
On Improving the Clearance for Robots

in High-Dimensional Configuration Spaces

Roland Geraerts

Mark H. Overmars

institute of information and computing sciences, utrecht university

technical report UU-CS-2005-024

www.cs.uu.nl

On Improving the Clearance for Robots

in High-Dimensional Configuration Spaces∗

Roland Geraerts Mark H. Overmars

Institute of Information and Computing Sciences

Utrecht University, the Netherlands

Email: {roland,markov}@cs.uu.nl.

Abstract

In robot motion planning, many algorithms have been proposed that create a path for
a robot in an environment with obstacles. Since it can be hard to create such paths, most
algorithms are aimed at finding a solution. However, for most applications the paths must
be of a good quality as well. That is, paths should preferably be short, be smooth, and
should preserve some clearance from the obstacles. In this paper, we focus on improving
the clearance of paths. Existing methods only extract high clearance paths for rigid,
translating bodies. We present an algorithm that improves the clearance along paths of
a broader range of robots which may reside in arbitrary high-dimensional configuration
spaces. Examples include planar, free-flying and articulated robots.

1 Introduction

Motion planning is one of the fundamental problems in robotics. The motion planning prob-
lem can be defined as finding a path between a start and goal placement of a robot in an
environment with obstacles. The last decade, efficient algorithms have been devised to tackle
this problem. They are successfully applied in fields such as mobile robots, manipulation plan-
ning, CAD systems, virtual environments, protein folding and human robot planning. See e.g.
the books of Latombe [1] and Lavalle [2] for many interesting results.

One important aspect of motion planning is the quality of the path. The quality is often
measured in terms of length and clearance. Many applications require a short path since
redundant motions will take longer to execute. In practical situations, the path often has
to keep some minimum amount of clearance to the obstacles because it can be difficult to
measure and control the precise position of a robot. Traveling along a path with a certain
amount of minimum clearance reduces the chances of collisions due to these uncertainties.
In a nuclear power plant for example, it may be desirable to minimize the risk of heat or
radioactive contamination [3]. In this type of environment, calculating a safe path (off-line)
is more significant than calculating a low quality path on-line. Clearance is used for other
purposes as well: in [4] for instance, it is used to guide multiple units in a virtual environment.

∗This research was supported by the Dutch Organization for Scientific Research (N.W.O.). This research
was also supported by the IST Programme of the EU as a Shared-cost RTD (FET Open) Project under
Contract No IST-2001-39250 (MOVIE - Motion Planning in Virtual Environments).

1

1 INTRODUCTION 2

(a) Articulated robot (b) Initial path (c) Optimized path

Figure 1: Improving the clearance along a path traversed by an articulated robot with six
degrees of freedom. Figure (a) shows the start and (blurred) goal placement of the robot arm.
In (b), we zoom in on the initial path. The swept volume of the significant parts of the robot
is shown. As can be seen, the clearance along this path is very small. Our new algorithm
successfully increases the clearance along the path which is visualized in (c).

Indeed, enlarging the clearance is important in various applications. It is though far from
trivial how to do this. Previous work limited their efforts to rigid, translating bodies. In this
paper, we present a new algorithm that improves the clearance along paths for a broader
range of robots including planar, free-flying and articulated robots, see Figure 1.

1.1 Related work

Many motion planning algorithms create a roadmap (or graph) which represents collision-free
motions that can be made by the moving object in an environment with obstacles. From this
graph a path is obtained by a Dijkstra’s shortest path query. Since these calculations can be
performed off-line, we refer to this stage as preprocessing. The paths usually are optimized in
a post-processing stage.

In [5], an augmented version of Dijkstra’s algorithm is used to extract a path based on other
criteria than length. The minimum clearance along the path is maximized by incorporating
a higher cost for edges that represent a small amount of clearance. Unfortunately, the paths
rarely provide optimal solutions because they are restricted to the randomly generated nodes
in the roadmap. Even if the nodes are placed on the medial axis [6], the edges will in general
not lie on the medial axis, and hence the extracted paths do not have a guaranteed amount
of clearance.

Another category of algorithms create a path along the Generalized Voronoi Diagram
(GVD). The GVD (or medial axis) for a robot with n degrees of freedom (DOFs) is defined as
the collection of k-dimensional geometric features (0 ≤ k < n) which are in general (n+1−k)-
equidistant to the obstacles. As an example, consider Figure 2(a) that shows the outline of a
solid bounding box and a part of the medial axis for a translating robot. The medial axis of
this robot consists of a collection of surfaces, curves and points. The surfaces are defined by
the locus of 2-equidistant closest points to the bounding box. The curves have 3-equidistant
closest points and the points have 4-equidistant closest points to the bounding box. These
features are connected if the free space in which the robot operates is also connected [7]. Hence,
the GVD is a complete representation for motion planning purposes. Most importantly, paths
on the GVD have appealing properties such as large clearance from obstacles.

1 INTRODUCTION 3

(a) Initial path (b) Retracted path (c) Optimal path

Figure 2: Retraction of a path in an environment that only consists of a solid bounding box.
A part of the medial of this box is shown. Figure (a) shows the initial path. This path is
retracted to the medial axis by the algorithm from [11] in (b). Figure (c) shows a path having
the optimal amount of clearance. This path was obtained by our new algorithm.

Unfortunately, an exact computation of the GVD is not practical for problems involving
many degrees of freedom (DOFs) and many obstacles as this requires the expensive and intri-
cate computation of the configuration space obstacles. Therefore, the GVD is approximated
in practice.

In [8], the GVD is approximated by applying spatial subdivision and isosurface extraction
techniques. Although the calculations are easy, robust and can be generalized to higher dimen-
sions, the technique only works for disjoint convex sites and consumes an exponential amount
of memory which makes this technique impractical for problems involving many DOFs. An-
other approach incrementally constructs the GVD by finding the maximal inscribed disks in
a two dimensional discretized workspace [9]. While this algorithm is also extensible to handle
higher-dimensional problems, it suffers from the same drawback as the preceding algorithm.
In [10], a technique is described that exploits the fast computation of a GVD using graphics
hardware for motion planning in complex static and dynamic environments. The technique is
though limited to a three-dimensional workspace for rigid translating robots.

The above preprocessing methods concentrate on creating a data structure from which
paths can be extracted. In [11], the authors proposed a post-processing algorithm that adds
clearance to a path by retracting it to the medial axis of the workspace. A path Π is divided
into n configurations. Such a configuration corresponds to a particular placement of the robot
in the environment. Each configuration is retracted to the medial axis (except for the start
and goal configuration) as follows. First, the closest point (on the obstacles) between the
robot and the obstacles is calculated. Then the robot is iteratively moved away from this
point until the robot has 2-equidistant nearest points to the obstacles.

This method provides a fast and accurate retraction of possibly non-convex rigid bodies
to the medial axis in two- and three-dimensional spaces. Unfortunately, as the retraction is
performed by a series of translations of the robot, the method is not suitable for increasing the
clearance along a path traversed by an articulated robot or a free-flying robot for which the
rotational DOFs are more important than the translational ones. In addition, the method will
in general not produce a maximal clearance path because the retraction is completed when
the configurations on the path are placed somewhere on the medial axis. A configuration could
have a higher clearance if it was retracted to a ridge of the medial axis. We define a ridge as
the locus of points in configuration space C that represents a locally maximum clearance. See
Figure 2 for an example. The crooked path from Figure 2(a) was retracted to the medial axis
by the algorithm from [11]. Figure 2(b) shows that the retracted configurations sway on the

2 RETRACTION ALGORITHM 4

medial axis surfaces. In Figure 2(c), the path is retracted toward the ridges, resulting in an
optimal clearance path.

In conclusion, there exists no efficient algorithm that can compute high-clearance paths for
robots residing in high-dimensional configuration spaces. We will propose an algorithm that
efficiently retracts a path toward the ridges of the medial axis for robots with an arbitrary
number of DOFs. This algorithm may be applied in high-cost environments such as a factory
in which a manipulator arm operates.

1.2 Paper outline

This paper is organized as follows: in section 2, we will introduce our retraction algorithm.
We elaborate on the algorithmic details in section 3 and show that the algorithm is correct.
Then, we apply the algorithm on problems involving planar, free-flying and 6-DOF articulated
robots in section 4. Finally, we conclude in section 5 that our method is successfully able to
improve the clearance along paths traversed by a broad range of robots.

2 Retraction Algorithm

The retraction algorithm tries to iteratively increase the clearance of the configurations on
the path by moving them in a direction for which the clearance is higher, see Algorithm 1.
We define clearance as the Euclidean distance between the pair of closest points on the robot
and obstacles.

Our problem is as now follows. Convert a given path Π into a path Π′ such that for each
π′

i ∈ Π′ the clearance is either locally maximal or is larger than a given constant cmin. Our
solution consists of a number of iterations. In each iteration, we choose a random direction
dir. Then we try to move each configuration πi in the chosen direction, i.e. π′

i ← πi ⊕ dir.
If the clearance of π′

i is larger than the clearance of πi, then πi is replaced by π′
i. We stop

retracting the path when the path has cmin clearance or when the average clearance does not
improve anymore. (See Definition 1 which shows how to compute the average clearance.)

By updating the configurations, the path is forced to stretch and shrink during the re-
traction which causes the following two problems. First, the distance between two adjacent
configurations in the path can become larger than the maximum step size. This happens for
example when the path is pushed away from the obstacles. If this occurs, we insert some extra
configurations in between them. Second, multiple configurations can be mapped to a small
region by which the distance between two non-adjacent configurations is smaller than the
step size. This occurs for example when pieces of the path are traversed twice. As we will see
in the following section, these can easily be removed.

An impression of a retraction is visualized in Figure 3. This figure shows an initial and
a final path traversed by a square robot in a simple two-dimensional workspace. The lines
between them are the guided random walks of the configurations. We call these walks guided
because a configuration is updated only if its clearance increases. Note that at some places,
extra configurations were inserted while at other places configurations were removed. After
40 iterations, the initial path was successfully retracted to the medial axis, resulting in a large
clearance path. While this example shows a retraction for a robot with only two DOFs, the
retraction can also be applied to robots with more DOFs such as an articulated robot with
six joints.

2 RETRACTION ALGORITHM 5

Figure 3: An impression of the retraction algorithm. The algorithm retracts the initial path
(traversed by a square robot) to the medial axis. For each configuration on the path, the
guided random walk (small curve) is drawn.

Algorithm 1 RetractPathConfigurationSpace(path Π)

Require: ∀i : d(πi, πi+1) ≤ step
1: loop

2: dir ← RandomDirection(step)
3: for each πi in Π do

4: π′ ← πi ⊕ dir
5: if Clearance(π′

i) > Clearance(πi) then

6: πi ← π′

7: ValidatePath(Π)

3 ALGORITHMIC DETAILS 6

3 Algorithmic Details

A path consists of a series of configurations. We require that the distance between each pair
of adjacent configurations is at most step. Hence, we need a distance metric which will be
described below. The clearance of the configurations is improved by moving them in a random
direction. We will show how to compute such a direction. Furthermore, we will show how to
move the robot in this direction. After an iteration of the algorithm, the distance between
two adjacent configurations can change. To keep a valid path, we will show how to insert and
delete appropriate configurations. Finally, we show that the algorithm indeed retracts a path
toward the ridges of the medial axis.

3.1 Distance metric

The importance of choosing a good distance metric is discussed in [12]. Such a metric often
incorporates weights which can be used to control the relative importance of the DOFs of the
robot. We distinguish three types of DOFS: translation, rotation1 (rotation about the x-, y-,
or z-axis) and rotation3 (rotation in SO3). For example, a free-flying robot can be described
by three translational DOFs and one rotational3 DOF, and an articulated robot with six
joints may be described by six rotational1 DOFs.

We calculate the distance between two configurations q and r by summing the weighted
partial distances for each DOF 0 ≤ i < n that describes the configurations, i.e.

d(q, r) =

√

√

√

√

n−1
∑

i=0

[wid(qi, ri)]2.

The calculation of distance d(qi, ri) is dependent on the type of the DOF. For translation,
we set d(t′, t′′) to |t′ − t′′|. We split the calculation for a rotational1 DOF in two parts: if
the range is smaller than 2π, which occurs often for revolution joints in manipulator arms,
we take the same distance measure as for a translational DOF. If the rotational DOF is
periodic, i.e. the orientation at 0 radians equals the orientation at 2π radians, we take the
smallest angle. More formally, we set d(r ′, r′′) to |r′ − r′′| if r is not periodic, otherwise
d(r′, r′′) = min{|r′ − r′′|, r′ − r′′ + 2π, r′′ − r′ + 2π}. We use unit quaternions to represent
rotations in 3D. The distance between two quaternions r ′ and r′′ can be calculated by taking
the shortest angle over a 4D-sphere, i.e. d(r ′, r′′) = min{2 arccos(r′ · r′′), 2π−2 arccos(r′ · r′′)}.
We do not use three Euler angles to represent an orientation because this representation has
several drawbacks quaternions do not have, such as the ’gimbal lock’ and the difficulty to
define proper methods for sampling, interpolation and distance metric [13].

3.2 Random direction vector

We need to create a random direction q ′ such that the distance from configuration q to q⊕ q ′

equals stepsize, see Algorithm 2. We set stepsize to 2
3step as this is needed in the proof

that the algorithm is correct. The direction q ′ is composed of elements from {q′tra, q
′
rot1

, q′rot3
}

such that
√

∑n−1
i=0 p2

i = stepsize, where pi = wid(qi, qi ⊕ q′i). We choose a random value rndi

between 0 and 1 for each DOF i of q′. Then we set the partial distance pi for DOF i to
d(qi, qi ⊕ q′i) = rndi ∗ stepsize

||rnd∗w|| . We now know how much each DOF contributes to the total

distance. We set the translational and rotational1 components of q′i to ±pi. The calculation

3 ALGORITHMIC DETAILS 7

of the rotational3 component is more complicated. We represent this component as a random
3D unit axis a = (ax, ay, zz) and an angle of revolution θ about that axis. (Since a revolution
of more than π radians makes no sense, we constrain θ to 0 ≤ θ ≤ π.) This representation can
easily be converted to a quaternion, i.e. q ′rot3

= (ax sin(θ/2), ay sin(θ/2), az sin(θ/2), cos(θ/2)).
If we set θ to pi, then the distance between quaternion qrot3 and q′rot3

∗ qrot3 equals pi.

Theorem 1 (Direction vector). The above construction of the random direction vector q ′

ensures that d(q, q ⊕ q′) = stepsize.

Proof: Let
√

∑n−1
i=0 p2

i = stepsize. We compose each value of the partial distance pi of a
random value rndi between 0 and 1, multiplied with the corresponding weight factor wi, i.e.
pi = rndiwi. By multiplying the term rndiwi by stepsize

||rnd∗w|| we obtain pi = rndiwi

||rnd∗w||stepsize.

Now holds that
√

∑i=n−1
i=0 [rndiwi

||rnd∗w||stepsize]2 = stepsize. So wid(qi, qi +q′i) = rndiwi

||rnd∗w||stepsize.

Hence the partial distance for DOF i is d(qi, qi + q′i) = rndi∗wi

||rnd∗w||stepsize/wi = rndi∗stepsize
||rnd∗w|| .

In other words, the value for DOF i in the direction vector q ′ has to be set to rndi∗stepsize
||rnd∗w|| .

In line 6, as d(t, t + t′) = |t− (t + t′)| = |t′| = ±pi, we set the value for a translational DOF
to ±pi. The same argument holds for choosing the value for the rotational1 DOF in line 8.

Finally, we have to proof that the distance between quaternion q and q ′ ∗ q equals pi.

Theorem 2 (Direction vector of a quaternion). Let q and q ′ be two quaternions. The quater-
nion q′ represents a random (unit) axis and an angle of revolution θ about that axis. If the
range of θ is set to 0 ≤ θ ≤ π, then the distance d(q, q ′ ∗ q) = pi.

Proof: The distance between two quaternions q and r is defined as d(q, r) = min{2 arccos(q ·
r), 2π−2 arccos(q ·r)}. Since θ is positive, the dot product q ·r is also positive (and is between
0 and 1). As a consequence, the arccos of the dot product will be between 0 and π. Hence,
the distance between q and r equals to d(q, r) = 2 arccos(q · r). This distance should be equal
to the partial distance pi:

d(q, r) = 2 arccos(q · r) = pi

Let q = q′ ∗ r and r = (rx, ry, rz, rw). The quaternion q′ represents a rotation by θ around a
unit axis a = (ax, ay, zz): q′ = (ax sin(θ/2), ay sin(θ/2), az sin(θ/2), cos(θ/2)). Then we get

2 arccos((q′ ∗ r) · r) = pi

By substitution we get

2 arccos(((r2
x + r2

y + r2
z + r2

w) cos(
θ

2
)) = pi

The length of a quaternion that represents a rotation is always equal to 1. Hence, r · r =
r2
x + r2

y + r2
z + r2

w = 1.
By substitution we get

θ = pi

Besides choosing a random vector, we need to add a direction q ′ to configuration q. For
translational and rotational1 DOFs, we can add up the values. If rotational1 DOF is periodic,
we have to make sure that the value remains in the range between 0 and 2π. For the rotational3
DOF, q′rot3

has to be multiplied by qrot3 .

3 ALGORITHMIC DETAILS 8

Algorithm 2 RandomDirection(float step, weight vector wi)

Require: stepsize← 2
3 ∗ step

1: for all i : 0 ≤ i < |DOFs| do

2: rndi ← Random(0, 1)
3: for all i : 0 ≤ i < |DOFs| do

4: pi ← rndi ∗ stepsize/||rnd ∗ w||
5: if DOFi = translation then

6: q′
i(tra) ← ±pi

7: else if DOFi = rotation1 then

8: q′
i(rot1) ← ±pi

9: else if DOFi = rotation3 then

10: axisxyz ← (Random(−1, 1), Random(−1, 1), Random(−1, 1))
11: axis ← 1

||axis||∗ axis

12: q′
i(rot3) ← Quaterion(axisx ∗ sin(pi), axisy ∗ sin(pi), axisz ∗ sin(pi), cos(pi))

13: return q′

3.3 Path validation

As a path is forced to stretch and shrink during the retraction, this path may not be valid
anymore after an iteration of Algorithm 1. A path Π is valid if ∀i : d(πi, πi+1) ≤ step. In this
section we will show how to construct a new valid path.

First, we make a copy of Π (which is the path before updates were taken place), i.e.
Π′ ← Π. After one iteration, the configurations of Π′ may have been updated. We construct
a new path Π′′ which will contain all configurations from Π′ and new configurations to assure
that Π′′ will be valid.

For all i, we check if d(π′
i, π

′
i+1) > step. This may occur when a configuration π ′

i is moved.
In general, π′

i can be left unchanged or moved in direction dir. There are two cases in which
this distance will be larger than step. We handle them as follows.

In the first case, π′
i is left unchanged while π′

i+1 is updated. First we append π′
i to Π′′. Then,

we either append πi+1 or π = Interpolate(πi, π
′
i+1, 0.5) to Π′′. We append the configuration

that has the largest clearance. A similar procedure can be performed if π ′
i is updated while

π′
i+1 is left unchanged.

In the second case, both π′
i and π′

i+1 are updated. Again, we first we append π ′
i to Π′′. Then,

we either append both πi and πi+1 or π = Interpolate(π′
i, π

′
i+1, 0.5) to Π′′. If the clearance of

π is larger than the minimum clearance of πi and πi+1, we append π, and vice versa.
During the construction of Π′′, configurations may be interpolated. For translational and

rotational1 DOFs, we can use linear interpolation. The interpolation between two quaternions
can be performed by spherical linear interpolation (SLERP), see [13] for implementation
issues.

We mentioned that a path can shrink during the retraction. As a consequence, multiple
configurations may be mapped to a small region. We remove the configurations πi for which
holds that d(πi−1, πi+1) ≤ step. After the deletion of πi, πi−1 will be adjacent to πi+1.

Theorem 3 (Path validation). The algorithm will keep the distance between each two adjacent
configurations below (or equal to) step.

Proof: In the first case, π′
i is left unchanged while π′

i+1 is updated. In any case, it holds that

4 EXPERIMENTS 9

d(π′
i, πi+1) ≤ step, d(πi+1, π

′
i+1) ≤ step and d(π′

i, π) = d(π, π′
i+1) ≤ 2 ∗ step ∗ 2

3 ∗ 0.5 < step.
Hence, this construction assures that the distance between the last two appended config-
urations is at most step. A similar proof can be given if π ′

i is updated while π′
i+1 is left

unchanged.
In the second case, both π′

i and π′
i+1 are updated. If π is appended, the distance between

the new configurations in Π′′ can be d(π′
i, π) = d(π, π′

i+1) ≤ 3 ∗ step ∗ 2
3 ∗ 0.5 ≤ step. In the

other case, d(π′
i, πi) ≤ step, d(πi, πi+1) ≤ step and d(πi+1, π

′
i+1) ≤ step. As the maximum

distance will be at most step, path Π′′ will be valid.
We mentioned that a configuration πi is removed if d(πi−1, πi+1) ≤ step. After the deletion

of πi, configuration πi−1 will be adjacent to configuration πi+1. By construction, the distance
between them will be at most step.

In conclusion, the algorithm will keep the distance between each two adjacent configura-
tions below (or equal to) step. Hence, the resulting path Π′′ will be valid.

3.4 Retraction toward the ridges of the medial axis

We will now show that the algorithm retracts a path toward the ridges of the medial axis. We
define the medial axis as the locus of points in C-space having at least two equidistant closest
points on the boundary of the C-space obstacles. We define a ridge as the locus of points in
C-space that represent a locally maximum clearance.

In each iteration of the algorithm, we only update a configuration if its clearance increases.
Such an update can lead to an insertion and a deletion of configurations. If a configuration
π is inserted, then the clearance of π will be equal to or higher than the clearance of the
configuration before it was updated. If a configuration is deleted, then it will not play a role
anymore. Hence, the clearance along the path never decreases.

If we would not pin down the start and goal configurations of the path then the following
would happen. As we move the configurations with a particular step size that is larger than
zero, there is a moment for which they will have obtained a (locally) maximal amount of
clearance. Hence, the configurations would eventually be placed on the ridges.

Unfortunately, as the start and goal configurations are pinned down, not all configurations
will be placed on the ridges. However, these configurations will eventually obtain a high
clearance as only improvements are allowed.

4 Experiments

In this section, we will investigate how much the two retraction algorithms – retraction in
the workspace (Algorithm from [11]: W-retraction) and retraction in the configuration space
(Algorithm 1: C-retraction) – can improve the clearance along six paths. We integrated these
algorithms in a single motion planning system called SAMPLE (System for Advanced Motion
PLanning Experiments), which we implemented in Visual C++ under Windows XP. All
experiments were run on a 2.66GHz Pentium 4 processor with 1 GB internal memory. We
used Solid 3.5 for collision checking [14].

4 EXPERIMENTS 10

Dimensions of the bounding box

environment robot

Planar 100× 100 1× 1
Simple corridor 40× 11× 30 0.2× 0.2× 0.75
Corridor 40× 17× 40 5× 1× 5
Wrench 160× 160× 160 68× 24× 8
Hole1 40× 40× 40 5× 5× 10
Manipulator 10× 10× 10 variable

Table 1: The axis-aligned bounding boxes of the environments and robots

4.1 Experimental setup

We considered the environments and their corresponding paths depicted in Figure 4. They
have the following properties (see Table 1 for their dimensions):

Planar: This simple two-dimensional environment contains a path traversed by a square
robot that can only translate in the plane. As the robot has two translational DOFs, a
retraction in the workspace will result in a path having the optimal amount of clearance. The
results will show if a retraction in the C-space is competitive.

Simple corridor: This simple three-dimensional environment with lots of free space
features a path traversed by a small free-flying cylinder. Both algorithms will introduce an
extra amount of clearance as they both move the robot to middle of the corridors. However,
the C-retraction algorithm should outperform the W-retraction algorithm as also rotational
DOFs are considered.

Corridor: The environment consists of a winding corridor that forces a free-flying elbow
shaped robot to rotate. As there is little room between the walls of the corridor and the robot,
it may be hard to increase the clearance along the path.

Wrench: This environment features a relative large free-flying object (wrench) in a
workspace that consists of thirteen crossing beams. The wrench is rather constrained at the
start and goal positions. We expect that the W-retraction algorithm will be outperformed by
the C-retraction algorithm as the rotational DOFs are of major concern in this environment.

Hole: The free-flying robot, which has six DOFs (three translational DOFs and a rotation3

DOF), consists of four legs and must rotate in a complicated way to get through the hole.
Only where the path goes through the hole, the clearance is small. Hence, the improvement of
the minimum amount of clearance along the path would reveal the power of the C-retraction
algorithm.

Manipulator: The articulated robot has six rotational DOFs and operates in a con-
strained environment. The clearance along the path is very small and cannot be improved by
the W-retraction algorithm because it cannot handle rotational DOFs. Again, an increase in
the minimum and average amount of clearance along the path will show the potential of the
C-retraction algorithm.

We subdivided each path in sequential configurations such that the distance between each
two adjacent configurations is at most some predetermined step size. The step sizes for the
paths can be found in Table 2. The distance metric from section 3.1 can use different weights

1The dimensions of the hole are 5 × 5 × 0.5. The legs of the robot are 1 thick.

4 EXPERIMENTS 11

(a) Planar (b) Simple corridor (c) Corridor

(d) Wrench (e) Hole (f) Manipulator

Figure 4: The six test environments and their corresponding paths

step size

Planar 1.0
Simple corridor 0.4
Corridor 0.7
Wrench 3.0
Hole 1.0
Manipulator 0.1

Table 2: The step sizes for the robots

Type of DOF of the robot

translational rotational1 rotational3

Planar 1, 1
Simple corridor 1, 1, 1 3
Corridor 1, 1, 1 7
Wrench 6, 6, 6 30
Hole 1, 1, 1 11
Manipulator 6, 6, 6, 2, 2, 2

Table 3: The weights for each DOF of the robots

4 EXPERIMENTS 12

for the DOFs of a robot. These are enumerated in Table 3.
We recorded the minimum, maximum and average clearance along the paths. The average

clearance gives an indication of the amount of free space in which a path can be moved
without colliding with the obstacles:

Definition 1 (Average clearance along a path). Let Π = π0, . . . , πn−1 be the configurations
along a path Π such that ∀i : d(πi, πi+1) ≤ stepsize. Then the average clearance equals to
1
n

∑n−1
i=0 Clearance(πi).

As the C-retraction algorithm is non-deterministic, we run this algorithm 100 times for
each experiment and report the averages.

4.2 Experimental results

The results of the experiments are stated in Table 4 and visualized in Figure 5.
Planar: A retraction in the workspace results in a path having the optimal amount of

clearance. The statistics show that the C-retraction technique reaches these optimal values.
However, for robots that have two translational DOFs, we recommend the workspace tech-
nique as this technique is faster.

Simple corridor: Indeed, a large amount of clearance was introduced by the retraction
algorithms. At the expense of five extra seconds of computing time, the C-retraction technique
doubled the minimum amount of clearance and increased the average clearance with 39% with
respect to the W-retraction technique.

Corridor: While there is little room between the walls of the corridor and the robot, the
techniques were still able to increase the clearance along the path. Again, the C-retraction
technique outperforms the W-retraction technique but this takes much more computation
time.

Wrench: The algorithms needed relatively much time as the environment was larger
compared to the other ones. Both algorithms were successful in increasing the clearance. The
C-retraction technique performed slightly better with respect to increasing the average and
maximum clearance. However, the W-retraction technique was 6% better with respect to the
minimum clearance.

Hole: TheW-retraction technique doubled the amount of minimum and average clearance
along the path. The C-retraction technique outperforms the W-retraction technique because
all DOFs were taken into account. The minimum amount of clearance along the path was
further improved with 33%.

Manipulator: The minimum clearance along the initial path was very close to zero. The
C-retraction technique successfully introduced some clearance along the path. Although there
is little room for the manipulator to move, the algorithm was able to double the average
clearance along the path. This extra clearance may be crucial for high-cost environments to
guarantee safety. For clarity, we only visualized a part of the sweep volume of the manipulator
in Figure 5.

The running times indicate that improving the clearance along paths may be too slow to
be applied online. However, in applications where safety is important the running times are
not that crucial. For example, due to the difficulty of measuring and controlling the precise
position of a manipulator arm, the arm can be damaged if it moves in the vicinity of obstacles.
Improving the clearance at the cost of a few minutes of calculation time can prevent damage
to the robot and its environment.

4 EXPERIMENTS 13

(a) Initial paths

not available

(b) W-retraction (c) C-retraction

Figure 5: A close up of the paths in the six environments. The pictures in the left column
show pieces of the initial paths. The paths in the middle column are the result of the W-
retraction technique while the paths in the right have been created by one particular run of
the C-retraction technique.

4 EXPERIMENTS 14

Planar Clearance Time

min avg max s

Initial path 0.00 2.47 7.15 0.0
W-retraction 1.79 4.48 8.32 0.8
C-retraction 1.79 4.49 8.32 9.4

Simple corridor Clearance Time

min avg max s

Initial path 0.16 1.91 3.83 0.0
W-retraction 0.62 2.62 3.96 0.7
C-retraction 1.21 3.64 4.25 6.0

Corridor Clearance Time

min avg max s

Initial path 0.01 0.59 2.44 0.0
W-retraction 0.22 1.15 3.22 1.0
C-retraction 0.27 1.87 4.57 27.6

Wrench Clearance Time

min avg max s

Initial path 0.00 4.17 11.32 0.0
W-retraction 2.11 7.12 12.38 12.4
C-retraction 1.99 7.83 15.03 373.8

Hole Clearance Time

min avg max s

Initial path 0.28 1.81 5.97 0.0
W-retraction 0.79 3.08 6.85 0.6
C-retraction 1.05 3.44 7.24 12.7

Manipulator Clearance Time

min avg max s

Initial path 0.00 0.14 0.35 0.0
W-retraction n.a. n.a. n.a. n.a.
C-retraction 0.05 0.29 0.43 26.8

Table 4: Clearance statistics for the six environments. A larger clearance statistic indicates a
better result. These statistics are averages over 100 independent runs.

5 CONCLUSIONS AND FUTURE WORK 15

5 Conclusions and Future Work

We presented a new algorithm that improves the clearance along paths traversed by a broad
range of robots which may reside in high-dimensional configuration spaces. The algorithm
retracts paths of planar, free-flying and articulated robots toward the ridges of the medial
axis of the C-space by a series of guided random walks. The algorithm improved upon existing
algorithms since higher amounts of clearance for a larger diversity of robots are obtained.

A drawback of the algorithm is that it cannot be applied on paths in real-time. We expect
that the running times can be dramatically decreased by incorporating learning techniques
which will be a topic of future research. However, when on-line behavior is wanted, a complete
graph can be retracted to the medial axis in the preprocessing phase. We showed that a path
can be extracted from this graph in real-time.

We believe that this approach will enhance the quality of motion planners.

References

[1] J.-C. Latombe, Robot Motion Planning. Kluwer, 1991.
[2] S. LaValle, Planning Algorithms. http://msl.cs.uiuc.edu/planning, 2005.
[3] V. Boor, A. Kamphuis, C. Geem, E. Schmitzberger, and J. Bouchet, “Formalisation of

path quality,” Delivery MOLOG project, 2000.
[4] A. Kamphuis and M. Overmars, “Finding paths for coherent groups using clearance,” in

Eurographics/ACM SIGGRAPH Symposium on Computer Animation, 2004, pp. 19–28.
[5] J. Kim, R. Pearce, and N. Amato, “Extracting optimal paths from roadmaps for motion

planning,” in IEEE International Conference on Robotics and Automation, 2003, pp.
2424–2429.

[6] J.-M. Lien, S. Thomas, and N. Amato, “A general framework for sampling on the medial
axis of the free space,” in IEEE International Conference on Robotics and Automation,
2003, pp. 4439–4444.

[7] H. Choset and J. Burdick, “Sensor-based exploration: The hierarchical generalized
Voronoi graph,” International Journal of Robotics Research, vol. 19, no. 2, pp. 96–125,
2000.

[8] J. Vleugels and M. Overmars, “Approximating Voronoi diagrams of convex sites in any
dimension,” International Journal of Computational Geometry & Applications, vol. 8,
pp. 201–221, 1998.

[9] E. Masehianand, M. Admin-Naseri, and S. Khadem, “Online motion planning using
incremental construction of medial axis,” in IEEE International Conference on Robotics
and Automation, 2003, pp. 2928–2933.

[10] K. Hoff, T. Culver, J. Keyser, M. Lin, and D. Manocha, “Interactive motion planning
using hardware-accelerated computation of generalized Voronoi diagrams,” in IEEE In-
ternational Conference on Robotics and Automation, 2000, pp. 2931–2937.

[11] R. Geraerts and M. Overmars, “Clearance based path optimization for motion planning,”
in IEEE International Conference on Robotics and Automation, 2004, pp. 2386–2392.

[12] N. Amato, O. Bayazit, L. Dagle, C. Jones, and D. Vallejo, “Choosing good distance
metrics and local planners for probabilistic roadmap methods,” in IEEE International
Conference on Robotics and Automation, 1998, pp. 630–637.

REFERENCES 16

[13] J. Kuffner, “Effective sampling and distance metrics for 3D rigid body path planning,”
in IEEE International Conference on Robotics and Automation, 2004, pp. 3993–3998.

[14] G. van den Bergen, Collision Detection in Interactive 3D Environments. Morgan Kauf-
mann, 2003.

