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institute of information and computing sciences, utrecht university

technical report UU-CS-2005-020

www.cs.uu.nl



Generating Realistic Terrains with Higher-Order

Delaunay Triangulations

Thierry de Kok Marc van Kreveld Maarten Löffler
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Abstract

For hydrologic applications, terrain models should have few local minima, and drainage
lines should coincide with edges. We show that triangulating a set of points with elevations
such that the number of local minima of the resulting terrain is minimized is NP-hard for
degenerate point sets. The same result applies when there are no degeneracies for higher-order
Delaunay triangulations. Two heuristics are presented to reduce the number of local minima
for higher-order Delaunay triangulations, which start out with the Delaunay triangulation. We
give efficient algorithms for their implementation, and test on real-world data how well they
perform. We also study another desirable drainage characteristic, few valley components, and
how to obtain it for higher-order Delaunay triangulations. This gives rise to a third heuristic.
Tables and visualizations show how the heuristics perform for the drainage characteristics on
real-world data.

1 Introduction

A fundamental geometric structure in computational geometry is the triangulation. It is a par-
titioning of a point set or region of the plane into triangles. A triangulation of a point set P
partitions the convex hull of P into triangles whose vertices are exactly the points of P . The
most common triangulation of a set of points is the Delaunay triangulation. It has the property
that for every triangle, the circumcircle through its vertices does not contain any points inside. It
maximizes the smallest angle used over all possible triangulations of the point set.

If the points all have an associated attribute value like elevation, then a triangulation defines
a piecewise linear interpolant. Due to the angle property, triangles in a Delaunay triangulation
are generally well-shaped and are suitable for spatial interpolation. When using triangulations
for terrain modeling, however, one should realize that terrains are formed by natural processes.
This implies that there are linear depressions (valleys) formed by water flow, and very few local
minima occur [16, 18]. Local minima can be caused by erroneous triangulation: an edge may
stretch from one side of a valley to the opposite side. Such an edge is an artificial dam, and
upstream from the dam in the valley, a local minimum appears. See Figure 1 (left). It is often
an artifact of the triangulation. Therefore, minimizing local minima is an optimization criterion
for terrain modeling. In extension, the contiguity of valley lines is also a natural phenomenon.
Valleys do not start and stop halfway a mountain slope, but the Delaunay triangulation may
contain such artifacts. Hence, a second optimization criterion is minimizing the number of valley
line components.

Terrain modeling in GIS is used for morphological processes like drainage and erosion, or for
hazard analysis like avalanches and landslides. Local minima and undesirable valley lines can
influence the computation of these processes, leading to unreliable outcomes. This motivates our
study for the construction of realistic terrains by avoiding local minima and artifact valleys.
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An alternative to deal with local minima is flooding. Here a local minimum and its surroundings
are elevated until a height at which a local minimum does not appear anymore (pit filling) [10,
11, 12]. Such methods help to create terrains with better drainage characteristics, or to define
a drainage basin hierarchy, but it is clear that other artifacts are introduced at the same time.
Furthermore, this approach does not respect the given input elevations.

Returning to planar triangulations, there are many different ways in which one can define the
quality of a triangulation of a set of points. A criterion that is always important for triangulations
is the nice shape of the triangles. This can be formalized in several ways [3, 4]. In this paper,
nice shape is formalized by higher-order Delaunay triangulations [8]. They provide a class of
triangulations that are all reasonably well-shaped, depending on a parameter k.

Definition 1 A triangle in a point set P is order-k if its circumcircle contains at most k points
of P . A triangulation of a set P of points is an order-k Delaunay triangulation if every triangle
of the triangulation is order-k (see Figure 1 (middle)).

So a Delaunay triangulation is an order-0 Delaunay triangulation. For any positive integer k,
there can be many different order-k Delaunay triangulations. The higher k, the more freedom to
eliminate artifacts like local minima, but the worse the shape of the triangles can become.

CC ′

u

v

Figure 1: Left, an artificial dam and local minimum in a terrain. Middle, an order-2 Delaunay
triangulation, with two triangles and their circumcircles, showing the order. Right, the useful
order of the edge uv is 3, the maximum of the number of points inside C or C ′.

This paper discusses triangulations of a point set P of which elevations are given for terrain
modeling. In Section 2 we concentrate on minimizing local minima. We show that over all possible
triangulations, minimizing local minima is NP-hard. This result relies heavily on degenerate point
sets. For order-k Delaunay triangulations, NP-hardness can also be shown for non-degenerate
point sets, for k = Ω(nε) and k ≤ c · n, for some 0 < ε < 1 and some 0 < c < 1. (For k = 1,
an O(n log n) time algorithm that minimizes local minima was given in [8].) Then we discuss two
heuristics for reducing local minima in order-k Delaunay triangulations, the flip and hull heuristics,
and their efficiency. The latter was introduced before in [8]; here we give a more efficient algorithm.
Then we compare the two heuristics experimentally on various terrains. We only examine orders
0 up to 8; higher orders are less interesting in practice since the interpolation quality may be
less good, and skinny triangles may cause artifacts in visualization. The experiments address the
following questions:

• Does the concept of higher-order Delaunay triangulations help to reduce the number of local
minima on real terrains?

• In particular, do the flip and hull heuristics accomplish this? How does this depend on the
order of the Delaunay triangulation?
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• How do these heuristics compare to each other?

In Section 3 we extend our study to deal with valley line components as well. It appears that
the removal of local minima actually can create artifact valley lines, especially for the flip heuristic.
Two solutions are presented for this problem. We give a method to remove isolated valley edges,
and to extend valley line components so that they join with other valley components. In short,
we try to reduce the number of valley line components, leading to the valley heuristic. Again we
complement our methods by experiments on various terrains. The results are given in tables and
by visualization. The experiments address the following questions:

• Does the reduction of local minima by the flip or hull heuristics have influence on the number
of valley edge components?

• Does the valley heuristic achieve a reduction in the number of valley edge components? Can
it be applied best to the Delaunay triangulation or the outcome of the flip or hull heuristic
for minimizing local minima?

Section 4 gives the conclusions and lists several directions for further research.

2 Minimizing the number of local minima

The next subsection shows NP-hardness of minimizing local minima in two settings. Subsec-
tions 2.2 and 2.3 present the flip and hull heuristics and contain a running time analysis. Both
heuristics can be implemented in O(nk2 +nk log n) time, where n is the number of points and k is
the order of the higher-order Delaunay triangulation. For the hull heuristic this is an improvement
over the O(nk3 + nk log n) time bound of Gudmundsson et al. [8].

2.1 NP-hardness of minimizing local minima

For a set P of n points in the plane, it is easy to compute a triangulation that minimizes the
number of local minima if there are no degeneracies (no three points on a line). Assume p is the
lowest point. Connect every q ∈ P\{p} with p to create a star network with p as the center.
Complete this set of edges to a triangulation in any way. Since every point but p has a lower
neighbor, no point but p can be a local minimum. Hence, this triangulation is one that minimizes
the number of local minima. When degeneracies are present, minimizing the number of local
minima is NP-hard.

Theorem 1 Let P be a set of n points in the plane, and assume that the points have elevations.
It is NP-hard to triangulate P with the objective to minimize the number of local minima of the
polyhedral terrain.

Proof: By reduction from maximum size non-intersecting subset in a set of line segments [2].
Let S be any set of n line segments in the plane, and assume all 2n endpoints are disjoint (this
can easily be enforced by extending segments slightly). Let P be the set of the 2n endpoints. Let
γ be the smallest distance between two points in P . For every point p ∈ P , let C(p) be a circle
centered at p with radius γ/3. If p′ is the point in P such that pp′ is a segment of S, then for
every q ∈ P\{p, p′}, place a point at the intersection of pq and C(p), see Figure 2, left. We call
these points shields, because they prevent p and q from being connected by a line segment in any
triangulation. Let H be the set of shields.

We assign elevations as follows. For every segment in S, one endpoint is assigned elevation 1
and the other is assigned elevation 2. Every shield in H is assigned elevation 3. By the choice
of shields, every point with elevation 1 is a local minimum, and no point with elevation 3 can
be a local minimum. A point with elevation 2 is a local minimum if and only if the segment
from S that connects p′ to the other endpoint p is not in the triangulation. Hence, the maximum
non-intersecting subset of S corresponds one-to-one with the points with elevation 2 that are local
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Figure 2: Left, construction for the NP-hardness proof. Square points are in H, circular points are
in P . Right, NP-hardness for higher-order Delaunay triangulations. Crosses are points at least 4r
from the points in P ∪H.

minimum. Since the number of shields is quadratic, NP-hardness follows directly. 2

Based on the construction in the proof above, we can show NP-hardness of minimizing the
number of local minima for higher-order Delaunay triangulations even when no degeneracies exist.

We define the useful order of an edge as the lowest order of a triangulation that includes this
edge. In [8] it was shown that the useful order is actually defined by the number of points in one
of two circles, see Figure 1 (right). Let uv be the edge whose useful order we wish to determine,
and assume without loss of generality that uv is vertical. Let C (and C ′) be the circle that passes
through u and v, with leftmost (resp. rightmost) center, and which does not contain in its interior
any point left (resp. right) of the line through u and v. If k is the maximum of the number of
points inside C and C ′, then the useful order of edge uv is k.

Corollary 1 Let P be a set of n points in the plane such that no three points of P lie on a line,
and assume that the points have elevations. For any 0 < ε < 1 and some 0 < c < 1, it is NP-hard
to compute an order-k Delaunay triangulation that minimizes the number of local minima of the
polyhedral terrain for nε ≤ k ≤ c · n.

Proof: Start out with the proof of the theorem above; |P | = 2n and |H| = 2n(2n − 1). Let r
be the radius of the largest (finite) circle that passes through any three points of P ∪ H of the
construction. Note that r is at least half of the diameter of P ∪H. Let δ > 0 be a value chosen
very small, such that if three non-collinear points from P ∪H move over a distance δ, then their
circle has radius at most 2r (such circles are shown dashed in Figure 2, right. Both r and δ can be
computed in cubic time. Choose any point of P to be center of a large circle C of radius 5r, and
place 128n2 points evenly spaced on it (crosses in Figure 2, right). Due to the diameter of P ∪H
and the upper bound of 2r on the radius of circles defined by three non-collinear points (possibly
displaced slightly), none of these circles intersects C.

For every shield h ∈ H, displace it over a very small distance d where 0 < d < δ, and such
that the radius of the circle through h and the two points of P for which h is a shield has radius
at least 6r; some of these circles are shown partially in Figure 2, right. Such a circle contains an
arc of C of length more than r, and hence it contains at least 1

10π 128n2 > 4n2 of the points placed
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on it. This makes sure that the triangulation edge for which h was a shield, is still not possible
in an order-4n2 Delaunay triangulation: the useful order of the triangulation edge is too high.
By construction, other edges between points in P and H are possible because the relevant circles
cannot intersect C. The extra points on C get elevation 3 as well, and the problem of minimizing
the number of local minima in order-4n2 Delaunay triangulations is again the same as maximizing
the size of a non-intersecting subset of S. Displacements of shields of H can be done to remove
all degeneracies while creating no new ones. The points in C can also be placed without creating
degeneracies. The total number of points in the construction is O(n2). This gives the proof for
k = c · n for some 0 < c < 1. For smaller values of k we simply place many more points on C. As
long as k = Ω(nε) the construction is polynomial. 2

2.2 The flip heuristic

Given a value of k, the flip heuristic repeatedly tests whether the diagonal of a convex quadrilateral
in the triangulation can be flipped. It will be flipped if two conditions hold simultaneously: (i)
The two new triangles are order-k Delaunay triangles. (ii) The new edge connects the lowest point
of the four to the opposite point. A flip does not necessarily remove a local minimum, but cannot
create one, and it can make possible that a later flip removes a local minimum.

Our algorithm to perform the flips starts with the Delaunay triangulation and k′ = 1, then
does all flips possible to obtain an order-k′ Delaunay triangulation, then increments k′ and repeats.
This continues until k′ = k.

We first analyze the maximum number of flips possible, and then we discuss the efficiency of
the heuristic.

Lemma 1 The flip heuristic terminates after at most O(n2) flips.

Proof: Normalize the heights of the vertices to be integers in the range 1, . . . , n. Observe that
this does not influence the flipping criterion. Consider the function F (T ) for a triangulation T :

F (T ) =
∑

uv∈T

min(u, v) .

Any flip decreases F (.) with at least one, and F (.) is at most O(n2) to begin with. 2

Lemma 2 If an edge ab is in the triangulation, then the flip heuristic will never have an edge cd
later with min(c, d) ≥ min(a, b) that intersects ab.

Proof: Assume without loss of generality that a < b and c < d. Assume further that a ≤ c, edge
ab is in the triangulation T at some moment, and that cd is the first edge flipped in a triangulation
T ′ that exists after T that violates the property of the lemma. In T ′, ab is not an edge, and c and
d must be in a convex quadrilateral where c is the lowest point of the four. The other two points,
f and g, cannot be a, because a is lower by assumption. Possibly, f or g is the same as b. The
quadrilateral has edges cf, cg, df, dg, and at least one of these intersects ab. This contradicts the
assumption that cd is the first edge violating the property. 2

An immediate consequence of the lemma above is that an edge that is flipped out of the
triangulation cannot reappear. There are at most O(nk) pairs of points in a point set of n points
that give order-k Delaunay edges [8]. Therefore, we conclude:

Lemma 3 The flip heuristic to reduce the number of local minima performs at most O(nk) flips.

To implement the flip heuristic efficiently, we maintain the set of all convex quadrilaterals in
the current triangulation, with the order of the two triangles that would be created if the diagonal
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were flipped. The order of a triangle is the number of points in the circumcircle of the vertices
of the triangle. Whenever a flip is done, we update the set of convex quadrilaterals. At most
four are deleted and at most four new ones are created by the flip. We can find the order of the
incident triangles by circular range counting queries. Since we are only interested in the count if
the number of points in the circle is at most k, we implement circular range counting queries by
point location in the order-(k + 1) Voronoi diagram [15], taking O(log n + k) time per query after
O(nk log n) preprocessing time. We conclude:

Theorem 2 The flip heuristic to reduce the number of local minima in order-k Delaunay trian-
gulations on n points takes O(nk2 + nk log n) time.

1
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Figure 3: Left, the flip heuristic does not always give the optimum, even for order-2. Right, the
hull heuristic does not always give the optimum, even for order-2. Numbers are elevations.

Figure 3 (left) shows an example where the flip heuristic does not compute the optimal solution
even for order-2 Delaunay triangulations. We use elevations as names. The edge 5, 9 may not be
flipped because 43, 4, 9 is not order-2, and for the same reason the edge 4, 8 may not be flipped.
Edge 4, 5 is not flipped due to the heuristic. Therefore, edge 1, 3 will not be inserted, although it
is useful order-2.

The possibilities of flipping in higher-order Delaunay graphs were also considered in [1]. How-
ever, their definition of the order of a Delaunay edge is not its useful order, and the order of
triangles is not considered. Therefore, their results do not apply to higher-order Delaunay trian-
gulations in the definition of [8, 9] used here.

2.3 The hull heuristic

The second heuristic for reducing the number of local minima is the hull heuristic. It was described
by Gudmundsson et al. [8], and has an approximation factor of Θ(k2) of the optimum. The hull
heuristic adds a useful order-k Delaunay edge e if it reduces the number of local minima. This
edge may intersect several Delaunay edges, which are removed; the two holes in the triangulation
that appear are retriangulated with the constrained Delaunay triangulation [5] in O(k log k) time.
These two polygonal holes are called the hull of this higher-order Delaunay edge e. The boundary
of the hull consists of Delaunay edges only. No other higher-order Delaunay edges will be used
that intersects this hull. This is needed to guarantee that the final triangulation is order-k. It is
known that two useful order-k Delaunay edges used together can give an order-(2k− 2) Delaunay
triangulation [9], which is higher than allowed. Here we give a slightly different implementation
than in [8]. It is more efficient for larger values of k.

Assume that a point set P and an order value k are given. We first compute the Delaunay
triangulation T of P , and then compute the set E of all useful order-k Delaunay edges, as in [8],
in O(nk log n + nk2) time. There are O(nk) edges in E, and for each we have the lowest order
k′ ≤ k for which it is a useful order-k′ Delaunay edge.
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0 1 2 3 4 5 6 7 8

Calif. Hot Springs 47/47 43/43 33/31 29/26 25/20 24/19 23/18 21/18 18/16
Wren Peak 45/45 37/37 31/31 27/27 24/22 23/21 21/20 19/20 19/20
Quinn Peak 53/53 44/44 36/36 31/29 26/25 24/23 23/21 21/20 20/19
Sphinx Lakes 33/33 27/27 22/22 20/19 19/18 17/16 15/12 12/9 11/9
Split Mountain 24/24 17/17 14/14 9/9 9/9 9/9 8/8 7/8 6/7

Table 1: Results of the flip/hull heuristic for orders 0–8.

Next we determine the subset P ′ ⊆ P of points that are a local minimum in the Delaunay
triangulation. Then we determine the subset E′ ⊆ E of edges that connect a point of P ′ to a
lower point. These steps trivially take O(nk) time.

Sort the edges of E′ by non-decreasing order. For every edge e ∈ E′, traverse T to determine
the edges of T that intersect e. If any one of them is not a Delaunay edge or is a marked Delaunay
edge, then we stop and continue with the next edge of E′. Otherwise, we remove all intersected
Delaunay edges and mark all Delaunay edges of the polygonal hole that appears. Then we insert e
and retriangulate the hull, the two polygons to the two sides of e, using the Delaunay triangulation
constrained to the polygons. We also mark these edges. Finally, we remove edges from E′: If the
inserted edge e made that a point p ∈ P is no longer a local minimum, then we remove all other
edges from E′ where p is the highest endpoint.

Due to the marking of edges, no edge e ∈ E′ will be inserted if it intersects the hull of a
previously inserted edge of E′. Every edge of E′ that is not used in the final triangulation is
treated in O(log n + k) time, and every edge of E′ that is used in the final triangulation is treated
in O(log n + k log k) time. We conclude:

Theorem 3 The hull heuristic to reduce the number of local minima in order-k Delaunay trian-
gulations on n points takes O(nk2 + nk log n) time.

The hull heuristic may also not give the optimum. Figure 3 (right) shows an example where
an edge 1, 2 shown dashed may be inserted first, because it is a useful order-2 Delaunay edge and
there are no useful order-1 Delaunay edges in the set. Edge 3, 4 is useful order-2 Delaunay but it
cannot be inserted anymore, since it intersects a previously inserted edge (and hence its hull). So
the point with elevation 4 will stay a local minimum. However, if 2 were connected to the other
point 1, also a useful order-2 Delaunay edge, then the edge 3, 4 could have been used, and the
resulting triangulation would have one fewer local minimum.

2.4 Experiments

Table 1 shows the number of local minima obtained after applying the flip and hull heuristics to five
different terrains. The terrains roughly have 1800 vertices. The vertices were chosen by random
sampling 1% of the points from elevation grids. Vertices that have the same elevation may cause
flat edges and triangles, in which case a whole triangle can be a local minimum. We simulated
simplicity by treating a vertex (x, y) with height z as a vertex with height (z, x, y) interpreted
lexicographically, where x and y are the lesser significant components in the lexicographic order.
This takes care of most potential problems. Furthermore, local minima that appear on the terrain
boundary were not counted as local minima in the table.

The values in the table show that higher-order Delaunay triangulations indeed can give sig-
nificantly fewer local minima than the standard Delaunay triangulation (order-0). This effect is
already clear at low orders, indicating that many local minima of Delaunay triangulations may be
caused by having chosen the wrong edges for the terrain (interpolation).

The difference in local minima between the flip and hull heuristics shows that the hull heuristic
usually is better, but there are some exceptions.

To test how good the results are, we also tested how many local minima of each terrain cannot
be removed simply because there is no useful order-k Delaunay edge to a lower point. It turned
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out that the hull heuristic found an optimal order-k Delaunay triangulation in all cases except
for five, where one local minimum too many remained. In four of these cases the flip heuristic
heuristic found an optimal order-k Delaunay triangulation. In one case (Wren, order-6) it is not
clear; a triangulation with 19 local minima may exist.

3 Minimizing the number of valley edge components

In a triangulation representing a terrain, there are three types of edges: ridge or difluent edges,
normal or transfluent edges, and valley or cofluent edges [7, 13, 19]. These edges are used to
delineate drainage basins and other hydrological characteristics of terrains. Flow on terrains is
usually assumed to take the direction of steepest descent. This is a common assumption used in
drainage network modeling [17, 19]. Assuming no degeneracies (including horizontal triangles),
every point on the terrain has a unique direction of steepest descent, except local minima. Hence,
a flow path downward in the terrain can be defined for any point. The direction of steepest descent
at a vertex can be over an edge or over the interior of a triangle. Flow on a triangle is always
normal to the contour lines on that triangle.

Ridge edges are edges that do not receive flow from any point on the terrain. The incident
triangles drain in a direction away from this edge. Valley edges are edges that receive flow from
(part of) both incident triangles; they would be ridge edges if the terrain were upside down.
Normal edges receive flow from (part of) one incident triangle and drain to the other. Valley
edges can be used to define the drainage network, and ridge edges can be used for the drainage
basins, also called catchment areas [13]. Many more results on drainage in GIS exist; it is beyond
the scope of this paper to review it further.

Just like local minima in a triangulation for a terrain are often artifacts, so are isolated valley
edges, and sequences of valley edges that do not end in a local minimum. In the latter case, flow
would continue over the middle of a triangle, which usually does not correspond to the situation
in real terrains. If channeled water carves a valley-like shape in a terrain, then the valley does
not suddenly stop, because the water will stay channeled. This is true unless the surface material
changes, or the terrain becomes nearly flat [14]. Besides being unrealistic, isolated valley edges
may influence the shape of drainage basins [13]. It is also known that allowing drainage through
the interior of triangles, according to steepest descent, can cause drainage networks of complexity
up to Θ(n3) for triangulations with n triangles [6].

1

1

2 2

2

2

3

3

Figure 4: Example of a terrain with three valley edge components.

We define a valley (edge) component to be a maximal set of valley edges such that flow from all
of these valley edges reaches the lowest vertex incident to these valley edges. A valley component
necessarily is a rooted tree with a single target that may be a local minimum. Figure 4 shows an
example of a terrain with three valley components; the valley edges are shown by the direction of
flow, numbers indicate the identity of each component, and squares show local minima. In this
example, the direction of steepest descent from the vertex where components 1 and 2 touch is over
the edge labeled 1 to the boundary. Component 3 ends in a vertex that is not a local minimum;
flow proceeds over a triangle.

By the discussion above, the drainage quality of a terrain is determined by:
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• the number of local minima, and

• the number of valley edge components that do not end in a local minimum.

The sum of these two numbers immediately gives the total number of valley edge components.
We will attempt to reduce this number with a new heuristic called the valley heuristic. But first
we analyze how many valley edges and valley components appear in the results of the flip and hull
heuristics.

3.1 Consequences of the flip and hull heuristics on the valleys

The flip and hull heuristics can remove local minima of triangulations, and therefore they seem
more realistic as terrains. However, the heuristics may create valley edges, including isolated ones.
This is especially true for the flip heuristic. We examined the triangulations obtained from the
experiments of Subsection 2.4 and analyzed the number of valley edges and valley components.

Quinn flip-8 hull-8 Wren Peak flip-8 hull-8

Edges 5210 5210 5210 5185 5185 5185
Valley edges 753 862 684 799 860 761
Local minima 53 (12) 20 (9) 19 (6) 45 (17) 19 (12) 19 (17)
Valley components 240 289 224 259 270 247
Not min. ending 173 (8) 246 (15) 191 (8) 185 (18) 218 (23) 199 (18)

Sphinx flip-8 hull-8 Hot Springs flip-8 hull-8

Edges 5179 5179 5179 5234 5234 5234
Valley edges 675 830 627 853 964 807
Local minima 33 (16) 11 (11) 9 (16) 47 (20) 18 (16) 16 (20)
Valley components 261 313 244 249 256 231
Not min. ending 213 (5) 285 (9) 218 (7) 179 (11) 210 (17) 190 (13)

Table 2: Statistics for four terrains. For each terrain, counts for the Delaunay triangulation are
given, and for the outcome of the flip and hull heuristics for order 8. The last row gives the number
of valley edge components that do not end in a local minimum. Numbers between brackets are
the additional numbers for the terrain boundary.

Table 2 shows statistics on four terrains (the fifth terrain we tested has similar values). To
define valley edges and flow when vertices have the same elevation, we treated elevation as a
lexicographic number (z, x, y) as before. Local minima on the boundary are not counted, but
their number is shown separately in brackets. The same is true for valley components that end on
the boundary of the terrain, but not in a local minimum. Note that local minima on the boundary
may not have any valley component ending in it. We can see that the flip heuristic has increased
the number of valley edges considerably, whereas the hull heuristic decreased this number. The
same is true for the number of valley components. Another observation from the table is that
there are many valley edge components. The average size is in all cases between 2 and 4 edges.
This shows the need for further processing of the triangulation, or for a different heuristic.

3.2 The valley heuristic

We apply two methods to improve the drainage quality of the terrain. Firstly, isolated valley
edges can sometimes be removed by a single flip or useful order-k edge insertion, reducing the
number of valley components. Secondly, if a valley edge has a lower endpoint whose direction
of steepest descent goes over a triangle, then the valley component can sometimes be extended
downhill and possibly be connected to another valley component, which reduces the number of
valley components. We observe:

Observation 1 (i) For a convex quadrilateral in a terrain, at most one diagonal is a valley edge.
(ii) If in a triangle in a terrain, two edges are valley edges, then their common vertex is the lowest
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vertex of that triangle. (iii) A flip in a convex quadrilateral affects at most five edges (for being
valley or not).

To remove an isolated valley edge, five candidate flips can take care of this: the valley edge
itself, and the four other edges incident to the two triangles incident to the valley edge. A flip
can potentially remove one isolated valley edge but create another one at the same time; such a
flip is not useful and termination of the heuristic would not be guaranteed. Any flip changes the
flow situation at four vertices. There are many choices possible when to allow the flip and when
not. We choose to flip only if the flow situation of the four vertices of the convex quadrilateral
does not change, except for the removal of the isolated valley edge, and the two new triangles are
order-k Delaunay. In particular, a flip may not create new valley edges. It is undesirable to change
any valley component in an unintended way. Algorithmically, identifying isolated valley edges and
flipping them, if possible, can be done efficiently. There will be at most O(n) flips. The most
expensive test is to decide if the two new triangles are order-k. By computing the order-(k + 1)
Voronoi diagram, storing with every cell the (k+1)-th closest point, and preprocessing the diagram
for planar point location, we can decide this in O(log n) time after O(nk log n) preprocessing
time [15].

To extend a valley component downward, we take its lowest endpoint v and change the tri-
angulation locally to create the situation that v has a direction of steepest descent over a valley
edge to a lower vertex. We do this regardless of the situation that v is a local minimum, or v has
its direction of steepest descent over the interior of some triangle. We only do this with flips. For
every triangle incident to v, we test if it is part of a convex quadrilateral vpwq, and if so, we test if
the flip of pq to vw yields two order-k Delaunay triangles, vw is a valley edge, w is lowest of vpwq,
the steepest descent from v is to w, and no valley components are interrupted at p or q. Possibly,
more than one triangle incident to v satisfies the requirements. We only do one flip, namely the
one giving the steepest valley edge vw.

Throughout the algorithm, any vertex can be lowest point of a valley component at most
twice. First as the lower endpoint of an isolated valley edge, and once more by extending valley
components. Once a vertex is in a valley component with more than two edges, it will stay in such
a component. Hence, there will only be O(n) flips. Again using point location in the order-(k +1)
Voronoi diagram, we conclude:

Theorem 4 The valley heuristic to reduce the number of valley components in order-k Delaunay
triangulations on n points takes O(nk log n) time.

3.3 Experiments

The two ways of reducing the number of valley components were applied to the Delaunay trian-
gulation, and to the outcomes of the flip and hull heuristics. We show the results in Table 3 for
order 8 only. In fact, the table shows the outcome of applying the valley heuristic (with order 8)
to all outcomes of Table 2.

We observe that the valley heuristic succeeds in reducing the number of valley components
considerably in all cases. The reduction is between 20% and 40% for all triangulations. There
is no significant difference in reduction between the three types of triangulations. The valley
heuristic by itself also reduces the number of local minima, as can be expected. The number of
valley components is lowest when applying the valley heuristic to the outcome of the hull heuristic,
and sometimes when applying the valley heuristic directly to the Delaunay triangulation. Further
examination of the outcome shows that the largest reduction in the number of valley components
comes from the removal of isolated valley edges. This accounts for roughly 60% to 80% of the
reduction.

We also evaluated the number of valley components as a function of the order for the flip, hull,
and valley heuristics. The result is visualized in Figure 5 for the data sets Sphinx and Wren Peak;
the graphs for the other data sets are similar. For the valley heuristic, the major reductions occur
up to order 5.
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Quinn flip-8 +v hull-8 +v Wren Peak flip-8 +v hull-8 +v

Edges 5210 5210 5210 5185 5185 5185
Valley edges 686 762 641 743 798 712
Local minima 35 (12) 20 (10) 19 (12) 31 (16) 19 (12) 19 (16)
Valley components 147 189 144 167 208 169
Not min. ending 102 (5) 148 (13) 115 (5) 112 (16) 161 (19) 126 (16)

Sphinx flip-8 +v hull-8 +v Hot Springs flip-8 +v hull-8 +v

Edges 5179 5179 5179 5234 5234 5234
Valley edges 597 729 565 790 895 759
Local minima 20 (16) 11 (11) 9 (16) 28 (19) 18 (16) 16 (19)
Valley components 157 212 155 169 187 161
Not min. ending 125 (5) 191 (4) 133 (6) 118 (13) 148 (11) 123 (12)

Table 3: Statistics for four terrains when applying the valley heuristic (order 8) to the Delaunay
triangulation and the order-8 outcome of the flip and hull heuristics.
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Figure 5: The number of valley edge components as a function of the order, for the Sphinx and
Wren Peak data sets.

The visualization of one terrain and five outcomes of the heuristics is given in Figures 6 and 7
for the Sphinx and Wren Peak data sets. We again observe that the hull heuristic is better than
the flip heuristic, but also that the valley heuristic helps to improve the visual quality of the
valley edge components. A closer inspection shows that the hull heuristic with the valley heuristic
applied to its outcome is generally best, but there are situations visible where the valley heuristic
by itself is better than when preceded by the hull heuristic.

4 Conclusions and further research

We examined the computation of triangulations for realistic terrains using higher-order Delaunay
triangulations. The realistic aspect is motivated by hydrologic and other flow applications, perhaps
the most important reason for terrain modelling in GIS. Realistic terrains have few local minima
and few valley edge components.

Theoretically, we showed that triangulating with the minimum number of local minima is NP-
hard due to alignment of points. For order-k Delaunay triangulations we obtain the same result
in non-degenerate cases for k = Ω(nε) and k ≤ c · n. The case of constant orders but at least 2
remains open.

We presented two heuristics (one new, one old) to remove local minima, analyzed their ef-
ficiency, and implemented them. It turns out that higher-order Delaunay triangulations exist
with considerably fewer local minima for low orders already, and the hull heuristic is better at
computing them. We tested orders 0 up to 8. Often we obtain an optimal order-k Delaunay trian-
gulation. Also, the hull heuristic creates fewer valley edges and valley edge components than the
flip heuristic. This answers the first four experimental research questions from the introduction.

11



Figure 6: Visualization of the valley edges and local minima after applying the valley heuristic for
the Sphinx data set. Left column: Delaunay triangulation, outcome of flip-8, outcome of hull-8.
Right column: same, but after valley heuristic.
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Figure 7: Visualization of the valley edges and local minima after applying the valley heuristic
for the Wren Peak data set. Left column: Delaunay triangulation, outcome of flip-8, outcome of
hull-8. Right column: same, but after valley heuristic.
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We also presented the valley heuristic to reduce the number of valley edge components. The
valley heuristic removes isolated valley edges and extends valley components down, hopefully to
connect them to other valley components. The valley heuristic can be applied to any triangulation.
The experiments and images suggest that the valley heuristic applied to the outcome of the hull
heuristic gives the best results, largely answering the fifth experimental research question. We have
not tested whether the reduction in local minima or valley components obtained by the heuristics
is dependent on the sampling density, or level of detail, of the terrain. This is left for future work.

It is possible to devise a valley heuristic that inserts useful order-k edges, similar to the hull
heuristic, but now to reduce the number of valley components. Furthermore, it is possible to
integrate minimizing local minima and reducing valley components in one heuristic. We leave this
for future work.

It would also be interesting to extend the research to computing high quality drainage basins,
or a good basin hierarchy. However, it is not clear how this quality should be defined, nor how it
should be combined with local minima and valley components used in this paper. Finally, other
criteria than higher-order Delaunay triangulations can be used to guarantee a good shape of the
triangles. Again we leave this as future research.
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