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Abstract. Data-flow transformations used in optimizing compilers are also use-
ful in other programming tools such as code generators, aspect weavers, domain-
specific optimizers, and refactoring tools. These applications require source-to-
source transformations rather than transformations on a low-level intermediate
representation. In this paper we describe the composition of source-to-source
data-flow transformations in the program transformation language Stratego. The
language supports the high-level specification of transformations by means of
rewriting strategy combinators that allow a natural modeling of data- and control-
flow without committing to a specific source language. Data-flow facts are propa-
gated using dynamic rewriting rules. In particular, we introduce the concept of de-
pendent dynamic rewrite rules for modeling the dependencies of data-flow facts
on program entities such as variables. The approach supports the combination
of analysis and transformation, the combination of multiple transformations, the
combination with other types of transformations, and the correct treatment of
variable binding constructs and lexical scope to avoid free variable capture.

1 Introduction

Optimizing compilers rely on data-flow facts to perform optimizations [1, 12]. Data-
flow optimizations such as constant propagation, copy propagation, and dead code elim-
ination transform or eliminate statements or expressions based on data-flow information
that is propagated along the control-flow paths of the program. The implementation of
these optimizations is hidden from programmers using the compiler. Data-flow trans-
formations are useful outside the core of compilers as well. In generative programming,
high-level and model-driven code generation, refactoring, aspect weaving, open com-
pilers, and domain- and application-specific optimization, transformations are an es-
sential part of program development. While data-flow optimizations in compilers are
usually implemented to work on fixed low-level intermediate representations, these ap-
plications require transformations on source code in high-level programming languages.
Furthermore, compiler optimizations are traditionally implemented in general purpose
languages, optimizing for speed of the transformations rather than productivity of the



transformation writer. Higher productivity can be achieved using a language and envi-
ronment that provides more support for the domain of program transformation. For such
an environment for source-to-source transformations to be widely applicable it should
cover a wide spectrum of transformational tasks. That is, it should not be specific to one
source language and should not restrict support to one type of transformation. Rather, it
should provide high-level abstractions for modeling control- and data-flow of the lan-
guage under consideration, and it should support combination of data-flow transforma-
tions with other types of program manipulation such as template based code generation.
Also, the environment should not require abstraction from details of program represen-
tation and should for instance support handling issues of scope of variables and help to
avoid problems such as free variable capture.

In this paper we describe the composition of source-to-source data-flow transfor-
mations in the program transformation language Stratego [19]. The language is not
restricted to data-flow transformations nor is it restricted to transformations on a spe-
cific source language. Instead of building-in knowledge about data-flow, Stratego pro-
vides high-level ingredients for composing data-flow transformations on abstract syn-
tax trees. These ingredients arerewrite rules for definition of basic transformations,
programmable rewriting and traversal strategiesfor the composition of tree traversals
and controlling the application of rewrite rules,dynamic rewrite rulesfor propagation
of context-sensitive information such as data-flow facts, anddynamic rule combinators
for modeling control-flow (forks in data-flow). In particular, we introduce the concept
of dependent dynamic rewrite rulesfor modeling dependencies of data-flow facts on
program entities such as variables. Together these techniques support:

– An abstract interpretation style of data-flow transformation that allows the combi-
nation of data-flow analysis and transformation in the same traversal.

– The correct treatment of variable binding constructs and lexical scope to avoid free
variable capture and to restrict the application of transformation rules to the scope
where they are valid.

– The definition of generic data-flow strategies, which allow concise specifications of
data-flow transformations, and the concise combination of multiple transformations
into ‘super-optimizers’.

– The combination of data-flow transformations with other types of transformations,
reuse of elements of a transformation in other transformations, and easy experi-
mentation with alternative transformation strategies.

We proceed as follows. In the next section we describe rewrite rules, strategies,
and dynamic rules and illustrate their use in a specification of constant propagation.
In Section 3 we motivate the need fordependentdynamic rules and illustrate their
use in a specification of copy propagation. In Section 4 we generalize the strategies for
constant propagation and copy propagation into a generic strategy for forward data-flow
propagation and instantiate the strategy to common-subexpression elimination. We also
show how, using the same generic strategy, the components of these transformations
can be combined in a single super-optimizer. In Section 5 we discuss previous, related,
and future work.
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2 Rewriting Strategies and Dynamic Rules

In this section we show how rewriting strategies in combination with dynamic rewrite
rules can be used to compose data-flow transformations on abstract syntax trees, using
constant propagation as running example. Throughout the paper we use a subset of Ap-
pel’s Tiger language [2] as the source language for transformations. The abstract syntax
of this subset is defined inFig. 1. However, none of the techniques we present are spe-
cific to this language. We assume the reader to be familiar with the basic notions and
infrastructure for source-to-source transformations on abstract syntax trees, including
parsing, tree representation, and pretty-printing. For an overview of the specific infras-
tructure used in the Stratego/XT framework we refer to [19].

2.1 Local Transformations with Rewrite Rules

Basic transformations on abstract syntax trees can be defined usingtreeor term rewrit-
ing. A rewrite rule (p1 -> p2) defines the transformation of a tree that matches the
left-hand sidep1 of the rule to the instantiation of the right-hand sidep2 of the rule.
Term rewriting is thenormalizationof a tree by exhaustively applying a set of rewrite
rules.Fig. 2shows some typical rewrite rules for constant folding and unreachable code
elimination. Note that we useconcrete syntax[18] to describe the abstract syntax tree
patterns in the left-hand side and right-hand side of the rules. That is, a phrase such as
|[ if i then e1 else e2 ]| denotes a tree patternIf(Int(i ),e1,e2 ) where
i , e1 , ande2 are meta-variables. Using the rules fromFig. 2 the arithmetic expression
2 + 3 + 7 rewrites to12 and the conditional expressionif 0 then x := 1 else
x := 2 reduces tox := 2.

Term rewriting is declarative since rewrite rules can be defined independently and
are automatically applied by a rewriting engine. The correctness of the combined trans-
formation can be established by the correctness of the individual rules. However, static
rewrite rules are not sufficient for defining data-flow transformations. A rewrite rule can
only use information from the term to which it is applied, not from its parents or sib-
lings in the abstract syntax tree. Data-flow transformations typically need information
from assignments and variable declarations that are higher-up in the tree. For example,

d ::= var x := e
e ::= x | str | i | e1 ⊕ e2 | f(e∗, ) | x := e | (e∗; ) | if e1 then e2 else e3

| while e1 do e2 | let d∗ in e∗; end

Fig. 1. Abstract syntax for a subset of Tiger with⊕ the usual arithmetic, relational, and Boolean
operators. The non-terminalsx, f , str, and i denote variables, functions, string, and integer
constants, respectively.e∗; denotes a list of zero or more expressions separated by semicolons.

EvalBinOp : |[ i + j ]| -> |[ k ]| where <add>(i , j ) => k

EvalBinOp : |[ i * j ]| -> |[ k ]| where <mul>(i , j ) => k

EvalWhile : |[ while 0 do e ]| -> |[ () ]|

EvalIf : |[ if 0 then e1 else e2 ]| -> |[ e2 ]|

EvalIf : |[ if i then e1 else e2 ]| -> |[ e1 ]| where <not(eq)>(i ,|[0]|)

Fig. 2.Some rewrite rules for constant folding and unreachable code elimination.
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(x := 3; y := x + 1;

if foo(x)

then (y := 2 * x; x := y - 2)

else (x := y; y := 23);

z := x + y)

⇒

(x := 3; y := 4;

if foo(3)

then (y := 6; x := 4)

else (x := 4; y := 23);

z := 4 + y)

Fig. 3.Example of constant propagation.

consider the constant folding and propagation transformation inFig. 3. The fact that the
variablex is constant allows constant folding in many of the subsequent expressions.
However, this requires the propagation of the initial constant value ofx to its uses; e.g.,
folding the expressionx + 1 is only possible after replacingx with its value.

2.2 Context-sensitive Transformations with Dynamic Rewrite Rules

To extend rewriting to propagation of context-sensitive information requires (1) the
dynamic (run-time) definition of rewrite rules and (2) the careful control of their appli-
cation. We first consider the use of dynamic rewrite rules to propagate data-flow infor-
mation in a control-flow graph and then argue that this approach can also be applied to
abstract syntax trees. In the next subsection we then show how this transformation on
abstract syntax trees is realized in Stratego.

The left diagram inFig. 4 depicts the control-flow graph of the example program
in Fig. 3. The nodes correspond to the assignments and conditionals in the program
before and after transformation. The traversal of the graph follows the control-flow of
the program, which corresponds to following the direction of the arrows from entry to
exit. At nodes with more than one outgoing edge, the traversal subsequently visits each
branch and synchronizes at the merge point. Data-flow facts are represented by a set of
dynamic rewrite rules(x -> i) that rewrite an occurrence of a variable to its constant
value. Since the set of propagation rules can be different at each point in the program,
the edges of the graph are annotated with the rules that are valid at that point of the
traversal.

At each node of the graph, first the right-hand side of the assignment is transformed
by rewriting variables in the expression to constant values, if applicable, and attempting
to apply constant folding rules such as inFig. 2. For example,y := x + 1 is trans-
formed toy := 3 + 1 by application of the rulex -> 3 and then reduced toy := 4
by constant folding. Next, an assignmentx := e causes the undefinition of any rules
with x as left-hand side, since these are no longer valid. Finally, if the assignment has
a constant value as right-hand side (x := i ), a new rewrite rulex -> i is defined.

Multiple propagation rules fordifferent variablescan be defined at the same time.
For example, after they := x + 1 assignment both rulesx -> 3 and y -> 4 are
valid. However, only one rule can be defined with the same left-hand side. For example,
The assignmentx := y replaces the rulex -> 3 with the rulex -> 4. At a fork in the
control-flow, that is at a node with more than one outgoing edge, each branch starts with
the rule-set valid at the branching node. That is, each edge is annotated with a clone of
that rule-set. At the merge point only those rules that are consistent in all branches are
maintained. In the example, the rules fory are inconsistent at the merge point and are
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x := 3
x := 3

y := x + 1
y := 4

x -> 3

if foo(x)
if foo(3)

x -> 3
y -> 4

y := 2 * x
y := 6

x -> 3
y -> 4

x := y
x := 4

x -> 3
y -> 4

x := y - 2
x := 4

x -> 3
y -> 6

x -> 4
y -> 6

z := x + y
z := 4 + y

x -> 4
y -

y := 23
y := 23

x -> 4
y -> 4

x -> 4
y -> 23

Fig. 4. Control-flow graph (left) and abstract syntax tree (right)
annotated with propagation rules.

undefined. In the case of loops this process should be repeated until a stable set of rules
is obtained.

A control-flow graph traversal of a program can also be realized by traversing its
abstract syntax tree. This requires visiting the nodes of the tree in the order that they
would be visited in a traversal of the graph. The right diagram inFig. 4 depicts the
abstract syntax tree of the example program. Simulation of the traversal corresponds
basically to a depth-first left-to-right traversal of the syntax tree. Realization of the
constant propagation transformation on abstract syntax trees thus requires

– traversal of the abstract syntax tree to visit expressions in the right order
– dynamic definition of rules to reflect the constant assignments
– application of dynamic propagation rules and static constant folding rules
– forking and combining rule-sets to model forks in data-flow

2.3 Realization in Stratego

The Stratego program inFig. 5 defines a constant propagation transformation strategy
implementing the propagation of dynamic rules as described above. In the rest of this
section we examine the components of this definition and informally introduce the Strat-
ego constructs that they use. The definition of a subset of the abstract syntax of Stratego
in Fig. 6 should be helpful in understanding the structure of Stratego programs. A full
description of the language is beyond the scope of this paper; see [4, 19].

Rules and StrategiesRewrite rules as described in Section 2.1 are the basic entities of
Stratego programs. A named rulef : p1 -> p2 transforms a term matching patternp1
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prop-const =

PropConst <+ prop-const-assign <+ prop-const-declare

<+ prop-const-let <+ prop-const-if <+ prop-const-while

<+ (all(prop-const); try(EvalBinOp))

prop-const-assign =

|[ x := <prop-const => e > ]|

; if <is-value> e then rules( PropConst.x : |[ x ]| -> |[ e ]| )

else rules( PropConst.x :- |[ x ]| ) end

prop-const-declare =

|[ var x := <prop-const => e > ]|

; if <is-value> e then rules( PropConst+x : |[ x ]| -> |[ e ]| )

else rules( PropConst+x :- |[ x ]| ) end

prop-const-let =

?|[ let d* in e* end ]|; {| PropConst : all(prop-const) |}

prop-const-if =

|[ if <prop-const> then <id> else <id> ]|

; (EvalIf; prop-const

<+ (|[ if <id> then <prop-const> else <id> ]|

/PropConst\ |[ if <id> then <id> else <prop-const> ]|))

prop-const-while =

?|[ while e1 do e2 ]|

; (|[ while <prop-const> do <id> ]|; EvalWhile

<+ (/PropConst\* |[ while <prop-const> do <prop-const> ]|))

Fig. 5.Constant propagation transformation strategy.

program P ::= (rules | strategies) d∗

definition d ::= h = s | h : r
header h ::= f(f∗, |x

∗
, ) | f(f∗, ) | f

rule r ::= p1 -> p2 (where s)?
pattern p ::= str | i | r | x | c(p∗, ) | (p∗, ) | [p∗, |p] | [p∗, ] | <s> p | <s>

strategy s ::= ? p | ! p | {x∗, : s} | <s> p | s => p
| s1 ; s2 | f(s∗, |p

∗
, ) | f(s∗, ) | f

| s1 <+ s2 | s1 < s2 + s3 | if s1 then s2 (else s3)?
| fail | id | not(s) | where(s) | let d∗ in s end

| rules(drd∗) | {|f∗, : s |} | s1 /f∗, \ s2 | /f∗, \* s
dyn. rule def. drd ::= h((.|+)p)? :(+)? dr | h((.|+)p)? :- p

dyn.rule dr ::= r | r depends on p

Fig. 6. Abstract syntax of a subset of Stratego. The following additional non-terminals are used:
str, i andr denote string, integer, and real constants;x a pattern variable,c a constructor,f a
strategy operator. Operators are listed in the order of precedence; in particular; has precedence
over<+. Note that the use of concrete syntax for patterns and congruence strategies is not covered
by this abstract syntax definition.
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to the instantiation of patternp2. Some example rewrite rules are shown inFig. 2 using
concrete syntaxfor the term patterns. Stratego extends the basic notion of term rewriting
with programmable strategies for the controlled application of rewrite rules. A rule with
namef defines a transformation from terms to terms. A rule may fail to apply to a term,
e.g., when its left-hand side does not match the term it is applied to. Strategies combine
rules into more complex transformations using a number ofstrategy combinators. Since
rules can fail, strategies can fail to apply to a term as well. Strategydefinitionsof the
form f = s name a strategy expression. Thus,Fig. 5 introduces six, mutually recursive,
definitions that compose the constant propagation strategyprop-const.

The basic strategy combinators are sequential compositions1; s2 (first applys1

and thens2) and deterministic choices1 <+s2 (first applys1, if that fails applys2). Note
that sequential composition has higher precedence than deterministic choice. Thus, the
prop-const strategy defines a choice between seven cases, which are tried in turn until
one succeeds.

Term TraversalIn order to transform sub-terms of a term, a strategy needs totraverse
the term. While in conventional languages traversal requires a tedious enumeration of
all elements of the data structure and their traversal, Stratego supportsgenerictraversal
throughone-level traversal combinators[20]. One of these combinators isall(s),
which appliess to each direct sub-term of the subject term. Thus, the basic schema of
theprop-const strategy is

prop-const = PropConst <+ (all(prop-const); try(EvalBinOp))

which either applies thePropConst dynamic rule to replace a variable by a constant
value or recursively visits the direct sub-terms with a recursive call to theprop-const
strategy (all(prop-const)) and then tries to apply a constant folding rule. The other
cases in the definition ofprop-const introduce exceptions to the generic traversal. For
example, only the right-hand side of an assignment should be visited, and the branching
of the conditional statement requires special care.

In addition to generic traversal, Stratego supports data-type specific traversal by
means ofcongruence operators. For each constructorc with arity n in the abstract syn-
tax tree format, a corresponding strategyc(s1, ..., sn) is defined that applies only to
c terms, applying thesi strategies to the corresponding sub-terms. For example, the
strategy expressionIf(prop-const,id,id) applies theprop-const strategy only to
the first argument ofIf terms. Note thatid is the identity strategy that always suc-
ceeds. We can write such congruences again using the concrete syntax of the source
language, where we enclose the argument strategies in<.>. For instance, the strategy
|[if <prop-const> then <id> else <id>]| denotesIf(prop-const,id,id).

Pattern Matching While theprop-const-if definition Fig. 5 uses a congruence to
recognize a conditional statement, theprop-const-let andprop-const-while def-
initions use apattern matchstrategy for this purpose. A pattern match?p matches the
subject term against the patternp, binding the meta-variables in the pattern. The con-
structs => p is syntactic sugar fors; ?p, i.e., first applying strategys and then match
the result againstp. The concrete syntax congruence operators inprop-const-assign
andprop-const-declare are combinations between traversal and matching; the use
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of a meta-variable in a congruence denotes matching that variable. Thus, the strategy
|[x := <prop-const => e >]| denotesAssign(Var(?x ), prop-const => e ); it
entails application of theprop-const strategy only to the right-hand side of an assign-
ment and binding the result to the meta-variablee .

Dynamic RulesThe elements we have examined so far concern the traversal order of
the abstract syntax tree. The next aspect is the definition of dynamic rules for propa-
gation of constant assignments. Theprop-const-assign andprop-const-declare
strategies examine the right-hand side expressione of an assignment and variable dec-
laration, respectively, after these have been transformed. If the expression is a con-
stant value, a new dynamic rule is defined with as left-hand side the variablex from
the left-hand side of the assignment and as right-hand side the constant valuee . Thus
for an assignment|[ a := 3 ]| the rule|[ a ]| -> |[ 3 ]| is defined. In general, a
dynamic rule definitionrules( f : p1 -> p2 ) defines a new rulef : p′

1 -> p′
2

with p′
1 andp′

2 the original patterns in which variable bindings from the context of the
definition are substituted.

If the right-hand side expression isnot a constant value, theprop-const-assign
andprop-const-declare strategiesundefinethePropConst rule withx as left-hand
side. This is necessary in constant propagation since an assignment invalidates earlier
assignments to the same variable. For example an assignment|[ a := b + 4 ]| after
|[ a := 3 ]| invalidates the|[ a ]| -> |[ 3 ]| rule.

Dynamic Rule ScopeDynamic rules are usually related to elements of the source pro-
gram such as variables. Therefore, rules should only be applied to those parts of the
tree, where they are ‘in scope’. This is managed using the dynamic rule scope construct
{| R : s |}, which limits the scope ofR rules to the strategys. That is, allR rules
defined during the execution ofs are removed when leaving the scope. This is necessary
in a case such as the following:

let var x := 17

in let var y := x + 1

in let var x := y+1 in () end

end; print(x)

end

⇒

let var x := 17

in let var y := 18

in let var x := 19 in () end

end; print(17)

end

Without scoping the dynamic rule produced from the assignmentx := 19 in the inner
scope would be used for theprint(x) call, and produceprint(19) instead.

In fact, not all rules defined withins are removed on leaving the scope. Rules can be
defined relative to a named dynamic rule scope. For this purposeprop-const-declare
labelsthe current scope with the name of the declared variable (notation:PropConst+x ).
The dynamic rule definitions byprop-const-assign are relative to the scope of the
variable (notation:PropConst.x ) to ensure that the rule is still visible when later scopes
are exited. Therefore, the rule forx defined in the scope fory is not removed when leav-
ing that scope.

Dynamic Rule IntersectionAs discussed above, when encountering a fork in the control-
flow the current rule-set should be distributed over the branches and merged afterwards.
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For this purpose, Stratego provides dynamic rule intersection and union operators. The
intersection operators1 /PropConst\ s2 applies both strategiess1 ands2 to the cur-
rent term in sequence, but distributes the same rule-set to both strategies. Afterwards
the rule-sets are merged into one by keeping only those rules that are consistent in both
sets. The union operators1 \PropConst/ s2 is similar, but keeps all rules instead.
Thus, the traversal of the branches of the conditional statement is defined as

|[ if <id> then <prop-const> else <id> ]|

/PropConst\ |[ if <id> then <id> else <prop-const> ]|

first visiting the left branch and then the right branch, keeping only the propagation
rules that are valid after both branches.

The fixed-point version/PropConst\* s of the intersection operator repeats the
application ofs until a stable rule-set is obtained. The transformation is applied each
time using theoriginal term; only the result of the last application is used to replace the
term. Thus, the traversal of while statements is defined as

/PropConst\* |[ while <prop-const> do <prop-const> ]|

In fact, in the implementation of dynamic rules the rule-sets are not actually cloned.
Instead, changes to the rule-set are stored in a fresh ‘change-set’ for each branch. These
changesets are merged at the meet-point. Thus, the effort of merging two rule-sets is
proportional to the number of rules in the change-sets rather than the number of rules
in the rule-set.

Combining Analysis and TransformationThe constant propagation strategy defined in
Fig. 5 combines analysis and transformation; the analysis of which variables are con-
stant and the actual substitution of these constant values interact. This combination is
strictly more expressive than the conventional approach of performing separate anal-
ysis and transformation phases. The application of constant folding may enable new
constant propagations and the application of unreachable code elimination through the
EvalIf andEvalWhile rules may discard entire sub-terms that an analysis would have
to consider. This phenomenon is illustrated by the following example from [8]:

(x := 10;

while A do

if x = 10 then dosomething()

else (dosomethingelse(); x := x + 1);

y := x)

⇒
(x := 10;

while A do

dosomething();

y := 10)

Since the assignment tox in the loop is never reached, the conditional statement can be
reduced to its first branch.

3 Dependent Dynamic Rewrite Rules

While dynamic rules as presented in the previous section can be used to implement
constant propagation, they cannot be used for all data-flow transformations without
changes. In constant propagation a propagation rule maps a variable to a constant ex-
pression. Propagation rules are undefined when an assignment to the variable is encoun-
tered. However, in optimizations such as copy propagation and common-subexpression
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elimination there are multiple variables that affect a propagation rule. We illustrate the
problems using copy propagation. An assignment of a variable to a variable introduces
a copy. In copy propagation these copies are replaced by their original. For example, the
occurrence ofa in the second assignment of (a := b; c := d + a) is replaced by the
variableb to produce (a := b; c := d + b). The following dynamic rule definition
for copy propagation follows naturally from the constant propagation approach:

copy-prop-assign = ?|[ x := y ]|;

if <not(eq)>(x ,y ) then rules( CopyProp.x : |[ x ]| -> |[ y ]| )

else rules( CopyProp.x :- |[ x ]| ) end

Here we assume that the definition is embedded in a similar traversal strategy as that
for constant propagation. However, it is incorrect in a number of ways.

(1) Insufficient Dependencies.The rule is not undefined when the variable in its
right-hand side changes. For example, in the program(a := b; b := foo(); c :=
d + a) the variablea in the last statement will be replaced byb even though its value
changed in the second statement. Thus, aCopyProp rule should be undefined when any
of its variables is assigned.

(2) Free Variable Capture.The rule is not undefined when the local variable shad-
ows the variable in the right-hand side. For example, in the program

let var a := bar() var b := baz()

in a := b; let var b := foo() in print(a) end end

the occurrence ofa in the call toprint will be replaced withb, which now refers to the
variable in the inner scope. Thus, aCopyProp rule should be undefined in a local scope
when the local variable is used in the rule.

(3) Escaping Variables.The rule is not undefined when its target is going out of
scope. For example, in the following program

let var a := bar() in let var b := foo() in a := b end; print(a) end

the assignmenta := b causes the definition of a dynamic rulea -> b, which replaces
the variablea in print(a) by b, which is then used outside its scope. This suggests
that aCopyProp rule should be defined in the local scope, i.e., the scope in which the
assignment lives. However, in the following variant of the program

let var a := bar() var c := baz()

in let var b := foo() in a := b; a := c end; print(a) end

the assignmenta := c leads to a copy propagation rules whichcanbe applied in the
outer scope, since neithera norc are declared in the inner scope. Thus, aCopyProp rule
should be defined in theinnermostscope of the variables involved, but not necessarily
the innermost scope.

This sums up the problems with the extrapolation of the use of dynamic rules for
constant propagation to transformations involving variables in the right-hand sides of
rules. The first two problems are solved by means ofdependentdynamic rules, the last
problem is solved by defining rules in the innermost scope of all variables involved.
A correct definition of copy propagation using these techniques is presented inFig. 7.
Note that the traversal part of the specification is similar to the one of constant propa-
gation and is omitted.

10



copy-prop-declare = ?|[ var x := e ]|

; where( new-CopyProp(|x ,x ) )

; where( try(<copy-prop-assign-aux> |[ x := e ]|) )

copy-prop-assign = ?|[ x := e ]|

; where( undefine-CopyProp(|x ) )

; where( try(copy-prop-assign-aux) )

copy-prop-assign-aux = ?|[ x := y ]|

; where( <not(eq)>(x ,y ) )

; where( innermost-scope-CopyProp => z )

; rules( CopyProp.z : |[ x ]| -> |[ y ]| depends on [(x ,x ), (y ,y )] )

innermost-scope-CopyProp =

get-var-names => vars ; innermost-scope-CopyProp(elem-of(|vars ))

Fig. 7.Specification of copy propagation with dependent dynamic rules.

A dependent dynamic ruleis a dynamic rule that declares its dependencies on pro-
gram entities such as variables. Thedepends on clause of a dependent rule declares
a list of pairs of the scope and value of the dependencies. For example, a copy propa-
gation rule|[ a ]| -> |[ b ]| depends on the object variablesa andb, entailing the
dependency list[(a,a),(b,b)]. In the case of the Tiger transformations in this pa-
per, variable names are used as scope labels and as dependencies. However, this is not
necessarily the case in general, which motivates the distinction. Rule dependencies are
used to undefine or shadow a dynamic rule when one of its dependencies is changed.
For example, if the object variableb is assigned to, all copy propagation rules in which
that variable is involved become invalid. For this purpose, a mapping from dependen-
cies to the rules they affect is maintained. For a dependent dynamic ruleR , the strategies
undefine-R , new-R , andinnermost-scope-R solve the problems discussed above.

(1) The undefine-R (|dep ) strategy undefines all rules depending ondep . It
should be used when the meaning ofdep has changed, e.g. incopy-prop-assign.

(2) Thenew-R (|l ,dep ) strategy labels the current scope withl andlocally unde-
fines any rules that depend ondep . This strategy is typically used when encountering a
local declaration for dependencydep with scope labell , e.g., incopy-prop-declare,
and avoids rules depending ondep living in external scopes from being applied, which
would result in free variable capture.

(3) The innermost-scope-R (s) strategy examines the labels in the scopes for
R starting with the most recent one, producing the first for whichs succeeds. This is
used in the definition ofinnermost-scope-CopyProp to obtain the innermost scope
label for the set of variables in an expression. Thus, incopy-prop-assign-aux, new
CopyProp rules are defined in the innermost scopez , which is the innermost scope of
x andy . This ensures that the rule is removed as soon as one of its dependencies goes
out of scope. As a consequence rules are only applied to those parts of the tree where
both variables are in scope, avoiding variables to escape from their scope.

Dependent dynamic rules are a generative extension of basic dynamic rules. Thus,
the effect of dependent dynamic rules can be achieved using only basic dynamic rules,
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but the implementation of the administration of dependencies and their mapping is
rather tedious. The language feature supports the reuse of this code pattern by means of
a code generator in the compiler, which can also exploit the internal representation of
dynamic rules.

4 Generic Data-flow Transformation Strategies

The definition of copy propagation inFig. 7 is very similar to the definition of constant
propagation inFig. 5. The difference between the two transformations is restricted to
the optimization specific strategies for handling declarations and assignments. Con-
trol flow constructs for forking and iteration share a common strategy with the dy-
namic rule name as only difference. The generic forward propagation strategy for Tiger
(forward-prop) in Fig. 9allows individual optimizations to focus on their essential el-
ements by reusing the code for the common parts of the transformation. A dual strategy
for backwards propagation is defined in similar fashion [14].

The forward-prop strategy is parameterized with strategies that are applied at
certain stages of the transformation of a language construct. The strategiestransform,
before andafter are local rewrites of a construct and can be used to tune the transfor-
mation. Further parameters are the names of rules to be intersected (Rs1 ) and unified
(Rs2 ) at fork and join points, and rule names (Rs3 ) that are part of the transformation,
but do not require a dynamic rule operation at confluence points.

Common-Subexpresson EliminationFig. 10presents an instantiation offorward-prop
for common-subexpression elimination (CSE). CSE is a transformation that replaces
common expressions with a variable that already contains the value of the expression.
For example, CSE transforms(a := b + c; d := b + c) to (a := b + c; d :=
a). By instantiatingforward-prop, we can focus on the definition of the conditions
that enable the propagation of non-trivial expressions by definingCSE rules. Scoping
and undefining of dynamic rules are handled in theforward-prop strategy. This is a
major simplification of the implementation of CSE, since we do not have to handle all
the control-flow constructs separately in this specific optimization.

Combining TransformationsTheforward-prop strategy uses generalized versions of
the dynamic rule combinators to deal with multiple rules. Thenew-dynamic-rules
andundefine-dynamic-rules strategies apply thenew-R andundefine-R rules
for all parameter rules. Similarly, the/Rs1 \Rs2 / and/Rs1 \Rs2 /* operators general-
ize the intersection and union operators to a single combined operator, which performs
intersection over the first set of rules and union over the second. Thus, the generic

super-opt =

forward-prop(prop-const-transform, bvr-before,

bvr-after; copy-prop-after; prop-const-after; cse-after

| ["PropConst", "CopyProp", "CSE"], [], ["RenameVar"])

Fig. 8. ‘Super’ transformation combining constant propagation, copy propagation, common-
subexpression elimination, and bound variable renaming.
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forward-prop(transform, before, after | Rs1 , Rs2 , Rs3 ) =

<conc>(Rs1 , Rs2 , Rs3 ) => RsSc ; <conc>(Rs1 , Rs2 ) => RsDf ;

let

fp = prop-assign <+ prop-declare <+ prop-let <+ prop-if <+ prop-while

<+ transform(fp) <+ (before; all(fp); after)

prop-assign =

|[ <id> := <fp> ]|

; (transform(fp)

<+ before; ?|[ x := e ]|; undefine-dynamic-rules(|RsDf ,x ); after)

prop-declare =

|[ var <id> := <fp> ]|

; (transform(fp)

<+ before; ?|[ var x := e ]|; new-dynamic-rules(|RsSc ,x ,x );after)

prop-let =

?|[ let d* in e* end ]|

; (transform(fp) <+ {|~RsSc : before; all(fp); after |})

prop-if =

|[ if <fp> then <id> else <id> ]|

; (transform(fp)

<+ before ; (|[ if <id> then <fp> else <id> ]| /~Rs1 \~Rs2 /

|[ if <id> then <id> else <fp> ]|); after)

prop-while =

?|[ while e1 do e2 ]|

; (transform(fp)

<+ before; /~Rs1 \~Rs2 /* |[ while <fp> do <fp> ]|; after)

in fp

end

Fig. 9.A generic strategy for forward propagation transformations.

cse = forward-prop(cse-transform, id, cse-after | ["CSE"], [], [])

cse-transform(recur) = fail

cse-after = try(cse-assign <+ cse-declare <+ CSE)

cse-declare = ?|[ var x := e ]|; where( <cse-assign> |[ x := e ]| )

cse-assign = ?|[ x := e ]|

; where( <pure-and-not-trivial(|x )> |[ e ]| )

; where( get-var-dependencies => xs )

; where( innermost-scope-CSE => z )

; rules( CSE.z : |[ e ]| -> |[ x ]| depends on xs )

Fig. 10.Common-subexpression elimination using generic forward propagation strategy.
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forward propagation strategy can apply different analyses and transformations at the
same time by combining elements from several one issue transformations. As an ex-
ample,Fig. 8 shows a strategy that combines constant propagation, copy propagation,
common-subexpression elimination, unreachable code elimination and bound-variable
renaming. We have included bound-variable renaming on the fly in this combined trans-
formation to avoid dynamic rules from being unnecessarily undefined/shadowed.

5 Discussion

Previous WorkScoped dynamic rules were introduced in [17] to overcome the limita-
tions of the context-free nature of static rewrite rules with applications to bound vari-
able renaming, function inlining, and dead code elimination. A first version of constant
propagation based on that design is described in [13]. Scoped dynamic rules have been
extended, improved, and formalized in [4], introducing labeling of scopes to provide
more fine-grained control over the definition and removal of dynamic rules, and in-
troducing the fork, intersection, union and fixed-point operations on sets of dynamic
rules. The contributions of this paper with respect to that work are the introduction of
dependent dynamic rules, the definition of generic data-flow transformation strategies,
and the combination of data-flow transformations. In the technical report version of this
paper [14] we also present a generic backwards propagation strategy, the other instanti-
ations of the generic forward propagation strategy used in the combined optimizer and
a specification of partial redundancy elimination, illustrating how two separate analyses
(backwards and forwards) can communicate via annotations.

Related WorkA discussion of techniques for data-flow transformations is beyond the
scope of this paper. Rather, we focus on languages and tools that automate part of the
effort of producing program data-flow transformations.

Program analyzer generatorssuch as Sharlit [16] and PAG [11] produce analyz-
ers from a specification of the flow values and flow functions for the problem at hand.
In Sharlit [16] these have to be implemented in C++ following the conventions of the
tool. PAG provides a dedicated domain-specific language for all aspects of the speci-
fication. These tools do not support combined super-analyses, nor the specification of
transformations; applications of analysis and transformation are alternated.

Graph transformationtools such asOPTIMIX [3] and the tools of De Moor et al. [7,
6] provide a transformation-oriented approach, aiming at declarative specification of
individual transformations, in contrast to the global approach of data-flow analyses.
An OPTIMIX program consists of a set of rewrite rules on a graph representation of a
program. The graph can be extended with additional edges to express analysis results.
Transformation is by exhaustive application of rules. Lacey and De Moor [7] use graph
rewrite rules with temporal logic conditions to check properties of the control-flow
graph; that is, enabling conditions are checked from the point of view of the node that is
transformed, rather than as a global analysis. Path logic programming [6] is a variation
on this approach using path patterns, regular expressions over paths through the control-
flow graph of a program that express the properties that should hold on all or some
paths to the node subject to transformation. The drawback of these approaches is that
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pattern matching requires performing a global program analysis and a search for graph
nodes that match a certain pattern. After applying a transformation, the analysis needs to
be redone. Obtaining efficient optimizers requiresincrementallyupdating the analysis
information after applying transformations. There is some progress in this area [15]
with a technique for compositional analysis based on path expressions. Our approach
provides effective procedures for finding data-flow redices in abstract syntax trees.

Combination of analysis and transformation is not only desirable from the point
of view of performance, but can also produce better results. Wegman and Zadek in-
troduced conditional constant propagation, a combination of constant propagation and
unreachable code elimination [21], which produces better results than applying the two
transformations in sequence. Click and Cooper [5] formally defined in which cases in-
tegrating two data-flow analyses results in better results than a sequential application
of the individual analyses, and they combined constant propagation, unreachable code
elimination and value numbering. Rather than implementing such combined transfor-
mations in dedicated algorithms, we provide high-level constructs for the composition
of such combined transformations. In this sense our work is most related to that of
Lerner et al. who have developed a series of frameworks [8–10] for the composition of
data-flow transformations in a modular way. Similarly to our approach they combine
analysis and the application of transformations as long as they share the same direc-
tion. There is a difference in perspective, though; while we model program analysis
by dynamic transformation rules, they let the analysis frameworksimulatetransforma-
tions. Another difference is that their frameworks operate on fixed control-flow graph
representations. In contrast, Stratego is not specifically designed for data-flow transfor-
mations. Rewrite rules, strategy combinators, and dynamic rules are useful in a wide
variety of transformations. In addition, our approach handles variable bindings cor-
rectly.

Conclusion We have presented a language for the concise specification of source-to-
source data-flow transformations. The generic high-level constructs allow adaptation
of the approach to other programming languages with little effort; we have used the
approach to implement optimizations in a compiler for the Octave language. Transfer
functions are elegantly captured by dynamic rewrite rules and confluence operators
for intersection or fixed-point applications are used to specify program analysis and
transformation. The language supports combination of analysis and transformation in
one traversal and the combination of multiple transformations in the same traversal.

The techniques presented in this paper are supported by Stratego/XT 0.14, which is
available fromhttp://www.stratego-language.org/.
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T. Gyimóthy, editor,Internationational Conference on Compiler Construction (CC’96), vol-
ume 1060 ofLNCS, pages 121–135, Linköping, Sweden, 1996. Springer.
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A Forward Propagation: Complete Specifications

This appendix provides complete specifications of forward propagating data-flow trans-
formations.

A.1 Generic Forward Propagation

Follows the specification of the generic forward strategy for a large subset of Tiger. It
includes uninitialization of variable declarations,for statements, function definitions
and function calls.

forward-prop(transform, before, recur, after, effects | Rs1 , Rs2 , Rs3 ) =

let fp(transform, before, recur, after, effects | Rs1 , Rs2 , RsSc , RsDF ) =

( ( forward-prop-let (transform, before, recur, after | RsSc )

<+ forward-prop-for (transform, before, recur, after | Rs1 ,Rs2 ,RsSc )

<+ forward-prop-vardec (transform, before, recur, after | RsSc )

<+ forward-prop-funcdec(transform, before, recur, after | RsSc )

<+ forward-prop-assign (transform, before, recur, after | RsDF )

<+ forward-prop-if (transform, before, recur, after | Rs1 , Rs2 )

<+ forward-prop-while (transform, before, recur, after | Rs1 , Rs2 )

<+ forward-prop-call (transform, before, recur, after,effects | RsSc )

)

<+ transform <+ before; all(recur); after

)

in fp(transform, try(before), recur, try(after), effects

| Rs1 , Rs2 , <conc>(Rs1 , Rs2 , Rs3 ), <conc>(Rs1 , Rs2 ))

end

strategies // variables

forward-prop-let(transform, before, recur, after | Rs ) =

? |[ let d* in e* end ]|

; (transform <+ {| ~Rs : before; all(recur); after |})

forward-prop-vardec(transform, before, recur, after | Rs ) =

|[ var <id> <id> := <recur> ]|

; (transform

<+ before

; try(?|[ var x ta := e ]|; where( <new-dynamic-rules(|Rs , x )>x ))

; after

)

forward-prop-vardec(transform, before, recur, after | Rs ) =

? |[ var x ta ]|

; (transform

<+ before

; try(?|[ var x ta ]|; where( <new-dynamic-rules(|Rs , x )>x ))

; after

)
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forward-prop-assign(transform, before, recur, after | Rs ) =

|[ <id> := <recur> ]|

; (transform

<+ before

; try( ?|[ x := e ]|; where( <undefine-dynamic-rules(|Rs )>x ) )

; after

)

strategies // control-flow

forward-prop-if(transform, before, recur, after | Rs1 , Rs2 ) =

|[ if <recur> then <id> ]|

; (transform

<+ before

; (|[ if <id> then <recur> ]| /~Rs1 \~Rs2 / id)

; after)

forward-prop-if(transform, before, recur, after | Rs1 , Rs2 ) =

|[ if <recur> then <id> else <id> ]|

; (transform

<+ before

; (|[ if <id> then <recur> else <id> ]|

/~Rs1 \~Rs2 / |[ if <id> then <id> else <recur> ]|)

; after)

forward-prop-while(transform, before, recur, after | Rs1 , Rs2 ) =

|[ while <id> do <id> ]|

; (transform

<+ before

; (/~Rs1 \~Rs2 /* |[ while <recur> do <recur> ]|)

; after)

forward-prop-for(transform, before, recur, after | Rs1 ,Rs2 ,Rs ) =

|[ for <id:id> := <recur> to <recur> do <id> ]|

; (transform

<+ {| ~Rs1 :

before

; ?|[for x := e to e1 do e3 ]|

; where(<new-dynamic-rules(|Rs1 , x )>x )

; (/~Rs1 \~Rs2 /* |[ for <id:id> := <id> to <id> do <recur> ]|)

; after

|}

)

forward-prop-funcdec (transform, before, recur, after | RsSc ) =

|[ function <id>(<*id>) <id> = <id> ]|

; (transform

<+ dr-ignore-rules-state(fp-function(transform, before, recur, after)|RsSc )

)
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fp-function(transform, before, recur, after) =

|[ function <?f >(<*id>) <id> = <id> ]|

; where(free-vars;?vs ; rules(ForwardProp: |[ f (a* ) ]| -> vs ))

; |[ function <id>(<*id>) <id> = <recur> ]|

forward-prop-call (transform, before, recur, after, effects | Rs ) =

|[ <id>(<*map(try(recur))>) ]|

; (transform

<+ before

; ?|[ f (a* ) ]|

; where(try(ForwardProp; effects) )

; after

)

A.2 Bound Variable Renaming

Bound-variable renaming is a transformation that renames variables in order to avoid
free variable capture during transformation. The transformation only renames variables
that are already used in an outer scope.

bvr = forward-prop(fail, bvr-before, bvr, bvr-after, id| [],[],["RenameVar"])

bvr-before = try(bvr-declare <+ bvr-assign)

bvr-after = try(RenameVar)

bvr-declare : |[ var x ta := e ]| -> |[ var y ta := e ]|

where <rename-variable> x => y

bvr-declare : |[ var x ta ]| -> |[ var y ta ]|

where <rename-variable> x => y

rename-variable : x -> y

where innermost-scope-RenameVar(?x )

; <newname> x => y

; rules( RenameVar : |[ x ]| -> |[ y ]| )

bvr-assign : |[ x := e ]| -> |[ y := e ]|

where <RenameVar> |[ x ]| => |[ y ]|

A.3 Constant Propagation

prop-const = forward-prop( prop-const-transform(prop-const)

, id

, prop-const

, prop-const-after

, prop-const-function-effects

| ["PropConst"], [], [] )
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prop-const-transform(recur) =

EvalFor <+ EvalIf; recur <+ |[ while <recur> do <id> ]|; EvalWhile; recur

prop-const-after =

PropConst + prop-const-assign <+ prop-const-declare

<+ EvalBinOp <+ EvalRelOp <+ EvalString

prop-const-declare =

?|[ var x ta := e ]|; where( <prop-const-assign> |[ x := e ]| )

prop-const-assign =

?|[ x := e ]|

; where( <is-value> e )

; rules( PropConst.x : |[ x ]| -> |[ e ]| depends on [(x ,x )] )

prop-const-function-effects =

map({x: ?|[ x ]|; undefine-dynamic-rules(|["PropConst"], x )})

A.4 Copy Propagation

copy-prop = forward-prop(fail, id

, copy-prop

, copy-prop-after

, prop-const-function-effects

|["CopyProp"],[],[] )

copy-prop-after =

copy-prop-assign <+ copy-prop-declare <+ repeat1(CopyProp)

copy-prop-declare =

? |[ var x ta := e ]|

; where( try(<copy-prop-assign> |[ x := e ]|) )

copy-prop-assign =

? |[ x := y ]|

; where( <not(eq)>(x ,y ) )

; where( get-var-dependencies => xs )

; where( innermost-scope-CopyProp => z )

; rules( CopyProp.z : |[ x ]| -> |[ y ]| depends on xs )

prop-const-function-effects =

map({x: ?|[ x ]|; undefine-dynamic-rules(|["CopyProp"], x )})

innermost-scope-CopyProp =

get-var-names => vars

; innermost-scope-CopyProp(elem-of(|vars ))
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let var i

var j

var k

var l

in i:= read();

j := i + 1;

k := i;

l := k + 1

end

let var i

var j

var k

in

i := 2;

j := i * 2;

k := i + 2

end

let var i

var j

var k

in i:= read();

if i>0 then

( k:= 2 * i;

j:= 2 * i )

else j := 2 * i

end

⇓ ⇓ ⇓
let var i

var j

var k

var l

in i:= read();

j := i + 1;

k := i;

l := j

end

let var i

var j

var k

in

i := 2;

j := 4;

k := 4

end

let var i

var j

var k

in i := read();

if i > 0 then

( k:= 2 * i;

l:= k)

else j:= 2 * i

end

Fig. 11.Example of ‘Super’ transformation for constant propagation, copy propagation and com-
mon sub-expression elimination

A.5 SuperOpt

SuperOpt is a combined transformation of bound variable renaming, constant propa-
gation, copy propagation and common subexpression elimination. Three different code
fragments are shown inFig. 11that had tranformed with this super-optimization. If only
one of these transformations would have been applied, it would have benefit only one
code fragment. For instance, if constant propagation will be applied only the middle
fragment would have been optimized. An alternative would have been to apply three
optimizations in sequence requiring three different traversals.

It follows the specification of SuperOpt as an instantiation of the generic propaga-
tion framework.

super-opt =

forward-prop( prop-const-transform(super-opt)

, super-opt-before(super-opt)

, super-opt

, super-opt-after

, prop-const-function-effects

| ["PropConst","CopyProp","CSE"], [], ["RenameVar"]

)

super-opt-before(recur) =

try(bvr-before(recur)); try(prop-const-before)

super-opt-after =
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try(bvr-after); try(copy-prop-after); try(prop-const-after); try(cse-after)

prop-const-function-effects =

map({x: ?|[x ]|; undefine-dynamic-rules(|["PropConst","CopyProp","CSE"], x )})
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B Backwards Propagation

Generic (and transformation independent strategy) for backward propagation transfor-
mations.

B.1 Generic Strategy

backward-prop(transform, before, recur, after, effects | Rs1 , Rs2 , Rs3 ) =

let bp(transform, before, recur, after, effects | Rs1 , Rs2 , RsSc , RsDF ) =

(( backward-prop-seq (transform, before, recur, after)

<+ backward-prop-let (transform, before, recur, after | RsSc )

<+ backward-prop-vardec (transform, before, recur, after | RsSc )

<+ backward-prop-assign (transform, before, recur, after | RsDF )

<+ backward-prop-if (transform, before, recur, after | Rs1 , Rs2 )

<+ backward-prop-while (transform, before, recur, after | Rs1 , Rs2 )

<+ backward-prop-for (transform, before, recur, after | Rs1 , Rs2 , RsSc )

<+ backward-prop-call (transform, before, recur, after, effects | RsSc )

)

<+ transform <+ before; all(recur); after

)

in bp(transform, try(before), recur, try(after), effects

| Rs1 , Rs2 , <conc>(Rs1 , Rs2 , Rs3 ), <conc>(Rs1 , Rs2 ))

end

strategies // variables

backward-prop-let(transform, before, recur, after | Rs ) =

? |[ let d* in e* end ]|

; (transform

<+ {| ~Rs

: |[ let <*decls-matter(recur|Rs )> in <*id> end ]|

; before

; |[ let <*id> in <*reverse-map(recur)> end ]|

; after

|}

)

decls-matter(recur|Rs ) =

where(map(try(init-scopes(|Rs ))))

init-scopes(|Rs ) =

(?|[ var x ta ]| <+ ?|[ var x ta := e ]| <+ ?FArg|[ x ta ]|)

; new-dynamic-rules(|Rs , x , x )

init-scopes(|Rs ) =

?|[<fundecs: map(init-func-scopes(|Rs ))>]|

init-func-scopes(|Rs ) =

|[ function <?f >(<*id>) <id> = <id> ]|
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; new-dynamic-rules(|Rs , f , f )

; where(free-vars; map(!Var(<id>)); ?vs ; rules(BackwardProp: |[ f (a* ) ]| -> vs ))

backward-prop-seq(transform, before, recur, after) =

? |[ ( e* ) ]|

; before

; |[ ( <*reverse-map(recur)> ) ]|

; after

backward-prop-vardec(transform, before, recur, after | Rs ) =

|[ var <id> <id> := <id> ]|

; (transform <+ before; |[ var <id> <id> := <recur> ]|; after)

backward-prop-vardec(transform, before, recur, after | Rs ) =

? |[ var x ta ]|

; (transform <+ before; after)

backward-prop-assign(transform, before, recur, after | Rs ) =

|[ <?|[ x ]|> := <id> ]|

; (transform

<+ before

; undefine-dynamic-rules(|Rs , x )

; |[ <id> := <recur> ]|

; after

)

strategies // control-flow

backward-prop-if(transform, before, recur, after | Rs1 , Rs2 ) =

|[ if <id> then <id> ]|

; (transform

<+ before

; (|[ if <id> then <recur> ]| /~Rs1 \~Rs2 / id)

; |[ if <recur> then <id> ]|

; after)

backward-prop-if(transform, before, recur, after | Rs1 , Rs2 ) =

|[ if <id> then <id> else <id> ]|

; (transform

<+ before

; (|[ if <id> then <recur> else <id> ]|

/~Rs1 \~Rs2 / |[ if <id> then <id> else <recur> ]|)

; |[ if <recur> then <id> else <id> ]|

; after)

backward-prop-while(transform, before, recur, after | Rs1 , Rs2 ) =

|[ while <id> do <id> ]|

; (transform

<+ before
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; (/~Rs1 \~Rs2 /* |[ while <recur> do <recur> ]|)

; after)

backward-prop-for(transform, before, recur, after | Rs1 , Rs2 , Rs ) =

|[ for <?x > := <recur> to <recur> do <id> ]|

; (transform

<+ {| ~Rs

: before

; new-dynamic-rules(|Rs , x , x )

; (id /~Rs1 \~Rs2 / |[ for <id> := <id> to <id> do <recur> ]|)

; |[ for <id> := <recur> to <recur> do <id> ]|

; after

|}

)

backward-prop-call (transform, before, recur, after,effects | Rs ) =

|[ <id>(<*id>) ]|

; (transform

<+ before

; |[<id>(<*map(recur)>) ]|

; where(try(BackwardProp; effects))

; after

)

B.2 Dead Code Elimination

dead-code-elim =

backward-prop(dce-transform

, dead-code-before

, dead-code-elim

, dead-code-after(dead-code-elim)

, dce-function-effects

| [], ["Needed", "Used"], []

)

dce-transform =

VarNeeded <+ transform-assign

dead-code-before =

try(DeclareNotNeeded)

dead-code-after(dce) =

ElimIf <+ ElimIfThen

<+ ElimFor <+ ElimWhile

<+ |[ (<*reverse-filter(not(?|[ () ]|))>) ]|

<+ dce-let-after(dce)

<+ dce-call-after(dce)

<+ dce-assign-after(dce)
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dce-function-effects =

map(VarNeeded)

dce-call-after(dce) =

?|[ f (a* ) ]|

; try(rules(Used.f : |[ f ]| -> |[ f ]| depends on [(f ,f )] ))

dce-let-after(dce) =

|[ let <*reverse-filter(dce-decls-after(dce))>

in <*reverse-filter(where(not(|[ () ]|)))> end ]|

dce-decls-after(dce) =

|[ <typedecs: id> ]|

dce-decls-after(dce) =

?|[ var x ta := e ]|

; where(<Used> |[ x ]|)

; |[var <id> <id> := <dce> ]|

dce-decls-after(dce) =

?|[ var x ta ]|

; where(<Used> |[ x ]|)

// Multiple recursive functions may call each other

dce-decls-after(dce) =

|[ <fd*: reverse-filter(dce-elim-function(dce))>]|

dce-elim-function(dce) =

?|[ function f (x* ) ta = e ]|

; where(<Used>|[ f ]|)

; where(!|[f ()]|; try(BackwardProp; map({?x ; <VarNeeded>|[ x ]|}) ))

; |[ function <id:id>(<*map(init-scopes(|["Needed","Used"])

; DeclareNotNeeded)>) <id> = <dce> ]|

transform-assign =

?|[ x := e ]|

; not(<Needed> |[ x ]| <+ <oncetd(?|[f (a* )]|)> |[ e ]|)

; !|[ (<*<collect-statements> |[ e ]|>) ]|

; dead-code-elim

dce-assign-after(dce) =

?|[ x := e ]|

; rules(Used.x : |[ x ]| -> |[ x ]| depends on [(x ,x )])

DeclareNotNeeded =

|[ <fundecs: map({?|[ function f (x* ) ta = e ]|; NotNeeded(|f )})> ]|

DeclareNotNeeded =

( ?|[ var x ta := e ]| <+ ?|[ var x ta ]| <+ ?FArg|[ x ta ]|)
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; NotNeeded(|x )

NotNeeded(|x ) =

rules(

Needed.x :- |[ x ]|

Used.x :- |[ x ]|

)

VarNeeded =

?|[ x ]|

; rules(

Needed.x : |[ x ]| -> |[ x ]| depends on [(x ,x )]

Used.x : |[ x ]| -> |[ x ]| depends on [(x ,x )]

)
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(if f1()

then e := a + b

else f2();

if f5() then

(if f6() then

while f11() do

c := a + b

else

y := a + b;

x := a + b)

else f7())

⇒

(if f1()

then /* a + b */

e := a + b

else f2();

if f5() then

/* a + b */

(/* a + b */

if /* a+b */ f6()

then /* a + b */

while f11() do

/* a + b */

c := a + b

else /* a + b */

y := a + b;

/* a + b */

x := a + b)

else f7())

⇒

(if f1() then

(a_0 := a + b;

e := a_0)

else f2();

if f5() then

(a_0 := a + b;

if f6() then

while f11() do

c := a_0

else y := a_0;

x := a_0)

else f7())

Fig. 12.Application of Safe-Earliest partial redundancy elimination. The annotations in the inter-
mediate step label the points at which an expression is down-safe.

C Safe-Earliest Partial Redundancy Elimination

Partial redundancy elimination is an optimization that attempts to eliminate repeated
computations along program paths. Such repeated computation are marked as redundant
and can be replaced by use of previously computed expressions. If a computation is
redundant along a certain path, it may still be needed in another execution path. Finding
redundant computations and placing them at program points where the occurrence is
minimized, is the goal of this optimization.

This transformation requires a complex analysis to determine program points where
new computations will be lifted. This transformation cannot be achieved by means of
a single traversal in which data-flow transformation is propagated. Lazy Code Motion
[?,?] is an algorithm to compute this transformation. It requires the computation of the
following predicates: down-safe, earliest, delay, latest, and isolated.Fig. 12 shows an
example of the first two pahses of this transformation namely down-safe and earliest.

To show that the Stratego approach can be used to implement transformations that
require coordination between multiple analyses, we present the implementation of the
Safe-Earliest Partial Redundancy Elimination transformation, which corresponds to the
first two steps of the Lazy Code Motion algorithm. These two phases of the algorithm
result in programs which are computationally optimal (redundant computations are per-
formed the least possible number of times), but not lifetime optimal, since computations
are lifted to the earliest point in the program.

The Safe-Earliest transformation is implemented using two separate traversalsdown-safe,
a backwards traversal, andearliest, a forward traversal. The complete transformation
is simply the sequential compositiondown-safe; earliest.

29



C.1 Down-Safe

Down-safe or anticipatebility of expressions is computed following a backwards flow.
Down-safe is a property of an expression along program path sections. At program
points, several expressions can be down-safe, and we have to keep track of them. Term
annotations will contain down-safe expressions at statement level. Stratego term anno-
tations are terms attached to tree constructs; they are denoted byt {t’ }.

The specification ofdown-safe is defined by instantiation of the generic backwards
propagation strategy. The backward propagation defines for each non-trivial and pure
expressione a dynamic ruleDownSafe, which serves as a predicate for the down-safety
of e at the current program point. The ruledown-safe-annotate includes down-
safe expressions as annotations of the current term. TheDownSafe rule depends on
the variables ine , which means that it is undefined as soon as one of those variables
is assigned. The rule uses the intersection operation in control-flow constructs, i.e an
expression is down-safe only if it is down-safe along all paths.

The predicate is used toannotatestatements with the list of expressions that is
down-safebeforethat statement. For this purpose, the transformation keeps track ofall
expressions that are being considered for lifting using theAllDownSafe rule. The rule
down-safe-annotate takes the list of all these expressions and filters the ones that
are down-safe at the current program point.

down-safe = backward-prop(fail

, down-safe-before

, down-safe

, down-safe-after

, down-safe-function-effects

| ["DownSafe"], [], [] )

down-safe-before = try(down-safe-exp)

down-safe-after = try(is-statement; down-safe-annotate)

down-safe-exp =

?|[ e ]|

; where( not(trivial); pure )

; where( get-var-names => xs )

; where( get-var-dependencies => deps )

; where( innermost-scope-DownSafe(elem-of(|xs )) => z )

; rules( DownSafe.z : |[ e ]| -> |[ e ]| depends on deps )

; include-AllDownSafe(|e )

down-safe-annotate :

e -> e {e* }

where <bagof-AllDownSafe>(); filter(where(DownSafe)) => e*

include-AllDownSafe(|e ) =

if <not(AllDownSafeSet)> e

then rules( AllDownSafeSet : e AllDownSafe :+ () -> e )

end
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down-safe-function-effects =

map({x: ?|[ x ]|; undefine-dynamic-rules(|["DownSafe"], x )}

C.2 Earliest

The next step is to place assignments of the lifted expressions to temporary variables
at the earliest possible point in the program. This transformation uses the annotations
created by thedown-safe transformation.

Basically, this can be done by a forward propagation in which the first point that has
an expression in its annotation can be extended with an assignment for the expression
to a temporary variable. All subsequent annotations should be ignored and all uses of
the expression should be replaced with the temporary variable that contains the compu-
tation.

The specification ofearliest defines this transformation using a forward propa-
gation with the strategyearliest-transform to replace annotated statements in two
steps using three dynamic rules.

First,earliest-filter-annotations reduces the annotations of a statement to
the annotations that are actually earliest at that point. Those expressions are then de-
clared to beNotEarliest, such that occurrences of the expression in subsequent state-
ments will be removed.

Next, assign-earliest-to-var turns expressions in annotations into assign-
ments of the expressions to temporary variables. The dynamic ruleReplaceExp re-
places a lifted expression with the corresponding temporary variable. The rule is only
propagated if consistent on all paths, i.e. definitions ofReplaceExp for the same ex-
pression in different branches should use the same temporary variable. Otherwise, it
cannot be replaced after the branch. In order to use the same temporary variable for
all placements and replacements of the same expression, the dynamic ruleTempVar
maps expressions to temporary variables. The rulenew-temp creates a new temporary
variable if one does not yet exist for an expression.

earliest =

forward-prop(earliest-transform

, id

, earliest

, earliest-after

, earliest-function-effects

| ["NotEarliest","ReplaceExp"], [], ["TempVar"]

)

earliest-transform =

earliest-filter-annotations

; try(assign-earliest-to-var; |[ (<id>; <earliest>) ]| <+ earliest)

earliest-after = try(ReplaceExp)
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earliest-filter-annotations :

e {e1 , e1* } -> e {e2* }

where <filter(not(NotEarliest))> [e1 | e1* ] => e2*

; map({e’, deps: ?e’ ; get-var-dependencies => deps ;

rules( NotEarliest : e’ -> e’ depends on deps )})

assign-earliest-to-var :

e {e1 , e1* } -> |[ ((e2* ); ~e {}) ]|

where <map(assign-to-var)> [e1 | e1* ] => e2*

assign-to-var :

|[ e ]| -> |[ x := e ]|

where get-var-dependencies => deps

; <TempVar <+ new-temp> |[ e ]| => x

; rules( ReplaceExp : |[ e ]| -> |[ x ]| depends on deps )

new-temp :

|[ e ]| -> x where new => x ; rules( TempVar : |[ e ]| -> x )

earliest-function-effects =

map({x: ?|[ x ]|; undefine-dynamic-rules(|["Earliest","ReplaceExp"], x )}
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