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1 Introduction

Typed functional languages like Haskell [35] and ML [24,33] typically support
the declaration of user-defined, polymorphic algebraic datatypes. In Haskell,
for example, we might define a datatype representing dates in a number of
ways. The most straightforward and conventional definition is probably the
one given by Date below,

data Date = Date Int Int Int

but a more conscientious Dutch programmer might prefer Date NL:

data Date NL = Date NL Day Month Year
data Day = Day Int
data Month = Month Int
data Year = Year Int .

An American programmer, on the other hand, might opt for Date US, which
follows the US date format:

data Date US = Date US Month Day Year .

If the programmer has access to an existing library which can compute with
dates given as Int-triples, though, they may prefer Date2,

data Date2 = Date2 (Int, Int, Int) ,

for the sake of simplifying data conversion between his application and the li-
brary. In some cases, for example when the datatype declarations are machine-
generated, a programmer might even have to deal with more unusual declara-
tions such as:

data Date3 = Date3 (Int, (Int, Int))
data Date4 = Date4 ((Int, Int), Int)
data Date5 = Date5 (Int, (Int, (Int, ()))) .

Though these types all represent the same abstract data structure 1 , they
represent it differently; they are certainly all unequal, firstly because they
have different names, but more fundamentally because they exhibit different
surface structures. Consequently, programs which use two or more of these
types together must be peppered with applications of conversion functions. In
this case, the amount of code required to define such a conversion function
is not so large, but if the declarations are machine-generated, or the number

1 We will assume all datatypes are strict; otherwise, Haskell’s non-strict semantics
typically entails that some transformations like nesting add a new value ⊥ which
renders this claim false.
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of representations to be simultaneously supported is large, then the size of
the conversion code can become unmanageable. In this paper we show how to
infer such conversions automatically.

1.1 Isomorphisms

The fact that all these types represent the same abstract type is captured
by the notion of isomorphism: two types are isomorphic if there exists an
invertible function between them, our desired conversion function. Besides in-
vertibility, two basic facts about isomorphisms (isos, for short) are: the identity
function is an iso, so every type is isomorphic to itself; and, the composition of
two isos is an iso. Considered as a relation, then, isomorphism is an equivalence
on types.

Other familiar isos are a consequence of the semantics of base types. For exam-
ple, the conversion between meters and miles is a non-identity iso between the
floating point type Double and itself; if we preserve the origin, the conversion
between cartesian and polar coordinates is another example. Finally, some
polymorphic isos arise from the structure of types themselves; for example,
one often hears that products are associative “up to isomorphism”.

It is the last sort, often called canonical or coherence (iso)morphisms, which
are of chief interest to us. Canonical isos are special because they are uniquely
determined by the types involved, that is, there is at most one canonical iso
between two polymorphic type schemes.

1.1.1 Monoidal isos.

Let Unit and :*: be nullary and binary product constructors, respectively, and
Zero and :+: nullary and binary sum constructors, defined as the following
datatypes.

data Unit = Unit
data a :*: b = a :*: b
data Zero
data a :+: b = Inl a | Inr b

Haskell 98 doesn’t support infix type constructors such as :+: and :*:, but we
will use these constructors in this paper because it makes type equations easier
to read 2 . A few canonical isos of Haskell are summarized by the syntactic

2 In the Haskell and Generic Haskell source code used to implement the functions
defined in this paper we use Sum instead of :+:, and Prod instead of :*:
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theory below.

a :*: Unit ∼= a Unit :*: a ∼= a (a :*: b) :*: c ∼= a :*: (b :*: c)

a :+: Zero ∼= a Zero :+: a ∼= a (a :+: b) :+: c ∼= a :+: (b :+: c)

The isomorphisms which witness these identities are the evident ones. The
first two identities in each row express the fact that Unit (resp. Zero) is a right
and left unit for :*: (resp. :+:); the last says that :*: (resp. :+:) is associative.
We call these isos collectively the monoidal isos.

This list is not exhaustive. For example, binary product and sum are also
canonically commutative:

a :*: b ∼= b :*: a a :+: b ∼= b :+: a

and the currying and the distributivity isos are also canonical:

(a :*: b)→ c ∼= a→ (b→ c) a :*: (b :+: c) ∼= (a :*: b) :+: (a :*: c) .

There is a subtle but important difference between the monoidal isos and the
other isos mentioned above. Although all are canonical, and so possess unique
polymorphic witnesses determined by the type schemes involved, only in the
case of the monoidal isos does the uniqueness property transfer unconditionally
to the setting of types.

To see this, consider instantiating the product-commutativity iso scheme to
obtain:

Int :*: Int ∼= Int :*: Int .

This identity has two witnesses: one is the intended twist map, but the other
is the identity function.

This distinction is in part attributable to the form of the identities involved;
the monoidal isos are all strongly regular, that is:

(1) each variable that occurs on the left-hand side of an identity occurs ex-
actly once on the right-hand side, and vice versa, and

(2) variables occur in the same order on both sides.

The strong regularity condition is adapted from work on generalized multi-
categories [23,22,15]. It is a sufficient—but not necessary—condition to ensure
that a pair of types determines a unique canonical iso witness.

Thanks to the canonicality and strong regularity properties, given two types
we can determine if a unique iso between them exists, and if so can generate
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it automatically. Thus our program infers all the monoidal isos, but not the
commutativity or distributivity isos; we have not yet attempted to treat the
currying iso.

1.1.2 Datatype isos.

In Generic Haskell each datatype declaration effectively induces a canonical
iso between the datatype and its underlying “structure type”. For example,
the declaration

data List a = Nil | Cons a (List a)

induces a canonical isomorphism

List A ∼= Unit :+: (A :*: List A) .

for each instantiation type A. We call such isos datatype isos.

Note that datatype isos are always strongly regular, as they are identities
between pairs of constants. The type parameter in the Haskell declaration
does not play the role of a variable in the iso theory: our system will not infer
that List A is isomorphic to List B even if A ∼= B. However, largely as a side
effect of the way Generic Haskell works, it does infer the isomorphism between
a datatype and its underlying structure type.

1.2 Applying isomorphisms

The ideas of this paper grew out of our attempts to improve UUXML, our
XML Schema–Haskell data binding [3]. We think that data bindings are an
important application area for inferring type isomorphisms generically. In this
paper we will introduce UUXML, a type-preserving XML Schema–Haskell
data binding, and we will show how generic isomorphisms can be used to
improve this data binding.

1.3 Outline

This paper is an extended version of our paper about inferring type isomor-
phisms generically [4] presented at the Mathematics of Program Construction
Conference in 2004, and it uses much of the material of our paper UUXML: a
type-preserving XML Schema–Haskell data binding [3] presented at the Prac-
tical Aspects of Declarative Languages Conference in 2004. Furthermore, we
have included an introduction to generic programming in Generic Haskell.
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The remainder of this article is organized as follows. Section 2 introduces
generic programming in Generic Haskell. Section 3 informally describes the
user interface to our inference mechanism. Section 4 shows how our iso in-
ferencer is implemented in Generic Haskell. Section 5 introduces UUXML, a
type-preserving XML Schema–Haskell data binding. Section 6 shows how to
use iso inference to automatically customize this data binding. Finally, Sec-
tion 7 summarizes our results, and discusses related work and possibilities for
future work in this area.

2 Generic programming in Generic Haskell

This section introduces generic programming in Generic Haskell. We give a
brief introduction to Generic Haskell; more details can be found in [16,25].

A generic program is a program that works for a large class of datatypes. A
generic program takes a type as argument, and is usually defined by induction
on the type structure. Generic Haskell [16] is an extension of Haskell that sup-
ports generic programming. In this paper we use the most recent version of
Generic Haskell, known as Dependency-style Generic Haskell [26,25]. Depen-
dencies both simplify and increase the expressiveness of generic programming.

In order to be able to apply a program to values of different types, each
datatype that appears in a source program is mapped to its structural rep-
resentation. This representation is expressed in terms of a limited set of
datatypes, called structure types. A generic program is defined by induction on
these structure types. Whenever a generic program is applied to a user-defined
datatype, the Generic Haskell compiler takes care of the mapping between the
user-defined datatype and its corresponding structural representation. Fur-
thermore, a generic program may also be directly defined on a user-defined
datatype, in which case this definition takes precedence over the definitions
generated for the structure type of the user-defined datatype. A definition of
a generic function on a user-defined datatype is called a default case.

The translation of a datatype to a structure type replaces a choice between
constructors by a sum, denoted by :+: (nested right-associatively if there are
more than two constructors), and a sequence of arguments of a constructor
by a product, denoted by :*: (nested right-associatively if there are more than
two arguments). These structure types have been defined in Section 1. A
nullary constructor is replaced by the structure type Unit. The arguments of
the constructors are not translated. Section 1 gives the structure type of the
datatype List; here we give the structure type for the datatype of binary trees
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with integers in the leaves, and strings in the internal nodes.

data Tree = Leaf Int | Node Tree String Tree
type Str (Tree) = Int :+: (Tree :*: (String :*: Tree)) .

Here Str is a meta function that given an argument type generates a new type
name. The structural representation of a datatype only depends on the top
level structure of a datatype. The arguments of the constructors, including
recursive calls to the original datatype, appear in the representation type
without modification. A type and its structural representation are canonically
isomorphic (ignoring undefined values). The isomorphism is witnessed by a
so-called embedding-projection pair : a value of the datatype

data EP (a :: ∗) (b :: ∗) = EP (a→ b) (b→ a) .

The Generic Haskell compiler generates the translation of a type to its struc-
tural representation, together with the corresponding embedding projection
pair.

From this translation, it follows that it suffices to define a generic function on
sums (:+:), products (:*: and Unit) and on base types such as Int and String.
To be able to inspect constructor names, we will also encode the constructors
in the structure type of a datatype, using the structure type Con defined by

data Con a = Con ConDescr a

where the type ConDescr is used for constructor descriptions. The structure
type for Tree now becomes

type Str (Tree) = Con Int :+: Con (Tree :*: (String :*: Tree)) .

For example, we define a very simple generic function content that extracts
the strings and integers (shown as strings) that appear in a value of a datatype
t. The instance of content on the type Tree returns the following strings when
applied to Node (Leaf 3) "Bla" (Leaf 7): ["3", "Bla", "7" ].
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The generic function content returns the document’s content for any datatype.

content{|t :: ?|} :: (content{|t|})⇒ t→ [String ]
content{|Unit|} Unit = [ ]
content{|Int|} int = [show int ]
content{|String|} str = [str ]
content{|a :+: b|} (Inl a) = content{|a|} a
content{|a :+: b|} (Inr b) = content{|b|} b
content{|a :*: b|} (a :*: b) = content{|a|} a ++ content{|b|} b
content{|Con c a|} (Con a) = content{|a|} a

There are a couple of things to note about this definition:

• Function content{|t|} is a type-indexed function. The type argument appears
in between special parentheses {|, |}. An instance of content is obtained by
applying content a type.
• The constraint content{|t|} that appears in the type of function content says

that function content depends on itself. A generic function f depends on a
generic function g if there is an arm in the definition of f , for example that
for f {|a :+: b|}, which uses g on a variable in the type argument, for example
g{|a|}. If a generic function depends on itself it is defined by recursion over
the type structure.
• The type of function content is given for a type t of kind ?. This does not

mean that content can only be applied to types of kind ?; it only gives the
type information for types of kind ?. The type of function content on types
with kinds other than ? can automatically be derived from this base type.
• Using an accumulating parameter we can obtain a more efficient version of

function content .

3 Inferring Isomorphisms

From a Generic Haskell user’s point of view, iso inference is a simple matter
of applying two generic functions,

reduce{|t|} :: t→ Univ
expand{|t′|} :: Univ→ t′ .

reduce{|t|} takes a value of any type and converts it to a value of a universal,
normalized representation denoted by the type Univ; expand{|t′|}, its dual,
converts such a universal value back to a ‘regular’ value, if possible. The iso
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which converts from t to t′ is thus expressed as:

expand{|t′|} ◦ reduce{|t|} .

If t = t′, then expand{|t′|} and reduce{|t|} are mutual inverses. If t and t′ are
merely isomorphic, then expansion may fail; it always succeeds if the two types
are canonically isomorphic, t ∼= t′, according to the monoidal and datatype
iso theories.

As an example, consider the expression

(expand{|(Bool, Bool :+: (Int :+: String))|} ◦
reduce{|(Bool, ((), (Bool :+: Int) :+: String))|})

(True, ((), Inl (Inr 7))) ,

which evaluates to

(True, Inr (Inl 7)) .

Function reduce{|t|} picks a type in each isomorphism class which serves as a
normal form, and uses the canonical witness to convert values of t to that form.
Normalized values are represented in a special way in the abstract type Univ;
a typical user need not understand the internals of Univ unless expand{|t′|}
fails. If t and t′ are ‘essentially’ the same yet structurally different then this
automatic conversion can save the user a substantial amount of typing, time
and effort.

Our functions also infer two coercions which are not invertible:

a :*: b 6 a a 6 a :+: b .

The canonical witnesses here are the first projection of a product and the left
injection of a sum. Thanks to these reductions, the expression

(expand{|Either Bool Int|} ◦ reduce{|(Bool, Int)|}) (True, 4)

evaluates to Left True; note that it cannot evaluate to Right 4 because such a
reduction would involve projecting a suffix and injecting into the right whereas
we infer only prefix projections and left injections. Of course, we would prefer
our theory to include the dual pair of coercions as well, but doing so would
break the property that each pair of types determines a unique canonical
witness. Despite this limitation, we will see in section 6.4 how these coercions,
when used with a cleverly laid out datatype, can be used to simulate single
inheritance.

Now let us look at some examples which fail.

9



(1) The conversion

expand{|(Bool, Int)|} ◦ reduce{|(Int, Bool)|}

fails because our theory does not model commutativity of :*:.
(2) The conversion

expand{|Bool|} ◦ reduce{|Int|}

fails because the types are neither isomorphic nor coercible.
(3) The conversion

expand{|Bool|} ◦ reduce{|Either () ()|}

fails because we chose to represent certain base types like Bool as “ab-
stract”: they are not destructured when reducing.

Currently, because our implementation depends on the “universal” type Univ,
failure occurs at run-time and a message helpful for pinpointing the error’s
source is printed. In section 7, we discuss some possible future work which
may provide static error detection.

4 Generic Isomorphisms

In this section, we describe how to automatically generate isomorphisms be-
tween pairs of datatypes.

We address the problem in four parts, treating first the product and sum isos
in isolation, then showing how to merge those implementations. Finally, we
describe a simple modification of the resulting program which implements the
non-invertible coercions.

In each case, we build the requisite morphism by reducing a value v ::t to a value
of a universal datatype u = reduce{|t|} v :: Univ. The type Univ plays the role
of a normal form from which we can then expand to a value expand{|t′|} u :: t′

of the desired type, where t 6 t′ canonically, or t ∼= t′ for the isos. Function
reduce is similar to function content defined in Section 2, except that it returns
a single value instead of a list, and the returned value contains information
about its type, instead of being a string.
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4.1 Handling Products

We define the functions reduce{|t|} and expand{|t|} which infer the isomor-
phisms expressing associativity and identities of binary products:

a :*: Unit ∼= a Unit :*: a ∼= a (a :*: b) :*: c ∼= a :*: (b :*: c) .

We assume a set of base types, which may include integers, booleans, strings
and so on. For brevity’s sake, we mention only integers in our code.

data UBase = UInt Int | UBool Bool | UString String | · · ·

The following two functions merely serve to convert back and forth between
the larger world and our little universe of base types.

reducebase{|t :: ?|} :: t→ UBase
reducebase{|Int|} i = UInt i

expandbase{|t :: ?|} :: UBase→ t
expandbase{|Int|} (UInt i) = i

Now, as Schemers well know, if we ignore the types and remove all occurrences
of Unit, a right-associated tuple is simply a cons-list, hence our representation,
Univ is defined as:

type Univ = [UBase ] .

Our implementation of reduce{|t|} depends on an auxiliary function red{|t|},
which accepts a value of t along with an accumulating argument of type Univ;
it returns the normal form of the t-value with respect to the laws above. The
role of reduce{|t|} is just to prime red{|t|} with an empty list.

red{|t :: ?|} :: (red{|t|})⇒ t→ Univ→ Univ
red{|Int|} i = (reducebase{|Int|} i :)
red{|Unit|} Unit = id
red{|a :*: b|} (a :*: b) = red{|a|} a ◦ red{|b|} b

reduce{|t :: ?|} :: (red{|t|})⇒ t→ Univ
reduce{|t|} x = red{|t|} x [ ]

Here is an example of reduce{|t|} in action:

reduce{|((Int, (Int, Int)), ())|} ((2, (3, 4)), ()) = [UInt 2,UInt 3,UInt 4] .

Function expand{|t|} takes a value of the universal data type, and returns a
value of type t. It depends on the generic function len{|t|}, which computes

11



the length of a product, that is, the number of components of a tuple:

len{|t :: ?|} :: (len{|t|})⇒ Int
len{|Int|} = 1
len{|Unit|} = 0
len{|a :*: b|} = len{|a|}+ len{|b|} .

Observe that the nullary product, Unit, is assigned length zero.

Now we can write expand{|t|}; like reduce{|t|}, it is defined in terms of a helper
function exp{|t|}, this time in a dual fashion with the ‘unparsed’ remainder
appearing as an output.

exp{|t :: ?|} :: (exp{|t|})⇒ Univ→ (t, Univ)
exp{|Int|} (u : us) = (expandbase{|Int|} u, us)
exp{|Int|} [ ] = error "exp"

exp{|Unit|} us = (Unit, us)
exp{|a :*: b|} us = let (u, us ′) = exp{|a|} us

(v , us ′′) = exp{|b|} us ′

in (u :*: v , us ′′)

expand{|t :: ?|} :: (exp{|t|})⇒ Univ→ t
expand{|t|} u = case exp{|t|} u of

(v , [ ])→ v
(v , ) → error "expand"

In the last case of function exp, we compute the lengths of each factor of
the product to determine how many values to project there—remember that
a need not be a base type. This information tells us how to split the list
between recursive calls.

Here is an example of expand{|t|} in action:

expand{|((Int, (Int, Int)), ())|} [UInt 2,UInt 3,UInt 4] = ((2, (3, 4)), ()) .

4.2 Handling Sums

We now turn to the treatment of associativity and identity laws for sums:

a :+: Zero ∼= a Zero :+: a ∼= a (a :+: b) :+: c ∼= a :+: (b :+: c) .

We can implement Zero as an abstract type with no (visible) constructors:

data Zero .
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As we will be handling sums alone in this section, we redefine the universal
type as a right-associated sum of values:

data Univ = UInl UBase | UInr Univ .

Note that this datatype Univ is isomorphic to:

data Univ = UIn Int UBase .

We prefer the latter representation as it simplifies some definitions. We also
add a second integer field:

data Univ = UIn Int Int UBase .

If u = UIn r a b then we call a the arity of u—it remembers the “width” of
the sum value we reduced; we call r the rank of u—it denotes a zero-indexed
position within the arity, the choice which was made. We guarantee, then,
that 0 6 r < a. Of course, unlike Unit, Zero has no observable values so there
is no representation for it in Univ.

Declarations UBase, reducebase{|t|} and expandbase{|t|} are as before.

This time around function reduce{|t|} represents values by right-associating
sums and ignoring choices against Zero. The examples below show some sample
inputs and how they are reduced (we write I for Int and u for UInt i):

i :: I 7→ UIn 0 1 u
Inl i :: I :+: Zero 7→ UIn 0 1 u
Inr i :: Zero :+: I 7→ UIn 0 1 u
Inl i :: I :+: I 7→ UIn 0 2 u
Inr i :: I :+: I 7→ UIn 1 2 u
Inl (Inl i) :: (I :+: I) :+: I 7→ UIn 0 3 u
Inl (Inr i) :: (I :+: I) :+: I 7→ UIn 1 3 u
Inr i :: (I :+: I) :+: I 7→ UIn 2 3 u .

Function reduce{|t|} depends on the generic value arity{|t|}, which counts the
number of choices in a sum.

arity{|t :: ?|} :: (arity{|t|})⇒ Int
arity{|Int|} = 1
arity{|Zero|} = 0
arity{|a :+: b|} = arity{|a|}+ arity{|b|}
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Now we can define reduce{|t|}:

reduce{|t :: ?|} :: (arity{|t|}, reduce{|t|})⇒ t→ Univ
reduce{|Int|} i = UIn 0 1 (reducebase{|Int|} i)
reduce{|Zero|} = ⊥
reduce{|a :+: b|} (Inl x ) = UIn r (a + arity{|b|}) u

where UIn r a u = reduce{|a|} x
reduce{|a :+: b|} (Inr x ) = UIn (r + arity{|a|}) (arity{|a|}+ a) u

where UIn r a u = reduce{|b|} x .

This treats base types as unary sums, and computes the rank of a value by
examining the arities of each summand, effectively flattening the sum.

The function expand{|t|} is defined as follows:

expand{|t :: ?|} :: (arity{|t|}, expand{|t|})⇒ Univ→ t
expand{|Int|} (UIn 0 1 u) = expandbase{|Int|} u
expand{|Zero|} = error "expand"

expand{|a :+: b|} (UIn r a u)
| a ≡ aa + ab ∧ r < aa = Inl (expand{|a|} (UIn r (a − ab) u))
| a ≡ aa + ab = Inr (expand{|b|} (UIn (r − aa) (a − aa) u))
| otherwise = error "expand"

where (aa, ab) = (arity{|a|}, arity{|b|}) .

The logic in the last case checks that the universal value ‘fits’ in the sum type
a :+: b, and injects it into the appropriate summand by comparing the value’s
rank with the arity of a, being sure to adjust the rank and arity on recursive
calls.

4.3 Sums and Products Together

It may seem that a difficulty in handling sums and products simultaneously
arises in designing the type Univ, as a näıve amalgamation of the sum Univ (call
it UnivS) and the product Univ (call it UnivP) permits multiple representations
of values identified by the canonical isomorphism relation. However, since the
rules of our isomorphism theory do not interact—in particular, we do not
account for any sort of distributivity—, a simpler solution exists: we can nest
our two representations and add the top layer as a new base type. For example,
we can use UnivP in place of UBase in UnivS and add a new constructor to
UBase to encapsulate sums.

data UnivS = UIn Integer UnivP
data UnivP = UNil | UCons UBase UnivP
data UBase = UInt Int | USum UnivS
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We omit the details, as the changes to our code examples are straightforward.

4.4 Handling Coercions

The reader may already have noticed that our expansion functions impose
some unnecessary limitations. In particular:

• when we expand to a product, we require that the length of our universal
value equals the number computed by len{|t|}, and
• when we expand to a sum, we require that the arity of our universal value

equals the number computed by arity{|t|}.

If we lift these restrictions, replacing equality by inequality, we can project a
prefix of a universal value onto a tuple of smaller length, and inject a universal
value into a choice of larger arity. The modified definitions are shown below
for products:

expand{|t|} u = case exp{|t|} u of
(v , )→ v

and for sums:

expand{|a :+: b|} (UIn r a u)
| a 6 aa + ab ∧ r < aa = Inl (expand{|a|} (UIn r (a − ab) u))
| a 6 aa + ab = Inr (expand{|b|} (UIn (r − aa) (a − aa) u))
| otherwise = error "expand"

where (aa, ab) = (arity{|a|}, arity{|b|}) .

These changes implement our canonical coercions, the first projection of a
product and left injection of a sum:

a :*: b 6 a a 6 a :+: b .

Ad hoc coercions can be handled using our approach as well. Many conven-
tional languages define a subtyping relation between primitive types. For ex-
ample, in XML Schema int (bounded integers) is a subtype of integer (un-
bounded integers) which is a subtype of decimal (reals representable by deci-
mal numerals) [49]. We can easily model this by (adding some more base types
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and) modifying the functions which convert base types.

expandbase{|Decimal|} (UDecimal x ) = x
expandbase{|Decimal|} (UInteger x ) = integer2dec x
expandbase{|Decimal|} (UInt x ) = int2dec x
expandbase{|Integer|} (UInteger x ) = x
expandbase{|Integer|} (UInt x ) = int2integer x
expandbase{|Int|} (UInt x ) = x

Such primitive coercions are easy to handle, but without due care are likely
to break the coherence properties of inference, so that the inferred coercion
depends on operational details of the inference algorithm.

5 An XML Schema–Haskell data binding

XML [44] is the core technology of modern data exchange. An XML docu-
ment is essentially a tree-based data structure, usually, but not necessarily,
structured according to a type declaration such as a schema. A number of
alternative methods of processing XML documents are available:

• XML API’s. A conventional API such as SAX or the W3C’s DOM can be
used, together with a programming language such as Java or VBScript, to
access the components of a document after it has been parsed.
• XML programming languages. A specialized programming language

such as XSLT [45], XDuce [18], Yatl [10], XMλ [31,39], SXSLT [20], XStatic [14]
etc. can be used to transform XML documents.
• XML data bindings. XML values can be ‘embedded’ in an existing pro-

gramming language by finding a suitable mapping between XML types and
types of the programming language [32].

Using a specialized programming language or a data binding has significant
advantages over the SAX or DOM approach. For example, parsing comes for
free and can be optimized for a specific schema. Also, it is easier to implement,
test and maintain software in the target language. A data binding has the
further advantages that existing programming language technology can be
leveraged, and that a programmer need not account for XML idiosyncracies
(though this may be a disadvantage for some applications). Programming
languages for which XML data bindings have been developed include Java [30]
and Python, as well as declarative programming languages such as Prolog [11]
and Haskell [43,50]. Using Haskell as the target for an XML data binding
offers the advantages of a typed higher-order programming language with a
powerful type system.
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In this section we present UUXML, a translation of XML documents into
Haskell, and more specifically a translation tailored to permit writing programs
in Generic Haskell. The documents are assumed to conform to the type system
described in the W3C XML Schema [47–49] standard, and the translation
preserves typing in a sense we formalize by a type soundness theorem. More
details of the translation and a proof of the soundness result are available in
a technical report [1].

5.1 From XML Schema to Haskell

XML was introduced with a type formalism called Document Type Decla-
rations (DTDs). Though XML has achieved widespread popularity, DTDs
themselves have been deemed too restrictive in practice, and this has moti-
vated the development of alternative type systems for XML documents. The
two most popular systems are the RELAX NG standard promulgated by OA-
SIS [34], and the W3C’s own XML Schema Recommendation [47–49]. Both
systems include a set of primitive datatypes such as numbers and dates, a
way of combining and naming them, and ways of specifying context-sensitive
constraints on documents.

We focus on XML Schema (or simply “Schema” for short—we use lower-
case “schema” to refer to the actual type definitions themselves). To write
Haskell programs over documents conforming to schemas we require a trans-
lation of schemas to Haskell analagous to the HaXml translation of DTDs to
Haskell [50].

We begin this section with a very brief overview of Schema syntax which
highlights some of the differences between Schema and DTDs. Next, we give a
more formal description of the syntax with an informal sketch of its semantics.
With this in hand, we describe a translation of schemas to Haskell datatypes,
and of schema-conforming documents to Haskell values.

Our translation and the syntax used here are based closely on the Schema
formal semantics of Brown et al., called the Model Schema Language (MSL)
[8]; that treatment also forms the basis of the W3C’s own, more ambitious
but as yet unfinished, formal semantics [46]. We do not treat all features of
Schema, but only the subset covered by MSL (except wildcards). This portion,
however, arguably forms a representative subset and suffices for many Schema
applications.
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5.2 An overview of XML Schema

A schema describes a set of type declarations which may not only constrain the
form of, but also affect the processing of, XML documents (values). Typically,
an XML document is supplied along with a schema to a Schema processor,
which parses and type-checks the document according to the declarations.
This process is called validation and the result is a Schema value.

5.2.1 Syntax.

Schemas are written in XML. For instance, the following declarations define
an element and a compound type for storing bibliographical information.

<element name="doc" type="document"/>

<complexType name="document">

<sequence>

<element ref="author" minOccurs="0" maxOccurs="unbounded"/>

<element ref="title"/>

<element ref="year" minOccurs="0"/>

</sequence>

</complexType>

This declares an element doc whose content is of type document, and a type
document which consists of a sequence of zero or more author elements, fol-
lowed by a mandatory title element and then an optional year element. (We
omit the declarations for author, etc.) A document which validates against
doc is:

<doc>

<author>James Joyce</author>

<title>Ulysses</title>

<year>1922</year>

</doc> .

While they may have their advantages in large-scale applications, for our pur-
poses XML and Schema syntax are rather long-winded and irregular. We use
an alternative syntax close to that of MSL [8], which is more orthogonal and
suited to formal manipulation. In our syntax, the declarations above are writ-
ten:

def doc[ document ] ; def document = author∗, title, year? ;

and the example document above is written:
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doc[ author[ "James Joyce" ],title[ "Ulysses" ],year[ "1922" ] ] .

5.2.2 Differences with DTDs.

Schemas are more expressive than DTDs in several ways. The main differences
we treat here are summarized below.

(1) Schema defines more primitive types, organized into a subtype hierarchy.
(2) Schema allows the declaration of user-defined types, which may be used

multiple times in the contents of elements.
(3) Schema’s notion of mixed content is more general than that of DTDs.
(4) Schema includes a notion of “interleaving” like SGML’s & operator. This

allows specifying that a set of elements (or attributes) must appear, but
may appear in any order.

(5) Schema has a more general notation for repetitions.
(6) Schema includes two notions of subtype derivation.

We will treat these points more fully below, but first let us give a very brief
overview of the Schema type system.

5.2.3 Overview.

A document is typed by a (model) group; we also refer to a model group as a
type. An overview of the syntax of groups is given by the grammar g.

g ::= group
ε empty sequence

| g, g sequence
| ∅ empty choice
| g | g choice
| g & g interleaving
| g{m, n} repetition
| mix(g) mixed content
| x component name

m ::= 〈natural〉 minimum

x ::=
@a attribute name

| e element name
| t type name
| anyType
| anyElem
| anySimpleType
| p primitive

n ::= maximum
m bounded

| ∞ unbounded

This grammar is only a rough approximation of the actual syntax of Schema
types. For example, in an actual schema, all attribute names appearing in an
element’s content must precede the subelements.

The sequence and choice forms are familiar from DTDs and regular expres-
sions. Forms @a, e and t are variables referencing, respectively, attributes,
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elements and types in the schema. We consider the remaining features in
turn.

5.2.4 Primitives.

Schema defines some familiar primitives types such as string , boolean and
integer , but also more exotic ones (which we do not treat here) such as date,
language and duration. In most programming languages, the syntax of prim-
itive constants such as string and integer literals is distinct, but in Schema
they are rather distinguished by their types. For example, the data "35" may
be validated against either string or integer , producing respectively distinct
Schema values "35" ∈ string and 35 ∈ integer . Thus, validation against a
schema produces an “internal” value which depends on the schema involved.

The primitive types are organized into a hierarchy, via restriction subtyping
(see below), rooted at anySimpleType.

5.2.5 User-defined types.

An example of a user-defined type (or “group”), document , was given above.
DTDs allow the definition of new elements and attributes, but the only mech-
anism for defining a new type (something which can be referenced in the con-
tent of several elements and/or attributes) is the so-called parameter entities,
which behave more like macros than a semantic feature.

5.2.6 Mixed content.

Mixed content allows interspersing elements with text. More precisely, a doc-
ument d matches mix(g) if unmix(d) matches g, where unmix(d) is obtained
from d by deleting all character text at the top level. An example of mixed
content is an XHTML paragraph element with emphasized phrases; in MSL
its content would be declared as mix(em∗). The opposite of ‘mixed content’
is ‘element-only content.’

DTDs support a similar, but subtly different, notion of mixed content, specified
by a declaration such as:

< !ELEMENT text ( #PCDATA | em )* > .

This allows em elements to be interspersed with character data when appearing
as the children of text (but not as descendants of children). Groups involv-
ing #PCDATA can only appear in two forms, either by itself, or in a repeated
disjunction involving only element names:
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( #PCDATA | e1 | e2 | · · · en )* .

To see how Schema’s notion of mixed content differs from DTDs’, observe that
a reasonable translation of the DTD content type above is [ String :+: JemKG ]
where JemKG is the translation of em. This might lead one to think that we
can translate a schema type such as mix(g) similarly as [ String :+: JgKG ].
However, this translation would not respect the semantics of MSL for at least
two reasons. First, it is too generous, because it allows repeated occurrences,
yet:

"hello", e[], "world" ∈mix(e) but "hello", e[], e[], "world" 6∈mix(e) .

Second, it cannot account for more complex types such as mix(e1, e2). A
document matching the latter type consists of two elements e1 and e2, possibly
interspersed with text, but the elements must occur in the given order. This
might be useful, for example, if one wants to intersperse a program grammar
given as a type

def module = header, imports, fixityDecl∗, valueDecl∗ ;

with comments: mix(module). An analogous model group is not expressible
in the DTD formalism.

5.2.7 Interleaving.

Interleaving is rendered in our syntax by the operator &, which behaves like
the operator , but allows values of its arguments to appear in either order,
i.e., & is commutative. This example schema describes email messages.

def email = (subject & from & to) , body ;

Although interleaving does not really increase the expressiveness of Schema
over DTDs, they are a welcome convenience. Interleavings can be expanded
to a choice of sequences, but these rapidly become unwieldy. For example,
Ja & bK = a, b | b, a but

Ja & b & cK = a, (b, c | c, b) | b, (a, c | c, a) | c, (a, b | b, a) .

(Note that Ja & b & cK 6= Ja & Jb & cKK!)

5.2.8 Repetition.

In DTDs, one can express repetition of elements using the standard operators
for regular patterns: ∗, + and ?. Schema has a more general notation: if g
is a type, then g{m,n} validates against a sequence of between m and n
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occurrences of documents validating against g, where m is a natural and n
is a natural or ∞. Again, this does not really make Schema more expressive
than DTDs, since we can expand repetitions in terms of sequence and choice,
but the expansions are generally much larger than their unexpanded forms.

5.2.9 Derivation.

XML Schema also supports two kinds of derivation (which we sometimes
also call refinement) by which new types can be obtained from old. The first
kind, called extension, is quite similar to the notion of inheritance in object-
oriented languages. The second kind, called restriction, is an ‘additive’ sort of
subtyping, roughly dual to extension, which is multiplicative in character. As
an example of extension, we declare a type publication obtained from document
by adding fields at the end:

def publication extends document = journal | publisher ; .

A publication is a document followed by either a journal or publisher field.

Extension is slightly complicated by the fact that attributes are extended ‘out
of order’. For example, if types t1 and t2 are defined:

def t1 = @a1, e1 ; def t2 extends t1 = @a2, e2 ; (1)

then the content of t2 is (@a1 & @a2), e1, e2 not @a1,e1,@a2,e2.

To illustrate restriction, we declare a type article obtained from publication
by reducing some of the variability. If an article is always from a journal, we
write:

def article restricts publication = author∗, title, year, journal ; .

So a value of type article always ends with a journal, never a publisher, and
the year is now mandatory. Note that, when we derive by extension we only
mention the new fields, but when we derive by restriction we must mention
all the old fields which are to be retained.

In both cases, when a type t ′ is derived from a type t , values of type t ′ may
be used anywhere a value of type t is called for. For example, the document:

author[ "Patrik Jansson" ], author[ "Johan Jeuring" ],
title[ "Polytypic Unification" ], year[ "1998" ], journal[ "JFP" ]

validates not only against article but also against both publication and document .

Every type that is not explicitly declared as an extension of another is treated
implicitly as restricting a distinguished type called anyType, which can be
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regarded as the union of all types. Additionally, there is a distinguished type
anyElem which restricts anyType, and from which all elements are derived.

5.3 An overview of the translation

The objective of the translation is to enable a programmer to write (Generic)
Haskell programs on data corresponding to schema-conforming documents.
(A detailed motivation of our translation scheme appears in section 6.2.) At
minimum, we expect the translation to satisfy a type-soundness result which
ensures that, if a document validates against a particular schema type, then
the translated value is typeable in Haskell by the translated type.

Theorem 1 Let J−KG and J−Kg,u
V be respectively the type and value transla-

tions generated by a schema. Then, for all documents d, groups g and mixities
u, if d validates against g in mixity context u, then JdKg,u

V :: JgKG JuKmix.

Let us outline the difficulties posed by features of Schema. As a starting point,
consider how we might translate regular patterns into Haskell.

JεKG = () J∅KG = Void

Jg1, g2KG = (Jg1KG, Jg2KG) Jg1 | g2KG = Either Jg1KGJg2KG

Jg∗KG = [ Jg1KG ] Jg+KG = (JgKG, Jg∗KG)

Jg?KG = Maybe JgKG

This is the sort of translation employed by HaXml [50], and indeed we follow
the same tack. In contrast, WASH [43] takes a decidedly different approach,
encoding the state automaton corresponding to a regular pattern at the type
level, and makes extensive use of type classes to express the transition relation.

As an example for the reader to refer back to, we present (part of) the trans-
lation of the document type:

data T document u = T document
(Seq Empty (Seq (Rep LE E author ZI)

(Seq LE E title (Rep LE E year (ZS ZZ)))) u) .

Here the leading T indicates that this declaration refers to the type document ,
rather than an element (or attribute) of the same name, which would be
indicated by a prefix E (A , respectively). We explain the remaining features
in turn.
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5.3.1 Primitives.

Primitives are translated to the corresponding Haskell types, wrapped by a
constructor. For example (the argument u relates to mixed content, discussed
below):

data T string u = T string String .

5.3.2 User-defined types.

Types are translated along the lines of HaXml, using products to model se-
quences and sums to model choices.

data Empty u = Empty
data Seq g1 g2 u = Seq (g1 u) (g2 u)
data None u {-no constructors -}
data Or g1 g2 u = Or1 (g1 u) | Or2 (g2 u) .

The translation takes each group to a Haskell type of kind ?→ ?:

JεKG = Empty Jg1, g2KG = Seq Jg1KG Jg2KG

J∅KG = None Jg1 | g2KG = Or Jg1KG Jg2KG .

5.3.3 Mixed content.

The reason each group g is translated to a first-order type t :: ? → ? rather
than a ground type is that the argument, which we call the ‘mixity’, indicates
whether a document occurs in a mixed or element-only context. 3 Accord-
ingly, u is restricted to be either String or (). For example, e[t] translates as
Elem JeKG JtKG () when it occurs in element-only content, and Elem JeKG JtKG String
when it occurs in mixed content. The definition of Elem:

data Elem e g u = Elem u (g ())

stores with each element a value of type u corresponding to the text which im-
mediately precedes a document item in a mixed context. (The type argument
e is a so-called ‘phantom type’ [21], serving only to distinguish elements with
the same content g but different names.) Any trailing text in a mixed context
is stored in the second argument of the Mix data constructor.

data Mix g u = Mix (g String) String

3 We use the convention u for mixity because m is used for repetition bounds
minima.
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For example, the document

"one", e1[], "two", e2[], "three" ∈mix(e1, e2)

is translated as

Mix (Seq (Elem "one" (Empty ())) (Elem "two" (Empty ()))) "three" .

Each of the group operators is defined to translate to a type operator which
propagates mixity down to its children, for example:

data Seq g1 g2 u = Seq (g1 u) (g2 u) .

There are three exceptions to this ‘inheritance’. First, mix(g) ignores the
context’s mixity and always passes down a String type. Second, e[g] ignores
the context’s mixity and always passes down a () type, because mixity is
not inherited across element boundaries. Finally, primitive content p always
ignores its context’s mixity because it is atomic.

5.3.4 Interleaving.

Interleaving is modeled in essentially the same way as sequencing, except with
a different abstract datatype.

data Inter g1 g2 u = Inter (g1 u) (g2 u)

An unfortunate consequence of this is that we lose the ordering of the docu-
ment values. For example, suppose we have a schema which describes a confer-
ence schedule where it is known that exactly three speakers of different types
will appear. A part of such a schema may look like:

def schedule[ speaker & invitedSpeaker & keynoteSpeaker ] ; .

A schema processor must know the order in which speakers appeared, but
since we do not record the permutation we cannot recover the document or-
dering. More commonly, since attribute groups are modeled as interleavings
of attributes, this means in particular that schema processors using our trans-
lation cannot know the order in which attributes are specified in an XML
document.

25



5.3.5 Repetition.

Repetitions g{m,n} are modeled using a datatype Rep JgKG Jm, nKB u and a
set of datatypes modeling bounds:

J0, 0KB = ZZ J0, m + 1KB = ZS J0, mKB

J0,∞KB = ZI Jm + 1, n + 1KB = SS Jm,nKB

defined by:

data Rep g b u = Rep (b g u)
data ZZ g u = ZZ
data ZI g u = ZI [g u ]
data ZS b g u = ZS (Maybe (g u)) (Rep g b u)
data SS b g u = SS (g u) (Rep g b u) .

The names of datatypes modeling bounds are meant to suggest the familiar
unary encoding of naturals, ‘Z’ for zero and ‘S’ for successor, while ‘I’ stands
for ‘infinity’. Some sample translations are:

Je{2, 4}KG = Rep JeKG (SS (SS (ZS (ZS ZZ ))))

Je{0,∞}KG = Rep JeKG ZI

Je{2,∞}KG = Rep JeKG (SS (SS ZI )) .

5.3.6 Derivation.

Derivation poses one of the greatest challenges for the translation, since Haskell
has no native notion of subtyping, though type classes are a comparable fea-
ture. We avoid type classes here, though, because one objective of our data rep-
resentation is to support writing schema-aware programs in Generic Haskell.
Such programs operate by recursing over the structure of a type, so encoding
the subtyping relation in a non-structural manner such as via the type class
relation would be counterproductive.

The type anyType behaves as the union of all types, which suggests an
implementation in terms of Haskell datatypes: encode anyType as a datatype
with one constructor for each type that directly restricts it, the direct subtypes,
and one for values that are ‘exactly’ of type anyType.

In the case of our bibliographical example, we have:

data T anyType u = T anyType
data LE T anyType u = EQ T anyType (T anyType u)

| LE T anySimpleType (LE T anySimpleType u)
| LE T anyElem (LE T anyElem u)
| LE T document (LE T document u) .
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The alternatives labeled with LE (“Less than or Equal to”) indicate the direct
subtypes while the EQ alternative (“EQual to”) is ‘exactly’ anyType. The
document type and its subtypes are translated similarly:

data LE T document u = EQ T document (T document u)
| LE T publication (LE T publication u)

data LE T publication u = EQ T publication (T publication u)
| LE T article (LE T article u)

data LE T article u = EQ T article (T article u) .

When we use a Schema type in Haskell, we can choose to use either the ‘exact’
version, say T document, or the version which also includes all its subtypes,
say LE T document. Since Schema allows using a subtype of t anywhere t is
expected, we translate all variables as references to an LE type. This explains
why, for example, T document refers to LE E author rather than E author in
its body.

What about extension? To handle the ‘out-of-order’ behavior of extension on
attributes we define a function split which splits a type into a (longest) leading
attribute group (ε if there is none) and the remainder. For example, if t1 and
t2 are defined as in (1) then split(t1) = (@a1, e1) and, if t ′2 is the ‘extended
part’ of t2, then split(t ′2) = (@a2, e2). We then define the translation of t2 to
be:

fst(split(t1)) & fst(split(t ′2)), (snd(split(t1)) , snd(split(t ′2))) .

In fact, to accomodate extension, every type is translated this way. Hence
T document above begins with ‘Seq Empty . . .’, since it has no attributes, and
the translation of publication:

data T publication u = T publication
(Seq (Inter Empty Empty)

(Seq (Seq (Rep LE E author ZI) (Seq LE E title (Rep LE E year (ZS ZZ))))
(Or LE E journal LE E publisher)) u)

begins with ‘Seq (Inter Empty Empty) . . .’, which is the concatenation of the
attributes of document (namely none) with the attributes of publication (again
none). So attributes are accumulated at the beginning of the type declaration.

In contrast, the translation of article, which derives from publication via re-
striction, corresponds more directly with its declaration as written in the
schema.

data T article u = T article
(Seq Empty (Seq (Rep LE E author ZI)

(Seq LE E title (Seq LE E year LE E journal))) u)
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This is because, unlike with extensions where the user only specifies the new
fields, the body of a restricted type is essentially repeated as a whole.

5.4 From XML documents to Haskell data

In this subsection we describe an implementation of the translation outlined
in the previous subsection as a generic parser for XML documents, written
in Generic Haskell. To abstract away from details of XML concrete syntax,
rather than parse strings, we use a universal data representation Doc which
presents a document as a tree (or rather a forest):

type Doc = [DocItem ]
data DocItem = DText String | DAttr String Doc | DElem String Doc .

We use standard techniques [19] to define a set of monadic parsing combina-
tors operating over Doc. P a is the type of parsers that parse a value of type
a. We omit the definitions here because they are straightfoward generaliza-
tions of string parsers. The type of generic parsers is the kind-indexed type
GParse{[κ]} t and gParse{|t|} denotes a parser which tries to read a document
into a value of type t. We now describe its behavior on the various components
of Schema.

gParse{|t :: ?|} :: (gParse{|t|})⇒ P t
gParse{|String|} = pMixed
gParse{|Unit|} = pElementOnly

The first two cases handle mixities: pMixed optionally matches DText chunk(s),
while parser pElementOnly always succeeds without consuming input. Note
that no schema type actually translates to Unit or String (by themselves), but
these cases are used indirectly by the other cases.

gParse{|Empty u|} = return Empty
gParse{|Seq g1 g2 u|} = do doc1 ← gParse{|g1 u|}

doc2 ← gParse{|g2 u|}
return (Seq doc1 doc2 )

gParse{|None u|} = mzero
gParse{|Or g1 g2 u|} = fmap Or1 gParse{|g1 u|}

<|> fmap Or2 gParse{|g2 u|}

Sequences and choices map closely onto the corresponding monad operators.
p <|> q tries parser p on the input first, and if p fails attempts again with q ,
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and mzero is the identity element for <|>.

gParse{|Rep g b u|} = fmap Rep gParse{|b g u|}
gParse{|ZZ g u|} = return ZZ
gParse{|ZI g u|} = fmap ZI $ many gParse{|g u|}
gParse{|ZS g b u|} = do x ← option gParse{|g u|}

y ← gParse{|b g u|}
return (ZS x (Rep y))

gParse{|SS g b u|} = do x ← gParse{|g u|}
y ← gParse{|b g u|}
return (SS x (Rep y))

Repetitions are handled using the familiar combinators many p and option p,
which parse a sequence of documents matching p and an optional p, respec-
tively.

gParse{|T string u|} = fmap T string pText
gParse{|T integer u|} = fmap T integer pReadableText

String primitives are handled by a parser pText , which matches any DText
chunk(s). Function pReadableText parses integers (also doubles and booleans—
here omitted) using the standard Haskell read function, since we defined our
alternative schema syntax to use Haskell syntax for the primitives.

gParse{|Elem e g u|} = do mixity ← gParse{|u|}
let p = gParse{|g|} pElementOnly
elemt gName{|e|} (fmap (Elem mixity) p)

An element is parsed by first using the mixity parser corresponding to u to read
any preceding mixity content, then by using the parser function elemt to read
in the actual element. elemt s p checks for a document item DElem s d , where
the parser p is used to (recursively) parse the subdocument d . We always pass
in gParse{|g|} pElementOnly for p because mixed content is ‘canceled’ when
we descend down to the children of an element. Parsing of attributes is similar.

This code uses an auxiliary type-indexed function gName{|e|} to acquire the
name of an element; it has only one interesting case:

gName{|Con c a|} = drop 5 (conName c)

This case makes use of the special Generic Haskell syntax Con c a, which
binds c to a record containing syntactic information about a datatype. The
right-hand side just returns the name of the constructor, minus the first five
characters (say, "LE_T_"), thus giving the attribute or element name as a
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string.

gParse{|Mix g u|} = do doc ← gParse{|g|} pMixed
mixity ← pMixed
return (Mix doc mixity)

When descending through a Mix type constructor, we perform the opposite of
the procedure for elements above: we ignore the mixity parser corresponding
to u and substitute pMixed instead. pMixed is then called again to pick up the
trailing mixity content.

Most of the code handling interleaving is part of another auxiliary function,
gInter{|t|}, which has the following type:

gInter{|t :: ?|} :: (gInter{|t|})⇒ ∀a. PermP (t→ a)→ PermP a .

Interleaving is handled using these permutation phrase combinators [5]:

(<‖>) :: ∀a b. PermP (a→ b)→ P a→ PermP b
(<|?>) :: ∀a b. PermP (a→ b)→ (a, P a)→ PermP b
mapPerms :: ∀a b. (a→ b)→ PermP a→ PermP b
permute :: ∀a. PermP a→ P a
newperm :: ∀a b. (a→ b)→ PermP (a→ b) .

Briefly, a permutation parser q :: PermP a reads a sequence of (possibly op-
tional) documents in any order, returning a semantic value a. Permutation
parsers are created using newperm and chained together using <‖> or, if op-
tional, <|?>. mapPerms is the standard map function for the PermP type.
permute q converts a permutation parser q into a normal parser.

gParse{|Inter g1 g2 u|} =
permute $ (gInter{|g2 u|} ◦ gInter{|g1 u|}) (newperm Inter)

To see how the above code works, observe that:

f1 = gInter{|g1 u|} :: ∀g1 u b. PermP (g1 u→ b)→ PermP b
f2 = gInter{|g2 u|} :: ∀g2 u c. PermP (g2 u→ c)→ PermP c -- hence
f2 ◦ f1 :: ∀g1 g2 u c. PermP (g1 u→ g2 u→ c)→ PermP c .

Note that if c is instantiated to Inter g1 g2 u, then the function type appearing
in the domain becomes the type of the data constructor Inter , so we need only
apply it to newperm Inter to get a permutation parser of the right type.

(f1 ◦ f2 ) (newperm Inter) :: ∀g1 g2 u. PermP (Inter g1 g2 u)

Many cases of function gInter need not be defined because the syntax of
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interleavings in Schema is so restricted.

gInter{|Con c a|} = (<‖> fmap Con gParse{|a|})
gInter{|Inter g1 g2 u|} = gInter{|g1 u|} ◦ gInter{|g2 u|}

◦ mapPerms (λf x y → f (Inter x y))
gInter{|Rep g (ZS ZZ) u|} = (<|?> (Rep gDefault{|(ZS ZZ) g u|}

, fmap Rep gParse{|(ZS ZZ) g u|}))

In the Con case, we see that an atomic type (an element or attribute name)
produces a permutation parser transformer of the form (<‖> q). The Inter
case composes such parsers, so more generally we obtain parser transformers
of the form (<|> q1 <|> q2 <|> q3 <|> ...). The Rep case is only ever called
when g is atomic and the bounds are of the form ZS ZZ: this corresponds
to a Schema type like e{0, 1}, that is, an optional element (or attribute). 4

gDefault{|t|} is a simple auxiliary declaration which provides a value of the
appropriate type when the optional value is omitted.

6 Improving UUXML

The default translation scheme of a data binding may produce unwieldy, con-
voluted and redundant types and values. Our own Haskell–XML Schema bind-
ing UUXML, presented in the previous section, suffers from this problem.

In this section we use UUXML as a case study, to show how iso inference
can be used to address a practical problem, the problem of overwhelmingly
complex data representation which tends to accompany type-safe language
embeddings. We outline the problem, explain how the design criteria gave rise
to it, and finally show how to attack it.

In essence, our strategy will be to define a customized datatype, one chosen
by the client programmer especially for the application. We use our mecha-
nism to automatically infer the functions which convert to and from the cus-
tomized representation by bracketing the core of the program with reduce{|t|}
and expand{|t|}. Generic Haskell does the rest, and the programmer is largely
relieved from the burden imposed by the UUXML data representation.

The same technique might be used in other situations, for example, compilers
and similar language processors which are designed to exploit type-safe data
representations.

4 The GH compiler does not accept the syntax gInter{|Rep g (ZS ZZ) u|}. We define
this case using gInter{|Rep g b u|}, where b is used consistently instead of ZS ZZ,
but the function is only ever called when b = ZS ZZ.
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6.1 The Problem with UUXML

Let us briefly give the reader a sense of the magnitude of the problem.

Consider the following XML schema, which describes a simple bibliographic
record doc including a sequence of authors, a title and an optional publication
date, which is a year followed by a month.

<element name="doc" type="docType"/>

<complexType name="docType">

<sequence>

<element ref="author" minOccurs="0" maxOccurs="unbounded"/>

<element ref="title"/>

<element ref="pubDate" minOccurs="0"/>

</sequence>

<attribute name="key" type="string"/>

</complexType>

<element name="author" type="string"/>

<element name="title" type="string"/>

<complexType name="pubDateType">

<sequence>

<element ref="year"/>

<element ref="month"/>

</sequence>

</complexType>

<element name="pubDate" type="pubDateType"/>

<element name="year" type="int"/>

<element name="month" type="int"/>

An example document which validates against this schema is:

<doc key="homer-odyss">

<author>Homer</author>

<title>The Odyssey</title>

</doc> .

UUXML translates each of the types doc and docType into a pair of types,

data E doc u = E doc (Elem LE E doc LE T docType u)
data LE E doc u = EQ E doc (E doc u)
data T docType u = T docType (Seq A key (Seq (Rep LE E author ZI)

(Seq LE E title (Rep LE E pubDate
(ZS ZZ)))) u)

data LE T docType u = EQ E docType (T docType u)
| LE T publicationType (LE T publicationType u)
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and the example document above into:

EQ E doc (E doc (Elem () (EQ T docType (T docType (Seq (A key (Attr
(EQ T string (T string "homer-odyss"))))(Seq (Rep (ZI [EQ E author
(E author (Elem () (EQ T string (T string "Homer"))))])) (Seq (EQ E title
(E title (Elem () (EQ T string (T string "The Odyssey"))))) (Rep
(ZS Nothing (Rep ZZ )))))))))) .

The problem is clear: if a user wants to, say, retrieve the content of the author
field, he or she must pattern-match against no less than ten constructors before
reaching "Homer". For larger, more complex documents or document types,
the problem can be even worse.

6.2 Conflicting Issues in UUXML

UUXML’s usability issues are a side effect of its design goals. We discuss these
here in some depth, and close by suggesting why similar issues may plague
other applications which process typed languages.

First, UUXML is type-safe and preserves as much static type information
as possible to eliminate the possibility of constructing invalid documents. In
contrast, Java–XML bindings tend to ignore a great deal of type information,
such as the types of repeated elements (only partly because of the limitations
of Java collections).

Second, UUXML translates (a sublanguage of) XML Schema types rather
than the less expressive DTDs. This entails additional complexity compared
with bindings such as HaXML [50] that merely target DTDs. For example,
XML Schema supports not just one but two distinct notions of subtyping and
a more general treatment of mixed content than DTDs.

Third, the UUXML translation closely follows the Model Schema Language
(MSL) formal semantics [8], even going so far as to replicate that formalism’s
abstract syntax as closely as Haskell’s type syntax allows. This has advantages:
we have been able to prove the soundness of the translation, that is, that valid
documents translate to typeable values, and the translator is relatively easy
to correctly implement and maintain. However, our strict adherence to MSL
has introduced a number of ‘dummy constructors’ and ‘wrappers’ which could
otherwise be eliminated.

Fourth, since Haskell does not directly support subtyping and XML Schema
does, our binding tool emits a pair of Haskell datatypes for each schema
type t: an ‘equational’ variant which represents documents which validate
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exactly against t, and a ‘down-closed’ variant, which represents all documents
which validate against all subtypes of t. Our expectation was that a typical
Haskell user would read a document into the down-closed variant, pattern-
match against it to determine which exact/equational type was used, and do
the bulk of their computation using that.

Finally, UUXML was intended, first and foremost, to support the development
of ‘schema-aware’ XML applications using Generic Haskell. This moniker de-
scribes programs, such as our XML compressor XComprez [2], which operate
on documents of any schema, but not necessarily parametrically. XComprez,
for example, exploits the type information of a schema to improve compression
ratios.

Because Generic Haskell works by traversing the structure of datatypes, we
could not employ methods, such as those in WASH [43], which encode schema
information in non-structural channels such as Haskell’s type class system.
Such information is instead necessarily expressed in the structure of UUXML’s
types, and makes them more complex.

For schema-aware applications this complexity is not such an issue, since
generic functions typically need not pattern-match deeply into a datatype.
But if we aim to use UUXML for more conventional applications, as we have
demonstrated, it can become an overwhelming problem.

In closing, we emphasize that many similar issues are likely to arise, not only
with other data bindings and machine-generated programs, but also with any
type-safe representation of a typed object language in a metalanguage such as
Haskell. Preserving the type information necessarily complicates the represen-
tation. If the overall ‘style’ of the object language is to be preserved, as was our
desire in staying close to MSL, then the representation is further complicated.
If subtyping is involved, even more so. If the representation is intended to sup-
port generic programming, then one is obliged to express as much information
as possible structurally, and this too entails some complexity.

For reasons such as these, one might be tempted to eschew type-safe embed-
dings entirely, but then what is the point of programming in a statically typed
language if not to exploit the type system? Arguably, the complexity problem
arises not from static typing itself, but rather the insistence on using only
a single data representation. In the next section, we show how iso inference
drastically simplifies dealing with multiple data representations.
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6.3 Exploiting Isomorphisms

Datatypes produced by UUXML are unquestionably complicated. Let us con-
sider instead what our ideal translation target might look like. Here is an
obvious, very conventional, Haskell-style translation image of doc:

module Doc where
data Doc = Doc{ key :: String,

authors :: [String ],
title :: String,
pubDate :: Maybe PubDate}

data PubDate = PubDate{year :: Integer,
month :: Integer}

Observe in particular that:

• the target types Doc and PubDate have conventional, Haskellish names
which do not look machine-generated;
• the fields are typed by conventional Haskell datatypes like String, lists and

Maybe;
• the attribute key is treated just like other elements; and
• intermediate ‘wrapper’ elements like title and year have been elided and do

not generate new types;
• the positional information encoded in wrappers is available in the field pro-

jection names;
• the field name authors has been changed from the element name author ,

which is natural since authors projects a list whereas each author tag wraps
a single author.

Achieving an analogous result in Java with a data binding like JAXB would
require annotating (editing) the source schema directly, or writing a ‘binding
customization file’ which is substantially longer than the two datatype decla-
rations above. Both methods also require learning another XML vocabulary
and some details of the translation process, and the latter uses XPath syn-
tax to indicate the parts which require customization—a maintenance hazard
since the schema structure may change.

With our iso inference system, provided that the document is known to be
exactly of type doc and not a proper subtype, all that is required is the above
Haskell declaration plus the following modest incantation.

expand{|Doc|} ◦ reduce{|E doc|}

This expression denotes a function of type E doc → Doc which converts the
unwieldy UUXML representation of doc into the idealized form above.
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For example, the following is a complete Generic Haskell program that reads
in a doc-conforming document from standard input, deletes all authors named
“De Sade”, and writes the result to standard output.

module Censor where
import UUXML -- our framework
import XDoc -- automatically translated XML Schema
import Doc -- the custom declarations above

main = interact work
work = toE doc ◦ censor ◦ toDoc
censor d = d{authors = filter (6≡ "De Sade") (authors d)}
toE doc = unparse{|E doc|} ◦ expand{|E doc|} ◦ reduce{|Doc|}
toDoc = expand{|Doc|} ◦ reduce{|E doc|} ◦ parse{|E doc|}

6.4 The Role of Coercions

Recall that our system infers two non-invertible coercions:

a :*: b 6 a a 6 a :+: b .

Of course, this is only half the story we would like to hear! Though we could
easily implement the dual pair of coercions, we cannot implement them both
together except in an ad hoc fashion (and hence refrain from doing so). This
is only partly because, in reducing to a universal type, we have thrown away
the type information. Even if we knew the types involved, it is not clear, for
example, whether the coercion a → a :+: a should determine the left or the
right injection.

Fortunately, even this ‘biased’ form of subtyping proves quite useful. In partic-
ular, XML Schema’s so-called ‘extension’ subtyping exactly matches the form
of the first projection coercion, as it only allows documents validating against
a type t to be used in contexts of type s if s matches a prefix of t: so t is an
extension of s.

Schema’s other form of subtyping, called ‘restriction’, allows documents val-
idating against type t to be used in contexts of type s if every document
validating against t also validates against s: so t is a restriction of s. This can
only happen if s, regarded as a grammar, can be reformulated as a disjunction
of productions, one of which is t, so it appears our left injection coercion can
capture part of this subtyping relation as well.

Actually, due to a combination of circumstances, the situation is better than
might be expected. First, subtyping in Schema is manifest or nominal, rather
than purely structural : consequently, restriction only holds between types
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assigned a name in the schema. Second, our translation models subtyping
by generating a Haskell datatype declaration for the down-closure of each
named schema type. For example, the ‘colored point’ example familiar from
the object-oriented literature would be expressed thus:

data Point = Point ...
data CPoint = CPoint ...
data LE Point = EQ Point Point

| LE CPoint LE CPoint
data LE CPoint = EQ CPoint CPoint

| ...

Third, we have arranged our translator so that the EQ . . . constructors always
appear in the leftmost summand. This means that the injection from the
‘equational’ variant of a translated type to its down-closed variant is always the
leftmost injection, and consequently picked out by our expansion mechanism.

EQ Point :: Point→ LE Point
EQ CPoint :: CPoint→ LE CPoint

Since Haskell is, in itself, not so well-equipped at dealing subtyping, when
reading an XML document we would rather have the coercion the other way
around, that is, we should like to read an LE Point into a Point, but of course
this is unsafe. However, when writing a value to a document these coercions
save us some work inserting constructors.

Of course, since, unlike Schema itself, our coercion mechanism is structural, we
can employ this capability in other ways. For instance, when writing a value
to a document, we can use the fact that Nothing is the leftmost injection into
the Maybe a type to omit optional elements.

6.5 Conclusion

Let us summarize the main points of this case study.

We demonstrated first by example that UUXML-translated datatypes are
overwhelmingly complex and redundant. To address complaints that this prob-
lem stems merely from a bad choice of representation, we enumerated some of
UUXML’s design criteria, and explained why they necessitate that represen-
tation. We also suggested why other translations and type-safe embeddings
might suffer from the same problem. Finally, we described how to exploit our
iso inference mechanism to address this problem, and how coercion inference
can also be used to simplify the treatment of object language features such
as subtyping and optional values which the metalanguage does not inherently
support.

37



7 Conclusions

This paper describes:

• a simple, powerful and general mechanism for automatically inferring a well-
behaved class of isomorphisms.
• UUXML, an XML Schema–Haskell data binding. XML Schema has sev-

eral features not available natively in Haskell, including mixed content, two
forms of subtyping and a generalized form of repetition. Nevertheless, we
have shown that these features can be accomodated by Haskell’s datatype
mechanism alone. The existence of a simple formal semantics for Schema
such as MSL’s was a great help to both the design and implementation of
our work, and essential for the proof of type soundness.
• how the automatic inference of isomorophisms solves some usability prob-

lems stemming from the complexity of UUXML.

Our inference mechanism leverages the power of an existing tool, Generic
Haskell, and the established and growing theory of type isomorphisms. UUXML
uses Generic Haskell in its generic parser.

We believe that both the general idea of exploiting isomorphisms and our im-
plementation technique have application beyond UUXML. For example, when
libraries written by distinct developers are used in the same application, they
often include different representations of what amounts to the same datatype.
When passing data from one library to the other the data must be converted to
conform to each library’s internal conventions. Our technique could be used
to simplify this conversion task; to make this sort of application practical,
though, iso inference should probably be integrated with type inference, and
the class of isos inferred should be enlarged. We discuss such possibilities for
future work below.

7.1 Related & Future Work

7.1.1 XML frameworks and languages.

We have already mentioned the HaXML [50] and WASH [43] XML data bind-
ings for Haskell. The Model Schema Language semantics [8] is now superseded
by newer work [40]; we are investigating how to adapt UUXML to the more
recent treatment. Special-purpose languages, such as XSLT [45], XDuce [18],
Yatl [10], XMλ [31,39], SXSLT [20] and Xtatic [14], take a different approach
to XML problems.
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7.1.2 Isomorphisms and coherence.

In computer science, the use of type isomorphisms seem to have been popu-
larized first by Rittri who demonstrated their value in software retrieval tasks,
such as searching a software library for functions matching a query type [37].
Since then the area has ballooned; good places to start on the theory of type
isomorphisms is Di Cosmo’s book [12] and the paper by Bruce et al. [9]. More
recent work has focused on linear type isomorphisms [6,41,38,29].

In category theory, Mac Lane initiated the study of coherence in a seminal
paper [27]; his book [28] treats the case for monoidal categories. Beylin and
Dybjer’s use [7] of Mac Lane’s coherence theorem influenced our technique
here. The strong regularity condition is sufficient for ensuring that an alge-
braic theory is cartesian; cartesian monads have been used by Leinster [23,22]
and Hermida [15] to formalize the notion of generalized multicategory, which
generalizes a usual category by imposing an algebraic theory on the objects,
and letting the domain of an arrow be a term of that theory.

7.1.3 Schema matching.

In areas like database management and electronic commerce, the plethora
of data representation standards—formally, ‘schemas’—used to transmit and
store data can hinder reuse and data exchange. To deal with this growing
problem, ‘schema matching’, the problem of how to construct a mapping be-
tween elements of two schemas, has become an active research area. Because
the size, complexity and number of schemas is only increasing, finding ways
to accurately and efficiently automate this task has become more and more
important; see Rahm and Bernstein [36] for a survey of approaches.

Erwig [13] has suggested a technique for automatic schema matching similar to
ours in the sense that it exploits ‘information-preserving and -approximating’
functions between DTDs. Although that approach can automatically infer
some more sophisticated transformations than ours (such as one related to
the sum-product distributivity iso), it is based on a home-grown semantics for
XML DTDs, not W3C Schemas, and does not guarantee that the transforma-
tions are canonical, thus requiring some interaction (with a user or external
data source) to select a mapping appropriate to the task at hand.

We believe that our approach, which exploits not only the syntax but seman-
tics of types, could provide new insights into schema matching. In particular,
the notion of canonical (iso)morphism could help clarify when a mapping’s
semantics is forced entirely by structural considerations, and when additional
information (linguistic, descriptive, etc.) is provably required to disambiguate
a mapping.
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7.1.4 Implicit coercions.

Thatte introduced a declaration construct for introducing user-defined, im-
plicit conversions between types [42], using, like us, an equational theory on
types. Thatte also presents a principal type inference algorithm for his lan-
guage, which requires that the equational theory is unitary, that is, every
unifiable pair of types has a unique most general unifier. To ensure theories
be unitary, Thatte demands they be finite and acyclic, and uses a syntactic
condition related to, but different from, strong regularity to ensure finiteness.
In Thatte’s system, coherence seems to hold if and only if the user-supplied
conversions are true inverses.

The relationship between Thatte’s system and ours requires further investi-
gation. In some ways Thatte’s system is more liberal, allowing for example
distributive theories. On the other hand, the unitariness requirement rules
out associative theories, which are infinitary. The acyclicity condition also
rules out commutative theories, which are not strongly regular, but also the
currying iso, which is. Another difference between Thatte’s system and ours
is that his catches errors at compile-time, while the implementation we pre-
sented here does so at run-time. A final difference is that, although the finite
acyclicity condition is decidable, the requirement that conversions be invert-
ible is not; consequently, users may introduce declarations which break the
coherence property (produce ambiguous programs). In our system, any user-
defined conversions are obtained structurally, as datatype isos from datatype
declarations, which cannot fail to be canonical; hence it is not possible to
break coherence.

7.1.5 The Generic Haskell implementation.

We see several ways to improve our current implementation of iso inference.

• We would like to detect inference errors statically rather than dynamically
(see below).
• Inferring more isomorphisms (such as the linear currying isos) and more

powerful kinds of isomorphisms (such as commutativity of products and
sums, and distributivity of one over the other) is also attractive.
• Currently, adding new ad hoc coercions requires editing the source code;

since such coercions typically depend on the domain of application, a better
approach would be to somehow parametrize the code by them, perhaps
using first-class generic functions.
• We could exploit the fact that Generic Haskell allows to define type cases on

the→ type constructor: instead of providing two generic functions reduce{|t|}
and expand{|t|}, we would provide only a single generic function:

coerce{|t→ t′|} = expand{|t′|} ◦ reduce{|t|} .
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• The fact that the unique witness property does not readily transfer from
type schemes to types might be circumvented by inferring first-class poly-
morphic functions which can then be instantiated at suitable types. Generic
Haskell does not currently allow to do so, but if we could write expressions
like coerce{|∀a b. (a, b) → (b, a)|} we could infer all canonical isos, without
restriction, and perhaps handle examples like Date NL and Date US from
section 1.

7.1.6 UUXML.

We have so far developed a prototype implementation of the translation and
checked its correctness with a few simple examples and some slightly larger
ones, such as the generic parser presented here and a generic pretty-printer.
Future work may involve extending the translation to cover more Schema fea-
tures such as facets and wildcards, adopting the semantics described in more
recent work [40], which more accurately models Schema’s named typing, and
exploiting the 1-unambiguity constraint to obtain a more economical transla-
tion.

7.1.7 Inference failure.

Because our implementation depends on the “universal” type Univ, failure oc-
curs dynamically and a message helpful for pinpointing the error’s source is
printed. This situation is unsatisfactory, though, since every invocation of the
expand and reduce functions together mentions the types involved; in princi-
ple, we could detect failures statically, thus increasing program reliability.

Such early detection could also enable new optimizations. For example, if the
types involved are not only isomorphic but equal, then the conversion is the
identity and a compiler could omit it altogether. But even if the types are only
isomorphic, the reduction might not unreasonably be done at compile-time,
as our isos are all known to be terminating; this just amounts to adjusting the
data representation ‘at one end’ or the other to match exactly.

We have investigated, but not tested, an approach for static failure detection
based on an extension of Generic Haskell’s type-indexed datatypes [17]. The
idea is to introduce a type-indexed datatype NF{[t]} which denotes the normal
form of type t w.r.t. to the iso theory, and then reformulate our functions so
that they are assigned types:

reduce{|t|} :: t→ NF{[t]}
expand{|t|} :: NF{[t]} → t .
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For example, considering only products, the type NF{[t]} could be defined as
follows.

type NF{[t]} = Norm{[t]} Unit
data Norm{[Unit]} t = NUnit t
data Norm{[a :*: b]} t = NProd (a :*: (b :*: t))
data Norm{[Int]} t = NBase (Int :*: t)

This would give the GH compiler enough information to reject bad conversions
at compile-time.

Unfortunately, the semantics of GH’s type-indexed datatypes is too “genera-
tive” for this approach to work. The problem is apparent if we try to compile
the expression:

expand{|Int|} ◦ reduce{|(Int, ())|} .

GH flags this as a type error, because it treats NF{[Int]} and NF{[(Int, ())]} as
distinct (unequal), though structurally identical, datatypes.

A possible solution to this issue may be a recently considered GH extension
called type-indexed types (as opposed to type-indexed datatypes). If NF{[t ]}
is implemented as a type-indexed type, then, like Haskell’s type synonyms,
structurally identical instances like the ones above will actually be forced to
be equal, and the expression above should compile. However, type-indexed
types—as currently envisioned—also share the limitations of Haskell’s type
synonyms w.r.t. recursion; a type-indexed type like NF{[List Int]} is likely to
cause the compiler to loop as it tries to expand recursive occurrences while
traversing the datatype body. Nevertheless, of the several approaches we have
considered to addressing the problem of static error detection, type-indexed
types seems the most promising.
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