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Abstract

This paper describes a technique that combines algebraic specifications and monads to build
derivative verification condition generators (VCGs) by extending a base VCG. Extensions are
compositional and can be stacked while the base VCG is left unchanged. The technique can
be used to build a set of weaker VCGs, which are useful to support light weight verification.
Moreover, it enables us to add an ability to generate validation traces. The paper explains
the technique through an erxample that extends a simple language Lo with new constructs to
handle exceptions. To deal with exceptions, not only that the logic of Lo has to be extended
with new rules, its structure also needs to be changed. We show that using our technique the
extension can be implemented in a simple and compositional way, without any change to the
underlying logic.

1 Introduction

Maintenance is a problem when implementing a realistic programming logic. When a language
changes, the underlying logic, and consequently its implementation, has to be upgraded as well.
From experience we learn that this is a dangerous and error prone operation that can easily
introduce inconsistencies in the logic. The problem also grows, since most programming languages
are updated from time to time.

One solution to this problem is to embed the logic inside another, usually simpler and much
more stable, logic. Excellent examples are the embedding of Java in Isabelle by Huisman [8]
and C in HOL by Norrish [17]. The approach is very reliable since it allows the soundness of the
embedded logic to be verified. Moreover, changes to an embedded logic will not be accepted unless
we can reprove its soundness. However, reworking the soundness proof is usually expensive, and,
after several changes, the proof itself will have maintenance problems.

Logics underlying imperative languages are usually syntax driven and implemented as a recur-
sive function over the target program [7]. Such a straightforward implementation however results
in a monolithic program that cannot be altered or extended without tampering with the code.

The contribution of this paper is a technique that enables us to change and extend the imple-
mentation of a logic in a modular way, i.e. without directly tampering with the code of the old
implementation. Our approach has a number of interesting advantages. First of all, it is safer.
Second, it allows alterations and extensions to be engaged or disengaged at will. Third, it enables
us to easily create a set of partial logics, each of which can be used in isolation for light weight



verification. Moreover, if combined with embeddings, it forces us to organize its soundness proof
in a modular way!, and thus minimizing the maintenance problem in the latter.

Our technique uses a combination of algebras and monads to represent a (syntax driven) logic.
Algebras are modular structures used to abstractly specify recursive computation [15]. Higher
order functions are used to implement extensions or alterations on algebras. Monad has been
recognized to be a useful tool to build modular semantics [14]. Here we use monads to build
modular logics. More specifically, monads are used to hide certain aspects regarding the structure
of a logic; exposing only the aspects that will remain unchanged across various instances of the
logic. This enables us to keep the code of the base logic unchanged despite an extension that
would actually alter the logic’s structure. The change can be delayed to the instantiation of the
corresponding monad class.

This work is primarily about an implementation technique. It does not touch the theoretical
issues, such as how to compositionally prove the soundness of the logics implemented using our
technique. These are difficult issues of which we have so far no firm answer yet.

1.1 Preliminary

We will explain our approach through an example logic for a simple imperative language Ly
shown in Figure 1. For simplicity, we will assume that all statements terminates. The construct
inv ¢ while g do S is just a while-loop; ¢ is a candidate invariant specified by the programmer.

The implementation will be explained using a notation that resembles that of the functional
programming language Haskell (www.haskell.org) [2]. In depth knowledge of Haskell syntax is
not needed to read this paper, though we assume the reader is familiar with functional program-
ming. Familiarity with monads and Haskell class will be helpful. An actual Haskell implementation
of the example is available on-line (see Appendix D).

In the rest of the paper, the type variable e is assumed to represent the type of expressions.
Rather than imposing a concrete representation and/or syntax of expressions, we will assume e to
be an instance of the class Expression given in the Appendix B. The class supports a minimum
set of operations, such as A and =, needed to express the logic of L.

The type variable m is assumed to range over monads.

Brief about Haskell Class

We will use the notion of class as in Haskell. A class C' specifies a collection of types supporting
a fixed set of operations. An example of a class specification is this:

class Eqa where (==) :: a — a — Bool

which declares a class called Eq supporting == as a single operation. The type notation f ::
Eq a = a — Bool is used to say that f is a function of type a — Bool, but it is also required that
a is a type which is a known instance of the class Eq. By intention, there may be some algebraic
properties associated to the operations of a class, though these cannot be specified within Haskell.
A class can also be defined to extend another class, like:

class Eq a = Additive a where (+):a—a —a

This declares the class Additive. Its operations are + and all operations of Eq. It also means
that for a type to be an instance of Additive, it has to be an instance of Eq as well.
The above notion of class also extends to the type constructor level.

1Since now a new logic L’ is obtained by applying an extension operation E on an old logic L, to prove the
soundness of L’ it is sufficient to show that E lifts the soundness of L to L’, which in principle can be done without
having to alter the proof of L.



Stmt — Assignment
| if Exzpr then { Stmt } else { Stmt }
| inv Fxpr while Expr do { Stmt }
| Stmt ; Stmt

pre (x:=€)q = qle/z]

let po = pre So ¢ and p; = pre Sy po
pre (S1; S2) ¢ = p1

let p = preS1q and ps; = pre S q
pre (if g then S] else So) ¢ = (9= p1) A (g = p2)

let p = pre Si
FiAN-g=q , FiANg=0p
pre (inviwhilegdo S)q = ¢

Figure 1: A simple command language Lo and its logic.

1.2 Paper Setup

Section 2 explains our representation. Section 3 shows examples of how a logic can be altered and
extended modularly. Section 4 shows an experiment where we extend the language Lg by adding
new constructs to raise and handle exceptions. Not only that the old logic underlying Ly has to be
extended with new rules, but some alteration to the logic’s structure is needed as well. Normally
this would require surgery on the implementation of the old logic. Section 4 shows how it can be
done without. Finally, conclusions, related work and some notes on future directions are given in
Sections 5 and 6.

2 Representation of Logics

Hoare logic [6] is commonly used to specify and verify imperative programs. Usually, it is used
in combination with predicate transformers, which are functions that take and return a predicate
[3, 1, 7]. Figure 1 shows a simplistic command language Ly and its underlying logic. In the
logic shown in Figure 1, pre is a predicate transformer. In particular, given a statement S and a
post-condition ¢, pre returns a pre-condition that is sufficient for S to realize ¢?>. The predicate
transformer pre satisfies the following law, which also describes how to reduce a Hoare triple
specification to a problem expressed in terms of pre.

F p=prePgq (1)

{r} P {q}

The inference rules of the logic underlying L specify how pre computes its result. Some of the
rules, such as the rule for while, produce so-called wverification conditions like the conditions
iAN-g = qand i A g = p. The pre-condition returned by pre, as specified by a rule, is only
sufficient if the corresponding verification conditions can be shown to be valid.

In functional programming, data types are used to abstractly represent sentences of a language.
In our case, the sentences are L statements and below is a data type called Stmt which is sufficient
to represent them.

2If S does not contain any loop, pre will return the weakest pre-condition. Otherwise it will just produce a
suficient one.



Definition 2.1 : Stmt
Let e be a type variable representing the type of expressions. We define:

data Stmt e = String :=e
| Stmt :> Stmt

| IfElse e Stmt Stmt
|

While e e Stmt

:=and :> are data constructors representing assignment and sequential composition in Lg.
O

The logic of Ly, which specifies the calculation of pre, is syntax driven: for each kind of statement
there is exactly one inference rule. Consequently, given a statement S and a post-condition
q, pre S g can be calculated recursively over the structure of S. Some rules emit verification
conditions, which should be collected. Collecting these verification conditions is usualy done by
another recursive function, called a wverification condition generator or VCG. Appendix C shows
how pre and the corresponding VCG can be implemented in a straightforward manner as a recursive
function. As indicated before, such an implementation is too monolithic in that it cannot be altered
or extended without tampering with the code. Later we will show how to do it differently. In
the next two subsections we will first introduce some notation and underlying concepts. The
introduction on monad (Subsection 2.2) is a very brief one. If the reader is already familiar with
the concept, it can be skipped.

2.1 Algebras

Any data type 7 induces a so-called fold function: a higher order function that defines a recursive
pattern over T'. For the data type Stmt from Definition 2.1, the corresponding fold function is:

foldStmt (Aasg, Aseq, Aif, Awhile) S = fOld S (2)
where
fold (z :=¢e) = Asgze
fOld (Sl > S2) = Aseq (fold Sl) (fOld 52)
fold (IfElse g S1 Sz) = Ais q (fOld Sl) (fOld 52)
fold (While i g S) = Aumite i g (fold S)

The tuple (Aasg, Aseq, Ais, Aunite) consists of functions; each specifies how the results of the re-
cursion are combined at the corresponding data constructor. If r is the type of the result of the
recursion, those functions can be seen as operations on r. In literature a tuple of operations is
also called an algebra. Notice that via a fold function, an algebra can be said to abstractly specify
a recursive computation.

If 7 is a data type, an algebra A which can be folded over 7 is also called a 7-algebra. So,
the Stmt-algebra has the following type:

type StmtAlgebraer = (String—e—7r (3)
ST T =T
e T =T T

,e—e—T —T)

A T-algebra whose operations operate on the type r is also called a 7-algebra of r, or simply an
algebra of r if the choice of 7 is clear from the context.

In the algebraic theories of data type, e.g. [15, 12], it is possible to talk about the properties
of algebras in a more abstract way, e.g. without having to be explicit about the structure of the
underlying data type. The use of this kind of abstraction is not really necessary here, and so we
do not use it. In Appendix A we briefly outline how to look at the techniques explained here from
an algebraic point of view.

Let us introduce some more notation. If A is an tuple, The notation f|A extends A with f; for
example, f|(g,h) = (f,g,h). If Ais a T-algebra, and C is a data constructor of 7, Ac denotes



the component of A which corresponds to C, and A{C = f} denotes the algebra obtained by
replacing A¢ with f.

We will alter the behavior of an algebra by post-processing the results of the functions that
constitute an algebra. This post-processing is formalized by what we call a modifier of an algebra.
In particular, we consider the following type of modifiers for Stmt-algebras:

type Modifierer = (String—e— (r —r) (4)
,r—r—(r—r)
,e—>r1r—>1r—(r—r)
,e—e—r—r—(r—r))

We introduce an operator <$> to apply a modifier of the above type to an algebra.

Definition 2.2 : APPLYING A MODIFIER

M<$>A = ((Mzwe — (Mo ze) (Ao e))
(A1 e —  (Mir1712) (A1 71 12))
s(Agrire —  (Mzgrirz) (A2 grir2))
sNigr  — (Msigr)(Asitgr)))

a

2.2 Brief on Monads

We will give a brief overview of monads that is sufficient to understand the remaining of this
paper. A more inspiring introduction on monads can be found in [21]. There are also plenty
of texts at www.haskell.org. A monad is a type constructor m equipped with some operations
which can be used to mimic an imperative program in a functional language. Without monads,
imperative programs can be imitated by explicitly threading the state the imperative program
operates on. However, this results in complicated and ugly code. A monad can be made to carry
a state. With proper syntactical sugaring (the do-notation), the state can be hidden and we can
abstractly imitate imperative programs within a functional language. In Haskell we can write code
like:

do{qg—Sr;p—Tgq; returnp }

which calls two imperative functions S and T in sequence. The code is translated to a purely
functional composition of S and 7. In Haskell, a class Monad is also provided. Instances of this
class are monads. Via the Haskell class mechanism, it is possible to overload the do-notation on
any monad.

2.3 Predicate Transformer, Logic, and VCG

Recall that some rules of the predicate transformer pre generate verification conditions. In order to
collect them, we can thread a list through the computation of pre such that whenever a verification
condition is emitted, it is added into the list. Consequently, if e is the type of expressions, we have
to represent a predicate transformer by a function of type:

e — le] = (e [e])

where the [e] in the second argument represents the threaded list of already generated verification
conditions. Because the list is threaded, it can be seen as a state with respect to the computa-
tion of a transformer. Consequently, it can be represented by a monad, and we can change the
representation of transformers as follows:



Definition 2.3 : TRANSFORMERS
Let m be a monad.

type Transformer me = e—me

a

In particular, we will use recorder monads from the class Monad” that are explained below. A
recorder monad extends an ordinary monad with an operation record. Notice that the class
specification of Monad® leaves the exact implementation of the operation unspecified. For our
purpose, record ¢ will be an operation that somehow adds the verification condition ¢ into the
threaded list, now maintained as a state by the monad.

Definition 2.4 : RECORDER MONAD

class Monad m = Monad® e m
where
record :: e — m()

An inference rule can be represented by a function that takes a statement and returns a trans-
former. This means that an implementation of pre, will have the following type:

pre :: Monad” e m = Stmt e — Transformer m e

Now we can benefit from the monad representation and can use the do notation. The rule for
while can then, for example, be implemented in Haskell as follows:

ruleWhile (While i g body) ¢
do
p < pre body q
record (i A —g = q)
record (i Ag = D)
return ¢

This looks cleaner than the straightforward implementation as a recursive function from Appendix
C.

We will, however, use a slightly different implementation. Rather than passing a while state-
ment as the first argument of ruleWhile, we pass the transformer for the body of the while,
i.e. pre body. The resulting code for all rules is shown in Figure 2. The reason for passing the
transformer instead of the statement, is that now the type of a tuple containing the four rules
matches that of an algebra, i.e. an algebra of transformers:

StmtAlgebra e (Transformer e m)

Notice that such an algebra fully specifies the transformer logic of Ly, and hence we use the first
to represent the latter. We define this type abbreviation as follows:

Definition 2.5 : FAMILY OF Lo-LOGICS
type LoLogic me = StmtAlgebra e (Transformer e m)

In particular, below we define an instance of such a logic which corresponds to the pre-logic of Ly
as in Figure 2.

Definition 2.6 : THE STANDARD Lo-LOGIC
stalogic = (ruleAsg, ruleSeq, ruleIfElse, ruleWhile)

where the rules are defined as in Figure 2.



ruleAsg x ¢ ¢ = return (subst (z,¢);q)

ruleSeqt g q =
do
D2 —taq
p1 < t1 p2
return pq

rulelfElsegtitoq =
do
p1—tigq
p2 < tagq
return ((9 = p1) A (=g = p2))

ruleWhile ¢ g thoqy ¢ =
do
D — tbody {
record (i A =g = q)
record (i Ag = D)
return

Figure 2: The representation of Lo inference rules.

From now on, we will not distinguish a value of type s;qlogic from the actual logic it represents.
We use the term ’logic’ for both.

Since a logic is now an algebra, it can be folded over Stmt. Folding essentially comes down
to applying the inference rules recursively down a given statement. For example folding the logic
stalogic defined above will construct the transformer pre. Furthermore, if the underlying monad
m is chosen properly, the transformer will record the generated verification conditions in its monad
state and, hence, we also have a VCG.

Definition 2.7 : REPRESENTATION OF VCG
type VCGm e = Stmt e — Transformer me

The standard VCG that generates verification conditions while calculating the weakest pre-
condition for a statement can now easily be defined as follows:

Definition 2.8 : THE STANDARD VCG FOR Lo
Let gtqvcg :: Monad® em = VCGme. We define:

stavcg = foldStmt g¢qlogic

3 Modifying Logics

Since now a logic is just a tuple of inference rules, we can easily construct a variant logic by
replacing some of the rules. The corresponding VCG can be obtained simply by folding the new
logic. For example, consider the following weaker variants of the while rule:



Definition 3.1 : THE B-RULE

b_ruleWhile i g tpoay ¢ =
do
P < tpody true
record (i A —g = q)
record (i Ag = D)
return true

Definition 3.2 : THE I-RULE
iruleWhile ¢ g tpoay ¢ =
do
p— tbody {
record (i A g = p)
return true

We can easily construct the corresponding logics by replacing the standard while rule with the
variants above, and then construct the VCGs:

Definition 3.3 : THE B AND 1 LoGIcs AND VCGs

plogic = glogic{While = b_ruleWhile}
ilogic = galogic{While = i ruleWhile}
bVCE = foldStmt plogic
ivVeg = foldStmt ;logic

When given a program P, ,vcg will perform a reduction that assumes the invariance and reacha-
bility of all ¢’s that decorate the loops in P. More precisely, if P contains a loop inv ¢ while ¢
do S, the reduction will assume that S preserves i and that the state of P as it enters the loop will
satisfy i. Because these aspects of correctness are now assumed, ,vcg will produce less verification
conditions, which may be more suitable for limited budget verification. The other VCG, ;vcg,
is another example of a ’light’ VCG. When given a program P with no nested loop, it will only
produce the verification conditions that are needed to verify that all ’s decorating the loops in P
are preserved by their respective loops’ body.

We can also easily extend a logic. Suppose we consider a more realistic variant of Ly that has
the ability to abort when an expression is evaluated inside a statement. This can come in handy
when, for example, the evaluation of an expression causes a division by zero, or an attempt to
read an array outside its range. To deal with this, the logic of Ly will have to be strengthened
accordingly. We can do this by modifying each affected inference rule so that the computed pre-
condition is strengthened by a predicate sufficient to guarantee safe evaluation of the expressions
in the target statement. We will call such an extension an SE (Safe Evaluation) extension.

Recall that the type e is an instance of the class Expression. We now assume that the class
also offers a function unsafe :: e — [e], that, when given an expression e, will return a list
[c1,...,cn] such that ¢; V...V ¢, specifies an upper bound of unsafe states for the evaluation of
e. Consequently, to guarantee safe evaluation of e, it is sufficient to guarantee that it is evaluated
in a state satisfying —¢q A ... A —¢,. We will assume a function safe, such that safe e will return
I IVANNNY AN e

Now we can define the following higher order function to strengthen an inference rule. The
resulting rule produces a strengthened pre-condition p such that evaluating an expression e in a
state satisfying p is always safe:

Definition 3.4 : SE RULE EXTENSION
Let ggextend :: ¢ — Transformer m e — Transformer m e. We define:

sgextendeT g = do{p« T q; return (safee A p)}



For example, we can apply it to extend the assignment rule:
seTuleAsg x e = gpextend e (ruleAsgx e)

This will strengthen the rule such that applying it to an assignment x:=e¢ will result in a pre-
condition that will guarantee the safe evaluation of the expression e.

We can now define a modifier that will extend each inference rule of Ly accordingly. The
extension for the assignment has been shown above. The rules for IfElse and While have to
be extended as well to guanrantee the safe evaluation of their guards. The rule for sequential
composition does not need any extension because it does not need to evaluate any expression (at
the top level). Here is the SE-modifier:

Definition 3.5 : SE MODIFIER

Mg = ((Aze — sgextend e)
5 ()\ tl tg — Id)
, (Agtita — ggextend g)
, (Aigt — ggextendWhilei g))
where
seextendWhileigT ¢ = do {T ¢; record(i = safe g)}

Now we can apply the modifier to a logic. For example, Mgz <$> stqlogic will result in the
standard Lg logic with the SE extensions. For more lightweight verification, we can construct
Msg <$> y,logic, that, when given true as the post-condition, will produce only the verification
conditions related to the safe evaluation of the expressions in the target program, regardless of its
functionality.

We can also use a modifier to extend the functionality of a VCG such that, besides generating
verification conditions, leaves a trace of information that can be used for debugging or valida-
tion. For example, the inference rule that handles assignments in java-like OO languages is quite
complicated [8, 19] and users would definitely benefit from a trace that can, for example, be sent
to a third party tool for validation. Below, we will define a modifier that records the pre- and
post-conditions of every assignment in order to generate a trace. Note that such a modifier needs
to extend the state structure of a VCG. Normally, this would require surgery on the existing code
of the VCG. In our case, however, no surgery is needed since we have specified the monad under-
lying a logic and its VCG using a Haskell class called Monad®. Such a specification lays down the
general type of operations available to the class, but leaves the precise internal structure of the
class instances unspecified. We can now simply extend the class Monad* with a new class, called
Monad” that adds an operation recordDebugInfo for inserting new information to the validation
trace. We call instances of the class Monad” debugger monads.

Definition 3.6 : DEBUGGER MONAD

class Monad” e m = Monad? e m
where
recordDebugInfo :: String — ¢ — m()

We can now define a modifier that extends the assignment rule so that it records its post-condition
and the calculated pre-condition:

Definition 3.7 : VT MODIFIER

MVT = (masg, ()\ tl t2 — Id), ()\ g tl tQ — Id), ()\ 7 g t— Id))



where:

Magg TET q = do
p—ryg
recordDebugInfo ”” ¢
recordDebugInfo (z +” :=” H showe) p
return p

a

We can use this modifier on any logic. For example Myr <$> stqlogic will extend the standard
logic with the above trace validation feature; Myr <$> (Mgg <$> stqlogic) will 'plug-in’ the SE and
validation trace extensions to the standard logic. After some beautification, the trace extension
can produce a trace like:

TRACE:
{ 0<=0 } i:=0 { 0<=i }

{ 0<=i+1 } i:=i+1 { 0<=i }

Notice that the validation trace extension can now be added without changing anything in the
base logic. All we need to do is properly instantiate the monad used by the logic, in order to
create a concrete instance of the logic that is needed to make a concrete VCG.

4 Extending Logics

We will now consider a situation where we extend the language Ly. Let us add two constructs:
raise and try. The first will enable us to raise an exception, for example if the evaluation of an
expression within a statement causes a division by 0. The second construct, try S; catch S,, will
try to do S7. If S terminates normally then S5 is skipped, otherwise S5 is executed. Furthermore,
evaluating an expression in a statement may now raise an exception,

In the following, we assume the representing type Stmt and its fold function are extended
accordingly to accommodate the new constructs.

As the language grows, the logic supporting it should also be expanded accordingly. Basically,
all we have to do is add the rules for the new constructs to the old logics of Lg. Let us try a
minimalists extension first. It is an extension of the Ly logic that will produce a pre-condition
that will enforce normal execution of the target statement (that is, the pre-condition guarantees
that at no point during its execution the statement will throw an exception). Consider now the
following rules for raise and try:

Definition 4.1 : CONSERVATIVE raise RULE
ruleRaise ¢ = return ff

Definition 4.2 : CONSERVATIVE try RULE
ruleTry Tiry Teaten ¢ = Tiry q

In particular, ruleRaise returns an ff as the pre-condition, which means that the rule actually
wants to forbid an execution leading to raise. Consider Mgg <$> stqlogic as the base logic. The
SE extension makes sure that no expression in the target statement will cause an exception. Since
exception is now excluded, the statement in the catch part can be igored, which what ruleTry
above does. So, the new logic for the extended Ly can be built by:

ruleRaise | ruleTry | (Msg <$> stalogic)

10



A more reasonable extension, however, will really deal with exceptions rather than simply exclud-
ing them. Borrowing ideas from [13, 8], the Hoare triple notation is extended to:

{p} S {(¢,4)}

where g, called normal post-condition, denotes the post-condition of S, if it terminates normally;
and ¢’, called exceptional post-condition, denotes the post-condition if S terminates via an excep-
tion. The rules for raise and try are changed to:

ruleRaise (¢,¢') = return ¢

ruleTry Tiry Teaten (¢:¢)) = do{p' — Tearen (¢,¢') 5 Tery (¢,7") }

Notice that this requires the structure of the post-condition in the old logic of Ly to be extended to
a pair. Our representation can handle such an extension! Recall that we represent post-conditions
by a type variable e that can take any structure, including tuples. However we do require e to be
an instance of the class Expression. So, whatever the concrete choice of e is, a proper instance of
the class Expression will have to be written, keeping in mind that the class has to support quite
a number of operations.

Another way to implement the extension is by threading the exceptional post-condition, though
this is not the way post-conditions are normally treated®. However the only rule that alters the
information in the exceptional post-condition is the try rule, since this is the only place in Ly
where an exception is handled. Consequently, as we recursively apply the rules down a target
statement, the information in the exceptional post-condition remains most of the time constant,
except when we encounter a try structure. We can still handle it, without too much loss of
abstraction, as a threaded parameter; thus as part of the state of the used monad.

Below we introduce a class Monad? which extends Monad? with two operations: getPostE
which is used to fetch the exceptional post-condition from the monad’s state, and setPostE which
is used to change it.

Definition 4.3 :

class Monad® e m = Monad? e m
where
getPostE::me
setPostE :: e — m()

Now we can redefine the raise and try rules to make use of a monad from the class Monad”:
Definition 4.4 : raise RULE

gruleRaise ¢ = getPostE
Definition 4.5 : try RULE

gruleTry Tiry Teaten ¢ = do
q' < getPostE
pl — Tcatch q
setPostE p’ ; p « Tiry ¢
setPostE ¢
return p

To obtain the new logic, we simply add the above rules to the old logics of Ly with the SE
extension. For example, a new standard logic can be built by:

gruleRaise | ruleTry | (Msg <$> stalogic)

And if we prefer a more lightweight logic, we can, for example, replace szqlogic above with ,logic.

3In attribute grammars, post-conditions are most naturally represented by an inherited attribute. Such an
attribute is however awkward to mimic with a monad.
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5 Related Works

One way monads can be useful for program verification is to use them in the semantics of the
target language. In particular if the language has some extended features, monads can be used
to abstractly represent the semantics of those features. For example, in [10] Jacobs and Poll
show how monads can provide a useful level of abstraction and a means for organizing various
complications in the denotational semantics of Java used in the verification tool LOOP [11]. Java
has a complicated denotational semantics due to various abnormal termination schemes supported
by the language. Another example is the work on Hurd in verification of probabilistic algorithms
[9]. Hurd uses state-transformer monad in his semantical model of probabilistic programs to
thread random bit generators over computation. In the language design community the usefulness
of monads to modularly build semantics has actually been realized much earlier —see for example
the work of Moggi [16] and Liang and Hudak [14]. As opposed to using monads in the (executional)
semantics of a language L, this paper discusses the use of monads to implement logics about L.
A syntax driven logic can of course be seen as a semantics of L, so general results about monadic
semantics also applies to monadic logics. As for other works along the same line as ours, so far,
we have not much success in tracking one in bibliography databases.

The use of algebras to implement a syntax directed logic is related to the attribute grammar
approach [18]. Attribute grammar provides an abstract and convenient way to specify recursive
computation over a parsing tree. Essentially, such a specification is an algebra, which is specified
in terms of computation on attributes being passed between parent and child nodes in a tree.
A number of attribute grammar tools are available today, such as Swierstra’s AG system [20].
Traditionally these tools are used to build compiler related tools, such as type checkers and pretty
printers, but it is also suitable to build any syntax directed tool such as VCGs. The approach offers
a number of useful abstraction tools, which are quite complementary to the monad approach. To
specify a generic monadic logic in an attribute grammar style would require polymorphic attributes
though; and not all attribute grammar tools support polymorphic attributes.

6 Conclusion

We have described a technique to modularly change and extend a logic to obtain derivative ver-
ification condition generators. It has been implemented on Haskell using a small case study as a
proof of principle. From the small experiment that we did, the technique seems to have a number
of practical advantages that make the implementation of programming logics safer and much easier
to maintain. We believe that it is worth further investigation.

Research Direction

This paper only describes a construction technique. Having constructed a new logic, for example
via an extension on a base logic, one is still confronted by the question of whether the new logic
is sound. We would want the compositionality to extend to the proof level. That is, want to be
able to lift the soundness result of the old logic to the new one with minimal effort, and to be able
to do so without having to tamper with the old proof. In particular, this will be a very useful in
embedding. We have not conducted any experiment in this direction yet. There are some works
addressing the issue, for example that of Liang and Hudak [14] and Harisson [4]. These works
show examples suggesting that proof compositionality via monads is attainable. However, the
examples do not specifically deal with logic extension, so we feel that more experiments are still
needed.

We also have not tried the technique on a real case study, so there also lies a possible con-
tinuation. Also, Haskell, which we use in our prototype implementation, is actually a bit short
to express some of the generic concepts we have. One may want to investigate combination with
generic programming, e.g. like is done in [5].
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A Algebraic Data Type View

Algebraic theories of data types, e.g. as by Malcolm [15], allow algebras on data types to be
treated abstractly. This note just gives an outline of how to look at this paper from the algebraic

13



angle. It does not explain the theories, nor the notation. A data type can be described by a
functor F' which specifies the structure of the data type’s constructors. An algebra over r can be
given a general type F' r — 7. Thus, a logic has a general type:

F (Transformer e r) — Transformer e r

A modifier M is a function of type F' r — r — r. The operator <$> can be defined generally as:
M<$>yp=(MANa— Ma (¢ a))

For example, the SE modifier can be defined in this style:

Msge = (Aze— ggextende) + (Atyta —id) + (A gty ta — sgextend g)
+
(Migt— ggextendWhile i g)

B The Class Expression

Definition B.1 :

class Expression e where

false

0

A Toe—e—e
\ e—e—e
= e—e—e

- noe—e

subst :: (String,e) e —e

unsafe : e — [e]

C Direct Implementation

Below is a direct implementation of a VCG for Ly as a recursive function over Stmt. The type
variable e represents the type of expressions; it has to be an instance of class Expression given
above.

The function vcg takes a statement as an argument. Its third parameter is the post condition
which is to be reduced. The result is a pair (vcs,p) where p is the resulting pre-condition and
ves is a list of collected verification conditions. To collect the verification conditions the list ves
is threaded through the function in its second argument.

vcg :: Expression e => Stmt -> [e] -> e —> ([e],e)
veg (x:=e) ves q = (vecs, subst (x,e) q)
veg (sl :> s2) ves q = (vesl,pl)
where
(ves2,p2) = veg ves g
(vesl,pl) = vcg vcs2 p2
vcg (While i g body) vecs q = (cl:c2:vcs’,i)
where

cl =1 /\ neg g ==>q
c2 =1 /\g==>p
(ves’,p) = veg ves 1
vcg (IfElse g sl s2) vcs q = (vcs2,p)
where
(vesl,pl) = vcg s1 ves q
(ves2,p2) = veg s2 vesl q
p = (g ==> pl) /\ (neg g ==> p2)

14



D Download

A Haskell implementation of the techniques mentioned by the paper on the language Ly can be
downloaded from our subversion server:

https://svn.cs.uu.nl:12443/repos/wpprojects/xmech/papers/pvcg/haskellmodels/

Notice the non-standard port number, as some site may put restrictions on accessing non-standard
port numbers.
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