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Abstract

A generic function is defined by induction on the structure of types. The structure of a data type
can be defined in several ways. For example, in PolyP a pattern functor gives the structure of a
data type viewed as a fixed point, and in Generic Haskell a structural representation type gives an
isomorphic type view of a data type in terms of sums of products. Depending on this generic view
on the structure of data types, some generic functions are easier, more difficult, or even impossible
to define. Furthermore, the efficiency of some generic functions can be improved by choosing a
different view. This paper introduces generic views on data types and shows why they are useful.
Furthermore, it discusses how to add new generic views to Generic Haskell, an extension of the
functional programming language Haskell that supports the construction of generic functions. The
separation between inductive definitions on type structure and generic views allows us to view many
approaches to generic programming in a single framework.

1. Introduction

A generic function is defined by induction on the structure of types. Several approaches to generic
programming [15, 10, 19, 18, 14] have been developed in the last decade. These approaches have
their commonalities and differences:

• All the approaches provide either a facility for defining a function by induction on the structure of
types, or a set of basic, compiler generated, generic functions which are used as combinators in the
construction of generic functions.

• All the approaches differ on how theyview data types. There are various ways in which the
inductive structure of data types can be defined, and each approach to generic programming takes
a different one.
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This paper introducesgeneric viewson data types. Using generic views it is possible to define generic
functions for different views on data types. Generic views provide a framework in which the different
approaches to generic programming can be used and compared.

The inductive structure of types. Different approaches to generic programming view the structure
of types differently:

• In PolyP [15] a data type is viewed as a fixed point of a pattern functor of kind∗ → ∗ → ∗. Viewing
a data type as a fixed point of a pattern functor allows us to define recursive combinators such as
the catamorphism and anamorphism [24], and functions that return the direct recursive children of
a constructor [17]. A downside of this view on data types is that PolyP can only handle regular data
types of kind∗ → ∗.

• In Generic Haskell [10, 23, 21], a data type is described in terms of a top-level structural represen-
tation type. Generic functions in Generic Haskell are defined on possibly nested data types of any
kind. However, because the recursive structure of data types is invisible in Generic Haskell, it is
hard to define the catamorphism and children functions in a natural way, for example.

• In the ‘Scrap your boilerplate’ [19, 20] approach the generic fold is the central steering concept. The
generic fold views a value of a data type as either a constructor, or as an application of a (partially
applied) constructor to a value. Using the generic fold it is easy to define traversal combinators on
data types, which can easily be specialized to update small parts of a value of a large data structure.
A disadvantage of the boilerplate approach is that some generic functions, such as the equality and
zipping functions, are harder to define. Furthermore, the approach does not naturally generalize
to type-indexed data types [11, 21]. We can translate the boilerplate approach to the level of data
types by defining a particular generic view.

Other approaches to representing data types can be found in the Constructor Calculus [18], and in the
work of Backhouse, De Moor, and Hoogendijk, where a data type is considered to be a relator with a
membership relation [3, 14].

Generic views on data types.An approach to generic programming essentially consists of two
components: a facility to define recursive functions on structure types, and a view on the inductive
structure of data types, which maps data types onto structure types. We call such a view on the structure
of types ageneric view(or justview) on data types. Wadler [31] also defines views on data types. The
difference between these views and generic views is that Wadler proposes a method for viewing a
single data type in different ways, whereas a generic view describes how the structure of a large class
of data types is viewed.

Each of the above generic views on data types has its advantages and disadvantages. Some views
allow the definition of generic functions that are impossible or hard to define in other approaches,
other views allow the definition of more efficient generic functions. This paper

• identifies the concept of generic views as an important building block of an implementation for
generic programming;

• shows that different choices of generic views have significant influence on the class of generic
functions that can be expressed;

• clearly defines what constitutes a generic view, and discusses how new views can be added in
Generic Haskell by modifying the compiler;

• allows us to compare different approaches to generic programming by providing a common
framework.
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Organization. This paper is organized as follows. Section 2 briefly introduces generic programming
in Generic Haskell. Section 3 shows by means of examples why generic views on data types are
useful, and how they increase the expressiveness of a generic programming language. Section 4
defines formally what constitutes a generic view. For some of the examples of Section 3, we give
the formal definition. In Section 5, we discuss how to add new views to the Generic Haskell compiler.
Related work, future work, and conclusions are given in Section 6.

2. Introduction to generic programming in Generic Haskell

This section introduces generic programming in Generic Haskell. The introduction will be brief, for
more information see [12, 11, 21]. Generic Haskell has slightly changed in the last couple of years,
and we will use the version described in Löh’s thesis [21] in this paper, which to a large extent has
been implemented in the Coral release [23].

2.1 Type-indexed functions

A type-indexed function takes an explicit type argument, and can have behaviour that depends on the
type argument. For example, suppose the unit typeUnit, sum type+, and product type× are defined
as follows,

data Unit = Unit
data a + b = Inl a | Inr b
data a × b = a × b.

We use infix types+ and× and an infix type constructor× here to ease the presentation.
The type-indexed functioncol is used to collect values from a data structure. We define function

col on the unit type, sums and products, integers, characters, and lists as follows:

col〈Unit〉 Unit = [ ]
col〈α + β〉 (Inl a) = col〈α〉 a
col〈α + β〉 (Inr b) = col〈β〉 b
col〈α× β〉 (a × b) = col〈α〉 a ++ col〈β〉 b
col〈Int〉 n = [ ]
col〈Char〉 c = [ ]
col〈[α ]〉 [ ] = [ ]
col〈[α ]〉 (a : as) = col〈α〉 a ++ col〈[α ]〉 as.

The type signature ofcol is as follows:

col〈a :: ∗ | c :: ∗〉 :: (col〈a | c〉) ⇒ a → [c ].

The type of collect is parameterized over two type variables. The first type variable,a, appearing to
the left of the vertical bar, is a generic type variable, and represents the type of the type argument of
collect. Type variablec, appearing to the right of a vertical bar, is called a non-generic (or parametric)
type variable. Such non-generic variables appear in type-indexed functions that are parametrically
polymorphic with respect to some type variables. The collect function is, as defined, parametrically
polymorphic in the element type of its list result. It always returns always the empty list, but we will
show later how to adapt it so that it collects values from a data structure. Since it always returns the
empty list there is no need, but also no desire, to fix the type of the list elements. The type context
(col〈a | c〉) ⇒ appears in the type because collect is called recursively on sums and products, which
means that, for example, if we want an instance for collect on the typeα + β, we need instances of
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collect on the typesα andβ. Thus collectdepends onitself. The theory of dependencies and type
signatures of generic functions is an integral part of dependency-style Generic Haskell [22, 21].

The type signature ofcol can be instantiated for specific cases by the Generic Haskell compiler,
yielding, for example, the types

col〈Unit〉 :: ∀c .Unit → [c ]
col〈[α ]〉 :: ∀c a . (col〈α〉 :: a → [c ]) ⇒ [a ] → [c ]

for the cases of the unit type and lists, respectively. The latter type can be read as “given a function
col〈α〉 of typea → [c ], the expressioncol〈[α ]〉 is of type[a ] → [c ]”.

Depending on the situation, the functioncol〈α〉 can be automatically inferred by the compiler, or
it can be user specified usinglocal redefinitions. For example, if we only want to collect the positive
numbers from a list using the functioncol , we can write:

let col〈α〉 x | x > 0 = [x ]
| otherwise = [ ]

in col〈[α ]〉.

Generally, we use alocal redefinitionof a generic function to locally modify the behaviour of a
generic function. Some generic functions such ascol only reveal their full power in the context of
local redefinitions.

2.2 Structure types

Until now, it seems as if a type-indexed function is only defined on the types that appear as its type
indices. In order to obtain agenericfunction that is defined on arbitrary data types, we give a mapping
from data types to view types such as units, sums and products. It suffices to define a function on
view types (and primitive or abstract types such asInt andChar) in order to obtain a function that
can be applied to values of arbitrary data types. If there is no specific case for a type in the definition
of a generic function, generic behaviour is derived automatically by the compiler by exploiting the
structural representation.

For example, the definition of the functioncol on lists is superfluous in the context of generic
functions: the instance generically derived for lists coincides with the function obtained from the above
definition of col on lists. In order to obtain this instance, the compiler needs to know the structural
representation of lists, and how to convert between lists and their structural representation. We will
describe these components in the remainder of this section.

The structural representation of types is expressed in terms of units, sums, products, and base types
such as integers, characters, etc. For example, for the list and tree data types defined by

data List a = Nil | Cons a (List a)
data Tree a b = Tip a

| Node (Tree a b) b (Tree a b)

we obtain the following structural representations:

type List◦ a = Unit + a × List a
type Tree◦ a b = a + Tree a b × b × Tree a b,

where we assume that× binds stronger than+, and both type constructors associate to the right. Note
that the representation of a recursive type is not recursive, and refers to the recursive type itself. The
structural representation of a type in Generic Haskell only represents the structure of the top level of
the type.
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If two types are isomorphic, the corresponding isomorphisms can be stored as a pair of functions
converting back and forth:

data EP a b = EP{from :: (a → b), to :: (b → a)}.

A type T and its structural representation typeT ◦ are isomorphic, witnessed by a valueconvT ::
EP T T ◦. For example, for the list data type we have thatconvList = EP toList fromList, where
toList andfromList are defined by

toList :: ∀a .List a → List◦ a
toList Nil = Inl Unit
toList (Cons a as) = Inr (a × as)

fromList :: ∀a .List◦ a → List a
fromList (Inl Unit) = Nil
fromList (Inr (a × as)) = Cons a as.

The definitions of the embedding-projection pairs are automatically generated by the Generic Haskell
compiler for all data types that appear in a program.

With the structural representation types and the embedding-projection pairs in place, a call to a
generic function on a data typeT can always be reduced to a call on typeT ◦. Hence, if the generic
function is defined for the data types occurring in the structural representations, such asUnit, +, and
×, we do not need cases for specific datatypes such asList or Tree anymore.

For primitive types such asInt, Float, IO or →, no structure is available. For a generic function
to work on these types, a specific case is necessary. Other types are deliberately declared abstract
to hide the structure of the type. Here, the situation is the same, and a specific case is necessary to
extend a generic function to an abstract type. The typesUnit, +, and× are abstract types as far as
Generic Haskell is concerned, instead of being their own representation types. This choice implies
that a missing case for one of these types is reported as a compile-time error rather than causing a
run-time loop.

3. Views

We have explained how Generic Haskell defines a structural representation type plus an embedding-
projection pair for any Haskell data type. A type-indexed function is generic because the embedding-
projection pair is applied to the type arguments by the compiler as needed. Other approaches to generic
programming use different, but still fixed representations of data types. In this section, we argue that
different views can improve the expressiveness of a generic programming system, because not every
view is equally suitable for every generic function. In the next section we will give a formal definition
of generic views.

3.1 Fixed points

Consider the data typeTerm, representing lambda terms, and the functionsubterms that, given a
term, produces the immediate subterms.

data Term = Var Variable
| Abs Variable Term
| App Term Term

type Variable = String

subterms :: Term → [Term]
subterms (Var x ) = [ ]
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subterms (Abs x t) = [t ]
subterms (App t u) = [t , u ]

This function is an instance of a more general pattern. The functionsubtrees, for example, produces
the immediate subtrees of an external binary search tree.

subtrees :: ∀a b .Tree a b → [Tree a b ]
subtrees (Tip a) = [ ]
subtrees (Node l b r) = [ l , r ]

Bothsubterms andsubtrees retrieve the immediate children of a recursive data type’s value. Since the
general pattern is clear, we would like to be able to express it as a generic function. However, Generic
Haskell does not allow us to define such a function directly, due to the fact that the structure over
which generic functions are inductively defined does not expose the recursive calls in a data type’s
definition.

Generic Haskell’s precursor, PolyP, does give access to these recursive calls, enabling the definition
of a generic function that collects the immediate recursive children of a value [17]. Generic functions
in PolyP, however, are limited in the sense that they can only be applied to data types of kind∗ → ∗.

Interestingly, it is possible to write a program in Generic Haskell that produces the immediate
children of a value, but it requires some extra effort from the user of the program. If regular recursive
data types are expressed using an explicit type-level fixed point operator:

data Fix f = In (f (Fix f ))

data TermBase r = VarBase Variable
| AbsBase Variable r
| AppBase r r

type Term′ = Fix TermBase

data TreeBase a b r = TipBase a
| NodeBase r b r

type Tree′ a b = Fix (TreeBase a b),

then the generic functionchildren can be defined with a single case forFix.

children〈a :: ∗〉 :: (col〈a | a〉) ⇒ a → [a ]
children〈Fix ϕ〉 (In r) = let col〈α〉 x = [x ]

in col〈ϕ α〉 r

Thechildren function depends on the collect functioncol defined in Section 2. The local redefinition
fixes the type of the produced list and adapts the collect function to construct singleton lists from
the recursive components in a fixed point’s value. The functioncol ensures that these singletons are
concatenated to produce the result list.

Although this approach works fine, there is an obvious downside. The programmer needs to redefine
her recursive data types in terms ofFix. Whenever she wants to usechildren to compute the recursive
components of a value of any of the original recursive types, sayTerm or Tree, a user-defined
bidirectional mapping from the original types to the fixed points,Term′ andTree′, has to be applied.

With a fixed-point view, the compiler becomes capable of deriving the fixed point for any regular
recursive data type and will generate and apply the required mappings automatically. The structure
of a data type is then no longer perceived as a sum of products, but as the fixed point of a sum of
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products. The only thing we have to change in the definition ofchildren to make use of the new view
is to add the name of the view to the type signature:

children〈a :: ∗ viewed Fix〉 :: (col〈a | a〉) ⇒ a → [a ].

The definition ofchildren is unchanged. One can now, for example, applychildren〈[Int]〉 [1, 2, 3]
directly, yielding [[2, 3]]. The user of the function does not have to worry about defining types in
terms ofFix any longer: the translation happens behind the scenes.

The formal definition of the viewFix will be given in detail in Section 4.5. In the following, we
will discuss examples of other views.

3.2 Balanced sums of products

Traditionally, Generic Haskell views the structure of data types using nested right-deep binary sums
and products. The choice for such a view is rather arbitrary. A nested left-deep view or a balanced
view may be just as suitable. However, the chosen view has some impact on the behaviour of certain
generic programs.

The generic functionenc, for instance, encodes values of data types as lists of bits [16, 9].

data Bit = Off | On

enc〈a :: ∗〉 :: (enc〈a〉) ⇒ a → [Bit]
enc〈Unit〉 Unit = [ ]
enc〈α + β〉 (Inl a) = Off : enc〈α〉 a
enc〈α + β〉 (Inr b) = On : enc〈β〉 b
enc〈α× β〉 (a × b) = enc〈α〉 a ++ enc〈β〉 b
enc〈Int〉 n = encInt n
enc〈Char〉 c = encChar c

Here,encInt andencChar denote primitive encoders for integers and characters, respectively. The
interesting cases are the ones for sums where a bit is emitted for every choice that is made between a
pair of constructors. In the case for products the encodings of the constituent parts are concatenated.

When we apply a nested right-deep view to the typeCompass of directions

data Compass = North | East | South | West ,

yielding the structure

type Compass◦ = Unit + (Unit + (Unit + Unit)),

encoding a value withenc takes one bit at best (North) and three bits at worst (West). In contrast, a
balanced viewBal on the structure, i.e.,

type Compass◦B = (Unit + Unit) + (Unit + Unit),

requires only two bits for any value ofCompass.
In general, encoding requiresO(n) bits on average when a nested structure representation is

applied, andO(log n) bits when a balanced representation is used. All we have to do (next to
implementing a balanced viewBal) is to change the type signature ofenc accordingly:

enc〈a :: ∗ viewed Bal〉 :: (enc〈a〉) ⇒ a → [Bit].

3.3 List-like sums and products

Suppose we have a generic functionshow which is of type
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show〈a :: ∗〉 :: (show〈a〉) ⇒ a → String

and produces a human-readable string representation of a value. We want to write a function that
shows only a part of a value. The part that is shown is determined by a path, of type

type Path = [Int].

Non-empty lists of typePath select a part of the data structure to print. For instance,[1] selects the
second field of the top-level constructor, and[1, 0] selects the first field of the top-level constructor
thereof. The function is calledsP and of type

sP〈a :: ∗〉 :: (show〈a〉, sP〈a〉) ⇒ Path → a → String.

Let us look at the definition ofsP on products:

sP〈α× β〉 (0 : p) (a × b) =
if null p then show〈α〉 a else sP〈α〉 p a.

If the first path element is0, we know that the leftmost field is selected. The encoding in binary
products is such that the left component is always a field of the constructor, and not an encoding of
multiple fields. We can therefore test if the remainder of the path is empty: if this is the case, we show
the complete field usingshow ; otherwise, we show the part of the field that is selected by the tail of
the current path.

sP〈α× β〉 (n : p) (a × b) = sP〈β〉 (n − 1 : p) b

If the first path element is not0, we can decrease it by one and show a part of the right component,
containing the remaining fields.

There are several problems with this approach. Consider the following data type and its structural
representation:

data Con012 a b = Con0 | Con1 a | Con2 a b
type Con012◦ a b = Unit + a + a × b.

A product structure is only created if there are at least two fields. If there is only one, such as for
Con1 , the single field (herea) is the representation. Obviously, we then cannot use the product case
of the generic function to make sure that0 is the topmost element of the path.

We could add a check to the sum case of the function, detecting the size of the underlying product
structure by calling another generic function, or by modifying the type ofsP to pass additional
information around. However, consider a datatypeRename and its structural representation:

data Rename = R Original
type Rename◦ = Original .

The structural representation does not even contain a sum structure. Although it is possible to write
sP in the standard view, it is extremely tiresome to do so. The same functionality has to be distributed
over a multitude of different cases, simply because the structural encoding is so irregular, and we
cannot rely on sum and product structure to be present in any case.

A list-like view List on data types can help. For this purpose we introduce a data type without
constructors and without values (except bottom).

data Zero
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The typeZero plays the role of a neutral element for sums in the same way asUnit does for products.
The above definition is not Haskell 98, but is supported by GHC and can be simulated in Haskell 98.

In our list-like view, the left component of a sum always encodes a single constructor, and the right
component of a sum is either another sum orZero. For products, the left component is always a single
field, and the right component is either another product orUnit. In particular, there is always a sum
and a product structure. The data typeCon012 is encoded as follows:

type Con012◦L a b =
Unit + a ×Unit + a × b ×Unit + Zero.

Now, we can definesP easily:

sP〈a :: ∗ viewed List〉 ::
(show〈a〉, sP〈a〉) ⇒ Path → a → String

sP〈Unit〉 Unit = error "illegal path"
sP〈α× β〉 (0 : p) (a × b) = sP〈α〉 p a
sP〈α× β〉 (n : p) (a × b) = sP〈β〉 (n − 1 : p) b
sP〈Zero〉 = error "cannot happen"
sP〈α + β〉 [ ] x = show〈α + β〉 x
sP〈α + β〉 p (Inl a) = sP〈α〉 p a
sP〈α + β〉 p (Inr b) = sP〈β〉 p b.

We have moved the check for the empty path to the sum case. We can do this because we know that
every data type has a sum structure in the list-like view.

3.4 Boilerplate approach

In the ‘Scrap Your Boilerplate’ approach, Lämmel and Peyton Jones present a design pattern for writ-
ing programs that traverse data structures [19, 20]. These traversals are defined using a relatively
small library that comprises two types of generic combinators: recursive traversals and type exten-
sions. Generic functions are defined in terms of these library functions, and not by induction on the
structure of types. The library functions, however, do use a particular view on data types. This section
discusses this view, dubbedBoilerplate, and shows how to implement a traversal function on this view.
The emulation of the boilerplate approach in Generic Haskell extended with generic views is useful
for comparing different approaches to generic programming, but it turns out to be less convenient to
use than the original boilerplate library.

In the boilerplate approach all traversals are instances of a general scheme imposed by a left-
associative generic fold over constructor applications. So a type is viewed as a sum of products, where
a product is either a nullary constructor, or the application of a constructor(-application) to a type. To
emulate the behaviour of the generic fold, the product constructor× in the Boilerplate view is left
associative as well. The right component of a product is always a single field, and the left component
is either another product orUnit, similar to theList view from Section 3.3.

Besides generic traversals such as the generic fold, theBoilerplate view makes use of type
extensions. A type extension extends the type of a function such that it works on many types instead
of a single type. Since Generic Haskell operates on the structure of types, isomorphic types are treated
as if they were identical. To emulate type extensions, we have to be able to distinguish types by name.
Therefore a data type is represented by a tagged sum of list-like products in theBoilerplate view. Each
sum is tagged with the name of the corresponding type:

data Tagged a = Tagged String a.
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For example, theBoilerplate view representations of the types of lists and trees are given by:

type List◦BP a =
Tagged (Unit + (Unit× a)× List a)

type Tree◦BP a b =
Tagged (Unit× a
+ ((Unit× Tree a b)× b)× Tree a b).

The definitions of the traversal combinators rely on the list-like character of theBoilerplate view.
For example, theeverywhere combinator applies a transformation to all nodes in a tree, traversing
it in a top-down fashion. It can be defined in terms of a simple non-recursive one-layer traversal
combinatorgmapT as follows:

everywhere〈a :: ∗ viewed Boilerplate〉 ::
(typeof 〈a〉) ⇒
(∀x . ((x → x ) → Type) → x → x ) → a → a

everywhere extends gmapT
everywhere〈α× β〉 f (a × b) =

everywhere〈α〉 f a
× f typeof 〈β → β〉 (everywhere〈β〉 f b).

Functioneverywhere is defined by means of adefault case[8, 21]: it behaves asgmapT on all
types except for the product type, for which specific behaviour is defined. The transformation that is
an argument to everywhere is supposed to perform different actions depending on the type of node
it is currently processing. Unfortunately, Generic Haskell currently lacks support for higher-order
generic functions; we thus usetypeof as a workaround. The calltypeof 〈T 〉 produces a universal
representation of typeType from a value of typeT . Its implementation is beyond the scope of this
paper.

We yet have to definegmapT , which is a non-recursive one-layer traversal combinator, applying
the transformation argument to the immediate children of a node.

gmapT 〈a :: ∗ viewed Boilerplate〉 ::
(typeof 〈a〉) ⇒
(∀x . ((x → x ) → Type) → x → x ) → a → a

gmapT 〈Tagged α〉 f (Tagged t a) =
Tagged t (gmapT 〈α〉 f a)

gmapT 〈Unit〉 f Unit = Unit
gmapT 〈α + β〉 f (Inl a) = Inl (gmapT 〈α〉 f a)
gmapT 〈α + β〉 f (Inr b) = Inr (gmapT 〈β〉 f b)
gmapT 〈α× β〉 f (a × b) =

gmapT 〈α〉 f a × f typeof 〈β → β〉 b
gmapT 〈Int〉 f n = n
gmapT 〈Char〉 f c = c.

Note that the case for products only recurses on the left component of a product. Since theBoilerplate
view guarantees that all fields of a constructor are encoded as right components of products, it is easy
to verify thatgmapT does indeed define a non-recursive traversal. This simple non-recursive scheme
allows us to derive several rich recursive traversal strategies from a single base combinator. These
strategies are written using default cases.
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The type-extension operators used in the Boilerplate approach can be defined by making use of
the type tags that theBoilerplate view embeds in structural representations. The definitions of these
operators are omitted.

In summary, it is clear that generic traversals should either be programmed using the original Boiler-
plate approach or using the standard view in Generic Haskell plus default cases. We believe, however,
that an encoding of the Boilerplate approach within the view formalism can help to better compare
it with other approaches, and improve the overall understanding of different generic programming
techniques.

3.5 Other views

Many other views, besides the views we have listed so far, are useful.
In the Generic Haskell compiler [23], for example, we do not really use the standard view as

presented here, but additionally use representation data typesCon andLab to encode information
about constructors and record field labels in the data type. The presence of these data types makes it
possible to write functions such asshow andread that produce or consume a representation of a value
and therefore rely on the names of constructors and labels.

The example views we have given share the property that they are applicable to a relative large class
of data types. For instance, the standard, balanced, and list-like views are applicable to all Haskell data
types, and the fixed-point view works for regular data types.

If one further restricts the class of data types a view should apply to, a multitude of new possibilities
arises. If values from specific domains such as SQL or XML are modelled in the Haskell type system,
the resulting data types have a special structure that can be exploited by a view. For instance, XML
Schema [30] has an element ‘all’ that allows certain elements to appear in any order, whereas in the
element ‘sequence’ the order is fixed. Furthermore, XML Schema allows for mixed content where
elements occur interleaved with strings.

Finite types or renamed types (data types in the form of a Haskellnewtype declaration) are other
subclasses of Haskell data types that allow special treatment.

A corner case is given by an encoding of the “lightweight” approach to generic programming [7]
as a generic view: each datatypeT is paired with a run-time representationRep T of the type. Type-
level pattern matching becomes trivial – there is only one case for every generic function. The real
distinction is performed at run-time, using value-level pattern matching on the type representation.

Another extreme case is a view that only works for a single datatype, on which it performs an
isomorphic transformation. Generic views thus subsume Wadler’s views.

4. Generic views, formally

The previous section shows why generic views are useful. This section formally defines generic views,
and shows the formal definition of the standard view and the fixed-point view.

4.1 Notation

Throughout this section, we often use the following notation to denote repetition:

{Xi}i∈1..n ≡ X1 . . .Xn

{Xi}i∈1..n
; ≡ X1; . . . ;Xn

If not explicitly mentioned otherwise, such repetitions can be empty, i.e.,n can be0. We sometimes
omit the range of the variable if it is irrelevant or clear from the context.
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Programs
P ::= {Di ; }i e type declarations

and main expression

Value declarations
d ::= x = e function declaration

Expressions
e ::= x variable

| C data constructor
| λx . e abstraction
| (e1 e2) application
| case e0 of {pi → ei}i; case
| (fix e) fixed point
| let {di}i; in e let

Patterns
p ::= x variable pattern

| (C {pi}i) constructor pattern

Figure 1. Syntax of the expression language

Type declarations
D ::= data T = {Λai :: κi . }i {Cj {tj ,k}k}j|

algebraic data type

Parameterized types
u ::= {Λai :: κi . }i t type-level abstraction

Types
t ::= a type variable

| T type constructor
| (t1 t2) type application
| ∀a :: κ . t universal quantification

Figure 2. Syntax of the type language

4.2 Syntax

Programs. Figure 1 shows the syntax of programs in the core language. This language is a rather
standard functional language. A program consists of zero or more type declarations and a single
expression: the main function.

Types and kinds. The syntax of the type language is shown in Figure 2. New types are introduced by
means ofdata declarations. Such a declaration associates a, possibly parameterized, type constructor
with zero or more data constructors, each of which has zero or more fields. The parameterized types
are explained below. The syntax of the kind language is shown in Figure 3.
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Kinds
κ ::= ∗ kind of proper types

| κ1 → κ2 function kind

Figure 3. Syntax of the kind language

Kind environments
K ::= ε empty kind environment

| K, a :: κ type-variable binding
| K,T :: κ type-constructor binding

Type environments
Γ ::= ε empty type environment

| Γ, x :: t variable binding
| Γ,C :: t data-constructor binding

Figure 4. Syntax of environments

Generic programming extensions.To facilitate generic programming, the core language has to be
extended with parameterized type patterns and type-indexed functions with dependencies [21]. Apart
from a small detail, this extension is not relevant for generic views. The detail that has to be added is
the facility to specify a view in the signature of a generic function.

As shown in Section 2, structure types in Haskell are declared by means of thetype construct.
This construct is used to define type synonyms, rather than new algebraic data types. In particular, a
type declaration does not introduce any new data constructors.

Type synonyms are not supported in the core language. Therefore, to be able to describe structure
types, there areparameterized typesin the language, which are essentially a nesting of type-level
lambda abstractions around a type. Parameterized types cannot appear in a core-language program;
they are only used in view definitions.

Rules. The well-formedness rules for programs, types and kinds, the kinding rules for types and the
typing rules for expressions are standard. The operational semantics of the core language is omitted.
More information about the core language can be found elsewhere [21, 13].

4.3 Definitions

Using the notion of parameterized types, we can formalize the observation that a view is constituted
by a collection of view types and algorithms for the generation of structure types and conversion
functions. In the following definitions we will use kind environments and type environments; their
syntax is defined in Figure 4.

DEFINITION 4.1 (Generic View).A generic viewV consists of a collection of bindings for view types,

viewtypesV ≡ K;Γ,

a partial mapping from types to structure types,

V [[D0 ]] str ≡ u; {Di}i∈1..n
, ,

and, for each type in the domain of this mapping, conversions between values and structure values,
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V [[D0 ]] conv≡ efrom; eto.

Notice that we allow the mapping from types to structure types to generate zero or more additional
declarations for supporting data types. The types introduced by these declarations can be used for the
generation of structure types. This is used in the fixed-point view, for example.

For a view to be useful for generic programming with structural polymorphism, we require it to
have three essential properties. First, the mapping from types to structure types should preserve kinds.

DEFINITION 4.2 (Kind Preservation).A generic viewV with

viewtypesV ≡ KV ; ΓV

is kind preservingif for each well-formed declarationD0 of a type constructorT with kindκ under a
suitable kind environmentK for which a structure typeu can be derived,

V [[D0 ]] str ≡ u; {Di}i∈1..n
, ,

it follows that under kind environmentK′ containingK, KV , and all the kinds of theDi declarations,
the supporting type declarationsDi are well-formed and the structure typeu has the same kindκ as
the original typeT ,

K′ ` u :: κ.

Furthermore, the conversion functions derived from a type declaration should be well-typed and
indeed convert between values of the original type and values of the structure type, which is captured
by the following definition.

DEFINITION 4.3 (Well-typed Conversion).A viewV with

viewtypesV ≡ KV ; ΓV

generateswell-typed conversionsif, for each well-formed declarationD0 of a type constructorT of
kind{κi →}i∈1..`∗, for which a structure typet can be derived,

V [[D0 ]] str ≡ {Λai :: κi . }i∈1..` t ; {Di}i∈1..n ,

it follows that the corresponding conversion functionsefrom andeto,

V [[D0 ]] conv≡ efrom; eto,

take values of the original data typeT to values of the structure typet and vice versa,

K′; Γ′ ` efrom :: {∀ai :: κi . }i∈1..` T {ai}i∈1..` → t
K′; Γ′ ` eto :: {∀ai :: κi . }i∈1..` t → T {ai}i∈1..`

under environmentsK′ containing both the view bindingsKV and the kind ofT andΓ′ containing the
view bindingsΓV and the types of the constructors fromD0.

Finally, the conversion functions from structure values to values should form the inverses of the
corresponding functions in the opposite direction:

DEFINITION 4.4 (Well-behaved Conversion).A generic viewV produceswell-behaved conversions
if, for each well-formed declarationD of a type constructorT , conversion functionsefrom andeto are
generated,

ICFP’05 15 2005/4/25



V [[D ]] conv≡ efrom; eto,

such thateto is the left inverse ofefrom with respect to function composition—i.e.,

eto (efrom v) evaluates tov

for each valuev of typeT .

(Note that, for a well-behaved conversion pair, the function that takes values to structure values is
injective; thus, a structure type should have at least as many elements as the corresponding original
type.)

Only views that possess all three of the discussed properties are considered valid:

DEFINITION 4.5 (Validity). A generic view isvalid if it is kind preserving and generates well-typed,
well-behaved conversions.

4.4 The standard view

We describe the three components of a generic view for the standard Generic Haskell viewS of data
types

View types. The view types of the standard view are given by the following declarations:

data Zero =
data Unit = Unit
data Sum = Λa :: ∗ . Λb :: ∗ . Inl a | Inr b
data Prod = Λa :: ∗ . Λb :: ∗ . a × b.

These types represent nullary sums, nullary products, binary sums, and binary products, respectively.
It is easy to convert these definitions into bindings in the environmentsΓ andK.

Generating structure types. The algorithm that generates structural representations for data types is
expressed by judgements of the forms

S [[D0 ]] str ≡ u; {Di}i∈1..n
,

S [[ {Cj {tj ,k}k∈1..nj }j∈1..m
| ]] str ≡ t .

The former express how type declarations are mapped to parameterized types and lists of supporting
declarations; the latter express how a type is derived from a list of constructors. The rules are shown
in Figures 5 and 6.

Type declarations are handled by the rule in Figure 5. The type parameters of a declared type
constructor are directly copied to the resulting structure type. Notice that the standard view does not
need auxiliary declarations.

For constructors, we distinguish five cases. The first rule, (str-std-1), represents empty constructor
lists withZero. The next three cases handle singleton lists of constructors. Fieldless constructors are,
by rule (str-std-2), represented by nullary products. Rule (str-std-3) represents a unary constructors by
the type of its field. If a constructor has two or more fields, rule (str-std-4) generates a product type
and recurses. Finally, lists that contain two or more constructors are represented by a recursively built
sum (str-std-5).

Generating conversions. The rules for generating conversion functions are shown in Figures 7 and
8 and are of the forms

S [[D0 ]] conv ≡ efrom; eto
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S [[D0 ]] str ≡ u; {Di}i,

S [[ {Cj {tj ,k}k}j| ]] str ≡ t

S [[data T = {Λai :: κi . }i {Cj {tj ,k}k}j| ]] str

≡ {Λai :: κi . }i t ; ε

Figure 5. Representation of data types in the standard view

S [[ {Cj {tj ,k}k}j| ]] str ≡ t

S [[ ε ]] str ≡ Zero
(str-std-1)

S [[C ]] str ≡ Unit
(str-std-2)

S [[C t ]] str ≡ t
(str-std-3)

n ∈ 2 . . S [[C {tk}k∈2..n ]] str ≡ t ′2
S [[C {tk}k∈1..n ]] str ≡ Prod t1 t ′2

(str-std-4)

m ∈ 2 . .

S [[ {Cj {tj ,k}k∈1..nj }j∈2..m
| ]] str ≡ t2

S [[C1 {t1,k}k∈1..n1 ]] str ≡ t1
S [[ {Cj {tj ,k}k∈1..nj }j∈1..m

| ]] str ≡ Sum t1 t2
(str-std-5)

Figure 6. Representation of constructors in the standard view

S [[ {Cj {tj ,k}k}j| ]] conv ≡ {pfrom,j }j| ; {pto,j }j| ,

i.e., type declarations give rise to pairs of conversion functions, while lists of data constructors give
rise to pairs of patterns.

The rule in Figure 7 constructs a ‘from’ function that matches values of the original type against a
list of patterns. If a value is successfully matched against a certain pattern, a structure value is produced
by using a complementary pattern; hence, here, we make use of the fact that the pattern language is
just a subset of the expression language. A ‘to’ function is created by inverting the patterns.

The pairs of pattern lists are generated using the rules for constructor lists. These rules are
analogous to the rules for generating structure types from constructor lists.

If there are no constructors, there are no patterns either (conv-std-1). Rule (conv-std-2) associates a
single constructor with the valueUnit . Rule (conv-std-3) associates unary constructors with variables
that correspond to their field values. If a constructor has two or more fields, rule (conv-std-4) associates
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S [[D ]] conv ≡ efrom; eto

S [[ {Cj {tj ,k}k}j| ]] conv ≡ {pfrom,j }j| ; {pto,j }j|
efrom ≡ λx . case x of {pfrom,j → pto,j }j;
eto ≡ λx . case x of {pto,j → pfrom,j }j;

S [[data T = {Λai :: κi . }i {Cj {tj ,k}k}j| ]] conv ≡ efrom; eto

Figure 7. Conversions for data types in the standard view

S [[ {Cj {tj ,k}k}j| ]] conv ≡ {pfrom,j }j| ; {pto,j }j|

S [[ ε ]] conv ≡ ε; ε
(conv-std-1)

S [[C ]] conv ≡ C ;Unit
(conv-std-2)

S [[C t ]] conv ≡ C x ; x
(conv-std-3)

n ∈ 2 . . {x1 6≡ xk}k∈2..n

S [[C {tk}k∈2..n ]] conv ≡ C {xk}k∈2..n ; pto

S [[C {tk}k∈1..n ]] conv ≡ C {xk}k∈1..n ; x1 × pto
(conv-std-4)

m ∈ 2 . .

S [[ {Cj {tj ,k}k∈1..nj }j∈2..m
| ]] conv ≡ {pfrom,j }j∈2..m

| ; {pto,j }j∈2..m
|

S [[C1 {t1,k}k∈1..n1 ]] conv ≡ pfrom,1; pto,1

S [[ {Cj {tj ,k}k∈1..nj }j∈1..m
| ]] conv ≡ {pfrom,j }j∈1..m

| ; Inl pto,1 {| Inr pto,j }j∈2..m
(conv-std-5)

Figure 8. Conversions for constructors in the standard view

the corresponding variables to product patterns. Finally, if the list of constructors has two or more
elements, rule (conv-std-5) applies; it prefixes the patterns with the injection constructorsInl andInr .

THEOREM 4.6. The standard view is valid.

4.5 The fixed-point view

An essential aspect of the fixed-point view is the automatic derivation of pattern functors.
Given a declarationD1 of typeT , a declarationD2 for the pattern functorptr(T ) is generated by

the rule in Figure 9, which takes the form

[[D1 ]] ptr ≡ D2.

The metafunctionptr is assumed to produce a unique name for the functor. The definition ofptr(T )
follows the structure ofT , replacing all recursive calls by an extra type argument.

View types. The sole view type of the fixed-point view isFix:
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[[D1 ]] ptr ≡ D2

{a`+1 6≡ ai}i {{t ′j ,k ≡ [a`+1 / T {ai}i ] tj ,k}k}j|
[[data T = {Λai :: κi . }i {Cj {tj ,k}k}j| ]] ptr ≡ data ptr(T ) = {Λai :: κi . }i Λa`+1 :: ∗ . {ptr(Cj ) {t ′j ,k}k}

j
|

Figure 9. Pattern functors

F [[D0 ]] str ≡ u; {Di}i,

D ≡ data T = {Λai :: ∗ . }i {Cj {tj ,k}k}j|
F [[D ]] str ≡ {Λai :: ∗ . }i Fix (ptr(T ) {ai}i); [[D ]] ptr

Figure 10. Representation of data types in the fixed-point view

data Fix = Λϕ :: ∗ → ∗ . In (ϕ (Fix ϕ)).

Generating structure types. The rule for generating structure types forF , which has the form

F [[D0 ]] str ≡ u; {Di}i∈1..n
, .

is given in Figure 10. This rather straightforward rule states that a structure type is derived by applying
the typeFix to a partially applied pattern functor. The declaration of the pattern functor is emitted as
a supporting declaration. Note that the parameters of the original data type are restricted to kind
∗, excluding higher-order kinded types from the view domain. The need for this restriction will be
explained later.

Generating conversions. Generating conversion functions forF is more involved. The algorithm is
presented in Figures 11 and 12. It consists of judgements of the forms

F [[D0 ]] conv ≡ efrom; eto

F [[ {tk}k∈1..n ]] conv
t0;e,e′ ≡ {pk}k∈1..n ; {ek}k∈1..n .

The first form indicates that conversion functionsefrom and eto are derived based on the structure
of a type declarationD0. The second form expresses the generation of pattern-expression pairs
{pk}k∈1..n ; {ek}k∈1..n for a list of constructor fields{tk}k∈1..n ; the generation of these pairs is driven
by the original typet0 and the conversion functionse ande ′.

Because the conversion functions may be mutually recursive, the rule in Figure 11 makes use of
the core language’s recursivelet construct. To this end, the rule introduces fresh variablesxfrom and
xto that refer to the conversions. It relies on the rules for constructor fields to issue the recursive calls
to xfrom andxto in the appropriate positions.

For the generation of patterns and expressions from lists of fields, we distinguish three cases. If
the field list is empty, rule (conv-fix-1) applies and no patterns or expressions are generated. If the
field list is non-empty, we recursively generate patterns and expressions for its tail, while focussing on
the head element. If this head element equals the original type, rule (conv-fix-2) makes sure that the
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F [[D ]] conv ≡ efrom; eto

t0 ≡ T {ai}i

{F [[ {tj ,k}k ]] conv
t0;xfrom;xto

≡ {pj ,k}k ; {ej ,k}k}j {F [[ {tj ,k}k ]] conv
t0;xto;xfrom

≡ {p ′j ,k}k ; {e ′j ,k}k}j

xfrom 6∈ {{pv(pj ,k ), pv(p ′j ,k )}k, }j, xto 6∈ {{pv(pj ,k ), pv(p ′j ,k )}k, }j, xfrom

dfrom ≡ xfrom = λx . case x of {Cj {pj ,k}k → In (ptr(Cj ) {ej ,k}k )}j

dto ≡ xto = λx . case x of {In (ptr(Cj ) {p ′j ,k}k ) → Cj {e ′j ,k}k}j

efrom ≡ let dfrom; dto in xfrom eto ≡ let dfrom; dto in xto

F [[data T = {Λai :: ∗ . }i {Cj {tj ,k}k}j| ]] conv ≡ efrom; eto

Figure 11. Conversions for data types in the fixed-point view

F [[ {tk}k ]] conv
t0;e;e′ ≡ {pk}k ; {ek}k∈1..n

F [[ ε ]] conv
t0;econv;e′

conv
≡ ε; ε

(conv-fix-1)

n ∈ 1 . . t1 ≡ t0 {x1 6≡ xk}k∈2..n F [[ {tk}k∈2..n ]] conv
t0;econv;e′

conv
≡ {xk}k∈2..n ; {ek}k∈2..n

F [[ {tk}k∈1..n ]] conv
t0;econv;e′

conv
≡ {xk}k∈1..n ; (econv x1) {ek}k∈2..n

(conv-fix-2)

n ∈ 1 . . t1 6≡ t0 {x1 6≡ xk}k∈2..n F [[ {tk}k∈2..n ]] conv
t0;econv;e′

conv
≡ {xk}k∈2..n ; {ek}k∈2..n

F [[ {tk}k∈1..n ]] conv
t0;econv;e′

conv
≡ {xk}k∈1..n ;map(x1, t1, t0, econv, e ′conv) {ek}k∈2..n

(conv-fix-3)

Figure 12. Conversions for fields in the fixed-point view

conversion function is applied. Rule (conv-fix-3) deals with the situation in which the head element
does not equal the original type. In that case it may be necessary to map the conversion functions over
a fixed data structure; here, we assume that we have a metafunctionmap that takes care of the details.

THEOREM 4.7. The fixed point view is valid.

Higher-order kinded types. Unfortunately there is a class of data types that troubles the implemen-
tation of the fixed-point view: higher-order kinded types, i.e., types that have one or more parameters
that range over parametric types rather than proper types; for instance

data GRose f a = GBranch a (f (GRose f a)).

For the fixed-point view, these types might require embedding-projection functions to map over
arbitrary structures. We have considered some ad-hoc solutions to this problem, but they all require
significant changes to the underlying specialization algorithm (see Section 5.2). Here, we have adopted
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the most pragmatic approach: we have excluded types with a higher-order kind from the domain of
the fixed-point view. In the sequel, we present an alternative solution that involves a modification of
the view.

Alternative solution. To circumvent the problems with higher-order kinded types, we consider a
view in which recursive calls in data types are modelled by a type similar toFix, but which also
maintains an embedding-projection pair between the original data type and its representation as a
fixed point.

data Rec f r = InR (f r) (EP r (Rec f r))

Like Fix, Rec takes a type argument of kind∗ → ∗, which will be used to pass in the base functor.
Additionally, Rec takes an argument of kind∗ that will represent the data type itself. The structural
representation for a typeT :: {∗ →}i∗ is now given by

type T ◦
R {a}i = Rec (ptr(T ) {a}i) (T {a}i).

As defined, a value of typeT ◦
R {a}i consists of two parts: a value of typeptr(T ) {a}i and an

embedding-projection pair witnessing the isomorphism betweenT andT ◦
R.

The need for explicitly encoding the isomorphism into the structure type becomes clear when we
consider theRec case for the generic functionchildren. Instantiating the type ofchildren, given in
Section 3, toRec yields (dependencies omitted):

children〈Rec ϕ ρ〉 :: ∀f r . (. . . ) ⇒ Rec f r → [Rec f r ].

The ‘natural’ definition of the case for Rec does not adhere to this type though,

children〈Rec ϕ ρ〉 (InR r ) =
let col〈α〉 a = [a ]
in col〈ϕ α〉 r -- type incorrect,

because it produces a list of which the elements are of typer rather than typeRec f r . This can be
fixed using the embedding-projection pair that is contained within theRec value:

children〈Rec ϕ ρ〉 (InR r ep) =
let col〈α〉 a = [from ep a ]
in col〈ϕ α〉 r .

The compiler-derived embedding-projection maps for theRec view are included in the generated
structure-type values:

data GRoseBase f a = GBranchBase a (f r)
type GRose◦R f a =

Rec (GRoseBase f a) (GRose f a)

fromGRose,R :: ∀f a .GRose f a → GRose◦R f a
fromGRose,R (GBranch a as) =

InR (GBranchBase a as) convGRose,R

toGRose,R :: ∀f a .GRose◦R f a → GRose f a
fromGRose,R (InR (GBranchBase a as) ep) =

GBranch a as

convGRose,R :: ∀f a .EP (GRose f a) (GRose◦R f a)
convGRose,R = EP fromGRose,R toGRose,R.
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Instead of applying the conversion functions recursively, they are embedded in the structure-type
value. Hence, we do not encounter problems with higher-order kinded types, as we do for representa-
tions involvingFix.

Using the modified structural representation and embedding-projection pairs yields a variant ofFix
which we callRec.

5. Generic views in the Generic Haskell compiler

At the moment, the Generic Haskell compiler itself has to be modified in order to add a new view. It
is not yet possible to specify new views in a Generic Haskell program.

In this section we describe how to modify the Generic Haskell compiler to add new views. This
amounts to identifying the part that currently implements the standard view, and abstracting from
the information that constitutes the standard view. New views can then be added to the compiler
by implementing a number of Haskell functions that directly correspond to the definition of a
generic view in Section 4. Adding a new view could be made more comfortable by using Template
Haskell [28] or a plug-in architecture [27].

Ultimately, we would like a special-purpose language for defining own views in user programs.
Since a generic view consists of a set of view types, a function that generates structure types, and
a function that generates conversion functions, the special-purpose language for specifying views is
a complete programming language in itself. A compiler for a language in which generic views can
be specified would contain two phases, in which the first phase compiles the views, and the second
phase uses the compiled views to generate code for functions using those views. The special-purpose
language for specifying generic views remains future work.

5.1 Abstracting from the standard view

In the Generic Haskell compiler, a view would have the following type:

data View =
View Name

(TDecl →
Maybe (LamType, [TDecl],Expr,Expr)).

A value of typeView consists of a name, and a function that can be called on the declaration of
a type synonym or a datatype (aTDecl) to produce a parameterized structural representation type
(a LamType) and an embedding-projection pair (twoexpr ’s). Views that apply to a subset of the
Haskell datatypes can be implemented by returningNothing on datatype definitions that are outside
of the view’s domain.

Note that the result of the view-generating function in typeView directly corresponds to the maps
V [[ · ]] str andV [[ · ]] conv. The collectionviewtypesV of bindings that are required by the view must be
added to the Generic Haskell Prelude, i.e., they must be available for the Generic Haskell compiler to
parse.

The functionality that makes up the standard view is currently distributed over multiple source files
in the Generic Haskell compiler, but it can easily be extracted into a value of typeView. For other
views such as the fixed-point view, other values of typeView can be defined.

The whole compiler can then be parameterized over a list of views[View].
The validity of a view can only be checked to a certain extent. The compiler can verify the kind

preservation and well-typed conversion properties of the view: for each structural representation and
embedding-projection pair generated, kind and type checking is performed. The well-behavedness of
the conversion cannot be verified by the compiler, since verifying that the composition of two arbitrary
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functions is the identity is an undecidable problem. This property remains a proof obligation for the
implementor of the view.

5.2 Specialization

In this section we sketch how a generic view is actually put to use by the compiler. Assume thatenc,
the encode function from Section 3.2, is called on the type argumentBool. No case is given forBool,
so the standard view is applied. The data typeBool is defined as

data Bool = False | True,

and the top-level structural representation type ofBool is given by

type Bool◦ = Unit + Unit.

We reduce a call ofenc〈Bool〉 to a callenc〈Bool◦〉. The representationBool◦ that is actually used
now depends on the view specified for theenc function! The translation of the latter function to
Haskell code is described elsewhere [10, 21]. The callenc〈Bool◦〉 is of typeBool◦ → [Bit], whereas
enc〈Bool〉 is of typeBool → [Bit]. So to express the call ofenc〈Bool〉 in terms of the the call of
enc〈Bool◦〉, we have to lift the isomorphism betweenBool and its representation to the type of the
generic functionenc.

Given an embedding-projection map between a typeD and its structure typeD◦, we can use the
generic functionbimap to lift the isomorphism to arbitrarily complex types. Recall thatenc, the
collection function in Section 2.1, is defined in such a way that it returns the empty list for every
data type, and only becomes useful when locally redefined. Similarly,bimap defines the identity
embedding-projection pair for each data type generically. A remarkable fact is thatbimap can be
defined on function types. We give the cases forUnit, +, and→ as an example (see, for example, [21]
for a complete definition):

bimap〈a1 :: ∗, a2 :: ∗〉 :: (bimap〈a1, a2〉) ⇒ EP a1 a2

bimap〈Unit〉 = EP id id
bimap〈α + β〉 =

let from+ (Inl a) = Inl (from bimap〈α〉 a)
from+ (Inr b) = Inr (from bimap〈β〉 b)
to+ (Inl a) = Inl (to bimap〈α〉 a)
to+ (Inr b) = Inr (to bimap〈β〉 b)

in EP from+ to+

bimap〈α → β〉 =
let from→ c = from bimap〈β〉 · c · to bimap〈α〉

to→ c = to bimap〈β〉 · c · from bimap〈α〉
in EP from→ to→.

Using local redefinition, we can plug in an embedding-projection pair provided by the generic view:

enc〈Bool〉 = let bimap〈α〉 = epBool

in to (bimap〈α → [Bit]〉) enc〈Bool◦〉.

The details of why this works are omitted here. It is, however, important to realize that for generic
functions that both consume and produce values of the type argument’s type, both components of the
embedding projection pair will be applied: a value of the original typeD is transformed intoD◦ to be
in suitable form to be passed to the function that works on the structural representation. Because the
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function also returns something containing values of typeD◦, these values are then converted back to
typeD . This is the reason why the embedding-projection pair should really contain an isomorphism.
If it does not, a value could change simply by the conversion functions that are applied, leading to
unexpected results for the user.

The specialization mechanism is independent of the actual view. For other views than the standard
view, different structural representations and embedding-projection pairs are used, but the specializa-
tion procedure remains exactly the same. The only thing that must be changed in the implementation
of specialization within the Generic Haskell compiler is that all the references to structural represen-
tation types and embedding-projection pairs should point to the view that is specified for the function
in question.

6. Conclusions, related and future work

We have shown that generic views on data types can make generic functions both easier to write and
more efficient. Furthermore, generic views allow us to use different generic programming styles in a
single framework.

Although there are a multitude of approaches for generic programming, the idea to use multiple
views on data types in a single approach is, to the best of our knowledge, original.

The name “generic view” is derived from Wadler’s proposal to introduce views in (a predecessor of)
Haskell [31]. Using one of these views, a single Haskell data type can be analyzed in a different way,
by introducing additional constructors by which a value can be constructed, and on which pattern
matching can be performed. A view is essentially like the introduction of an additional data type,
together with the definition of conversion functions between values from the original type and values
of the view type. These conversions are then transparently applied by the compiler where necessary.

Generic views are different in that they define a representation and conversions for many types at
the same time. Furthermore, the representation types need not be new data types, but can be built from
existing data types. Wadler’s views have the immense advantage that they can be added to the Haskell
programming language relatively easily, allowing every programmer to add her own views. On the
other hand, generic views have, for now, to be added to a generic programming system, such as the
Generic Haskell compiler, following the guidelines described in the previous sections. Designing a
language extension of Generic Haskell that allows user-defined views is on the top of the list of future
work.

Both views and generic views have in common that the definition of a new view goes along with
a proof obligation for the programmer that cannot easily be captured in a language like Haskell.
The conversion between original type and view type, be it a single pair of functions such as in
Wadler’s proposal, or a type-indexed family of functions such as for generic views, must really witness
isomorphisms, otherwise unexpected results may occur.

Since Wadler’s views proposal, several variations of views have been given [5, 26, 6]. Our approach
is closest to Wadler’s proposal in that we also require the existence of an isomorphism between the
original type and the view type.

Views have also been proposed in the context of XML and databases [1, 25]. Generic views as
proposed in [29] are used to automatically convert between two given views. The generic view concept
as introduced in this paper does not seem to have been investigated in this field.

The idea of using different sets of data types for inductive definitions of type-indexed functions is
common in the world of dependent types [2, 4]. This corresponds to the idea of having views that
work on different subsets of the Haskell data types. However, in the approaches we have seen there
is no automatic conversion between syntactically definable data types as offered by the dependently
typed programming language into representations as defined by the view or universe.
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