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Abstract. The process of engineering probabilistic networks can be sup-
ported by a library of generic knowledge structures. Such a knowledge
structure is instantiated with domain-specific knowledge and is used to
derive, in a number of steps, a segment of the graphical structure of a
network. To provide for customisation to the application at hand, the
structures are based on an in-depth knowledge analysis and capture,
in an appropriate representation, the intricate details of the knowledge
involved. We present, as an example, the generic knowledge structure
that captures the relations between a test result and the underlying true
value. As a guideline for its application we provide the derivation of a
network segment in the field of oncology.

1 Introduction

An increasing number of knowledge-based systems build upon the formalism of
probabilistic networks for their knowledge representation. A probabilistic net-
work consists of a graphical structure, representing statistical variables and the
(in)dependence relations between them, and an associated numerical part, de-
scribing a joint probability distribution over the represented variables [1]. Engi-
neering a probabilistic network for an application usually has to be done with the
help of domain experts and is generally considered a hard and time-consuming
task. Methods and associated tools are called for to support this task.

We consider, as an example, the construction of a probabilistic network for
medical diagnosis. In the medical domain testing plays an important role and
the probabilistic network should capture the results of the various tests em-
ployed. We observe that a test is typically performed to reveal an underlying
true value that is not directly observable. The test’s result may not unambigu-
ously reflect this true value and may depend, for example, on the skills of the
laboratory technician. Because the relation between the true value and the test
result can be quite intricate, modelling the domain-specific knowledge involved
is not straightforward.

We propose in this paper to support the task of engineering probabilistic
networks by a library of generic knowledge structures, where each such struc-
ture represents a unit of knowledge in domain-independent terms. This library
contains, for example, a generic knowledge structure for tests that captures all
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knowledge that plays a role in explaining test results in terms of their underly-
ing true value, independent of any specific application domain. Upon using the
library, the knowledge engineer selects appropriate generic knowledge structures
and instantiates these with the domain-specific knowledge for the application at
hand. The instantiated knowledge structures are subsequently used in the design
of the probabilistic network. Since building a probabilistic network involves tak-
ing design decisions that may depend on the requirements of the application, the
represented knowledge may be modelled at different levels of abstraction. The
generic knowledge structures should therefore allow for flexible customisation by
the knowledge engineer.

To allow for customisation, a knowledge structure should be based on a
thorough understanding of the knowledge involved. An in-depth analysis of the
knowledge is therefore indispensable. The structure should further capture the
intricate details of the knowledge in a representation that is easy to understand
and that is capable to reflect those intricacies. Since capturing knowledge in the
formalism of probabilistic networks may result in a representation from which the
knowledge is not easily recognizable [2], we represent our knowledge structures
independently of this formalism. Since a generic knowledge structure, after hav-
ing been customised and instantiated with knowledge in the application domain,
is used to derive a segment of the graphical structure of a probabilistic network,
it further has associated, as a guideline to this end, an example derivation.

In this paper, we detail, as an example, a generic knowledge structure that
captures the relations involved in explaining or predicting test results. This
knowledge structure is based on an in-depth analysis of the knowledge involved.
To provide support to the task of building a network for an application domain,
we detail, with the structure, an example derivation of a segment of the graphical
structure of the network.

The remainder of the paper is structured as follows. In Section 2, we de-
scribe how a library of generic knowledge structures can support a knowledge
engineer in building a probabilistic network. In Section 3, we analyse the rela-
tions between test results and the underlying true values, and present a generic
knowledge structure capturing this knowledge. In Section 4, we demonstrate how
a segment of the graphical structure of a probabilistic network is derived from
an instantiated knowledge structure in the domain of oncology. Next, we discuss
related work, followed by our conclusions in Section 6.

2 Generic knowledge structures in network engineering

The design of a probabilistic network involves three basic steps [3]. First, the
relevant statistical variables in the domain are identified, with their possible
values. Next, the relations between these variables are specified, resulting in the
network’s graphical structure. Lastly, probabilities are specified for all variables
involved. These tasks are usually performed in close cooperation with domain
experts. Recently, we have recommended to develop a conceptual model for a
domain of application before actually designing the network’s graphical structure
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[2]; this model then serves as a documentation of elicited knowledge and as a
means of communication during further knowledge acquisition. We have further
argued that the conceptual model can be used to derive the graphical structure
of the probabilistic network [4]: it is used to derive an initial graphical structure
which is subsequently improved and optimised with respect to, for example, the
probabilities to be assessed and the running time of inference.

The construction of the conceptual model and its use upon deriving a network
structure can be supported by the availability of a library of generic knowledge
structures. A generic knowledge structure describes the structure of a unit of
knowledge, that is, it describes the relevant concepts and their interrelations
independent of a specific application domain. The knowledge engineer first se-
lects a generic knowledge structure that is appropriate for the domain knowledge
that is to be modelled. She instantiates the structure with the domain-specific
knowledge, thereby obtaining a part of the conceptual model; in addition, she
may customise the knowledge structure to meet the requirements of the appli-
cation at hand. Both the selection of the generic structure and its customisation
are based upon a thorough understanding of the knowledge involved. To this
end, the various structures are constructed from an in-depth knowledge analysis
and represented in depictions and tables that are easy to understand and that
are capable of capturing the relevant details of the knowledge involved. The in-
stantiated and possibly customised knowledge structure then is used to derive a
segment of the network structure, as indicated above. Since the standard knowl-
edge structure may have been customised and, moreover, the design decisions to
be taken in the derivation in some aspects depend on the application at hand, we
do not provide a fixed network structure with the generic knowledge structures
in the library. Instead, as a guideline, a domain-specific example is associated
with each generic knowledge structure, illustrating a step-by-step derivation of
a network structure.

The idea of providing generic structures to support network engineering was
addressed before [5]. Neil, Fenton and Nielsen introduced the concept of id-
iom for this purpose. Their idioms are modelled directly as segments of a net-
work’s graphical structure and are not easily customised without knowledge of
the modelling decisions. Our generic knowledge structures, on the other hand,
are represented independently of the formalism of probabilistic networks and
have associated an in-depth knowledge analysis and example derivation, thus
allowing for optimal flexibility in their application.

3 A generic knowledge structure for test results and the
underlying truth

Performing tests and interpreting the results play an important role in numerous
domains. Tests are typically performed to reveal an underlying true value that
is not directly observable. However, due to several aspects, the result of a test
may not unambiguously reflect the underlying truth. To enable the knowledge
engineer to take well-considered decisions as to whether or not represent these
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aspects, we designed a generic knowledge structure describing the relations be-
tween test results and their underlying true values, based on an in-depth analysis
of the knowledge involved. We decided to keep the structure general enough to
apply to different fields of biomedicine, yet specific enough to provide valuable
support. Further abstraction and adaptation will render it applicable also to
other domains. In this section we present the structure; its use to derive the
graphical structure of a probabilistic network is discussed in the next section.

Since we illustrate our in-depth analysis of the knowledge related to test re-
sults and their underlying true values with examples taken from the domain of
oesophageal cancer, we briefly introduce this field of medicine. Due to various
factors, a tumour may develop in a patient’s oesophagus. Its presence may cause
the patient to have difficulties with swallowing food. The extent to which the
passage of food is impaired depends on such factors as the tumour’s circumfer-
ence, length and shape. The primary tumour typically invades the oesophageal
wall and, upon further growth, may invade neighbouring organs. In time, the tu-
mour may give rise to secondary tumours, or metastases. The depth of invasion
and the extent of metastasis, summarised in the cancer’s stage, are important
factors in deciding upon a therapy. To determine the cancer’s stage, typically a
number of diagnostic tests are performed. For example, a gastroscopic examina-
tion, that is, letting a camera into the oesophagus, is performed to gain insight
in such properties of the primary tumour as its circumference. The result of the
examination will only be available, however, after the physician has observed
and interpreted the gastroscopic image. The result then is an assessment of the
tumour’s actual circumference.

presentation
value value

resultentity
property

inducing inducing

Fig. 1. The relations between entities and test results

We abstract from the example test in our domain of application and describe
the concepts and relations involved in more general terms. The tumour in the
example is an entity. The gastroscopic image is a presentation of the tumour’s
circumference; the physician’s assessment of the circumference from the image
is a result. Entities, presentations and results have properties that may adopt a
value. The oesophageal tumour, for example, has a circumference, that may be
circular or non-circular ; we represent this type of relation by standard object-
attribute-value tuples. We now say that a test is performed to gain insight in a
property of an entity; (the value of) the property may then induce (the value of)
a presentation which, in turn, may induce (the value of) a result. The relations
involved are depicted in Figure 1.

From the above considerations, we have that a property of an entity can
only induce a presentation if an appropriate test is performed. The status of the
test, being performed or not performed, basically enables the relation between
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Fig. 2. The roles of test and interpretation

the property and its presentation; this enabling relation is shown in Figure 2 on
the left. Now, if the test has been performed, the attribute value of the object
presentation adopts one of its possible values; if the test has not been performed,
the attribute cannot adopt any value. Likewise, a physician must interpret the
presentation to obtain the test result. The relation between the presentation and
the result therefore is enabled by the status of the interpretation, as shown in
Figure 2 on the right. Again, the attribute value of the object result can only
adopt one of its possible values if the interpretation has been performed. We
specify as a validity constraint that an interpretation cannot be performed if the
test has not been performed and, hence, no presentation is available.

A test does not always succeed upon performance. For example, if a patient’s
oesophagus is obstructed, caused by such properties of the tumour as its circum-
ference and length, the camera cannot pass the obstruction upon a gastroscopic
examination; the test may then not give the image aimed for. The obstruction is
a manifestation of the primary tumour and has a certain degree. This manifesta-
tion may now disable (or negatively enable) the enabling relation from the test,
as depicted in Figure 3 on the left. The extent to which a test succeeds upon
performance depends also on the skills and experience of the laboratory techni-
cian performing the test [6]. These properties are summarised in the test skills
of the technician, shown in Figure 3; note that these skills may vary between

enabling enabling
enabling

enabling enabling

inducing inducingpresentation
value value

result

test skills
technician
laboratory

interpretation skills
physician

status
interpretation

status
test

property
entity

manifestation
degree

inducing

Fig. 3. Relations between test results and the underlying true values
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presentation entity test manifestation laboratory technician
value property status degree test skills

yes, no, indeterminate yes, no performed low , high low , high

no value − not performed − −

Table 1. The attribute value of the object presentation

tests. Now, if the test has been performed, the attribute value of the object pre-
sentation adopts, in essence, either one of the values that the attribute property
of the object entity may adopt, or the value indeterminate, to indicate that the
test has failed. The value it adopts depends on the property of the entity, the
degree of the manifestation, and the technician’s test skills. These relations are
summarised in Table 1. For ease of presentation, we assume that the latter three
attributes have two possible values each; the table can easily be generalised to
include additional values, however.

Similarly, the extent to which the interpretation gives rise to a result depends
on the interpretation skills of the physician, shown in Figure 3 on the right.
Since performing a test and interpreting a presentation are different tasks that
are often performed by different clinicians, the skills involved are modelled as
attributes of separate objects. If both tasks are performed by the same clinician,
however, the skills can be modelled as separate attributes of the same object.
The attribute value of the object result may now adopt one of the possible values
of the attribute value of the object presentation, or the value not decided. The
latter value represents that the physician has difficulties in establishing a result,
for example, in establishing whether an oesophageal tumour is actually circular
or rather almost circular and therefore non-circular. We assume that a physician
performing the interpretation recognises whether a presentation is indeterminate
or not. Table 2 summarises the relations involved. We would like to note that
the relations described in the Tables 1 and 2 in general are not deterministic in
nature, but involve some uncertainty.

The result of our analysis is the generic knowledge structure in Figure 3
and its associated Tables 1 and 2, describing the relations between test results
and their underlying true values in the biomedical domain. It can be instanti-
ated with a specific entity and test, and used in the design of a probabilistic

result presentation interpretation physician
value value status interpretation skills

indeterminate indeterminate performed −
yes, no, not decided yes, no performed low, high

no value − not performed −

Table 2. The attribute value of the object result
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network. Upon instantiating the structure, the various concepts may be further
differentiated to capture more details. Both clinicians’ skills, for example, can
be substituted by more fine-grained properties. The structure can also be ex-
tended to include additional aspects such as the patient’s health status. On the
other hand, further abstraction and adaptation will render it applicable also to
non-biomedical domains.

4 The derivation of a network structure

The generic knowledge structure capturing the relations between a test result and
its underlying true value is used in the design of a probabilistic network or, more
specifically, in the derivation of a segment of a network’s graphical structure. The
graphical structure of a network is an acyclic, directed graph. Its nodes represent
statistical variables, which have an exhaustive state space of mutually exclusive,
discrete values. The arcs in the graph capture influential relationships between
the variables. More formally, the graph represents probabilistic independence:
two variables are considered independent given the available evidence if every
chain between the two variables contains a variable with at least one emanating
arc that has been observed, or a variable with two incoming arcs such that neither
the variable itself nor any of its descendants in the graph have been observed.

In deriving a segment of the graphical structure of a network, the selected
generic structure is instantiated with domain-specific knowledge and possibly
customised to the application at hand. Next, the segment is derived in a se-
quence of steps. As an example, we illustrate the derivation of a segment for
a gastroscopic examination as a test to gain insight in the circumference of an
oesophageal tumour. This example derivation serves as a guideline associated
with the generic knowledge structure.

The first step is to instantiate the generic knowledge structure with the rel-
evant concepts from the domain of application. In our example, this results in
the structure shown in Figure 4. As a gastroscopic examination may result in
images of several properties of the tumour, the interpretation and the interpre-
tation skills mentioned in the figure should be taken to pertain to the tumour’s
circumference.

Building upon the instantiated knowledge structure, the knowledge engineer
must now decide upon the statistical variables to be included in the probabilistic
network under construction. In our example, the statistical variable Circumfer-
ence is created to capture the attribute circumference of the object oesophageal
tumour. The values of the variable are the possible values of the attribute. The
creation of this variable is straightforward, because the attribute from which
it is created is single valued and its possible values are mutually exclusive and
exhaustive. Therefore, no additional design decisions are required to ensure that
the properties of a statistical variable are adhered to. Similarly, the statistical
variables Passage, Test-skills, and Interpretation-skills are created.

A knowledge structure may include attributes of objects that do not allow for
translation into statistical variables. Examples in our domain are the status at-
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inducing inducing
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result gastroscopy
circumference

value
circumference

gastroscopic image

value

primary tumour
circumference

status
gastroscopy

status
gastroscopic image

interpretation

technician
laboratory

test skills gastroscopy

passage
impairment

degree

physician
interpretation skills

gastroscopy

Fig. 4. The instantiated knowledge structure

tributes of the objects gastroscopy and interpretation gastroscopic image. These
attributes are not stochastic in nature, as their values can be decided upon:
the attributes in essence are decision variables which cannot be modelled in a
probabilistic network. Instead, their meaning is captured by the (simplifying)
assumption that the test and the interpretation have been performed. Creating
statistical variables to describe the remaining attributes is now straightforward.
For example, the variable Gastro-image-circumf is created, with the possible
values circular, non-circular and indeterminate. Note that this variable always
adopts a value, in contrast with the attribute value of the object gastroscopic
image circumference, since the network is based on the assumption that the test
has been performed.

The next step in deriving the network segment is the specification of the
arcs to capture the influences between the statistical variables. The relations
between the attributes in the instantiated knowledge structure provide guidance
to this end. In our domain of application, for example, the influence from the
attribute circumference of the object oesophageal tumour on the attribute degree
of passage impairment is represented in the network structure as an arc from
the variable Circumference to the variable Passage. The enabling relations from

Circumference Gastro-image-circumf

Test-skills

Gastro-circumf

Interpretation-skillsPassage

Fig. 5. The initial segment of the graphical structure
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the instantiated pattern cannot be represented directly in the graphical struc-
ture, however, since a probabilistic network cannot contain an arc pointing onto
another arc. However, we observe that in essence these are indirect influences.
The enabling relation originating at the attribute degree of the object passage
impairment, for example, constitutes an indirect influence on the attribute value
of gastroscopic image circumference. It is therefore captured in the network by
an arc from Passage to Gastro-image-circumf. The other enabling relations are
represented in a similar manner. Figure 5 shows the resulting initial segment.

The segment is then restricted so as to include only variables for which prob-
abilities can be reasonably obtained. The initial segment constructed for our
domain, for example, includes the variable Gastro-image-circumf. This variable
cannot be observed in reality, since an image cannot be observed without be-
ing interpreted. Hence, it is practically impossible to obtain the probabilities
required for this variable. The variable is therefore removed from the graph,
along with its incident arcs, by marginalisation. To retain the indirect influences
from the variables Circumference, Passage and Test-skills on Gastro-circumf,
arcs are added from the former three variables to the latter. Figure 6 shows the

Circumference

Test-skills Interpretation-skills

Gastro-circumf

Passage

Fig. 6. The optimised segment

optimised segment. It must now still be verified whether or not the resulting
segment correctly captures the probabilistic independences in the application
domain. The structure in Figure 6 states, for example, that the variables Pas-
sage and Test-skills are independent, yet may become dependent given a value of
Gastro-circumf. These (in)dependences actually hold in the domain. As the same
observation pertains to the other represented (in)dependences, no correction of
the segment is necessary.

The optimised segment can be further reduced by making some (simplifying)
assumptions about, for example, the clinicians’ test or interpretation skills. For
example, if the probabilistic network is being developed for a specific hospital in
which all clinicians involved have comparable skills in performing the gastroscopy
and in interpreting the gastroscopic images with respect to the tumour’s circum-
ference, then the variables Test-skills and Interpretation-skills can be removed
from the structure, along with their emanating arcs. Removing these variables
again amounts to marginalising over them, this time without giving rise to addi-
tional arcs. Note, however, that upon assessing the probabilities for the variable
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Gastro-circumf, the influences from the removed variables should be taken in
account. The reduced segment is shown in Figure 7.

Circumference Gastro-circumf

Passage

Fig. 7. The reduced segment

We have demonstrated how our generic knowledge structure pertaining to
test results and their underlying true values can be used for deriving a segment
of the graphical structure of a network for our domain of application. The ex-
ample derivation is associated with our generic knowledge structure, and serves
as a guideline for deriving segments pertaining to other biomedical domains. We
would like to note that the resulting segment distinguishes explicitly between
test results and hidden true values. This contrasts the approach taken in most
probabilistic networks. Including just the variable that represents the test re-
sult into a network, amounts to assuming that all modelled tests unambiguously
reveal the underlying truth and therefore are perfectly reliable. Experience has
shown that this assumption may rarely be realistic, however [7]. In addition, by
including just the variable that represents the test result, the modelled indepen-
dence relation may be inaccurate, especially if the true value itself plays a role
in other parts of the network.

5 Related work

We are not the first to propose the use of a library of structures or patterns
for engineering purposes. A structure for capturing tests, more specifically, has
also been proposed by Neil, Fenton and Nielsen [5]. In their measurement idiom,
represented in the formalism of probabilistic networks, however, all concepts
inducing uncertainty are represented by a single statistical variable. Our generic
knowledge structure offers much more detail. We feel that as a consequence it can
offer more detailed support. The application of general analysis patterns has also
been proposed in the context of business modelling and software engineering [8].
The analysis pattern proposed for observations and measurements in the medical
domain is rather general, however, and does not distinguish explicitly between
true values and test results. We feel that therefore the pattern does not provide
much support in modelling the detailed knowledge involved in tests and their
results. The generic knowledge structure that we propose, in contrast, explicitly
represents the various sources of uncertainty. The use of reusable knowledge
structures is also common in the field of knowledge engineering [9]. Both these
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structures and the analysis patterns are meant for support of the construction
of a model, independently of specific knowledge representation formalisms or
programming languages. They are therefore rather general. Our approach, on
the other hand, is tailored to network engineering, and therefore provides more
dedicated support. Our knowledge structures allow for flexible use, yet their
practical application in network engineering is supported by example derivations
that serve as a guideline.

6 Conclusions

In this paper we have proposed to support the task of engineering a probabilis-
tic network by the availability of a library of generic knowledge structures. A
generic knowledge structure captures the structure of a unit of knowledge inde-
pendently of a specific domain. It is instantiated by the knowledge engineer with
domain-specific knowledge and used to derive a segment of the graphical struc-
ture of a probabilistic network. As the design decisions within this derivation
may depend on the requirements of the application at hand, an example deriva-
tion is associated with each generic knowledge structure to serve as a guideline.
To enable the knowledge engineer to customise the represented knowledge to the
requirements of the application at hand, the generic knowledge structure reflects
the intricate details of the knowledge involved, thus facilitating well-considered
adaptations. In addition to providing support of the process of knowledge mod-
elling, our generic knowledge structures may also serve to guide the elicitation
of the required knowledge. To provide for a generic knowledge structure con-
taining knowledge pertaining to test results and their underlying true values, we
have performed an in-depth analysis of the concepts, relations and uncertainties
involved. We presented both the resulting knowledge structure and an exam-
ple derivation of a network structure, in the domain of oesophageal cancer. For
detailing the associated probabilities, we would like to refer to [10].

To investigate the applicability of our generic knowledge structure for test
results and their underlying true value, we studied the real-life probabilistic
network that we had previously developed for the field of oesophageal cancer.
This network includes some 25 variables that model test results and, hence,
contains many segments involving tests. Each of these segments proved to be
based on knowledge that fits our generic knowledge structure. We are currently
applying the structure in the development of a probabilistic network for the
detection of classical swine fever in pig herds. We found so far that the use of
our generic knowledge structure significantly simplifies the task of the knowledge
engineer.

In the near future, we aim to develop a variety of generic knowledge structures
along the same ideas outlined in the paper, to arrive at an extensive library of
knowledge structures serving to support the engineering of probabilistic networks
in a wide variety of application domains.
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