦ [p 7→ ap(x1, ..., xn)]
=⇒ Enter p : st hp ◦ [p 7→ ap(x1, ..., xn)]
=⇒ Enter x1 : ... : xn : st hp ◦ [p 7→ ap(x1, ..., xn)]

{garbage collection}
=⇒ Enter x1 : ... : xn : st hp
⇐= Slide(n,m); Enter x1 : ... : xn : ... : xn+m : st hp
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4 The LVM language

Now that we have described the instruction set in detail, it is time to look more closely
at how we can map a functional language onto these instruction. We define a low level
language called λlvm, that closely relates to the lvm instructions. The abstract syntax for
λlvm is given in figure 3.10. Allthough the form of expressions is restrictive, any enriched
lambda calculus expression can be translated into a λlvm expression.

Just like the STG language [15], we attach an operational reading to λlvm: let and letrec
bind expressions to variables, let! evaluates expressions to weak head normal form and
match distinguishes evaluated values.

The λlvm language does not contain lambda-expressions or local function definitions – we
assume that all functions have been lambda-lifted to toplevel [7]. This means that λlvm

functions contain no free variables and a program consists just of a set of combinator defi-
nitions.

The let! expression is a strict version of let. It evaluates its right hand side to weak-
head-normal-form before evaluating the body of the expression. The usual case expression
of lazy languages is easily translated into a let! and match pair:

case e of alts
⇒

let! x = e in match x with alts

The let! binding is also used to translate strict languages to λlvm. The letrec binding of
O’Caml and ML can only be used with recursive functions, which are lifted to toplevel, and
present no problem.

4.0.1 Primitive expressions

Primitive expressions are functions that are not expressed in λlvm itself. They may consist of
instructions, like integer addition, statically linked functionality like the sin function, or user
imported foreign functions. All these variants are accomodated with the prim expression.
This has proved very convenient in the implementation of the compiler, as it can treat these
expressions uniformly up to code generation time.

Separate primitive declarations describe the different kinds. The syntax is exactly the same
as foreign import declarations – here are some examples:

foreign instruction "AddInt" addInt :: Int -> Int -> Int

foreign import "sin" sin :: Double -> Double
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Program program → {top {var}∗ = expr;}∗
Expression expr → let! var = expr in expr

| match var with { {pat -> expr;}+ }

| primn {atom}n

| let in expr
| atom

Let let → letrec { {var = atom;}+ }

| let var = atom

Atomic atom → let in atom
| id {atom}∗
| conn

t {atom}n

| literal

Pattern pat → var
| conn

t {var}n

| literal

Literal literal → int | float | bytes
Identifier id → var | top
Variable var → local identifier (x)

Global top → top level identifier (f)
Constructor conn

t → constructor with tag t and arity n
Primitive primn → instruction or foreign function of arity n
Integer int → integer (i)
Float float → floating point number
Bytes bytes → a sequence of bytes (packed string)

Notation {p}∗ → zero or more p

{p}+ → one or more p
{p}n → exactly n occurrences of p

Figure 2: Abstract syntax of the λlvm language
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Note that instructions are also described as foreign functions – they just have an extremely
efficient calling convention and encoding!

4.0.2 Atomic expressions

The distinction between atomic and normal expressions is more than a syntactic convenience.
During execution, the instructions that are generated for an atomic expression will always
succeed and terminate2. In contrast, a let!, match or prim expression can raise an exception
or go into an infinite loop. This is the reason why let expressions can only contain atomic
expressions on their right-hand side. In contrast with the STG language, let expressions
can contain nested let expressions on their right-hand side (as they are also atomic).

The STG paper [15] recommends special compilation techniques to avoid the creation of
nested let bindings. With the lvm language, this can be avoided as nested let bindings
can be compiled directly. Consider the following Haskell expression:

f = let x = [1, 2] in e

This is translated to:

f = let x = (let y = Cons 2 Nil in Cons 1 y) in e

The STG machine can not deal with nested let bindings and will implicitly lift it to top-
level, as in:

fy = Cons 2 Nil
f = let x = Cons 1 fy in e

However, it is hard to garbage collect a top level binding without arguments and it is not
recommended to lift bindings to top level in general [20]. The translation recommended in
the STG paper therefore, is to float the let binding one level up:

f = let y = Cons 2 Nil in let x = Cons 1 y in e

Both programs are denotationally equivalent but operationally different. Under the compi-
lation scheme presented in the next section, the first program slides out the y value from
the stack and therefore uses slightly less stack space with slightly more work. In contrast
to the STG machine, both programs will construct the Cons 2 Nil node, even when x is
never demanded. Since everything in the lvm language is explicit and has a formal oper-
ational reading, we are able to explicitly express all three variants and reason about their
operational behaviour.

2Modulo fatal situations like heap exhaustion.
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4.0.3 Strictness and speculative evaluation

In general, we can not float other constructs like let! or match since they might fail or
perform an unbounded amount of computation. It is possible when a strictness analyser
determines that the value is demanded later, but in that case it is easier to transform the
let binding into a let! binding, which can have full expressions at its right-hand side.

If the strictness analyser can not prove that a value is demanded but if we are reasonably sure
that the expression uses a bounded amount of computation, we could speculatively evaluate
the expression. The value is computed eagerly but if it fails or uses too much resources, in
terms of time or space, it is suspended. Currently, this is still an area of research [16] but
we plan to add the atomic let$ construct for speculative bindings. Again, the operational
semantics described later in this chapter allows us to reason very specifically about the
operational behaviour of eager evaluation.

4.1 Translating λcore to λlvm

It is convenient to use an intermediate language that is less restrictive than λlvm in a com-
piler. We define λcore as an enriched lambda calculus with lambda expressions, free vari-
ables, no distinction between atomic expresions and normal expression, binary application,
and unsaturated constructors and primitives.

The λcore language can be mapped to the λlvm by applying the following transformations:

• Replace binary application with vector application.

(... ((id e1) e2) ...) en ⇒ id e1 ... en

• Saturate all applications to constructors and primitives.

conn
t e1 ... em | (m < n) ⇒ \x(m+1) ... xn. conn

t e1 ... em x(m+1) ... xn

• Introduce a let expression for all anonymous lambda expressions.

\x1 ... xn . e ⇒ let x x1 ... xn = e in x

• Introduce a let expression for all non-atomic arguments.

e (match x with alts) ⇒ let y = (match x with alts) in e y
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• Introduce a let expression for all applications to terms that are not variables or
constructors:

e x1 ... xn ⇒ let x = e in x x1 ... xn

• Pass all free variables in non-atomic expressions as explicit arguments. This corre-
sponds essentially to lambda-lifting [7, 18, 4], and leads to an environment-less ma-
chine.

f x = let y = (let! z = 1/x in z ) in y
⇒

f x = let y x = (let! z = 1/x in z ) in y x

• Lift all local functions and non-atomic right-hand sides of let bindings to top-level.

f x = let y x = (let! z = 1/x in z ) in y x
⇒

fy x = let! z = 1/x in z
f x = fy x
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5 Compilation scheme

The compilation scheme translates λlvm into lvm instructions. In order to make the trans-
lation as clear as possible, the compilation scheme uses a few pseudo instructions to delay
offset computations. This allows us to move the complexity of computing stack offsets of
local variables to a separate resolve phase. The pseudo instructions are:

• Param(x ) declares a local variable x that resides on the stack as an argument. This
instruction allows the resolve phase to calculate the correct stack offset for x .

• Var(x ) declares a local variable x that is bound to the current top of the stack.

• Eval(is). After executing instructions is, execution is continued at the next instruction.
It is translated during code generation into (PushCont(ofs); is). Eval is introduced to
delay the computation of the code offset ofs which is only known at code generation
time.

• Atom(is). This instruction is used for translating expressions that result in a single
value on the stack. During resolve it is translated into the instructions (is; Slide(1,m))
where m intermediate values are slided out of the stack. Atom is used to delay the
computation of the correct value for m which is only known during the resolve phase.

• Init(is). This instruction is used for translating the initialization of letrec bindings.
The instructions is don’t compute any value on the stack. During resolve it is trans-
lated into the instructions (is;Slide(0,m)) where m intermediate values are slided out
of the stack.

5.1 Program

A lvm program is translated with the P scheme.

P[[ f1 args1 = e1; ...; fn argsn = en; ]] ⇒
let index (fi) = i
let arity(fi) = |argsi |
let code(fi) = T [[ argsi = ei ]]

The P scheme translates a program into three functions, code gives the code for a function,
arity returns the number of parameters and index returns the index used in binary lvm
files.

Each top level value is translated with the T scheme. The T scheme emits the pseudo
instruction Param for each argument in order to resolve the stack offsets of each argument
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during the resolve phase. As signified by the Atom instruction, a single value is computed
on top of the stack that is subsequently entered by the Enter instruction.

T [[ x1 ... xn = e ]] ⇒
ArgChk(n); Atom(Param(xn); ...; Param(x1); E [[ e ]]); Enter

Each top level value first checks the number of arguments with an argument check instruc-
tion. Quite often however, the compiler can determine if there are sufficient arguments when
the function is called. The rewrite rules that are given later in this chapter will emit an
EnterCode instruction if a function call is saturated. This instruction enters a function just
beyond the ArgChk instruction since we know that the check will succeed. For this reason,
every supercombinator always has to start with the ArgChk instruction or otherwise the
EnterCode instruction will enter the function at the wrong location!

5.2 Expressions

Expressions are translated with the E scheme.

E [[ let in e ]] ⇒
L[[ let ]]; E [[ e ]]

E [[ let! x = e in e ′ ]] ⇒
Eval(Atom(E [[ e ]]); Enter); Var(x ); E [[ e ′ ]]

E [[ match x with { alts } ]]
PushVar(x ); M[[ alts ]]

E [[ primn a1 ... an ]] ⇒
A[[ an ]]; ...; A[[ a1 ]]; Call(prim,n)

E [[ a ]] ⇒
A[[ a ]]

Let bindings are translated with the L scheme. A strict binding first evaluates its right
hand side, leaving the result on the stack and continues with the evaluation of the body.
A match statement pushes the value to be matched and uses the M scheme to translate
the alternatives. A primitive call is handled by the Call instruction. Atomic expressions are
translated with the A scheme.

5.3 Atomic expressions

The A scheme wraps the instructions in an Atom pseudo instruction to slide out any inter-
mediate local variables arising from nested let expressions.
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A[[ a ]] ⇒
Atom(A′[[ a ]])

The A′ scheme translates atomic expressions without entering them, effectively delaying
their computation.

A′[[ let in a ]] ⇒
L[[ let ]];A′[[ a ]];

A′[[ x a1 ... an ]] ⇒
A[[ an ]]; . . . ; A[[ a1 ]]; PushVar(x ); NewAp(n + 1);

A′[[ f a1 ... an ]] ⇒
A[[ an ]]; . . . ; A[[ a1 ]]; PushCode(f ); NewAp(n + 1);

A′[[ conn
t a1 ... an ]] ⇒

A[[ an ]]; . . . ; A[[ a1 ]]; NewCon(t ,n);
A′[[ i ]] ⇒

PushInt(i);

Note that this simple translation scheme is quite inefficient – it allocates an application node
for every function call. Take for example the following expression:

swap f x y = f y x

Using the simple translation scheme, swap is translated into:

ArgChk(3);Atom(
Param(y); Param(x ); Param(f );
Atom(PushVar(x ); NewAp(1));
Atom(PushVar(y); NewAp(1));
Atom(PushVar(f ); NewAp(1));
NewAp(3))

Enter

After resolve, this instruction stream becomes:

ArgChk(3);
PushVar(1);NewAp(1); Slide(1, 0);
PushVar(3);NewAp(1); Slide(1, 0);
PushVar(2);NewAp(1); Slide(1, 0);
NewAp(3); Slide(1, 3);
Enter

Instead of just pushing the arguments on the stack and entering the function f , the code first
builds an application node with application nodes for each variable, which is subsequently
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entered, unpacked and, only than, the function f is entered! Fortunately, we can use some
simple rewrite rules on the instruction stream to remove these inefficiencies. Using the
rewrite rules from section 5.8, the instruction stream becomes much more efficient:

ArgChk(3);PushVar(1);PushVar(3); PushVar(2);Slide(3, 3); Enter

We made the compilation scheme as simple and straightforward as possible and let the com-
piler do its optimizations on the lvm language and the instruction streams. It is quite easy
to prove that transformations on the lvm language and instruction stream are correct. For
example, the above transformation is simply a matter of applying the operational semantics
described in section 3. In contrast, proving that the compilation scheme is correct is much
harder – we have to show a correspondence between the operational semantics of the lvm
language and the translated instructions. By making the compilation scheme naive, we hope
that it becomes at least ‘obviously’ correct.

5.4 Let expressions

L[[ let x = a ]] ⇒
A[[ a ]];Var(x )

L[[ letrec { x1 = a1; ...; xn = an ; } ]] ⇒
Atom(U [[ a1 ]]); Var(x1); ...; Atom(U [[ an ]]); Var(xn);
Init(I[[ x1 = a1 ]]); ...; Init(I[[ xn = an ]])

The rule for letrec first allocates uninitialized values for its bindings using the U scheme
and binds the stack slots to its local variables using the Var pseudo instruction. Later, the
values are initialized using the I scheme. The rule for let is not concerned with recursive
bindings and immediately allocates a value.

The U scheme allocates an uninitialized application- or constructor node that later initial-
ized. This allows the different bindings in a letrec expression to refer to each other.

U [[ let in a ]] ⇒
U [[ a ]]

U [[ id a1 ... an ]] ⇒
AllocAp(n + 1);

U [[ conn
t a1 ... an ]] ⇒

AllocCon(t ,n);

Later, the I scheme is used to initialize each node with the proper values.

I[[ x = let in a ]] ⇒
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L[[ let ]]; I[[ x = a ]]
I[[ x = x ′ a1 ... an ]] ⇒

A[[ an ]]; . . . ; A[[ a1 ]]; PushVar(x ′); PackAp(x ,n + 1);
I[[ x = f a1 ... an ]] ⇒

A[[ an ]]; . . . ; A[[ a1 ]]; PushCode(f ); PackAp(x ,n + 1);
I[[ x = conn

t a1 ... an ]] ⇒
A[[ an ]]; . . . ; A[[ a1 ]]; PackCon(x ,n);

5.5 Matching

A match is translated with the M scheme.

M[[ pat1 -> e1; ...; patn -> en ]] | ∃ i . pati is a constructor pattern ⇒
MatchCon(P[[ pat1 -> e1 ]], ..., P[[ patn -> en ]])

M[[ pat1 -> e1; ...; patn -> en ]] | ∃ i . pati is an integer pattern ⇒
MatchInt(P[[ pat1 -> e1 ]], ..., P[[ patn -> en ]])

The patterns result in a list of tuples, the first element containing the value to be matched
and the second the instructions to be executed. The code generation phase will arrange the
code correctly.

Each pattern is compiled with the P scheme.

P[[ conn
t x1 ... xn -> e ]] ⇒
〈t , Atom(Param(xn); ...; Param(x1); E [[ e ]])〉

P[[ i -> e ]] ⇒
〈i , Atom(E [[ e ]])〉

P[[ x -> e ]] ⇒
〈x , Atom(Param(x ); E [[ e ]])〉

Note that the Param instruction is used to bind the values of a matched constructor. As we
saw in section 3.7, it is quite important that a match automatically unpacks the constructor
as it allows us to return the constructor on the stack sometimes without allocation (the
return in registers convention).

28



5.6 Optimized schemes

Although we tried to make the compilation scheme as straightforward as possible, some
transformations are hard to apply during a different phase. For example, the following rule
discards a stack push of a value that has just been evaluated to be matched. However, it
can only do so if the bound variable is not used in the alternatives. This is a good example
of where we need both high level information (is x used in the alternatives?) and low-level
information (we can skip a PushVar instruction).

E [[ let! x = e in match x with alts ]] | x /∈ fv(alts) ⇒
Eval(Atom(E [[ e ]]);Enter); M[[ alts ]]

Another important optimization removes superfluous continuation frames. This is especially
important for efficient arithmetic. For example:

discriminant a b c = let! ac = a ∗ c in
let! ac4 = 4 ∗ ac in
let! b2 = b ∗ b in b2 + ac4

If we suppose that a, b and c are already in weak head normal form and that ∗ and + expand
to the primitive MulInt and AddInt instructions, we would get the following instruction
sequence (after some rewriting):

ArgChk(3)
Eval(PushVar(c); PushVar(a); MulInt; Slide(1, 0); Enter)
Var(ac);
Eval(PushVar(ac); PushInt(4);MulInt; Slide(1, 0); Enter)
...

However, the result of MulInt is already in weak head normal form and entering the value
will only return immediately to the continuation frame pushed by Eval. A much better
instruction sequence is possible:

ArgChk(3)
PushVar(c); PushVar(a); MulInt;
Var(ac);
PushVar(ac); PushInt(4);MulInt;
...

In general, when an expression is evaluated that is already in weak head normal form, we
don’t need to evaluate it again.

E [[ let! x = e in e ′ ]] | whnf (e) ⇒
Atom(E [[ e ]]);Var(x ); E [[ e ′ ]]
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The whnf predicate determines whether the expression e puts a value in weak head normal
form on the stack. We assume that every primitive operation prim has an associated type
t which is annotated with a (!) when the result is always in weak head normal form. The
function whnf can be conservatively defined as:

whnf (let in e) = whnf (e)
whnf (let! x = e in e ′) = whnf (e ′)
whnf (match x with alts) = whnfAlts alts
whnf (x a1 ... an) = False
whnf (conn

t a1 ... an) = True
whnf (i) = True
whnf (primn a1 ... an) | prim :: t1 → ... → tn → t! = True

| otherwise = False

whnfAlts ({ alt1; ...; altn }) = whnfAlt(alt1) & ... & whnfAlt(altn)
whnfAlt (pat -> e) = whnf (e)

5.7 Resolve stack offsets

The resolve phase resolves all offsets of local variables and removes the Param, Var, Init and
Atom pseudo instructions. Guided by these pseudo instructions, the algorithm simulates the
stack and calculates the correct offsets for each variable.

5.7.1 The resolve monad

We use a monadic formulation of the algorithm. The monad type is defined as:

newtype M a = M (〈Env , Depth〉 → 〈a, Depth〉)

The monad uses an enviroment, Env that maintains the mapping from local variables to
their stack location. The monad also has a state Depth that contains the current depth of
the (simulated) stack.

The monadic functions are defined as usual [5]:

return x =
M (\〈env , depth〉 → 〈x , depth〉)

(M m) >>= f =
M (\〈env , depth〉 →

let 〈x , depth ′〉 = m 〈env , depth〉
(M fm) = f x

in fm 〈env , depth ′〉

The push and pop non-proper morphisms simulate stack movements.
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pop n =
M (\〈env , depth〉 → 〈(), depth − n〉)

push n =
M (\〈env , depth〉 → 〈(), depth + n〉)

The depth function returns the current stack depth.

depth =
M (\〈env , depth〉 → 〈depth, depth〉 )

Variables are bound using bind and the function offset returns their current offset relative
to the top of the stack.

offset x =
M (\〈env , depth〉 → 〈depth − env [x ], depth〉)

bind x (M m) =
M (\〈env , depth〉 →m 〈env ⊕ { x 7→ depth}, depth〉)

Addressing variables relative to the top of the stack removes the need for a separate base
pointer , which is still used in some C compilers to aid debuggers.

5.7.2 The algorithm

An instruction stream is resolved by the resolves function.

resolves (Param(x ) : instrs) =
do{ push 1; bind x (resolves instrs) }

resolves (Var(x ) : instrs) =
bind x (do{ resolves instrs })

resolves (instr : instrs) =
do{ is ← resolve instr

iss ← resolves instrs
return (is ++ iss) }

Individual instructions are resolved by the resolve function. Note that we allow ourselves
some freedom by reusing the PushVar instruction such that it can contain either an argument
name or resolved stack offset.

resolve PushVar(x ) =
do{ ofs ← offset x ;

push 1;
return [PushVar(ofs)] }

resolve PackAp(x ,n) =
do{ ofs ← offset x ;

pop n;
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return [PackAp(ofs,n)] }
resolve PackCon(x ,n) =

do{ ofs ← offset x ;
pop n;
return [PackCon(ofs,n)] }

resolve Eval(is) =
do{ push 3;

is ′← resolves is;
pop 3;
return [Eval(is ′)] }

resolve Atom(is) =
do{ resolveSlide 1 is }

resolve Init(is) =
do{ resolveSlide 0 is }

resolve (MatchCon(alts)) =
do{ pop 1;

alts ′← sequence (map resolveAlt alts);
return [MatchCon(alts ′)] }

resolve instr =
do{ effect instr ; return [instr ] }

The resolveSlide n is function slides out any dead values on the stack, only preserving the
top n stack values.

resolveSlide n is =
do{ d0← depth;

is ′← resolves is;
d1← depth;
let m = d1− d0− n
pop m;
return (is ′ ++ [Slide(n,m)]) }

Alternatives are resolved with resolveAlt . Note that every alternative should return with
the same stack depth.

resolveAlt 〈t , is〉 =
do{ is ′← resolves is; return 〈t , is〉 }

32



Most instructions are not transformed but they do have an effect on the stack. The effect
function simulates this effect in the resolve monad.

effect PushCode(f ) = push 1
effect AllocAp(n) = push 1

effect AllocCon(t ,n) = push 1

effect NewAp(n) = do{ pop n; push 1 }
effect NewCon(t ,n) = do{ pop n; push 1 }
effect AddInt = do{ pop 2; push 1 }
...

effect instr = return ()

Using pseudo instructions together with this simple algorithm, we have cleanly separated
stack offset resolving from the translation scheme from the lvm language to instructions.

5.8 Rewrite rules

The rewrite rules transform a sequence of instructions into a more efficient sequence of
instructions with the same semantic effect. As described in section 5.3, the rewrite rules
describe important optimizations since the compilation scheme is quite näıve.

There are two essential rewrite rules that push instructions following a match into the
branches of the match. This is needed since the branches are not able to jump to those
instructions. The transformation is safe, since every alternative leaves the stack at the same
depth.

MatchCon(alt1, ..., altn); instrs ⇒
MatchCon(alt1; instrs , ..., altn ; instrs)

MatchInt(alt1, ..., altn); instrs ⇒
MatchInt(alt1; instrs , ..., altn ; instrs)

This transformation duplicates code, but fortunately, the instrs are always a Slide followed by
an Enter, as we can see from the translation schemes. Moreover, subsequent transformations
are more effective when these instructions are directly in scope.

The first optimizing rules transform partial and saturated applications. The first rule emits
NewNap instructions for a known partial application – this instruction will not push an ex-
pensive update frame. The second rule uses EnterCode for saturated applications to a known
top level function. This instruction behaves just like Enter except that an implementation
can safely skip the expensive argument check for the entered function (a direct entry point).

PushCode(f ); NewAp(n) | arity(f ) > (n − 1) ⇒
PushCode(f ); NewNap(n)
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PushCode(f ); Slide(n,m); Enter | arity(f ) = (n − 1) & arity(f ) 6= 0 ⇒
Slide(n − 1,m); EnterCode(f )

If an application node is entered immediately after building it, we can safely enter the
application directly without building the application node at all!

NewAp(n); Slide(1,m); Enter ⇒
Slide(n,m); Enter

NewNap(n); Slide(1,m); Enter ⇒
Slide(n,m); Enter

These two simple rewrite rules remove the need for the usual translation schemes: one for
expressions that will be entered and one for let-bound expressions [14].

The following rule moves the Slide instruction up in order to prevent space leaks while calling
external functions.

Call(prim,n); Slide(1,m); Enter ⇒
Slide(n,m); Call(prim,n); Enter

Expressions of the form (let! x = e in x) lead to code that pushes variable x and subse-
quently discard the original binding. We can instead discard the push and leave the original
binding in place.

PushVar(0);Slide(1,m) | m ≥ 1 ⇒
Slide(1,m − 1)

The previous rule naturally generalizes to a sequence of n pushes:

PushVar1(n − 1); ...;PushVarn(n − 1); Slide(n,m) | m ≥ n ⇒
Slide(n,m − n)

If a value is entered that is already in weak head normal form, we can directly use the Return
instruction. We assume that all primitive functions have a type that ends with a (!) when
they return a strict result. This is the case for many primitive operations and instructions.

Call(prim,n); Enter | prim :: t1 → ... → tn → t! ⇒
Call(prim,n); Return

Commonly, a constructor or literal is returned. The lvm has the special ReturnCon and
ReturnInt instructions that can potentially execute without extra heap allocation resulting
from building a new constructor. Instead of building a new constructor that is immediately
entered, the constructor is kept on the stack (see section 3.7). This is the ‘return in registers’
convention as described in the STG machine paper [15].

NewCon(t ,n); Slide(1,m); Enter ⇒
Slide(n,m); ReturnCon(t ,n)
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PushInt(i); Slide(1,m); Enter ⇒
Slide(0,m); ReturnInt(i)

An lvm interpreter can cheaply test a variable to see if it is already in a weak head normal
form. The EvalVar instruction can use this in order to avoid creating a continuation frame
that is immediately popped.

Eval(PushVar(ofs); Slide(1, 0); Enter) ⇒
EvalVar(ofs − 3)

Quite often, we can merge slides, arising from instructions pushed into an alternative.

Slide(n0,m0); Slide(n1,m1) | n1 ≤ n0 ⇒
Slide(n1,m0 + m1− (n0− n1))

The last rules deal with instructions that have no effect and primitive instructions. By
treating instructions like AddInt as a primitive call, the compiler can be simplified since it
doesn’t need special code to deal with built-in operations. In a sense, these instructions are
just like external calls except that they have a very efficient calling convention and encoding.

Call(prim,n) | prim = instr instr :: t1 → ... → tn → t ⇒
instr

NewAp(n) | n ≤ 1 ⇒
−

Slide(n, 0) ⇒
−

Together, the above rules have proven to be quite effective in optimizing the instructions
generated by the naive translation scheme. Careful study of the generated code shows
that hardly any improvements on this level are attainable. The simple translation scheme in
combination with these rewrite rules also make the compiler much simpler. Furthermore, the
rewrite rules even seem to perform better than optimized translation schemes as the rewrite
rules sometimes find optimization opportunities between instructions that are unrelated at
the language level.

5.9 Code generation

The code generation phase resolves the code offsets relative to program counter.

codegens is =
concat (map codegen is)

codegen Eval(is) =
let is ′ = codegens is
in [PushCont(size is ′)] ++ is ′

codegen PushCode(f ) =
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[PushCode(index (f ))]
codegen EnterCode(f ) =

[EnterCode(index (f ))]
codegen MatchCon(alts) =

let iss = map (codegen . snd) alts
tags = map fst alts
ofss = scanl (+) 0 (map size iss)

in [MatchCon(length alts, 0, zip tags ofss)] ++ concat iss
codegen instr =

[instr ]

For simplicity, the rule for MatchCon(alts) assumes that there are no (default) variable
patterns inside alts. The actual rule used in the compiler is inconvenient to formulate but
still straightforward. After the code resolve phase, we are done and the compiler can write
a binary LVM file that can be loaded by the interpreter.

5.10 More optimization: superfluous stack movements

An important optimization is to reduce the number of superfluous stack movements. Due
to the close relation of λlvm with the lvm instruction set, it is possible to perform this
optimization at the language level instead of at the instruction level.

As an example of unnecessary stack pushes we look at a definition of the S combinator.

combS f g x = let z = g x in f x z

After translating, resolving, and rewriting this program, it is compiled into:

ArgChk(3);
PushVar(2 (x )); PushVar(2 (g));NewAp(2);
PushVar(0 (z ));PushVar(4 (x ));PushVar(3 (f ));
Slide(3, 4); Enter

However, the variable z is pushed on the stack immediately after building it and later
discarded with the Slide instruction. Better code can be obtained by inlining the definition
of z .

combS f g x = f x (g x )

This program uses the application node immediately and discards the superfluous PushVar
instruction.

ArgChk(3);
PushVar(2 (x )); PushVar(2 (g));NewAp(2);
PushVar(3 (x )); PushVar(2 (f ));
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Slide(3, 3); Enter

Et voilá, we can optimize stack movements (and remove dead variables) by using a standard
inliner. The inliner for the lvm language can be much simpler than a full fledged inliner [19]
since we will not instantiate across lambda expressions but only perform local substitutions.
This property makes it also easier to analyse whether work or code is ever duplicated.

It is always beneficial to inline trivial expressions since they duplicate neither work, nor
code. Trivial expressions consist of:

• literals (literal),

• variables (x ),

• constructors with no arguments (con0
t ).

For other expressions, we need to determine how often the binder occurs. The occurrence
analysis can be as simple as counting the number of syntactic occurrences. If code duplication
is not perceived as a problem, we can refine the analysis by taking the maximum of the
occurrences inside alternatives instead of the sum. If a binder occurs only once, we can
safely inline it (since lambda expressions are not part of the lvm language). When a binder
has no occurrences, the binding can be removed entirely.

5.10.1 Inlining strict bindings

We look again at the example program discriminant from section 5.6:

discriminant a b c = let! ac = a ∗ c in
let! ac4 = 4 ∗ ac in
let! b2 = b ∗ b in b2 + ac4

The optimized instruction sequence was:

ArgChk(3)
PushVar(c); PushVar(a); MulInt;
Var(ac);
PushVar(ac); PushInt(4);MulInt;
...

This example can be optimized a little bit more since it still pushes variable ac allthough it
already resides on the stack. An optimal instruction sequence would be:

ArgChk(3)
PushVar(c); PushVar(a); MulInt;
Var(ac);
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PushInt(4);MulInt;
...

Unfortunately, our simple inliner will not inline the binding for ac since let! bindings can
not be inlined in general. However, we can define some side conditions under which the
inlining of let! bindings is possible.

First, we extend the grammar and allow let! expressions as atomic expressions – of course,
this is in general unsafe and should only be used ‘internally’. Together with the grammar
extension, the translation scheme for atomic expressions is also extended:

A′[[ let! x = e in e ′ ]] | whnf (e) ⇒
Atom(E [[ e ]]);Var(x );A′[[ e ′ ]];

A′[[ let! x = e in e ′ ]] ⇒
Eval(Atom(E [[ e ]]);Enter); Var(x );A′[[ e ′ ]];

When an evaluated expression is both pure and total , we can transform let! bindings into
let bindings. The standard inliner can now inline let! expressions via those let bindings.

let! x = e in e ′ | pure(e) & total(e) ⇒ let x = (let! x = e in x ) in e ′

The pure(e) predicate ensures that the expression has no side effect and the total(e) predi-
cate ensures that the expression can not fail or loop. These conditions can probably only be
approximated in practice but they can be determined exactly for many common primitive
expressions like comparison and bitwise operations. However it fails for operations that can
raise exceptions – like addition, multiplication and division. Note that the let! binding
inside the let is still needed in order to emit an Eval instruction during compilation.

The above approach works for expressions that are both pure and total but many times we
don’t know enough about the expression to ensure those predicates. Other strict expressions
can be inlined only if the following conditions hold:

1. the inliner never duplicates code (to avoid duplication of an impure expression).

2. the binding is used once.

3. the binding is used before any other primitive function, let!, or match construct.

The first two conditions are intrisic properties of the inliner. The last condition, is formalized
with the firstuse predicate.

let! x = e in e ′ | once x e ′ & firstuse x e ′ ⇒ let x = (let! x = e in x ) in e ′
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Note that the firstuse predicate is extremely dependent on the exact translation scheme
that is used – after a strict binding is inlined as a let, we must be sure that no other strict
binding gets inlined beyond the previous one.

The firstuse predicate is defined in terms of the first function that has as its second argument
a possible continuation that starts out as False. As soon as a primitive operation, let!,
or match is encountered, the continuation is set to False again to avoid inlining a binding
beyond that construct.

firstuse x e = first x False e

first x c x = True
first x c (y a1 ... an) = firsts x c [y , a1, ..., an ]
first x c (conn

t a1 ... an) = firsts x c [a1, ..., an ]
first x c (primn a1 ... an) = firsts x False [a1, ..., an ]
first x c (match y with alts) = False
first x c (let! y = e in e ′) = first x False e
first x c (let y = e in e ′) = firsts x c [e, e ′]
first x c (letrec { y1 = e1 ; ... ; yn = en } in e ′) = firsts x c [e1, ..., en , e ′]
first x c other = c

firsts x c es = foldl (first x ) c es

In combination with the rewrite rules, the described optimizations remove all superfluous
stack movements – there is no need for complex reorderings of bindings. Note that we
could achieve this by distinguishing between normal expressions and atomic expressions,
and allowing atomic expressions as arguments. This constrasts with the STG language for
example, that only allows variables as arguments. In our case, λlvm directly reflects the
capabilities of the abstract machine.
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6 Assessment

We have implemented a lvm interpreter on top of the O’Caml runtime system [11], which
is well known for its portability and the efficient bytecode interpreter. By taking advantage
of this excellent system, we were able to build an lvm interpreter in a relatively short time
frame.

There is also a core compiler that translates λcore programs into lvm files using the compi-
lation rules described in section 5. The compiler is still very naive and doesn’t perform any
‘essential’ optimizations like simplification, inlining or strictness analysis. Even though we
tried to keep the lvm instruction set and compilation scheme as simple as possible, the total
line count of the core compiler is still about 7000 lines of Haskell which is a bit disappointing.
On the other hand, the core compiler has a very modular structure and it is easy to use
as the backend for a real compiler or as a platform to experiment with new transformation
algorithms. It is currently used as a backend to the Helium compiler and the experimental
HX system [26].

To assess the performance of the interpreted lvm instruction set, we ran some preliminary
benchmarks. Since each benchmark is rather small the results should be interpreted with
care. However, we believe that the benchmarks will at least give an indication whether
the performance of the an lvm interpreter is acceptable in practice. The following three
programs were tested.

nfib 27 Calculates the 27th nfib number.

nfib :: Int -> Int

nfib 0 = 1

nfib 1 = 1

nfib n = 1 + nfib (n-1) + nfib (n-2)

queens 9 Finds the number of ways to put 9 queens on a 9×9 checkboard where no queen
threatens another.

queens n = length (qqueens n n)

qqueens k 0 = [[]]

qqueens k n = [ (x:xs) | xs <- qqueens k (n-1)

, x <- [1..k], safe x 1 xs ]

safe x d [] = True

safe x d (y:ys) = x /= y && x+d /= y

&& x-d /= y && safe x (d+1) ys

sieve 1000 Calculates the 1000th prime number using the sieve of Erasthones.
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Figure 3: Benchmarks

sieve n = last (take n (ssieve [3,5..]))

where

ssieve (x:xs) = x:ssieve (filter (noDiv x) xs)

noDiv x y = (mod x y /= 0)

Each program was translated with the Hugs interpreter (May 1999), the GHC compiler
(5.02) and the LVM core compiler. GHC was run without the -O flag but it still does
simplification and inlining. Since the core compiler can not parse full Haskell, each program
was manually desugared into enriched lambda expressions before compilation. All programs
were run on a 266Mhz PentiumII PC with 128Mb RAM.

Figure 6 shows the running times of each program. Note that the running times of the
programs run with Hugs are outside the scale of the y-axis. Perhaps not surprisingly, the lvm
performs about 15 to 30 times better on these programs than Hugs. What is more surprising
is that the interpreted, non-inlined, unsimplified lvm programs run just 3 times as slow as
GHC compiled programs. The queens benchmark is even just 25% faster when compiled
with GHC. Of course, the programs are too small to be used as realistic benchmarks but the
results still give us confidence that the interpreter approach can be successful in practice.

We also measured how the lvm performs if the core compiler would have a simple strictness
analyser and inliner. We naively hand-optimized the programs for the lvm, trying to emulate
a simple strictness analyser and inliner. Here is for example the optimized source for nfib:

nfib :: Int -> Int
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Figure 4: Benchmarks

nfib n = match n with

0 -> 1

1 -> 1

n -> let! n2 = primSubInt n 2 in

let! nf2 = nfib n2 in

let! n1 = primSubInt n 1 in

let! nf1 = nfib n1 in

let! m = primAddInt nf1 nf2 in

primAddInt 1 m

Figure 6 shows the benchmarks with the optimized compilers. The ghc-opt programs are
compiled with GHC with the -O flag while the lvm-opt programs are the hand-optimized
sources compiled for the lvm. Optimized GHC is much faster on the nfib and sieve bench-
marks but, surprisingly, the queens benchmark runs faster with the optimized lvm. We
don’t know for sure why the queens program performs so well, it might be a cache effect or
it might be linked to the ‘return in registers’ convention that can avoid heap allocation –
maybe the lvm avoids an expensive allocation in a critical part of the algorithm.
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7 Appendix: The module format

An lvm module consists of 8-bit bytes. Multi byte values are stored in the big-endian format
where the most significant byte comes first. There are two multi byte values:

int32 A 32 bit signed integer.
float64 A 64 bit IEEE floating point value.

Besides these raw values, there are also encoded values that are also stored as int32 values:

int An encoded signed integer value. An encoded integer n is represented by the int32

value n = 2n + 1.
rec An encoded signed record index. An encoded record index r is represented by the

int32 value r = 2r.

Record indices and numbers are easily distinguished now – record indices are even integers
while numbers are stored as odd integers.

The encoded values int and rec can also be typed:

enum t An enumeration value of type t stored as an int . For example, enum flags
rec t A record index rec that points to a record of type t. For example, rec code is a

record index that points to a code record.

7.1 Records

The lvm format consists of records. These records are always aligned on 32 bits and should
be padded with zero bytes if they don’t align properly. A length is always the number of
bytes, while a count is always the number of logical units.

Every lvm module consists of a header record, a number of program records and a footer
record.

struct lvm-file
{ struct header header;

record [records count] program-records;
struct footer footer;

}

The header contains the number of program records, records count . Records are indexed
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with rec values that are 1-based indices in the program-records array. An index of zero is
used when no information is available.

7.2 Header and Footer

The header contains the records count and the total length of those records.

struct header
{ int32 header kind = x1F4C564D (= HLVM);

int header length;
int total length;
int runtime major version;
int runtime minor version;
int records count;
int records length;
rec module module information;
... ...;

}

The runtime version numbers correspond to the lvm runtime version for which this file was
build. The module major version is incremented on each non-compatible interface change,
whereas the minor version is incremented for each new build.

struct footer
{ int32 footer kind = x1E4C564D (= NLVM);

int length = 4;
int total length;

}

The footer marks the end of the lvm file and enables stand-alone executables. The lvm
runtime has a special option that concatenates the runtime with all the needed lvm module
files. When this program is invoked, the runtime loads its own image and looks if it ends
with a footer, if so, it traces all catenated modules and executes them – et voilá, a portable
method for stand-alone executables.

7.3 A Record

A record starts with the kind and the length of the record (always a multiple of 4). The
length doesn’t include the kind and length field.

A standard record starts with an enum standard-kind while a custom record starts with a
rec kind. The lvm ignores custom records but they can be used by a compiler to encode
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extra information – for example, algebraic data declarations.

struct record
{ enum standard-kind or rec kind record-kind;

int record length;
... ...;

}

Standard record kinds include:

enum standard-kind
{ name = 0;

kind = 1;
bytes = 2;
code = 3;
value = 4;
constructor = 5;
import = 6;
module = 7;
extern = 8;
externtype = 9;

}

The following records are all described without their standard header, i.e. the kind and
length. To distinguish them from a struct, we use the special record declaration.

7.4 Byte records

A byte record contains a number of raw bytes. There exist four kinds of byte records: name,
kind, bytes and externtype records.

A name record contains a serie of bytes that are used for a static (link-time) names or
identifiers.

record name
{ int name length;

byte[name length] name;
byte[...] padding;

}

A bytes record also contains a serie of bytes. These are used for dynamic (run-time) enitities,
like big integers or strings.

record bytes
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{ int bytes length;
byte[bytes length] bytes;
byte[...] padding;

}

The kind of a custom record is described by a kind record. A kind record contains a serie
of bytes that hold the static name of a custom kind.

record kind
{ int kind length;

byte[kind length] kind name;
byte[...] padding;

}

The type of an extern declaration is an externtype record. An externtype record is just a
static string describing the type of an external function.

record externtype
{ int type length;

byte[type length] type;
byte[...] padding;

}

7.5 Instruction records

An instruction record constains lvm instructions. There is only one instance of an instruc-
tion record, namely code.

record code
{ int32[record length/4] instructions;
}

7.6 Structured records

A structured record consists of rec and int values. All records that are not instruction- or
byte records belong to this group. Structured records are either standard records or custom
records.

Structured records have predefined fields but can also contain custom values encoded as
rec or int values. Custom values are ignored by the lvm but can be used by a compiler
to encode more information, like type signatures or inline declarations. Potential custom
values are notated with three dots – “...”.
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A structured declaration record starts with a name and access flags. The flags determine
the external visibility of a record.

enum flags
{ private = 0;

public = 1;
}

7.7 Standard records

record value
{ rec name name;

enum flags flags;
int arity;
rec value enclosing value;
rec code code;
... ...;

}

record constructor
{ rec name name;

enum flags flags;
int arity;
int tag;
... ...;

}

7.7.1 Import records

record import
{ rec name name;

enum flags flags;
rec module imported module;
rec name imported name;
enum standard-kind or rec kind imported record kind;
... ...;

}

A module declaration contains the version numbers of the module that it was linked to at
compile time.

record module
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{ rec name name;
int major version;
int minor version;
... ...;

}

7.7.2 Extern declarations

A extern declaration contains the signature of an external function.

record extern
{ rec name name;

enum flags flags;
int arity;
rec externtype external type;
rec name external library name;
rec name or int external name or ordinal;
enum name-mode name-mode;
enum link-mode link-mode;
enum call-mode calling convention;
... ...;

}

There are three link-modes. static linkage is used for static libraries, dynamic for dynamic
link libraries and runtime for functions that are referenced by address. The first argument
of a runtime function is always the address of this function.

enum link-mode
{ static = 0;

dynamic = 1;
runtime = 2;

}

The call-mode is either the C calling convention (ccall) or the stdcall (or pascal) calling
convention (used on windows platforms).

enum call-mode
{ ccall = 0;

stdcall (pascal) = 1;
}

The name-mode gives the mode of a name. Mode decorate decorates the name according to
the calling convention. The ccall convention for example prefixes a name with an underscore.
If mode ordinal is specified, the external name should contain an ordinal instead of a rec
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name. The ordinal is the index of a function in a (dynamic) library, used for example in the
windows system libraries. The normal mode leaves the name as it is.

enum name-mode
{ normal = 0;

decorate = 1;
ordinal = 2;

}

The type of an extern declaration is a externtype record, that just consists of a string of
bytes. The type is interpreted as an ASCII string where each character describes the type
of each argument. The first character describes the type of the result.

character c-type lvm-type
a value any lvm value
c char int
i int int
I long int
f float float
d double float
D long double float
F double (or long double) float
u unsigned int int
U unsigned long int
p void* ptr
z char* string
Z wchar_t* string
v void ()
1 8 bit value int
2 16 bit value int
4 32 bit value int32
8 64 bit value int64
n long (or int) native-int

7.8 Custom records

A custom record always starts with a rec kind instead of a standard int kind. A custom
record is either a declaration record, starting with a name and flags, or an anonymous record
that starts with a zero index for the name.

record custom
{ rec name name;

enum flags flags;
... ...;
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}

record custom
{ rec name name = 0;

... ...;
}
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8 Appendix: The instruction set

All instructions and their arguments are 32 bits. Besides uniformity and simplicity, it has the
advantage of executing much faster on current hardware architectures. The disadvantage is
slightly larger code than bytecode oriented formats like the Java VM for example. We plan
to define a compressed lvm format for distributing modules over slow networks or execution
on mobile devices.

The basic types of values are:

int32 – a 32 bit signed integer.
float64 – a 64 bit IEEE floating point value.
rec32 – a 32 bit signed record index (1-based).

The int32, and rec32 types have only 30 bits of garanteed significance. The rec32 type is an
index into the standard records of the module format (see section 7).

n,m – int32 values.
ofs,i – int32 values.
d – float64 value.
f – rec32, value record index.
c – rec32, constructor record index3.
b – rec32, bytes record index.

8.1 Stack

(0) ArgChk(n) The argument satisfaction check – are there n arguments on the
stack?

(1) PushCode(f ) Push a function or CAF at record f .
(2) PushCont(ofs) Push a continuation frame to the code at ofs relative to the current

location.
(3) PushVar(n) Push a local variable at stack location n.
(4) PushInt(i) Push a 32 bit signed integer i .
(5) PushFloat(d) Push a 64 bit IEEE floating point value d .
(6) PushBytes(b) Push the bytes at record b.
(7) Slide(n,m) Slide the top n values over the next m values.
(8) Stub(n) Overwrite the local variable at st [n] with an inv value.

3hackers extension: a negative or zero index i is interpreted as an anonymous constructor with tag |i|.
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8.2 Functions

(9) AllocAp(n) Allocate an uninitialized application node with n fields.
(10) PackAp(n,m) Create an updateable application node at stack location n with m

values.
(11) PackNap(n,m) Create a non-updateable application node at stack location n with

m values.
(12) NewAp(n) Allocate and initialize an updateable application node with n values

from the stack.
(13) NewNap(n) Allocate and initialize a non-updateable application node with n

values from the stack.

8.3 Control

(14) Enter Enter the value at the top of the stack.
(15) Return Return the whnf value at the top of the stack.
(16) Catch Install the exception handler at the top of the stack.
(17) Raise Raise the exception at the top of the stack.
(18) Call(c,n) Call an external function c with n arguments.

8.4 Alternatives

(19) AllocCon(c,n) Allocate a constructor c with n uninitialized fields.
(20) PackCon(n,m) Initialize a constructor node at stack location n with m values.
(21) NewCon(c,n) Allocate and initialize a constructor c with n values from the stack.
(22) UnpackCon(n) Move n fields from the constructor at the top of the stack to the

stack.
(23) TestCon(c, ofs) Test the tag of the constructor at the top of the stack with the tag of

the constructor c. If it is not equal, jump to the code at ofs relative
to the current location (ie. the start of the next instruction).

8.5 Integers

(24) TestInt(i , ofs) Test the integer at the top of the stack with i . If it is not equal,
jump to the code at ofs relative to the current location.

(25) AddInt Add two integers at the top of the stack; pop the integers and push
the result.

(26) SubInt Subtract.
(27) MulInt Multiply.
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(28) DivInt Euclidean division.
(29) ModInt Euclidean modulus.
(30) QuotInt Truncated Quotient.
(31) RemInt Truncated Remainder.
(32) AndInt Bitwise and.
(33) XorInt Bitwise xor.
(34) OrInt Bitwise or.
(35) ShrInt Bitwise arithmetic shift right (pad with highest bit).
(36) ShlInt Bitwise shift left.
(37) ShrNat Bitwise unsigned shift right (pad with zeros).
(38) NegInt Negate.

8.6 Comparison

(39) EqInt Equal.
(40) NeInt Not equal.
(41) LtInt Lower.
(42) GtInt Greater.
(43) LeInt Lower or equal.
(44) GeInt Greater or equal.

8.7 General sums and products

(45) Alloc Allocate a new heap block with the size at st [1] and the tag at st [0].
(46) New(n) Allocate and initialize a new heap block with n values with the tag

at st [0].
(47) GetField Push field st [1] of the heap block at st [0] on the top of the stack.
(48) SetField Set field st [1] of the heap block at st [0] to the value at st [2].
(49) GetTag Push the tag of the heap block on the top of the stack.
(50) GetSize Push the size of the heap block on the top of the stack.
(51) Pack(n) Initialize the heap block on top of the stack with n values at the

following stack locations and pop them all.
(52) Unpack(n) Move n fields from the heap block at st [0] to the stack.

8.8 Optimized stack

(53) PushVar0 ⇒ PushVar(0)
(54) PushVar1 ⇒ PushVar(1)
(55) PushVar2 ⇒ PushVar(2)
(56) PushVar3 ⇒ PushVar(3)
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(57) PushVar4 ⇒ PushVar(4)
(58) PushVars2(n1,n2)

⇒ PushVar(n1) : PushVar(n2)
(59) PushVars3(n1,n2,n3)

⇒ PushVars2(n1,n2) : PushVar(n3)
(60) PushVars4(n1,n2,n3,n4)

⇒ PushVars3(n1,n2,n3) : PushVar(n4)

8.9 Optimized functions

(61) NewAp1 ⇒ NewAp(1)
(62) NewAp2 ⇒ NewAp(2)
(63) NewAp3 ⇒ NewAp(3)
(64) NewAp4 ⇒ NewAp(4)
(65) NewNap1 ⇒ NewNap(1)
(66) NewNap2 ⇒ NewNap(2)
(67) NewNap3 ⇒ NewNap(3)
(68) NewNap4 ⇒ NewNap(4)

8.10 Optimized constructors

(69) NewCon0(c) ⇒ NewCon(c, 0)
(70) NewCon1(c) ⇒ NewCon(c, 1)
(71) NewCon2(c) ⇒ NewCon(c, 2)
(72) NewCon3(c) ⇒ NewCon(c, 3)

8.11 Optimized control

(73) EnterCode(c) ⇒ PushCode(c) : Enter. Enter the function declared at constant
c. The stack is required to hold at least all the arguments of the
function.

(74) EvalVar(n) ⇒ PushCont(6) : PushVar(n + 3) : Slide(1, 0) : Enter. Push a contin-
uation frame and enter the variable at offset n on the stack.

(75) ReturnCon(c,n) ⇒ NewCon(c,n) : Slide(1, ?) : Enter. Return a constructor c with n
fields on the stack.

(76) ReturnInt(i) ⇒ PushInt(i) : Slide(1, ?) : Enter. Return the integer i .
(77) ReturnCon0(c) ⇒ ReturnCon(c, 0).
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8.12 Optimized alternatives

(78) MatchCon(n, ofs, c1, ofs1, ..., cn , ofsn)
Pop the constructor on top of the stack and match it with c1 to
cn , jumping to ofsi when matching. Jump to ofs when no match is
found.

(79) SwitchCon(n, ofs, ofs1, ..., ofsn)
Pop the constructor on top of the stack and switch on its tag. Jump
to ofs when the tag is greater than n.

(80) MatchInt(n, ofs, i1, ofs1, ..., in , ofsn)
Pop the int on top of the stack and match it with i1 to in , jumping to
the corresponding ofsi when matching. Jump to ofs when no match
is found.

(81) MatchFloat(n, ofs, d1, ofs1, ..., dn , ofsn)

(82) Match(n, ofs, tag1, arity1, ofs1, ..., tagn , arityn , ofsn)

8.13 Floating point

(83) ReturnFloat(d) ⇒ PushFloat(d) : Slide(1, ?) : Enter. Return the float d .
(84) AddFloat Add.
(85) SubFloat Subtract.
(86) MulFloat Multiply.
(87) DivFloat Divide.
(88) NegFloat Negate.

8.14 Floating point comparison

(89) EqFloat Equal.
(90) NeFloat Not equal.
(91) LtFloat Lower.
(92) GtFloat Greater.
(93) LeFloat Lower or equal.
(94) GeFloat Greater or equal.
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8.15 General sum and products

Code Stack Heap

Alloc : is t :n : st hp

=⇒ is p : st hp ◦ [p 7→ cont(inv1, ..., invn)]

New(n) : is t : x1 : ... : xn : st hp
=⇒ is p : st hp ◦ [p 7→ cont(x1, ..., xn)]

Pack(n) : is p : x1 : ... : xn : st hp[p 7→ cont(y1, ..., yn)]
=⇒ is st hp • [p 7→ cont(x1, ..., xn)]

UnPack(n) : is p : st hp[p 7→ cont(x1, ..., xn)]
=⇒ is x1 : ... : xn : st hp

0 ≤ i < n GetField : is p : i : st hp[p 7→ cont(x1, ..., xn)]
=⇒ is xi+1 : st hp

0 ≤ i < n SetField : is p : i : x : st hp[p 7→ cont(x1, ..., xi+1, ..., xn)]
=⇒ is st hp • [p 7→ cont(x1, ..., x , ..., xn)]

GetTag : is p : st hp[p 7→ cont(x1, ..., xn)]
=⇒ is t : st hp

GetSize : is p : st hp[p 7→ cont(x1, ..., xn)]
=⇒ is n : st hp
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9 Appendix: Primitive operations

This section gives an overview of primitive data types and operations in the LVM runtime.

9.1 Exceptions

The Exception data types are in principle open-ended but the following exceptions are
pre-defined by the system.

type BString = Bytes

data Exception

= HeapOverFlow -- heap overflow

| StackOverflow Int -- stack overflow

| Signal SignalException -- interrupt occurred

| Runtime RuntimeException -- runtime system exception

| Arithmetic ArithmeticException -- arithmetic exception

| System SystemException -- operating system exceptions

| InvalidArgument BString -- invalid argument passed

| Assert BString -- assertion failed

| NotFound -- no object is found

| UserError BString -- general failure (raised by "error")

data RuntimeException

= PatternFailure BString -- pattern match failure

| NonTermination BString -- non terminating program

| OutOfBounds BString -- field access out of bounds

| Exit Int -- exiting program

| InvalidOpcode Int -- invalid opcode

| LoadError BString BString -- runtime loader exception

| RuntimeError BString -- general failure

data SystemException

= EndOfFile -- end of input reached

| BlockedOnIO -- blocked I/O channel

| SystemError Int BString -- general system error

data ArithmeticException

= FloatInvalidOperation -- invalid float operation

| FloatDivideByZero -- float division by zero

| FloatOverflow -- float has overflowed

| FloatUnderflow -- float has underflowed

| FloatInexact -- float result is inexact

| FloatDenormal -- denormalized float value

| DivideByZero -- integer division by zero
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| Overflow -- integer overflow

| Underflow -- integer underflow

| InvalidOperation -- general arithmetic error

| UnEmulated -- cannot emulate float instruction

| NegativeSquareRoot -- square root of negative number

| FloatStackOverflow -- float hardware stack has overflowed

| FloatStackUnderflow -- float hardware stack has underflowed

data SignalException

= SignalNone -- runtime: no signal

| SignalGarbageCollect -- runtime: GC needed

| SignalYield -- runtime: thread should yield

| SignalLost -- runtime: lost signal

| SignalKeyboard -- interactive interrupt (ctrl-c)

| SignalKeyboardStop -- interactive stop (ctrl-break)

| SignalFloatException -- floating point exception

| SignalSegmentationViolation -- invalid memory reference

| SignalIllegalInstruction -- illegal hardware instruction

| SignalAbort -- abnormal termination

| SignalTerminate -- termination

| SignalKill -- termination (can not be ignored)

| SignalKeyboardTerminate -- interactive termination

| SignalAlarm -- timeout

| SignalVirtualAlarm -- timeout in virtual time

| SignalBackgroundRead -- terminal read from background process

| SignalBackgroundWrite -- terminal write from background process

| SignalContinue -- continue process

| SignalLostConnection -- connection lost

| SignalBrokenPipe -- open ended pipe

| SignalProcessStatusChanged -- child process terminated

| SignalStop -- stop process

| SignalProfiler -- profiling interrupt

| SignalUser1 -- application defined signal 1

| SignalUser2 -- application defined signal 2

9.2 Bytes

Converting byte arrays to character lists.

value prim_string_of_chars( long count, value chars );

value prim_chars_of_string( value string );

long prim_string_length( value string );
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9.3 IO

Basic input and output.

long prim_flag_mask( long flags );

long prim_open( const char* fname, long sysflags );

void prim_close( long handle );

value prim_open_descriptor( long handle, bool output );

void prim_close_channel( value channel )

void prim_set_binary_mode( value channel, bool binary );

bool prim_flush_partial( value channel );

void prim_flush( value channel );

void prim_output_char( value outchannel, char c );

void prim_output( value outchannel, const char* buffer

, long start, long count );

long prim_input_char( value inchannel );

The prim_flag_mask function converts a portable flag into a system flag mask used by
prim_open. The portable flags are:

enum open_flags {

Open_readonly = 0,

Open_writeonly,

Open_append,

Open_create,

Open_truncate,

Open_exclusive,

Open_binary,

Open_text,

Open_nonblocking

};
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9.4 Floating point

Primitive floating point operations.

data RoundMode = RoundNear

| RoundUp

| RoundDown

| RoundZero

void fp_set_round_mode( value mode );

value fp_get_round_mode( void );

data ArithmeticException

= FloatInvalidOperation -- invalid float operation

| FloatDivideByZero -- float division by zero

| FloatOverflow -- float has overflowed

| FloatUnderflow -- float has underflowed

| FloatInexact -- float result is inexact

| ...

long fp_sticky_mask( value exn );

long fp_get_sticky( void );

long fp_set_sticky( long sticky );

long fp_trap_mask( value exn );

long fp_get_traps( void );

long fp_set_traps( long traps );

void fp_reset( void );

bool signal_is_trapped( value exception );

bool signal_trap( value exception );

void signal_untrap( value exception );
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