
Online Topological Ordering

Irit Katriel

Hans L. Bodlaender

institute of information and computing sciences, utrecht university

technical report UU-CS-2005-011

www.cs.uu.nl

Online Topological Ordering

Irit Katriel1 and Hans L. Bodlaender2

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
irit@mpi-sb.mpg.de

2 Institute of Information and Computing Sciences, Utrecht University, the Netherlands
hansb@cs.uu.nl

Abstract. It is shown that the problem of maintaining the topological order of the nodes of
a directed acyclic graph while inserting m edges can be solved in O(min{m3/2 log n, m3/2 +
n2 log n}) time, an improvement over the best known result of O(mn). In addition, we ana-
lyze the complexity of the same algorithm with respect to the treewidth k of the underlying
undirected graph. We show that the algorithm runs in time O(mk log2 n) for general k and
that it can be implemented to run in O(n log n) time on trees, which is optimal. If the input
contains cycles, the algorithm detects this.

1 Introduction

In this paper, we study online algorithms to maintain a topological ordering of a directed acyclic
graph. In a topological ordering, each node v ∈ V of a given directed acyclic graph (DAG)
G = (V, E) is associated with a value ord(v), such that for each directed edge (u, v) ∈ E, we have
ord(u) < ord(v) [15]. In the online variant of the topological ordering problem, the edges of the
DAG are not known in advance but are given one at a time. Each time an edge is added to the
DAG, we are required to update the mapping ord . One directly observes that there are two cases
when an edge is added. Suppose we have a DAG and a valid topological ordering function ord ,
and that an edge (x, y) is added to this DAG. If ord(x) < ord(y) then ord is a valid topological
ordering function for the new DAG and no updating is necessary. Otherwise, the new edge (x, y)
is said to violate the topological order ord . In this case, we need to find a new function ord ′ which
is a valid topological ordering function for the new DAG.

The online topological ordering problem has several applications. It has been studied in the
context of compilation [7, 10] where dependencies between modules are maintained to reduce the
amount of recompilation performed when an update occurs, source code analysis [11] where the
aim is to statically determine the smallest possible target set for all pointers in a program and
as a subroutine of an algorithm for incremental evaluation of computational circuits [1]. Dynamic
topological ordering is also used at the core of constraint systems for stochastic search such as
those featured in Comet [9].

1.1 Known Results.

The trivial solution for the online problem is to compute a new topological order from scratch
whenever an edge is inserted. Since this takes time Θ(n + m) for an n-node m-edge DAG, the
complexity of inserting m edges is Θ(m2)1.

Marchetti-Spaccamela et al. [8] gave an algorithm that can insert m edges in O(mn) time,
giving an amortized time bound of O(n) per edge instead of the trivial O(m). This is the best
amortized result known so far. Pearce and Kelly [11] propose a different algorithm and show
experimentally that it achieves a speedup on sparse inputs, although its worst case running time
is slightly higher. It was shown [6] that the algorithm by Pearce and Kelly is worst-case optimal
in terms of the number of node relabelling operations it performs.

1 Here and in the rest of the paper we assume m = Ω(n).

Alpern et al. [1] designed an algorithm which runs in time O(‖δ‖ log ‖δ‖) in the bounded
incremental computation model [13]. In this model, the parameter ‖δ‖ measures, upon an edge
insertion, the size (number of nodes and edges) of a minimal subgraph that we need to update in
order to obtain a valid topological order ord ′ for the modified graph. Since ‖δ‖ can be anywhere
between 0 and Θ(m), the bounded complexity result does not provide much information about
the cost of a sequence of updates. All it guarantees is that each individual update could not have
been performed much faster.

The only non-trivial lower bound for online topological ordering is due to Ramalingam and
Rep [12], who show that an adversary can force any algorithm to perform Ω(n log n) node re-
labelling operations while inserting n − 1 edges (and creating a chain). Thus, if the labels are
maintained explicitely, this implies an Ω(n log n) bound on runtime.

1.2 Our Results.

In Section 2 we show that a slight variation on the algorithm by Alpern et al. can handle m
edge insertions in O(min{m3/2 log n, m3/2 + n2 log n}) time. This implies an amortized time of
O(min{√m log n,

√
m + n2 log n

m }) per edge; an improvement over the previous result. We then
show that this analysis is almost tight. That is, for any m ≤ n(n − 1)/2, there is an input of m
edges which will take the algorithm Ω(m3/2) time to process.

For m = n−1 our upper bound is O(n3/2 log n), which is far from the lower bound of Ω(n log n).
However, the worst case input, on which the algorithm performs Ω(n3/2) work, contains bipartite
cliques. In Section 3 we analyze the complexity of the same algorithm on structured graphs, and
show that it has an implementation which is optimal on trees (assuming that the running time
is at least proportional to the number of relabelling operations performed) and in general runs in
time O(mk log2 n), where k is the treewidth of the input DAG. While much of the current results
that exploit the treewidth of graphs show that problems can be solved faster when the treewidth
of the input graph is bounded, it is interesting to note that the notion also has other uses. For our
result, we do not need to assume some bound on the treewidth, and we analyze an algorithm that
does not use the treewidth or a tree decomposition of the given graph. Also, little research has so
far been done on the effect of treewidth on online algorithms.

2 An O(min{√
m log n,

√
m + n2 log n

m
}) Amortized Upper Bound

Figure 5 shows a slight variation on the algorithm by Alpern et al. [1]. This variation works as
follows2. The ord labels of the nodes are maintained by an Ordered List data structure ORD ,
which is a data structure that allows to maintain a total order over a list of items and to perform
the following operations in constant amortized time [2, 4]: InsertAfter(x, y) (InsertBefore(x, y))
inserts the item x immediately after (before) the item y in the total order, Delete(x) removes the
item x, the query Order(x, y) determines whether x precedes y or y precedes x in the total order
and Next(x) (Prev (x)) returns the item that appears immediately after (before) x in the total
order. These operations are implemented by associating integer labels with the items in the list
such that the label associated with x is smaller than the label associated with y iff x precedes y
in the total order.

Initially, no edges exist in the graph so the nodes are inserted into ORD in an arbitrary order.
Then, whenever an edge (Source,Target) is inserted into the graph, the function AddEdge is called.
When this function returns, the total order ORD is a valid topological order for the modified graph.

It remains to describe how AddEdge works. Given a total order ord on the nodes and the edge
(Source,Target) which is to be inserted, we define the affected region AR to be the set of nodes
{v|ord(Target) ≤ ord(v) ≤ ord(Source)}. The set FromTarget contains all the nodes of AR which
are reachable from Target by a path in the DAG and the set ToSource is the set of nodes in AR

2 The proof of correctness of the algorithm appears in [1]; here we are only describing how it operates
and providing some intuition.

from which Source can be reached by a path. In the example in Figure 1, the nodes appear by the
order of their ord labels and the dashed edge (I, C) is inserted. There, AR = {C, D, E, F, G, H, I},
FromTarget = {C, D, F} and ToSource = {E, H, I}.

J KA B C D E F G H I

Fig. 1. The dashed edge violates the order ord .

Clearly, in any topological order for the modified graph, all nodes in FromTarget appear after
all nodes in ToSource. The relative order among other nodes can remain unchanged, as well as
the relative order within FromTarget and within ToSource. As illustrated in Figure 2, this can be
achieved by relabelling the nodes of a subset of FromTarget ∪ ToSource: Place a vertical line at
an arbitrary location between Target and Source. Let FromT be the subset of FromTarget which
is to the left of the line and ToS the subset of ToSource which is to the right of the line. Now,
place all nodes in FromT immediately after the line and all nodes in ToS immediately before the
line, while preserving the previous relative order within each set.

Conceptually, the algorithm begins with two horizontal lines, one immediately to the left of
Target and the other immediately to the right of Source. The two lines sweep towards each other
until they meet, and as they advance, the left line inserts into FromT all nodes it sweeps over
which are in FromTarget and the right line inserts into ToS all nodes it sweeps over which are
in ToSource. It remains to determine at which speed each line progresses. For this, we define two
sets of edges: EFromT of the edges outgoing from nodes in FromT and EToS of edges incoming
into nodes in ToS . The algorithm aims to balance the cardinalities of EFromT and EToS as much
as possible. It begins to explore the nodes in FromTarget and ToSource, the first by starting at
Target and advancing by order of the ord labels of the nodes, and the second by starting at Source
and advancing in reverse order of the ord labels. Figure 3 shows how the algorithm would select
the location of the line in the graph of Figure 2.

In practice, this is implemented as follows. Two priority queues are used for the sweeping:
SourceQueue for the nodes that can reach nodes in ToS and TargetQueue for the nodes that are
reachable from nodes in FromT . In each iteration, there is one node s which is a candidate for
insertion into ToS (the node with maximal ord label which reaches a node in ToS but is not in
ToS) and one node t which is a candidate for insertion into FromT (the node with minimal ord
label which can be reached from a node in FromT but is not in FromT). The algorithm adds at
least one of them (possibly both) to the relevant set.

For each node v ∈ V , let InDegree[v] be the number of edges incoming into v and OutDegree[v]
be the number of edges outgoing from v. Once a node becomes a candidate for insertion into ToS
or FromT , it remains the candidate for insertion into its set until it is inserted or the function
AddEdge terminates. The algorithm maintains two counters, one for the current s and the other for
the current t. When a node v becomes a candidate for insertion into ToS (FromT), the relevant
counter is set to InDegree[v] (OutDegree[v]). Whenever the two candidates are considered, the
value of the smaller counter is subtracted from both counters. Then, each candidate is inserted
into its respective set if the value of its counter is 0. This means that for every edge outgoing
from a node in FromTarget , there is an edge incoming into a node in ToSource ∪ {s}, and vice
versa. When a node is inserted into ToS (FromT), its incoming (outgoing) edges are traversed
and each of its predecessors (successors) is inserted into SourceQueue (TargetQueue) if it is not
already there. It is important to note that the time spent by the algorithm is proportional to the
number of edges adjacent to nodes that were inserted into ToS and FromT , and does not depend
on the degrees of the last candidates for insertion into these sets.

���
���
���

���
���
���

Node in ToS

���
���
���
���

��
��
��

��
��
��

Node in FromT

���
���
���

���
���
���

���
���
���

���
���
���

target source

Other NodeNode in FromTargetNode in ToSource
���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

Fig. 2. Illustration of the intuition behind the algorithm. The top image shows an input graph, a new edge
and the sets ToSource and FromTarget . The middle image shows the sets ToS and FromT with respect
to the drawn line. The bottom image shows how to obtain a topological order for the modified graph by
moving only the nodes of ToS ∪ FromT .

��
��
��

��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

Fig. 3. Two lines sweeping towards each other until they merge. The left line constructs the set FromT
and the right line constructs the set ToS .

The construction of the sets ToS and FromT ends when ord(s) ≤ ord(t) or ToS = ToSource
or FromT = FromTarget or the algorithm discovers that the edge (Source,Target) introduces a
cycle in the graph. In the later case, the algorithm terminates. Otherwise, the nodes in ToS are
deleted from ORD and are reinserted, in the same relative order among themselves, before all
nodes in FromTarget \ FromT and the nodes in FromT are deleted and reinserted in the same
relative order among themselves after all nodes in ToSource. Finally, the edge (Source,Target) is
inserted into the DAG. In the example in Figure 1, FromT = {C, D}, ToS = {E, H, I} and after
relabelling the nodes appear in ORD in the order shown in Figure 4.

BH IA J KC D F GE

Fig. 4. The graph of Figure 1 after relabelling the nodes and inserting the edge (I,C).

Remark. We have mentioned above that the algorithm we describe is a variation on the one
by Alpern et al. The first change we made is that the SourceDegree and TargetDegree counters
are initialized to the indegree or outdegree of a node. Alpern et al. initialize these values to the
total number of edges incident on the node. In the bounded incremental complexity model, their
definition is appropriate because it is the sum of the total degrees that should be minimized.
For our analysis, however, this change is necessary. In addition, we have simplified the relabelling
phase, compared to what was proposed by Alpern et al. Their relabelling phase minimizes the
number of different labels used. While this gives a worse asymptotic complexity, they claim that
it speeds up the operations on the Ordered List data structure in practice.

Cycle Detection

For simplicity, we omitted cycle detection from Figure 5. This can be added as follows: First, if
Source = Target then the new edge forms a self-loop, i.e., a cycle. Otherwise, we maintain two
flags for each node, an s-flag and a t-flag. Initially, both flags are set to 0. When a node is inserted
into SourceQueue (TargetQueue), its s-flag (t-flag) is set to 1. The flag remains 1 even after the
node is extracted from the queue. If there is a node with both flags equal to 1, the new edge
introduces a cycle.

2.1 Complexity Analysis.

The complexity analysis consists of two parts. In the first part, we show that the time spent on m
edge insertions is O(m3/2 log n). In the second part, we show that this time is O(m3/2 + n2 log n).
The combination of both results gives:

Theorem 1. The topological order of the nodes of a DAG can be maintained while inserting m
edges in total time O(min{m3/2 log n, m3/2 + n2 log n}).

Let E = {e1, . . . , em} be the edges of the DAG, sorted by the order in which they are inserted.
After inserting e1, . . . , ek, for any 1 ≤ i, j ≤ m we say that the pair of edges ei = (xi, yi), ej =
(xj , yj) is ordered if there is a path from yi to xj or from yj to xi that uses only edges from
{e1, . . . , ek}. That is, if the edges that were already inserted to the DAG form a path that deter-
mines the relative positions of ei and ej in the topological order. Otherwise, we say that the edges
are unordered. Similarly, we say that a pair of nodes u, v is ordered if there is a path from u to v
or from v to u, and unordered otherwise.

We denote by Ue ⊆ E × E the set of unordered pairs of edges and by Uv ⊆ V × V the set of
unordered pairs of nodes.

Function AddEdge (Source , Target)
SourceQueue ← []; TargetQueue ← []
SourceStack ← [] ; TargetStack ← []
s← Source ; t← Target
SourceDegree ← InDegree [s]
TargetDegree ← OutDegree [t]

(* Discovery: decide which nodes should be relabelled. *)
while (ord(s) > ord(t)) do

d← min{SourceDegree ,TargetDegree}
SourceDegree ← SourceDegree − d
TargetDegree ← TargetDegree − d
if SourceDegree = 0 then

foreach (w, s) ∈ E do SourceQueue .Insert(w)
SourceStack .Push(s)
if SourceQueue .NotEmpty then

s← SourceQueue .ExtractMax
else s← ORD .Prev(Target) (* Then we are done *)
SourceDegree ← InDegree [s]

endif
if TargetDegree = 0 then

foreach (t, w) ∈ E do TargetQueue .Insert(w)
TargetStack .Push(t)
if TargetQueue .NotEmpty then

t← TargetQueue .ExtractMin
else t← ORD .Next(Source) (* Then we are done *)
TargetDegree ← OutDegree [t]

endif
end while

(* Relabel the nodes *)
if s = Target then s← ORD .Prev(Target)
while SourceStack .NotEmpty do

s′ ← SourceStack .Pop
ORD .Delete(s′); ORD .InsertAfter (s′, s); s← s′

end while
if t = Source then t← ORD .Next(Source)
while TargetStack .NotEmpty do

t′ ← TargetStack .Pop
ORD .Delete(t′); ORD .InsertBefore(t′, t); t← t′

end while

(* Insert the edge *)
E ← E ∪ {(Source , Target)}
InDegree [Target]← InDegree [Target] + 1
OutDegree [Source]← OutDegree [Source] + 1

end

Fig. 5. A variation on the algorithm by Alpern et al.

Upon the insertion of an edge, let nt (ns) be the number of nodes in FromT (ToS). Let mt

(ms) be the number of edges outgoing from (incoming to) nodes in FromT (ToS). Finally, let `t

(`s) be the number of edges outgoing from (incoming to) the node that was candidate for insertion
into FromT (ToS) when the algorithm terminated. If this node does not exist, i.e., TargetQueue
(SourceQueue) is empty at the end, then `t = 0 (`s = 0).

2.2 An O(m3/2 log n) Upper Bound.

We define a potential function Φ = |Ue|. I.e., the potential is equal to the number of unordered
pairs of edges. Initially, all pairs of edges are unordered, so Φ0 = m(m − 1) < m2.

Lemma 1. The algorithm spends on an insertion O(1 + max{mt, ms} logn) time.

Proof. The time that the algorithm spends on the insertion is a constant amount c, plus O(mt log mt+
ms log ms) to construct the sets ToS and FromT and O(nt +ns) for the relabelling. With ni ≤ mi

for i ∈ {s, t}, we have that the time spent is O(1+mt log mt+ms log ms) = O(1+(mt+ms) log m) =
O(1 + max{mt, ms} log n). ut
Lemma 2. For every edge insertion, after every iteration of the while loop of the discovery phase,
mt + `t − TargetDegree = ms + ls − SourceDegree.

Proof. We show this by induction on the number of iterations of the while loop which constructs
the sets FromT and ToS .

Initially, mt = ms = 0, TargetDegree = `t and SourceDegree = `s, so the equality holds.
Assume that it holds up to iteration i − 1 of the discovery loop. We will show that it holds also
after iteration i. For any value val ∈ {mt, `t, ms, `s,TargetDegree,SourceDegree}, let val denote
this value after iteration i − 1 and val ′ the same value after iteration i.

Since the algorithm did not terminate after iteration i − 1, we know that there is a candi-
date for insertion into each of FromT and ToS at the beginning of iteration i. Assume, w.l.o.g.,
that SourceDegree ≤ TargetDegree. Then s will be inserted into ToS , so m′

s = ms + `s and
SourceDegree ′ = `′s. We get that m′

s + `′s − SourceDegree′ = ms + `s.
For t, there are two cases. The first case is that TargetDegree = SourceDegree so t will be

inserted into FromT . Similar to the above, we get that m′
t + `′t − TargetDegree ′ = mt + `t. Since

SourceDegree = TargetDegree, we know from the induction hypothesis that mt + `t = ms + `s,
which means that m′

s + `′s − SourceDegree′ = m′
t + `′t − TargetDegree ′.

The second case is that TargetDegree > SourceDegree so t will not be inserted into FromT .
This implies that m′

t = mt, `′t = `t and TargetDegree ′ = TargetDegree−SourceDegree. We get that
m′

t + `′t − TargetDegree ′ = mt + `t − TargetDegree + SourceDegree. By the induction hypothesis,
this is equal to ms + `s, which is equal to m′

s + `′s − SourceDegree′. ut
Corollary 1. For every edge insertion, (1) mt ≤ ms + `s and (2) ms ≤ mt + `t.

Proof. Since at all times 0 ≤ TargetDegree ≤ `t and 0 ≤ SourceDegree ≤ `s, (1) and (2) follow
from Lemma 2. ut

For 0 ≤ i ≤ m, let Φi be the value of the potential function after the insertion of e1, . . . , ei to
the graph. For 1 ≤ i ≤ m, let ∆Φi = Φi − Φi−1 be the change in potential due to the insertion of
ei.

Lemma 3. When the algorithm handles an insertion, ∆Φi ≤ −max{m2
t , m

2
s}. That is, the po-

tential decreases by at least max{m2
t , m

2
s}.

Proof. Let et = (xt, yt) be one of the mt edges outgoing from a node in FromT and es = (xs, ys)
be one of the ms edges incoming into a node in ToS . We will show that et and es were unordered
before the insertion and ordered after the insertion. After the insertion, yt is reachable from Target
by a path Pt that uses et and Source is reachable from xs by a path Ps that uses es. Concatenating

the paths with the inserted edge between them gives the path Ps ◦ (Source,Target) ◦ Pt from xs

to yt that uses both edges. Hence, the edges are ordered such that ord ′(ys) < ord ′(xt).
Assume that they are ordered before the insertion as well. If they are ordered with ord(yt) <

ord(xs) then the insertion introduces a cycle, so the graph is not a DAG. So they are ordered
such that ord(ys) < ord(xt). If ys and xt were candidates for insertion into their sets in the
same iteration of the discovery phase when the algorithm processed the insertion of the edge
(Source,Target), then their relative order in ORD would imply that the algorithm terminates
without adding either one of them, a contradiction. Assume, w.l.o.g., that ys was inserted before
xt became the candidate. Then when xt became the candidate for insertion into FromT , the
candidate for insertion into ToS was a node v such that ord(v) < ord(ys) < ord(xt). So the
algorithm should have terminated without adding xt. We get that the potential decreased by at
least mtms.

If in the last iteration, a node was added to both ToS and FromT , then by Lemma 2, ms = mt

and our claim follows. Otherwise, assume, w.l.o.g., that in the last iteration of the discovery phase,
ToS grew by a node and FromT did not. Then the argument above holds also when et is one of
the `t edges outgoing from the last node that was a candidate for insertion into FromT . We
get that the potential decreased by at least (mt + `t)ms. By Corollary 1, (mt + `t)ms ≥ m2

s. Let
m′

s, m
′
t, `

′
s, `

′
t,SourceDegree ′,TargetDegree ′ be the values of these variables before the last iteration.

Then ms = m′
s + `′s = m′

t + `′t − (TargetDegree ′ − SourceDegree′) = mt + `t − (TargetDegree ′ −
SourceDegree ′) ≥ mt, so we also have (mt + `t)ms ≥ m2

t . ut
Theorem 2. The algorithm in Figure 5 needs O(m3/2 log n) time to insert m edges into an ini-
tially empty n-node graph.

Proof. By Lemma 1, the algorithm spends O(1 + max{mt, ms} log n) time on an insertion, while
by Lemma 3, the potential decreases by at least max{m2

t , m
2
s}.

For i = 1, . . . , m, let xi be the value of max{mt, ms} upon the insertion of the ith edge. We
get that the total time spent on the m insertions is O(

∑m
i=1(1+xi log n)) = O(m+

∑m
i=1 xi log n)

and the potential decreased by a total of Φm − Φ0 =
∑m

i=1 ∆Φi ≤ −∑m
i=1 x2

i . Since Φ0 < m2 and
Φm ≥ 0, we have Φm − Φ0 > −m2 which implies

∑m
i=1 x2

i < m2.
Cauchy’s inequality states that(

m∑
i=1

aibi

)2

≤
(

m∑
i=1

a2
i

)(
m∑

i=1

b2
i

)
.

By substituting ai = xi and bi = 1 for all 1 ≤ i ≤ m, we get that
∑m

i=1 xi < m3/2, so the total
time spent by the algorithm on the m edge insertions is O(m+

∑m
i=1 xi log n) = O(m3/2 log n). ut

2.3 An O(m3/2 + n2 log n) Upper Bound.

In this section we change two aspects of the analysis, compared to the previous section. The first
is the potential function - it now counts not only unordered pairs of edges but also unordered pairs
of nodes: Ψ = |Ue| + |Uv|.

The second change is in the analysis of the actual time spent by the algorithm when it processes
the insertion of an edge. We assume that the priority queues are implemented by a data structure
that supports insertions in constant amortized time and extractions in O(log n) amortized time
(e.g., Fibonacci Heaps [5]). Note that the number of items inserted into SourceQueue can be as
large as ms, but the number of items extracted from it is bounded by ns. This implies that the
time spent on identifying the set ToS during the discovery phase is O(ms + ns log n), which is
a tighter bound than the one we had in the previous section, of O(ms log n). Similarly, the time
spent on identifying the set FromT is O(mt + nt log n). Thus, we have shown:

Lemma 4. The algorithm spends O(1 + max{mt, ms}+ max{nt, ns} logn) time on an insertion.

We now analyze the change in potential due to an insertion.

Lemma 5. When the algorithm handles an insertion, ∆Ψi ≤ −max{m2
t , m

2
s}−max{nt, ns}. I.e.,

the potential decreases by at least max{m2
t , m

2
s} + max{nt, ns}.

Proof. We have shown in the proof of Lemma 3 that |Ue| decreases by at least max{m2
t , m

2
s}. In

addition, for each v ∈ FromT (v ∈ ToS), the pair 〈Source, v〉 (〈v,Target〉) was ordered after the
insertion. If it was also ordered before the insertion, then the new edge introduces a cycle in the
graph, contradicting our assumption that it is a DAG. So |Uv| decreases by at least |FromT | +
|ToS | = nt + ns ≥ max{nt, ns}. ut
Theorem 3. The algorithm in Figure 5 needs O(m3/2 + n2 log n) time to insert m edges into an
initially empty n-node DAG.

Proof. By Lemma 4, an insertion takes O(1 + max{mt, ms} + max{nt, ns} logn) time while by
Lemma 5 the potential decreases by at least max{m2

t , m
2
s} + max{nt, ns}, with a decrease of at

least max{m2
t , m

2
s} in the term |Ue| and a decrease of at least max{nt, ns} in the term |Uv|.

For i = 1, . . . , m, let xi be the value of max{mt, ms} and yi be the value of max{nt, ns} upon
the insertion of the ith edge. We get that the total time spent on the m insertions is O(

∑m
i=1(1 +

xi +yi log n)) = O(m+
∑m

i=1 xi +log n
∑m

i=1 yi) where
∑m

i=1 x2
i ≤ m2 and

∑m
i=1 yi ≤ n2. As in the

proof of Theorem 2,
∑m

i=1 xi ≤ m3/2 so the total time spent is O(m +
∑m

i=1 xi +
∑m

i=1 yi log n) =
O(m3/2 + n2 log n). ut

2.4 Almost Tightness of the Analysis.

We now show that our analysis is almost tight. That is, we show that for each m ≤ n(n − 1)/2
there is an input with n nodes and m edges that will take the algorithm in Figure 5 Ω(m3/2) time
to process, which is equal to the upper bound for dense graphs and is merely a log factor away for
sparse graphs.

Let k =
√

m/4 and let {v1, . . . , vn} be the nodes of the DAG sorted by their initial ord order.
The first part of the input constructs graph A in Figure 6 by inserting the edge (vi, vj) for all
i ∈ {1, . . . , k}, j ∈ {2k + 1, . . . , 3k} and i ∈ {k + 1, . . . , 2k}, j ∈ {3k + 1, . . . , 4k}.

In the second part, an edge is introduced from vi to vj for each i ∈ {2k + 1, . . . , 3k} and
j ∈ {k + 1, . . . , 2k}, in the following order: For all i ∈ {2k + 1, . . . , 3k − 1}, all edges outgoing
from vi appear before all edges outgoing from vi+1 and for all j ∈ {k +2, . . . , 2k}, the edge (vi, vj)
appears before the edge (vi, vj−1). Graphs B,C and D of Figure 6 illustrate the first two insertions
of this sequence. At the end of the second part, we end up with graph E of Figure 6.

So far, the input consisted of 3k2 = 3m/16 edges. In the third part, we complete this to m by
inserting any 13m/16 edges that are not already in the DAG.

We show that the second part will cause the algorithm to perform Ω(m3/2) work. Every edge
(vi, vj) that is inserted in the second part is from a node vi to a node vj which is immediately
before it in ORD. Since InDegree[vi] ≥ k and OutDegree[vj] ≥ k, the algorithm will insert vi

into ToS or vj into FromT (possibly both) and will traverse at least k incident edges. Then, it
will reverse the order of Source and Target in ORD. Thus, it will spend Ω(k) time for each edge
insertion and since the number of edges inserted in the second part is k2, we get a total complexity
of Ω(k3) = Ω(m3/2).

3 The Complexity on Structured Graphs

The only non-trivial lower bound for online topological ordering is due to Ramalingam and
Rep [12], who show that an adversary can force any algorithm to perform Ω(n log n) node re-
labelling operations while inserting n − 1 edges (creating a chain). The upper bound we have
shown for m = n − 1 is O(n3/2 log n) time. We have shown that for any m we can construct an
input on which the algorithm performs Ω(m3/2) work, but this input contains bipartite cliques.

In this section we show that the algorithm performs much better when the graph is structured.
In particular, we show that for any DAG G, the algorithm runs in time O(mk log2 n) where k is

E

D

C

B

A

����

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

Fig. 6. An input that requires Ω(m3/2) time (k = 4).

the treewidth of G. In addition, we show that the algorithm can be implemented such that on
a tree it spends a total of O(n log n) time, i.e., for trees, the algorithm is optimal and the lower
bound is tight. The notion of treewidth was introduced by Robertson and Seymour [14]. We start
with giving the definition of treewidth.

Definition 4 A tree decomposition of an undirected graph G = (V, E) is a pair ({Xi | i ∈ I}, T =
(I, F)) with T a tree, and {Xi | i ∈ I} a family of subsets of V , such that

⋃
i∈I Xi = V , for all

{v, w} ∈ E, there is an i ∈ I with v, w ∈ Xi, and for all v ∈ V , the set of nodes Tv = {i ∈ I | v ∈
Xi} induces a connected subgraph (subtree) of T .

The width of a tree decomposition ({Xi | i ∈ I}, T) is maxi∈I |Xi|−1. The treewidth of a graph
G is the minimum width of a tree decomposition of G. The treewidth of a directed graph G is the
treewidth of the underlying undirected graph of G.

Trees have treewidth one, while a bipartite clique with ` nodes on each side (as in Figure 6)
has treewidth `. For an overview of the treewidth of several classes of graphs, see e.g., [3].

Lemma 6. The algorithm can be implemented such that if G is a tree, it performs a total of
O(n log n) work.

Proof. Let Tv be the tree that node v belongs to. When an edge (u, v) is inserted, two trees Tu

and Tv are joined into one tree. Let |T | be the number of nodes in tree T and assume, w.l.o.g.,
that |Tu| ≤ |Tv|. Then the algorithm can be implemented such that it relabels O(|Tu|) nodes and
both the discovery and relabelling phases take O(|Tu|) time. To do this, we need to give up the
priority queues used in the discovery phase. The predecessors of Source (successors of Target)
will be traversed in DFS order and will appear in the new topological order according to their
relative postorder DFS numbers. Since we do not examine the nodes of ToSource (FromTarget) in
increasing ord order, the discovery phase must continue until all of the nodes of either ToSource
or FromTarget have been traversed. Since the two traversals are performed simultaneously, the
time they take is proportional to the size of the smaller of Tu and Tv.

Define the potential function f =
∑

v∈V log |Tv|. When an edge (u, v) is inserted and the algo-
rithm performs O(|Tu|) work, the potential increases by (|Tu|+ |Tv|) log(|Tu|+ |Tv|)−|Tu| log |Tu|−
|Tv| log |Tv| ≥ |Tu|. The lemma follows because the potential is initially 0 and it is never larger
than n logn. ut

We now turn to the analysis of graphs of treewidth k. We need a simple lemma, which is a
small variant of a well known result. (Compare, e.g., [14].) The proofs of the three lemmas below
follow standard techniques.

Lemma 7. Let T be a tree with ` leaves. Then there is a node v in T such that each connected
component of T − v contains at most `/2 leaves from T .

Proof. Suppose the lemma does not hold for tree T . For each node v from T , there is then exactly
one subtree of T − v with more than `/2 leaves. Build a directed graph H , by taking for each
node v a directed edge to its neighbor in this subtree. As each node in H has outdegree one, H
must contain a cycle, hence two neighboring nodes v0, v1 with edges (v0, v1) and (v1, v0) in H .
The subtree of T − v0 that contains v1 is disjoint from the subtree of T − v1 that contains v0, and
both these subtrees contain more than `/2 leaves, so T has more than ` leaves, contradiction. ut
Lemma 8. Let G = (V, E) be a graph with treewidth k. There is a set S ⊆ V such that |S| ≤ k+1,
and for each connected component of G−S there are at most m/2 edges with at least one endpoint
in the component.

Proof. Take a tree decomposition ({Xi | i ∈ I}, T = (I, F)) of G of width at most k. For each edge
e = {v, w} ∈ E, add one node ie to the tree decomposition with Xie = {v, w}, and make ie adjacent
in T to an (old) node i′ ∈ I with v, w ∈ Xi′ . Let ({Xi | i ∈ I ′}, T ′ = (I ′, F ′)) be the resulting tree
decomposition. We have I ′ = I ∪{ie | e ∈ E}. While T ′ has one or more leaf nodes that belong to

I, i.e., do not correspond to an edge, remove such leaf nodes. Let ({Xi | i ∈ I ′}, T ′′ = (I ′′, F ′′)) be
the resulting tree decomposition. (One can verify that this is a tree decomposition of G of width
at most k.) There is a one-to-one correspondence between the edges of E and the leaves of T ′′.

Let i0 be the node in T ′′ such that each subtree of T ′′ − i0 contains at most m/2 nodes that
were a leaf in T ′′, i.e., correspond to an edge in E. Set S = Xi0 . Clearly, |S| ≤ k + 1. Consider
a connected component of G − S. By the properties of tree decomposition, there can be only
one subtree of T − i0 whose sets Xi, i in the subtree, can contain nodes from the component. In
particular, for each edge e = {x, y} with one endpoint in the component, we have that ie belongs
to that subtree. So, all edges with one endpoint in the component correspond to a node in the
subtree that is a leaf in T ′′. So, the component has at most m/2 edges with at least one endpoint
in it. ut

Lemma 9. Let G = (V, E) be a graph with treewidth k. There is partition of V in three disjoint
subsets A, B, and S, such that |S| ≤ k + 1, no node in A is adjacent to a node in B, the number
of edges with at least one endpoint in A is at most 2m/3, and the number of edges with at least
one endpoint in B is at most 2m/3.

Proof. Let S be as in Lemma 8. If G−S has a connected component with at least m/3 edges, then
put the nodes of this connected component in A, and the nodes of the other connected component
in B, and we are done. Otherwise, put the nodes of the components one by one in A, until the
components in A together have at least m/3 edges. Put the nodes of the remaining components
in B. Now, there are at least m/3 and at most 2m/3 edges with at least one endpoint in A, and
hence also at most 2m/3 edges with at least one endpoint in B. ut

Except in some degenerate cases, the set S from Lemma 9 is a separator. Let S be the set as
in Lemma 9. Now define the potential function

Ψ =
∑
v∈S

∑
e∈E

I(v, e)

where I(v, e) is 1 if v and e are ordered and 0 otherwise. That is, the potential function counts
the number of ordered pairs of an edge from the graph and a node from S. Clearly, Ψ0 = 0 and at
all times Ψ ≤ |S||E| ≤ (k + 1)m.

The edges can be partitioned into three sets: the sets EA (EB) of edges whose insertions cause
only nodes from A (B) to be relabelled, and the set EM = E \ (EA ∪ EB). Let T (m) be the time
spent during all m edge insertions. Then the insertion of all edges from EA (EB) occur within
the subgraph induced by the nodes in A (B). The time spent on the insertion of the edges in EA

(EB) can be bounded by T (|E↓A|) (T (|E↓B|)), where E↓A (E↓B) is the number of edges that
have at least one endpoint in A (B). To see why this holds, note that it is true even if E↓A = EA

(E ↓B = EB). The fact that some of the edges in E ↓A ∪ E ↓B are in EM , only reduces the
complexity of inserting EA ∪ EB .

While handling the insertion of an edge e ∈ EM , the algorithm relabels at least one node v
from S. Assume, w.l.o.g., that v ∈ ToSource. Then by considerations similar to the ones used in
the proof of Lemma 3, there are (mt + `t) edges outgoing from nodes in FromTarget that were
not ordered with v before the insertion of e and are ordered afterwards. Hence, ∆Ψ ≥ mt + `t,
which by Corollary 1 is at least max{ms, mt}. Since the time spent is O(max{ms, mt} logn), we
obtain that the insertion of all edges from EM requires a total of O(mk log n) time. Hence, we
have for the total time that T (m) ≤ mk log n + T (|EA|) + T (|EB|), and as |EA| + |EB| ≤ m, and
|EA| ≤ 2m/3, |EB | ≤ 2m/3, it follows that T (m) = O(mk log2 n). So we have shown:

Theorem 5. The topological order of the nodes of a DAG with treewidth k can be maintained
while inserting m edges into an initially empty n-node DAG in total time O(mk log2 n). For the
special case of trees, this problem can be solved in O(n log n) time, which is optimal.

4 Conclusion

We have shown that the online topological ordering problem can be solved in O(min{√m log n,
√

m+
n2 log n

m }) amortized time per edge, an improvement over the previous result of O(n) time per edge.
We have also shown that for any m ≤ n(n − 1)/2 there is an input with m edges on which the
algorithm performs Ω(m3/2) work, indicating that our analysis of the algorithm’s running time is
almost tight if only the number of nodes and number of edges is known.

We then analyze the algorithm’s complexity on structured graphs. We show that the algorithm
has an optimal implementation on trees and that in general there is a correlation between the
treewidth of the graph and the algorithm’s complexity. There is here still a gap between upper
and lower bound. Observe that for trees (k = 1), the general bound gives O(n log2 n) and not
the O(n log n) result that we have obtained separately. It is an open problem whether a different
analysis or algorithm can yield an O(mk log n) upper bound.

Acknowledgements.

A special thanks is due to Alex Fabrikant for his excellent remarks on a previous version of this
paper. We also wish to thank David J. Pearce, Seth Pettie, and Sven Thiel for helpful discussions.
Part of this work has been done at the Dagstuhl seminar Robust and Approximative Algorithms
on Particular Graph Classes.

References

1. B. Alpern, R. Hoover, B. K. Rosen, P. F. Sweeney, and F. Kenneth Zadeck. Incremental evaluation of
computational circuits. In Proc. of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 32–42. SIAM, 1990.

2. M. A. Bender, R. Cole, E. D. Demaine, M. Farach-Colton, and J. Zito. Two simplified algorithms for
maintaining order in a list. In Proc. of the 10th Annual European Symposium on Algorithms, pages
152–164. Springer-Verlag, 2002.

3. Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor. Comp. Sc.,
209:1–45, 1998.

4. P. Dietz and D. Sleator. Two algorithms for maintaining order in a list. In Proc. of the 19th Annual
ACM Conference on Theory of Computing, pages 365–372. ACM Press, 1987.

5. M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network optimization
algorithms. J. Assoc. Comput. Mach., 34:596–615, 1987.

6. I. Katriel. On algorithms for online topological ordering and sorting. Research Report MPI-I-2004-1-
003, Max-Planck-Institut für Informatik, Saarbrücken, Germany, 2004.

7. A. Marchetti-Spaccamela, U. Nanni, and H. Rohnert. On-line graph algorithms for incremental com-
pilation. In Proc. of International Workshop on Graph-Theoretic Concepts in Computer Science (WG
93), volume 790 of LNCS, pages 70–86, 1993.

8. A. Marchetti-Spaccamela, U. Nanni, and H. Rohnert. Maintaining a topological order under edge
insertions. Inf. Process. Lett., 59(1):53–58, 1996.

9. L. Michel and P. Van Hentenryck. A Constraint-Based Architecture for Local Search. In Conference
on Object-Oriented Programming Systems, Languages, and Applications., pages 101–110, Seattle, WA,
USA, November 4-8 2002. ACM.

10. S.M. Omohundro, C. Lim, and J. Bilmes. The Sather language compiler/debugger implementation.
Technical Report TR-92-017, International Computer Science Institute, Berkeley, March 1992.

11. D. J. Pearce and P. H. J. Kelly. A dynamic algorithm for topologically sorting directed acyclic graphs.
In Proc. of the 3rd Int. Worksh. Efficient and Experimental Algorithms (WEA 2004), Lecture Notes
in Computer Science. Springer-Verlag, 2004.

12. G. Ramalingam and T. Reps. On competitive on-line algorithms for the dynamic priority-ordering
problem. Inf. Process. Lett., 51(3):155–161, 1994.

13. G. Ramalingam and T. Reps. On the computational complexity of dynamic graph problems. Theor.
Comput. Sci., 158(1-2):233–277, 1996.

14. Neil Robertson and Paul D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. J.
Algorithms, 7:309–322, 1986.

15. R. E. Tarjan. Depth first search and linear graph algorithms. SIAM Journal on Computing, 1(2):146–
160, June 1972.

