Preserving order in non-order
preserving parsers

Rur Guerra
Arthur Baars

Doaitse Swierstra

Joao Saraiva

institute of information and computing sciences,
utrecht university

technical report UU-CS-2005-025

www.cs.uu.nl

Preserving order in non-order preserving parsers

Rui Guerra Arthur Baars
Doaitse Swierstra Joao Saraiva

Institute of Information and Computing Sciences
Utrecht University

The Netherlands
{rui,arthurb,doaitse } @cs.uu.nl

Universidade do Minho,
Departamento de Informaética,
Campus de Gualtar, 4710-057 Braga, Portugal
jas@di.uminho.pt

June 21, 2005

Abstract

A non-order preserving (NOP) parser returns a result that cannot be
mapped back to the original input, because the order of elements may
have changed. For reasons of reporting errors it is desirable to preserve
the initial order in some way. We show how to combine several existing
parsers to construct a NOP parser that preserves the initial order by
building a reordering functions while parsing. Besides other examples, we
show how to use our technique in a parser for permutation phrases.

1 Introduction

There are many good reasons why the concrete syntax of a language differs
from the abstract syntax. The former has been designed to make programs
easy to read and write and maintain, and to make them look beautiful, whereas
the latter has been designed to facilitate program analysis and code generation.
Sometimes the abstract syntax closely follows the structure of the concrete syn-
tax and it is rather straightforward to recover the original program structure
from the abstract structure, but unfortunately it is more often the case that in-
formation got lost in building the abstract syntax tree. One of the detrimental
effects of this kind of program transformations is that when we want to give
feedback to the user about the outcome of the analysis performed on his trans-
formed program, e.g. in the form of error messages, this is usually can no longer

be done in terms of the original program structure, but only by mentioning line
numbers or similar information that was explicitly preserved for this purpose.
This problem becomes more aggravating if we have an editor that is integrated
with error reporting in order to give the programmer continuous feedback about
the status of his program text.

A good error message should make a reference to the place in the original
code where the error occurred, tells what happened, why it happened and how
the error can be corrected or avoided. To be able to produce good error messages
we thus need to keep somehow track of all the original information. On the other
hand, we need to abstract from the language redundancy to keep the semantic
analysis as simple as possible.

An example of the kind of re-orderings we want to deal with here can be
found in the programming language Haskell, in which one can have type def-
initions, type specifications and function definitions in the program text, with
no restriction on the order in which those elements appear. This has obvious
advantages for the programmer since this enables him to group related defini-
tions closely together in the program text. For semantic processing on the other
hand it would be nice if the parser returned as a result three separate lists: one
containing all the type definitions, a second one containing all the types for the
functions to be defined, and a final one containing all the function definitions
themselves.

A second example can be found in the input language for an attribute gram-
mar system. The input basically is a long list of definitions of non-terminals,
productions, attribute declarations and semantic functions, grouped in such a
way that definitions that somehow belong together are lexically close. Also here
semantic processing prefers a parser that returns a group of lists, one for each
kind of element mentioned.

As a third example we take a small subset of the Java language, in which
each class contains fields, methods and one constructor. These components can
appear in any order. Is common after parsing to return the components in a
pre-defined order. Indeed, the vast majority of parser libraries has shown that
reordering results is advantageous for semantic analysis.

In this paper we show how to instrument an existing parser combinator
library in such a way that information about the way a specific parser reorders
elements is preserved, and may be used to map the abstract structure, that may
be enriched with error messages and other feedback information, back into the
original concrete structure.

The nice thing about using such combinators is that, once implemented,
the techniques are available for free to everyone using the combinators: no
further extra data for computing the inverse mapping has to be constructed
and maintained explicitly.

We call parsers that reorder the recognized elements non-order preserv-
ing(NOP). A NOP parser is usually defined by composing several alternatives:
one for each allowed order. The reordering used in constructing the result de-
pends on the alternative used. As the most simple example of a NOP parser
we define a parser that recognizes two elements, of which the order does not

matter, but that have to be returned in a predefined order:

split . (Parser a, Parser b) — Parser (a,b)
split (parser,, parsery) = (,) < parser, <@ parsery
<> flip (,) <& parsery, <& parser,

(,)xy = (x7y)
fupfzy =fyz

The result of applying the parser split (parsery,, parser;y,:) to the input "1a" is
a pair (*a’,1), where parsery, is a parser that recognizes a letter and parser;,;
is a parser that recognizes a digit.

In the pair that is constructed as the witness of a successful parse the in-
formation about which element came first in the input is lost. The function
that gives meaning to the input syntactic structure is usually called semantic
function, in this case is the function (,) and the function flip (,). The new
information given by the semantic function can be useful for further analysis.
Although this is a simple example, there are useful parser combinators that have
similar reordering behavior. An example of this are the parsers for permuta-
tion phrases, that generalize the above case for two elements to any number of
elements|1].

In this paper, we propose to build functions during parsing that remember
the initial order of the input. The parser thus produces two different results: the
abstract syntax tree and the inverse function. By not maintaining this inverse
information as part of the result returned we keep things cleanly separated,
and do not clutter further semantic processing with passing around this kind of
information.

We tackle this problem in two steps: first we perform an abstract interpre-
tation of the parser description, in which we combine the different parsers that
constitute the NOP parser and subsequently we construct the parsers we are
interested in, with the inverse functionality.

Our approach makes use of advanced features of modern functional program-
ming languages: existentially quantified data types are used to combine parsers
of different types. Additionally, we use lazy evaluation to make the resulting
implementation efficient. We thus have chosen Haskell as an implementation
language. Existential types are not part of the Haskell 98 standard [3], but are
supported by almost all Haskell implementations.

The report is organized as follows: Section 2 explains the parser combinators
we build upon. Section 3 presents the idea of combining parsers to obtain a NOP
parser and explains how to extend them to recover the initial order. Section 4
we customize the result of the parser combinator. In section 5 we redefine the
inverse function to handle inputs of different types. In section 6 we present an
example that shows how to parse java syntax. Section 7 concludes.

2 Parsing using combinator libraries

Parser combinator libraries for functional programming languages are well-
known and subject of active research. Features like higher-orderness and the
possibility to define new infix operators, allow parsers to be expressed in a con-
cise and natural notation, that closely resembles the syntax of EBNF grammars.
In this project we will focus on a specific kind of parsers, NOP parsers. For this
reason we just briefly present the interface we will assume in subsequent sec-
tions. We want to stress, however, that our approach is not tied to any specific
library.

We make use of a simple [4] interface that is parametrized by the result
type of the parsers and assumes a list of characters as input. It can easily be
implemented by straightforward list-of-successes parsers [2] and [5]. The parser
interface used here is presented in figure 1; note that the precise definition of
the type constructor Parser is not relevant, and may even differ from imple-
mentation to implementation.

The function fail represents the parser that always fails, whereas succeed
never consumes any input and always returns the given argument as a result
value. The parser symbol accepts solely its argument as input. If this character
is encountered, symbol consumes and returns it, otherwise it fails. The <&
operator denotes the sequential composition of two parsers in which, in order to
obtain the result of the combined parser, the result of the first parser is applied
to the result of the second. The operator <> expresses a choice between two
parsers. Finally, the application operator is a parser transformer that can
be used to apply a semantic function to a parse result. It can be defined in
terms of succeed and <. As an example of the use of these basic combinators
we present the definition of the pFoldr combinator that will be used extensively
in this presentation:

pFoldr = (6 — b—b) — b— Parser a — Parser b
pFoldr binop empty parser = pRest
where pRest = binop parser <& pRest <> succeed empty

The function pFoldr is a foldr for parsers, i.e., it applies recursively the input
parser until it fails, then it returns empty. Results are combined with the
function binop, which has empty as its unit element. Many useful combinators
can be built on the top of these basic ones.

3 Combining and inverting parsers

3.1 Combining and inverting two parsers

We start with a simple example. Suppose our input consists of a list of elements
of type a and b in no specific order, and we want to construct a parser that
returns a pair of lists: one containing all the elements of type a and one con-
taining all the elements of type b. We start by defining a parser that recognizes

infixl 3 <>
infixl 4 <,

symbol :: Char — Parser Char

fail :: Parser a

succeed :: a — Parser a

(<>) u Parser a — Parser a — Parser a

(<) : Parser (a — b) — Parser a — Parser b
(<) = (a—b)— Parser a — Parser b

f<ep = succeed f > p

parse 1 Parser a — String — Maybe a

Figure 1: parser combinators

one element, either of type a or b, and that returns a function that inserts this
element in the corresponding list in a pair of lists:

a_or_b :: (Parser a, Parser b) — Parser (([a],[b]) — ([a],[b]))
a_or_b (parsery, parsery) = (put, parsery, <> puty parsery)
where put, a (res,, resy) = (a: resq, resy)
puty b (resq, resy) = (resq, b : resy)

We can use the function pFoldr to apply this parser repeatedly. When it fails
or reaches the end of the input, pFoldr returns a pair of empty lists ([],[]). We
define the parser combinator pMerged that constructs a NOP parser from a pair
of parsers.

pMerged :: (Parser a, Parser b) — Parser ([a],[b])
pMerged (parser,, parsery) = pFoldr apply ([],]]) (a_or_b (parser,, parsery))

apply element rest = element rest

As we can see, the put, function inserts the value returned by parser, in the
list res,, that contains all the values of type a. The put, function does the
same as put, but for values of type b. Suppose now that parser;,: and parserq,
are parsers that recognize and return digits and letters, respectively. Then the
NOP parser that combines these parsers is represented by:

int_alp = Parser ([Int], [Char])
int_alp = pMerged (parserin:, parserqy)

The parser int_alp recognizes a list of integers and characters and returns them
in a pair of lists. Thus the result of applying int_alp to the input string "A1bC2"
is the pair ([1,2],"AbC"). Using the parser combinator pMerged we can define
any NOP made up from two simple parsers.

Having such a parser, the question that arises now is how to recover the origi-
nal order of the input? The obvious answer is to build a function that memorizes

that order and it is able to map back the original input. In other words, we
are looking for an invert function that takes an input like ([1,2], "AbC") and
reconstructs the initial order "A1bC2".

The function that memorizes the order of the original input has to be con-
structed when the result is re-ordered. That is to say, it has to be constructed
during parsing. So the parser function has to perform three tasks:

e Detecting whether the input follows the syntactic rules specified by un-
derlying grammar, or not;

e Giving semantic meaning to the input (which can preserve the input order
or not);

e Constructing an inverse function that recovers the initial order of the input
(only in the case of a NOP parser).

To recover the initial order of the input, we have to construct an invert function,
during parsing. The invert function will take a pair of lists and reorders its
elements into a single list. Standard lists, however, require that all elements
have the same type. This is not the case in our running example. To simplify
our introductory explanation we take for granted that the two lists have the
same type. We will return to this subject in section 5. The invert function
takes a pair of lists and returns them in the initial order and we use a type
synonym to represent its type:

type Invert s = ([s],[s]) — [$]

The invert function has to remember in which side of the pair the parsing result
was stored. When the semantic function inserts the parser result in the left
side of the pair, the invert function will take an element from the left side and
otherwise it will take an element from the right side. We define two put and two
get functions. As before, we combine each parser with a put function using the
combinator <&>. Each put function will update the inv function using the get
function. The functions get, and get, update the invert function by taking an
element from the left side of the input or from the right side, respectively. For a
parser that failed or reached the end of the input, the resulting invert function
returns an empty list.

pMerged :: (Parser a, Parser b) — Parser (([a],[b]), Invert s)
pMerged (parser,, parsery) = pFoldr ($) (([],[]), const [])
(put, parsery < puty parsery)
where
put, a ((resq, resy), inv) = ((a: resy, resy), getq inv)
puty b ((resq, resy), inv) = ((resq, b : resy), gety inv)

getq inv ([], resp) = inv ([], resp)
getq inv (a: resq, resy) a:inv (resy, resy)

(
(
gety inv (resq, []) inv (resq, [])
gety inv (resq, b : resy) = b:inv (res,, resy)

The resulting NOP parser returns a pair where the first element is another pair
with the recognized symbols and the second element is the invert function.

Suppose that we want to build a NOP parser that recognizes letters and
distinguishes upper case from lower case letters. If parsery,,, and parseryy, are
parsers that recognize lower case and upper case letters, respectively, then our
parser is easily represented by:

low_upp :: Parser ((String, String), Invert a)
low_upp = pMerged (parserio,, parseryyy)

The parser low_upp besides returning the two lists with the parser results, it
also returns the invert function. Thus applying the parser low_upp to the string
"AaBb" produces the pair (("ab", "AB"), <Invert>).

To recover the initial input, we only have to apply the invert function to the
pair of recognized values.

We should realize that the invert function remembers the order of the sym-
bols but not the symbols themselves. As a result, we can change the initial
values and still recover the initial order. Thus if we change the value 'B’ in the
previous result pair for a ’Z’, for instance, the inverted input will have a ’Z’ in
the place of the 'B’.

Note that abstractly, this can be seen as a typical error correcting task,
where the parser replaces a symbol, occurring in the wrong position, by the
expected one.

3.2 Combining n parsers

In the previous section,we saw how to combine and invert two parsers. However,
a NOP parser can be build up with a combination of any number of parsers. In
this section, we define a parser combinator that may be used to combine any
number of parsers into a nop parser.

When we combine two parsers, for instance Parser a and Parser b, the
parsing result of the new parser is a pair of type (a, b). If we combine this new
parser with another parser, for instance, Parser c, the parsing result, following
the same logic, is of type (a, b, ¢). The problem of this approach is that the type
of the resulting parser depends on the number of combined parsers. Our aim is
to define a function that combines a variable number of parsers. Because the
types of the combined parsers are typically not the same, we cannot represent
the result by lists. A nested cartesian product is more suitable for this situation.
We use combinators only in a left associative way, so all products are of the type
((z,vy), z) instead of (z,y, z)!.

In the previous section, both parser results were returned as lists. This is,
however, a severe limitation. It would be convenient to abstract from the result
of the parsers, in order to allow the use of data structures other than lists.

IThis was also the very first approach taken in the design of parser combinator libraries

2]

In constructing lists we have used the predefine insert function on lists, and
the (const []) to construct the empty list. Thus in order to use a custom data
structure we have to provide its constructors, i.e., the function that constructs
the empty data structure and the respective insert function. We provide this
information in a pair like (empty, insert parser). Now the parser result is a
function that knows how to insert the recognized value in the data structure.
The information pair can be represented by a type synonym:

type Parselnf res = (res, Parser (res — res))

To return the parsing result in the predefined type lists, we have to build the
information pair with the insert function (:) and with the empty structure ([]):

listOf :: Parser res — Parselnf [res]
listOf parser = ([], (:) < parser)

Any data structure can be used. Thus, for instance, we can define a data type
for balanced binary trees.

data Tree a = Leaf | Node Int (Tree a) a (Tree a)

Now we only need to compose the information pair, where the Leaf is the empty
structure and the insert function is the balanced insert function for binary trees.

tree Of it Parser res — ParseInf (Tree res)
treeOf parser = (Leaf, insert parser)

Now instead of combining parsers, we have to combine information pairs that
contain parsers. To be able to construct one parser that combines all the other
parsers, we go through a two phase process. First we perform an abstract inter-
pretation in which we combine all the information pairs into a single structure.
Second we construct the parser we are interested in, using the result pair of the
first phase.

To accomplish the first phase, we define a new combinator <&, that combines
the information pairs out of which the NOP parser is to be constructed. First
we combine the empty structures in a pair. The result of applying the parser
combinator < to a variable number of pairs, is a nested pair of empty struc-
tures. Next we have to compose the parser results. Following the approach in
which we combined a parser with an insert function, the parser result becomes
a function that knows how to insert the recognized value in the respective data
structure. Thus we only apply the parsing result to the correct side of the pair.

(<) i Parselnf a — Parselnf b — Parselnf (a,b)
(car Pa) < (€5, 95) = ((€a, €5), cOMb, <> po <> comby <> py)
where
comb,, insert, (resq, resy) = (insert, resq, resp)
comby, inserty (resq, resy) = (T€Sq, inserty resy)

The result of combining all parsers is a single information pair, of which the first
element is a nested pair with all the empty structures and the second element is

an alternative combination of all the parsers. We can always combine the result
constructed thus far with one more information pair.

Now we pass on to the second phase, where the result of the first phase is
used to construct the final parser. We can use the parser combinator pFoldr
to construct the parser we are interested in. The second element of the input
pair, alter is a parser that returns a list of function. The combinator pFoldr will
apply each function from this list backwards, starting with the empty structure,

units.
pMerged :: Parselnf res — Parser res

pMerged (units, alter) = pFoldr apply units alter

Suppose we want to parse a string and to return the digits and upper case letters
in two separate lists, and the lower case letters in a balanced binary tree. Then,
instead of writing a new parser we can easily combine three predefined parsers.
First, we use the functions listOf and treeOf to store in a pair the parser and
the respective information about the data structure. Then we merge the three
pairs in a single nested pair, using the new combinator <. Finally we construct
the parser we are interested in using the pMerged function.

int_low_upp :: Parser (([Int],[Char]), Tree Char)

int_low_upp = pMerged (listOf parsery,; <
listOf parser;y,, <&
treeOf parserypp)

This new parser returns the parsing result in a nested pair, where the two first
elements are lists of characters and the last one is a tree of characters. The
result of applying the parser int_low_upp to the input string "A1bC2" is the
nested pair (([1,2],"b"), Node 2 (Node 1 Leaf ’A’ Leaf) °C’ Leaf).

3.3 Inverting n parsers

Having generalized the pMerged function to merge any number of parsers, we
now will generalize the invert function as well. In the previous section, the
semantic functions splitted the result into different data structures. To accom-
plish this, we needed to know the empty structure and the insert function of
that data structure. Now, to be able to recover the initial order of the input,
we also need to know how to get a value from that data structure. Thus, if
for instance we are using lists, the function that takes one element from a non
empty list is:

getVal = [v] = (v, [v])

getVal (v : vs) = (v, vs)
The new insert function has to return the updated data structure and the re-
spective getVal function for that element. The new information pair has to be

of the following shape (empty, ((Az zs — (inserted, getVal)) < parser)). The
updated Parselnf type is:

type Parselnf res ds inv = (res, Parser (res — (res, ds — (inv, ds))))

To return the parsing result as lists, the information pair is:

listOf it Parser res — Parselnf [res] [inv] inv
listOf parser = ([], Az | — (2 : 1, getVal)) <& parser)

As we can see, the function applied to the parsing result returns a pair with the
updated list of results and the getVal function. In the case of lists, we always
insert the new element in the head, thus is easy to define a function that takes
the last inserted element. But in many other cases, like with balanced trees,
taking an element from the data structure depends on the insert function. Thus
the getVal function has to be defined during the insert action.

The insert function for balanced trees adds a new element to that side of
the tree that has the least number of elements. Firstly we test which tree is the
smallest one, then we recursively insert the new value in that tree. The result
is a pair with the newTree and the get function. The updated invert function
will apply the get function to the same side of the tree where we inserted the
new value. Since the values are taken in the same order as inserted, the result
tree will always be a balanced tree.

insert . a — Tree a — (Tree a, Tree b — (b, Tree b))
insert val Leaf = (Node 1 Leaf val Leaf , invertieqs)
insert val (Node s tree; value tree,.) = (Node (s + 1) | value r, i)
where (I, 7,1) | size tree; < size tree, = (newTreey, tree,., invert; get;)
| otherwise = (tree;, newTree,, invert, get,)
(newTreey, get;) = insert val tree
(newTree,, get,) = insert val tree,

invertieqs (Node 1 Leaf value Leaf) = (value, Leaf)

invert; get; (Node s tree; v tree,) = let (val, tree) = get; tree;
in (val, Node (s — 1) tree v tree,)
invert, get, (Node s tree; v tree,) = let (val, tree) = get, tree,

in (val, Node (s — 1) tree; v tree)

Now the definition of the information pair is similar to the previous one:

tree Of :: Parser res — ParseInf (Tree res) (Tree inv) inv
treeOf parser = (Leaf, insert < parser)

Like in the previous section, we proceed in two steps. The semantic functions
comb, and comb, are extended, and thus the type of the combinator <> is
adapted to the new Parselnf pair.

(<) i Parselnf res, ds, inv

— Parselnf resy, dsy inv

— Parselnf (resq, resy) (dsq, dsy) inv
(ea,Pa) < (e, p) = ((eq, €p), cOMb, <& pg < comby, <& pp)

Both parsers, p, and pp, return a function. First, we apply that function to
the correct side of the pair, that is to say, in comb, we apply insert to values,

10

and in comb, we apply it to values,. This function returns a pair of which the
first element is the data structure updated with the new parsed element and
the second one the get function that removes the corresponding element from
the data structure. Secondly we update the invert function by applying the get
function to the correct side of the pair. The result is a pair with the recovered
element and the non inverted elements represented by (e, (rest,inpy)), in the
case of comb, or (e, (inp,, rest)) in the case of comby.

comb, insert (values,, valuesy) = ((newVal,, valuesy), invert,)
where
(newVal,, get,) = insert values,
invert, (inpg, inpy) = let (e, rest) = get, inp,
in (e, (rest, inpy))

comby, insert (values,, valuesy) = ((values,, newValy), invert)
where
(newValy, gety) = insert valuesy
inverty (inpg, inpy) = let (e, rest) = gety inpy
in (e, (inpg, rest))

In the previous section, in order to obtain the combined parser, we only needed
to use the parser combinator pFoldr with the function apply. This was possible
because each parser result was a function that knew how to insert its result in
the data structure.

Now we need to apply the result function to the data structure and up-
date the invert function, as well. The acceptNextVal function applies the result
function insRes to the data structure recognVals. The result is a pair with the
updated data structure newValues and the function getVal . This function is
used to get the first inverted value and subsequently we append it to the rest of
the inverted values computed by getRest.

acceptNextVal :: (a — (a,¢ — (d,¢))) — (a,¢ — [d]) — (a,¢c — [d])
acceptNextVal insert (recognVals, getRest) = (newValues, invert)
where
(newValues, getVal) = insert recogn Vals
wnvert inp let (v, rest) = getVal inp
in v : (getRest rest)

The function pFoldr applies acceptNextVal to the result of the combined parsers,
alternatives. When the parser fails or reaches the end of the input, pFoldr
returns a pair with the empty structure and a function that always returns an
empty list, the invert function.

pMerged :: Parselnf a ¢ d — Parser (a,c — [d])
pMerged (units, alter) = pFoldr acceptNextVal (units, const []) alter

The parser dig_low_upp is defined in a similar way as in the previous section,

11

but now we get the invert function, as well.

dig_-low_upp :: Parser ((([Char],[Char]), Tree Char),
(([a], [a]), Tree a) — [a])
dig_low_upp = pMerged (listOf parserq;y <>
listOf parseryyy, <
treeOf parserypp)

The usage of the parser is the same. Its result is a pair where the first element
is a nested pair of parsing results and the second element the invert function.
Thus applying the parser dig_low_upp to the input string "A1bC2" results in
(((m12","o"), Node 2 (Node 1 Leaf ’A’ Leaf) *C’ Leaf), <invert>).

The invert function is able to recover the initial order from the parsing
result, by just applying it to the nested pair of recognized values. Thus, to
recover the input string, we simply apply the invert function to the nested pair
(("12","b"), Node 2 (Node 1 Leaf >A’ Leaf) >C’ Leaf).

4 Customizing the parser result

In the previous sections, we implemented a function, that combines a variable
number of parsers. To achieve our aim we constructed the parsing result as a
nested pair. Consequently the input of the invert function should be a nested
pair, as well. This data type is useful to return a variable number of results, but
it is difficult to understand by human beings. It would be convenient if the user
could specify the type of the parsing result and the invert input. Therefore, we
will now develop a variant in which the nested pairs are only used internally
and thus eliminate the inconvenience of showing them to the outside world.

To be able to customize the parsing result, first we have to 'unpack’ the
nested pair, i.e., to take each element out of the nested pair. Next we have
to transform the result to the custom one. Taking as example the previous
combination of three parsers, we realize that the parsing result is a nested
pair of three elements. To customize it we need a function that takes each
different result and returns it in the new type. If for instance, we want to
return this parsing result as a tuple, we have to supply the (,,)? function. This
function takes three separate arguments and returns them in a tuple. In the
approach followed thus far we actually need a function of the type ((a, b), c) —
(a,b,c). Haskell has defined the uncurry® function. It takes a function with
two arguments and returns a function that takes a pair of arguments instead.
If we apply the uncurry function to (,,), we get:

uncurry (,,) = (a,b) — ¢ — (a,b,c)
Composing two uncurry function we construct the function we need:

(uncurry.uncurry) (,,) == ((a,b), ¢) — (a,b, c)

2(,,)2a—b—c—(a,b,c)
Buncurry :: (a — b — ¢) — (a,b) — ¢

12

By applying two uncurry functions to the (,,) function we manage to adapt
it to handle nested pairs. The input of the invert function is a nested pair as
well, invert :: ((1,1),1) — [l]. We need a pack function that adapts it to take
three inputs instead of a nested pair. The type of the invert function becomes
invert :: | — | — | — [1]. Haskell has defined the curry* function, as well. It
takes a function with one pair of arguments and returns another function that
takes two arguments. Like in the previous case if we compose two curry function,
we are able to customize the invert function: The curry function transforms a
function, that takes one pair of arguments, to another one that accepts flattened
inputs.
(curry.curry) invert :: | — [— 1 — [I]

The definition of both functions, pack and wunpack, depends on the number
of parsers we combine. Thus they have to be constructed during the merge
process, and the listOf and the treeOf functions have to include a pack and an
unpack function too. Since they store a single parser, the result does not need
to be packed or unpacked, thus the unpack and pack function are defined as the
identity function.

listOf parser = ([],(Az 1 — (z:1, getVal)) <& parser,id, id)
treeOf parser = (Leaf , insert <& parser, id, id)

Whenever we combine two parsers, we have to compose the pack function with
another curry function. We do the same thing to the unpack function, but
instead of using the curry function we use the uncurry. Initially both pack
and unpack functions are the identity function. After combining the two first
parsers, the resulting pack and unpack are equal to curry and uncurry functions
respectively, as we saw before. In the end we will have (n—1) curry and uncurry
composed functions, where n is the number of parsers combined.

(€a7 Das unpack, packy) < (b, py, unpacks, paCkb> =
((eases)
, comby, Do <> comby Db
, unpacky . uncurry.unpack,
, packy.curry.pack,

)

Now we eliminate the nested pair of the input of the invert function by applying
the pack function to it. The semantic function sem that returns the parsing
result in a predefined data type is adapted to the nested pair by applying the
unpack function to it.

sem ‘pMerged‘ (units, alternatives, unpack, pack) =
(A(result, invert) — (unpack sem result, pack invert))
<
pFoldr acceptNextVal (units, const []) alternatives

Yeurry :: ((a,b) = ¢) — a — b — ¢

13

If for instance, we want to change the previous example, to return the parser
result in a tuple, instead of a nested pair, the definition of dig_low_upp will be:

dig_low_upp = (,,) ‘pMerged* (listOf parserg;qg <>
listOf parser;yy, <&
listOf parserypp)

The parser usage remains the same, but the result is a customized data structure.
The invert function takes as many arguments as we have composed parsers.

5 Inverting parsers of different types

As we realized in the previous section, the type of the invert function for three
combined parsers is:
invert 2 1 — 1 — 1 —[l]

The three inputs have to be of the same type since they will be inserted in a
list. However, parsers of different types can be combined, for instance the parser
dig_alp, defined in the section 3.1. Then the invert function has to deal with
inputs of different types. There are two ways to deal with this drawback. The
most obvious one, is to return the inverted values in a data structure where the
elements can be of different types, instead of a list. To achieve this solution, we
need to replace the list insert function (:), used in the function acceptNextVal.
We also have to specify the empty structure that pFoldr should return when
the parser fails or reaches the end of input.

If we decide to return the inverted elements in a list, the user will have to
supply functions, that homogenize all the parser results, in other words, all the
inputs have to be transformed in values of the same type. This functions will be
called transformation functions. The new invert function takes n transformation
functions and n parser results. Each function homogenizes the respective parser
result.

invert fi...fn resi...resy,

Whenever we recover another element we have to homogenize it using the trans-
formation function. All the transformation functions are stored in a nested pair.
The function we should use depends on the parser that we used to recognize that
element. We will encapsulate the type of each inverted value using a new type
definition. In this data type, we will store two functions. The first function,
funcs — (inv — res), knows how to choose the right transformation function,
from a nested pair of functions. The second function, ds — (inv, ds), is the
function that takes the next inverted value from the parsing result.

data Pair funcs res val =
3 inv. Pair (funcs — (inv — res)) (val — (inv, val))

With the second function val — (inv,val) we get an inverted value of type
inv. Then with the first function funcs — (inv — res), we get a function

14

that transform the inverted value in a value of type res. The 3 states that the
inverted value, inv, can be of any type if we also provide a function that can
transform that value to a value of type res. Using this data type we make the
type of the inverted value transparent.

The new invert function takes n transformation functions and n parser re-
sults. Now we have to merge the transformation functions in a nested pair, as
we do to the input of the invert function. Thus we need two pack functions.

As a practical example, we will redefine the listOf and treeOf functions.
Now, instead of storing an invert function, we have to store a Pair with the
function that is able to choose the transformation function for the respective
inverted value, and the invert function itself.

listOf parser = ([}, (A 1 = (z : 1, Pair id getVal)) <& parser), id, id, id)

treeOf parser = (Leaf, f <& parser,id,id, id)
where [2 t = let (res, getVal) = insert « t
in (res, Pair id getVal)

The new definition of the combinator < is extended with an extra pack func-
tion. This pack function will be used to pack the transformation functions,
before being used by the invert function.

As you can realize, the two pack functions are similar. It will be convenient
to have a single polymorphic function. That is possible, but it is out of scope
of this paper:

(€a, Pa, punpack, ppack, ppack’) <> (ey, py, qunpack, gpack, qpack’) =
((eaa eb)
, comb, <& p, <> comby, <& py
, qunpack.uncurry.punpack
, qpack.curry.ppack
, qpack’ .curry.ppack’

)

The combined functions are adapted to the new type Pair. In comb, first we
apply insert to the left side of the pair. Then we update the choose function
by applying the ch function to the left side of the pair of the transformation
functions. The invert function takes a value from the left side, exactly how we
did it before. The comb;,, has the same behavior but applies both functions to

15

the right side of the pair.

comb, insert (values,, valuesy) = ((newVal,, valuesy), Pair choose invert,,)
where
(newVal,, Pair ch getVal) = insert values,
choose (funcg, funcy) = ch func,
invert, (inpg, inpy) = let (e, rest) = getVal inp,
in (e, (rest, inpy))
comby, insert (values,, valuesy) = ((values,, newValy), Pair choose inverty)
where
(newValy, Pair ch getVal) = insert values,
choose (funcg, funcy) = ch funcy,
inverty, (inpg, inpy) = let (e, rest) = getVal inpy

in (e, (inpg, rest))

The acceptNextVal function uses the function choose to take the correct trans-
formation function from the nested pair funcs, where all the transformation
functions are stored. Then the chosen function is applied to the inverted value
e and the result is inserted in the list of inverted values.

acceptNextVal f (recognVals, getRest) = (newValues, invert)
where
(newValues, Pair choose getVal) = f recognVals
invert funcs inp = let (e, rest) = getVal inp

in (choose funcs e) : (getRest funcs rest)

The acceptNextVal is used by pMerged to compose the parsing results. By
applying the two pack functions to invert we obtain an invert function that
takes several inputs instead of two nested pairs.

sem ‘pMerged* (units, alternatives, unpack, pack, pack’) =
(A(r, invert) — (unpack sem r, pack’ (Aval — pack (invert val))))
<>
pFoldr acceptNextVal (units, const (const [])) alternatives

Now we can combine parsers of different types. We can define a parser, that
includes, for instance, the parser parser;,; that recognizes and returns digits,
as well as, the parser parser;,, returns strings and the parser parseryy, that
returns a balanced tree of characters.

int_low_upp = (,,) ‘pMerged* (listOf parserin; <>
listOf parser;y, <>
treeOf parserypy)

The usage of the parser remains the same, but the result is a list of digits,
a string and a tree of characters. To recover the order of the initial input,
we supply to the invert function the functions that homogenize the input, for
instance, the function show.

16

6 Example: Parsing Java syntax

Modern languages are liberal about the order of declarations. Taking as example

a small subset of the java language specification, each class can be composed by

fields, methods and constructors. These components can appear in any order.
We start by defining the abstract syntax for Java classes:

data Class = Class String Elements
data Elements = FElements [Field] [Constructor] [Method]

Assume we have three parsers pField, pConstructor and pMethod, that parse
fields, constructors and methods, respectively.

Then we use the pMerged function to build the final parser pClass. Each
Java field, constructor and method is stored in a list, using the function listOf .

pClass = Class <s pToken "class" <@ identifier<e
braces (Elements ‘pMerged’ (
listOf pField<>
listOf pConstructor<s
listOf pMethod

)

braces p = (A_v _ — v) pToken "{" < p <& pToken "}"

To recover the initial Java code we only need to define a pretty-printing for class
and use the resulting invert function. This function will return the input in its
original order.

ppClass invert (Class name (Elements fs cs ms)) =
"class " H name-
ppBraces (invert ppField ppConstructor ppMethod fs cs ms)

7 Conclusion

We have shown how to define a NOP parser by combining several parsers. We
extended the parser combinator with the inverse functionality.

We tried to make the interface of the combinators and the invert function
as simple as possible. A user can easily make use of this combinator to obtain a
NOP parser and the invert function, with the advantage of having the parsing
result in a customized data type.

We have shown how to use existentially quantified data types to customize
the type of the parser result. The invert function can be used to generate
properly located error messages or even to repair errors found at parsing time.

The functions presented in this project have been incorporated into the
"UU_Parsing” library. This library is used by a large community of functional
programmers worldwide. Thus the results of this project will also have an
impact in that community and we do hope to contribute to make programming
and writing parsers a more effective, easy and grateful task.

17

References

[1] AL Baars, A. Loh, and S.D. Swierstra. Parsing permutation phrases. In
R. Hinze, editor, Proceedings of the 2001 ACM SIGPLAN Haskell Workshop,
pages 171-182. Elsevier, 2001.

[2] J. Fokker. Functional parsers. In J.T. Jeuring and H.J.M. Meijer, editors,
Advanced Functional Programming, number 925 in LNCS, pages 1-52, 1995.

[3] Simon Peyton-Jones, John (eds.) Hughes, et al. Report on the programming
language Haskell 98. February 1998.

[4] Doaitse Swierstra and Luc Duponcheel. Deterministic, error correcting com-
binator parsers. In Advanced Functional Programming, Second International
Spring School, volume 1129 of LNCS, pages 184—207. Springer-Verlag, 1996.

[5] Philip Wadler. How to replace failure with a list of successes. In Functional
Programming Languages and Computer Architecture, volume 201 of LNCS,
pages 113-128. Springer-Verlag, 1985.

18

A Parsing a permutation phrase with inverse
functionality

In [1] is shown how to represent a permutation phrase in a tree by expanding and
factorizing its elements. Each path from the root to a leaf in the tree represents
a particular permutation. Permutations with a common prefix share the same
subtree, hence the number of choices in each node is limited by the number of
permutable elements.

The data type Perms represents our tree. If all elements stored in a tree are
optional then their default values are stored in defaults, otherwise defaults is
Nothing. The parser stored in each Branch is not allowed to derive the empty
string.

data Perms a = Choice{ defaults :: (Maybe a), branches :: [Branch a]}
data Branch a =V z.Br (Parser (z, GetVal)) (Perms (z — a))

The first parser added to the tree, will have an invert function that takes the
first element of the input list. The n parser, where n denotes the number of
parsers added to the tree plus one, will take the element in the position number
n from the input list.

data GetVal = GetVal (¥ a.[a] — a)

The data type GetVal keeps record of the function that takes the n element of
a list.
data Undo a = Undo GetVal (Perms a)

By keeping this information outside the tree, we avoid to replicate it through
all the branches.

All the parsers of the permutation phrase has to be added to the tree. Each
path of the tree represents a parser of a possible permutation. The function
permute follows the correct path to obtain the pretended parser. The new
parser returns the parsing result and the invert function.

permute . Undo a — Parser (a,[b] — ([b],[b]))
permute (Undo g (Choice def bs)) = foldr (<) exit (map pars bs)
where exit = case def of
Nothing — fail
Just x — succeed (x, Ainp — (inp,[]))
pars (Br p perm) = (Az, GetVal u) (f,1) — (f z, (nextVal u).l))<s>
p <& permute (Undo g perm)

nextVal getVal (vals, inverted) = (vals, (getVal vals) : inverted)

The empty tree stores the initial invert function, (GetVal head).

empty :: a— Undo a
empty x = Undo (GetVal head) (Choice (Just x) [])

19

The add function takes a pair of arguments, where the first value specify if the
element is optional or not. Besides that, it has to update the invert function.
The new invert function will take the next element of the list, by composing
the old invert function with the tail function.

add :: (Maybe a, Parser a) — Undo (a — b) — Undo b
add (def,p) (Undo (GetVal undo) perm) =
Undo (GetVal (undo.tail))
(addPerms (def , (Az — (z, (GetVal undo))) <& p)) perm)

The invert function is combined with the parser and added to the permutation
tree using the function addPerms. A new element is added to the permutation
tree by inserting it in all possible positions to every permutation that is already
in the tree.

addPerms :: (Maybe a, Parser (a, GetVal)) — Perms (a — b) — Perms b
addPerms (d, p) perm@(Choice ds bs) =
Choice (ds ‘ap* d) (Br p perm : map ins bs)
where
ins (Br p’ perm’) = Br p’ (addPerms (d, p) (mapPerms flip perm’))

The mapPerms is the map on permutation trees.

mapPerms : (a = b) — Perms a — Perms b
mapPerms f (Choice d bs) = Choice (fmap f d) (map (mapBranch f) bs)

mapBranch :: (a — b) — Branch a — Branch b
mapBranch f (Br p perm) = Br p (mapPerms (f.) perm)

This is an example of a parser for a permutation of an optional character ’a’
and ¢’ and zero or more characters 'b’.

permape :: Parser ((Char, [Char], Char), [b] — ([b],[0]))

permape. = permute ((,,)<s> option(’_?, (symbol *a’))
<®> option([], many (symbol *b?))
<> option(’_?, (symbol ’c”)))

20

