
Parallel machine scheduling through column
generation: minimax objective functions,
release dates, deadlines, and/or generalized
precedence constraints

Marjan van den Akker

Han Hoogeveen

Jules van Kempen

institute of information and computing sciences, utrecht university

technical report UU-CS-2005-027

www.cs.uu.nl

Parallel machine scheduling through column
generation:

minimax objective functions, release dates, deadlines,
and/or generalized precedence constraints

J.M. van den Akker J.A. Hoogeveen J.W. van Kempen
Department of Information and Computing Sciences

Utrecht University
P.O. Box 80089, 3508 TB Utrecht, The Netherlands
marjan@cs.uu.nl, slam@cs.uu.nl, jwkempen@cs.uu.nl

June 27, 2005

Abstract

In this paper we describe a solution framework for a number of scheduling prob-
lems in which the goal is to find a feasible schedule that minimizes some objective
function of the minimax type on a set of parallel, identical machines, subject to
release dates, deadlines, and/or generalized precedence constraints. We determine
a lower bound on the objective function in the following way. We first turn the
minimization problem into a decision problem by putting an upper bound on the
outcome value; the question is then ‘Does there exist a feasible schedule for the
given instance?’. The question of feasibility is identical to ‘Are m machines enough
to feasibly accommodate all jobs?’. We turn this decision problem into a minimiza-
tion problem again by asking for the minimum number of machines that we need.
This can be formulated as an integer linear programming problem that resembles
the ILP-formulation of the cutting stock problem. For this problem we determine
a high quality lower bound by applying column generation to the LP-relaxation;
if this lower bound is more than m, then we can conclude infeasibility. To speed
up the process, we compute an intermediate lower bound based on the outcome of
the pricing problem. As the pricing problem is intractable for many variants of the
original scheduling problem, we mostly solve it approximately by applying local
search, but once in every 50 iterations, we solve it to optimality by formulating it
as an integer linear programming problem using a time-indexed formulation that
we solve using CPLEX such that we can compute our intermediate lower bound.

After having derived the lower bound on the objective function of the orig-
inal scheduling problem, we try to find a matching upper bound by identifying

1

a feasible schedule with objective function value equal to this lower bound. Our
computational results show that our lower bound is so strong that this is almost
always possible. We are able to solve problems with up to 160 jobs and 10 machines
in 10 minutes on average.

1980 Mathematics Subject Classification (Revision 1991): 90B35.
Keywords and Phrases: parallel machine scheduling, set covering formulation, lin-
ear programming, column generation, maximum lateness, release dates, precedence
constraints, intermediate lower bounds, time-indexed formulation.

2

1 Introduction

In this paper we consider one of the basic problems in scheduling and project manage-
ment; we refer to the book by Pinedo (2002) for an introduction to scheduling theory.
We are given m parallel, identical machines, which are continuously available from time
zero onwards and can process no more than one job at a time; these machines have to
process n jobs, which are denoted by J1, . . . , Jn. Processing Jj requires one, arbitrary
processor during an uninterrupted period of length pj, which period must start at or
after the given release date rj and must be completed by the given deadline d̄j. Given a
schedule σ, we denote the completion time of job Jj by Cj(σ), and hence, we need for
all jobs Jj that rj + pj ≤ Cj(σ) ≤ d̄j for σ to be feasible. Moreover, the jobs may be
subject to generalized precedence constraints, which prescribe that for a pair of jobs Ji

and Jj the difference in completion time Cj(σ) − Ci(σ) should be at least (at most, or
exactly) equal to some given value qij. The quality of the schedule is measured by some
objective function of minimax type, which is assumed to be nondecreasing in the com-
pletion times, like maximum lateness or maximum cost. Here, the maximum lateness is
defined as maxj Lj(σ), where Lj(σ) = Cj(σ)− dj; dj signals the due date, by which the
job preferably should be completed. A special case occurs when all due dates are equal
to zero; in this case, the objective function becomes equal to minimizing the maximum
completion time, that is, the makespan of the schedule.

We solve these problems by applying the technique of column generation. This ap-
proach has been shown to work very well for the problem of minimizing total weighted
completion time on a set of identical parallel machines (see Van den Akker, Hoogeveen,
and Van de Velde (1999) and Chen and Powell (1999)), and since the appearance of these
papers, the method of applying column generation has been applied to many parallel
machine problems with a sum type criterion in which the jobs are known to follow a spe-
cific order on the individual machines; we refer to Van den Akker, Hoogeveen, and Van
de Velde (2005) for an overview. One notable exception is due to Brucker and Knust
(2000, 2002, 2003), who apply column generation to a number of resource constraint
project scheduling problems in which the goal is to minimize the makespan. Here they
first formulate the problem as a decision problem and then use linear programming to
check whether it is possible to execute all jobs in a feasible preemptive schedule; here
the decision variables refer to the length of a time slice during which a given set of jobs
is executed simultaneously.

We use the three-field notation scheme introduced by Graham, Lawler, Lenstra, and
Rinnooy Kan (1979) to denote scheduling problems. The remainder of this chapter is
organized as follows. In Section 2, we describe the basic approach for the relatively simple
problem of minimizing Lmax without release dates and generalized precedence constraints.
We explain the column generation approach and the derivation of an intermediate lower
bound in Sections 3 and 4. In Sections 5 and 6, we add release dates and generalized
precedence constraints. In Section 7, we describe our local search algorithm to solve the
pricing problem approximately, and in Section 8 we formulate the pricing problem as a
time-indexed integer linear programming problem that can be used to find (an upper

3

bound on) the solution of the pricing algorithm. Finally, in Section 9 we draw some
conclusions.
Our contribution. We give the first algorithm for solving this kind of problems using
column generation. Our approach is a bit complementary to the approach by Brucker
and Knust, since they check the existence of a preemptive schedule for a given set of
resources, whereas we let the number of machines vary. Moreover, we describe an efficient
way to use an intermediate lower bound to be able to make a decision without having
to solve the LP-relaxation to optimality.

2 The basic approach

In this section, we sketch the basic approach, which we illustrate on the P ||Lmax problem,
that is, there are m parallel, identical machines to execute n jobs, where the objective
is to minimize maximum lateness; there are no release dates and precedence constraints,
but there can be deadlines.

It is well-known that this optimization problem can be solved by solving a set of
decision problems, which are obtained by putting an upper bound L on the value of the
objective function. Since the restriction Lmax ≤ L is equivalent to the constraint that
Lj = Cj − dj ≤ L for each job Jj, we find that Cj ≤ dj +L ≡ d̄j; the decision problem is
then to determine whether there exists a feasible schedule meeting all deadlines, where
we take the minimum of the original deadline and the deadline induced by the constraint
Lmax ≤ L. Hence, we can solve the optimization problem by determining the smallest
value L that allows a feasible schedule.

Since the machines are identical, the decision problem can be reformulated as: is it
possible to partition the jobs in at most m subsets such that for each subset we can find
a feasible single-machine schedule that meets all deadlines? Checking the feasibility of a
subset is easy by executing the jobs in order of earliest deadline order and see whether
these are all met (Jackson, 1955); hoping not to confuse the reader, we call this the
ED-order . Note that it is identical to the earliest due date (EDD) order if the original
deadlines are not restrictive. We solve this decision problem by answering the question:
what is the minimum number of machines that we need to get a feasible schedule? Or
equivalently, into how many feasible single-machine schedules do we have to partition
the jobs?

Given a subset of jobs, it is easy to find the corresponding single-machine schedule
by putting the jobs in ED-order. Therefore, we also call a subset of jobs that allows a
feasible single-machine schedule a machine schedule. The above question is then to find
the minimum number of mutually distinct machine schedules that contain all jobs. We
can formulate the above problem as an integer linear programming problem as follows.
Let S be the set containing all machine schedules. We introduce binary variables xs

(s = 1, . . . , |S|) that take value 1 if machine schedule s is selected and 0 otherwise. Each
machine schedule s is encoded by a vector as = (a1s, . . . , ans), where ajs = 1 if machine
schedule s contains job Jj and ajs = 0, otherwise. We have to minimize the number

4

of machine schedules that we select, such that each job is contained in one machine
schedule. Hence, we have to determine values xs that solve the problem

min
∑
s∈S

xs

subject to∑
s∈S

ajsxs = 1, for each j = 1, . . . , n, (1)

xs ∈ {0, 1}, for each s ∈ S. (2)

We obtain the linear programming relaxation by replacing conditions (2) by the con-
ditions xs ≥ 0 for all s ∈ S; we do not need to enforce the upper bound of 1 for xs,
since this follows immediately from the conditions (1). We solve the LP-relaxation using
column generation.

3 Column generation

We first solve the linear programming relaxation for a small initial subset of the columns.
Given the solution to the linear programming problem with the current set of variables,
it is well-known from the theory of linear programming (see for instance Bazaraa, Jarvis,
and Sherali (1990)) that the reduced cost of a variable xs is given by

c′s = cs −
n∑

j=1

λjajs = 1−
n∑

j=1

λjajs,

where λ1, . . . , λn are the dual multipliers corresponding to the constraints (1) of the
solution of the current LP. If for each variable xs we have that c′s ≥ 0, then the solution
with the current set of variables solves the linear programming problem with the complete
set of variables as well. To check whether this condition is fulfilled, we minimize the
reduced cost over all machine schedules. Therefore, we must pick the subset of the jobs
with maximum total dual multiplier value among all subsets of jobs that lead to a feasible
single-machine schedule, that is, we must solve the problem

max
s∈S

n∑
j=1

λjajs (3)

We use ĉ to denote the outcome value of this problem; hence, we have that the minimum
reduced cost, which we denote by c∗, is equal to

c∗ = 1− ĉ

This maximization problem is equivalent to the problem of minimizing the total weight of
the jobs that are not selected, which is known as the problem of minimizing the weighted

5

number of tardy jobs, where the weight of a job is equal to the dual multiplier λj and
the due date for each job is equal to the deadline d̄j. Note here that the constraint
that each weight is nonnegative in this scheduling problem is not restrictive, since a job
with negative weight will never be selected in the maximization problem. This problem,
which is denoted as 1||∑ wjUj in the three-field notation scheme, is solvable in O(n

∑
pj)

time by the dynamic programming algorithm of Lawler and Moore (1969). Hence, in
this situation we solve the pricing problem to optimality. If c∗ ≥ 0, then we have solved
the linear programming relaxation; otherwise, we add the variable with minimal reduced
cost value to the LP and solve it again. In this way, we solve the linear programming
relaxation to optimality. If the outcome value is more than m, then we know that the
answer to the decision problem is ‘no’; if the outcome value is no more than m, and
we have not identified a feasible solution yet that uses m (or fewer) machines, then we
solve the integer linear programming problem to optimality using the branch-and-bound
algorithm developed by Van den Akker, Hoogeveen, and Van de Velde (1999) for the
problem P ||∑ wjCj.

4 An intermediate lower bound

In the above implementation we have to apply column generation to the bitter end,
that is, until we have concluded that the linear programming relaxation has been solved
to optimality, before we have found a valid lower bound. Since we only need to know
whether the outcome value is more than m or no more than m, we are not interested in the
exact outcome value, as long as it allows us to decide the decision problem. Fortunately,
it is possible to compute an intermediate lower bound. This procedure works as follows
(see also Bazaraa, Jarvis, and Sherali (1990) for a general description of this principle).

Since c∗ is the outcome value of the pricing problem, we know that for each s ∈ S
we have

1 = cs = c′s +
n∑

j=1

λjajs ≥ c∗ +
n∑

j=1

λjajs

We use this expression to find a lower bound for the objective function of the linear
programming relaxation as follows

∑
s∈S

xs ≥
∑
s∈S

(c∗ +
n∑

j=1

λjajs)xs = c∗
∑
s∈S

xs +
∑
s∈S

n∑
j=1

λjajsxs =

c∗
∑
s∈S

xs +
n∑

j=1

λj

[∑
s∈S

ajsxs

]
= c∗

∑
s∈S

xs +
n∑

j=1

λj

where we use constraint (1). Therefore, we find that

(1− c∗)
∑
s∈S

xs ≥
n∑

j=1

λj

6

Since 1− c∗ = ĉ, which value is larger than 1, since c∗ < 0, we find that

∑
s∈S

xs ≥
n∑

j=1

λj/ĉ

This gives the desired intermediate lower bound, which we can use to decide whether m
machines are sufficient. If this lower bound has value smaller than or equal to m, then
we continue with solving the LP-relaxation.

Solving the problem P ||Lmax was relatively simple, since each machine schedule can
be represented by just listing the indices of the jobs that it contains, and since the
column generation problem can be solved by applying dynamic programming. We can
use the same methodology to solve any problem for which putting an upper bound
on the objective function results in a set of deadlines. Hence, we can solve the more
general P ||fmax problem in the same fashion, where fmax denotes maximum cost, which
is defined as maxj fj(Cj), where fj(t) is the cost function of job Jj, which is assumed to
be nondecreasing in t. In this case, the deadline d̄j for each job Jj (j = 1, . . . , n) is the
largest integral value of t such that fj(t) ≤ F . This value t can easily be computed if the
function fj(t) has an inverse, and we can find it using binary search otherwise. Since the
problem P |rj|Cmax is the mirror problem of P ||Lmax, we can solve this problem through
our basic approach as well.

5 Including release dates: P |rj|Lmax

In this section we assume that next to the deadlines, which may come from putting an
upper bound on Lmax, there are release dates. When we follow the basic approach that
we worked out for P ||Lmax, then we need to find a set of at most m machine schedules
that contain all jobs and that obey all release dates and deadlines. Since we have both
release dates and deadlines, we cannot easily define the corresponding machine schedule
if we know the set of jobs it consists of. Therefore, we represent a machine schedule s
by listing the completion times of the jobs that it contains next to the vector as, which
has ajs = 1 if job Jj is contained and ajs = 0, otherwise.

The problem of minimizing the number of machines that we need can then be for-
mulated as an integer linear programming problem, which is the same as the one in
Section 2. Hence, when we solve the problem using column generation, we get the same
pricing problem, but now we have to construct a machine schedule with maximum weight
that obeys the release dates and deadlines. This boils down to the well-known scheduling
problem 1|rj|

∑
wjUj, which is NP-hard in the strong sense. We do not want to solve

this to optimality, but we use local search to find an approximately optimal solution
to the pricing problem, which we use in our column generation; see Section 7 for a de-
scription. Note that the derivation of the intermediate lower bound is still valid, but
to compute it, we need the value ĉ, which is the optimum of the maximization problem
(3), and not just a lower bound on this, which we find using local search. To this end,
we compute an upper bound on or the exact value of the outcome of the maximization

7

problem in Section 8, which we can plug in for ĉ to find a feasible lower bound on the
number of machines that we need to feasibly accommodate all jobs. Before showing
the details of the local search and the upper bound, we first discuss how to tackle the
problem in which there are generalized precedence constraints as well.

6 The full problem

In this section, we assume that there are release dates, deadlines, and generalized prece-
dence constraints. We again translate the problem into one of minimizing the number
of machine schedules that are needed. Since two jobs that are connected through a
precedence constraint do not have to be executed by the same machine, we assume that
the machine schedules obey the release dates and deadlines, and we include a constraint
in the integer linear programming formulation for each of the generalized precedence
constraints. We define A1 as the arc set containing all pairs (i, j) such there exists a
precedence constraint of the form Cj − Ci ≥ qij; similarly, we define A2 and A3 as the
arc sets that contain an arc for each pair (i, j), for which Cj−Ci ≤ qij and Cj−Ci = qij,
respectively. Note that the intersection of A1 and A2 does not have to be empty. We
denote the union of A1, A2, and A3 by the multiset A. This leads to the following integer
linear programming formulation

min
∑
s∈S

xs

subject to∑
s∈S

ajsxs = 1, for each j = 1, . . . , n,

∑
s∈S

Cjsxs −
∑
s∈S

Cisxs ≥ qij for each (i, j) ∈ A1;

∑
s∈S

Cjsxs −
∑
s∈S

Cisxs ≤ qij for each (i, j) ∈ A2;

∑
s∈S

Cjsxs −
∑
s∈S

Cisxs = qij for each (i, j) ∈ A3;

xs ∈ {0, 1}, for each s ∈ S.

Here Cjs denotes the completion time of job Jj in column s, which we define to be equal
to 0 if Jj is not contained in s. If we want to solve the LP-relaxation by applying column
generation, then we find that the reduced cost of a machine schedule s is equal to

c′s = cs −
n∑

j=1

ajsλj −
n∑

j=1

 ∑
h∈Pj

δhjCjs −
∑
k∈Sj

δjkCjs

 .

8

Here the sets Pj and Sj are defined as the sets containing all predecessors and successors
of job Jj in A, respectively. Hence, we must solve the maximization problem

n∑
j=1

ajsλj +
n∑

j=1

 ∑
h∈Pj

δhjCjs −
∑
k∈Sj

δjkCjs

 .

over all machine schedules s ∈ S. We solve this problem approximately using local search
(see Section 7). Again, we can compute an intermediate lower bound. Let ĉ denote the
outcome value of the maximization problem, and let c∗ denote the minimum reduced
cost. Hence, we find that

cs ≥ c∗ +
n∑

j=1

ajsλj +
n∑

j=1

 ∑
h∈Pj

δhjCjs −
∑
k∈Sj

δjkCjs

 .

We plug this in, and use that

n∑
j=1

 ∑
h∈Pj

δhjCjsxs −
∑
k∈Sj

δjkCjsxs

 =
∑

(j,k)∈A

δjk [Cksxs − Cjsxs] .

We then obtain∑
s∈S

csxs ≥ c∗
∑
s∈S

xs +
n∑

j=1

λj

[∑
s∈S

ajsxs

]
+

∑
(j,k)∈A

δjk

[∑
s∈S

Cksxs − Cjsxs

]
≥

c∗
∑
s∈S

xs +
n∑

j=1

λj +
∑

(j,k)∈A

δjkqjk,

where we use that in case of a constraint with ≥ sign the dual multiplier has value ≥ 0,
whereas in case of a constraint with ≤ sign the dual multiplier is ≤ 0. Hence, we may
conclude that

∑
s∈S

xs ≥

 n∑
j=1

λj +
∑

(j,k)∈A

δjkqjk

 /ĉ

is an intermediate lower bound on the number of machines that we need.
If we get stuck, that is, the outcome of the LP-relaxation does not lead to ‘no’ on

the decision problem, then we assume for the time-being that the decision problem is
feasible, and we decrease the upper bound L on Lmax that we want to test. If we end up
with a value L for which we know that L − 1 yields an infeasible decision problem and
for which the LP-relaxation cannot decide whether the decision problem obtained by
putting the upper bound on Lmax equal to L is feasible, then we can apply branch-and-
bound. Here we use the branching strategy developed by Carlier (1987) of splitting the
execution interval [rj, d̄j] into two disjunct intervals [rj, Q] and [Q− pj + 1, d̄j], where Q
is some time point in the middle of the interval [rj, d̄j]. It turned out in our experiments,
however, that it is better to solve an integer linear programming formulation in which
we request that Lmax = L by using CPLEX (see Section 9).

9

7 Generating new columns by local search

In this section, we describe the local search algorithm that we have implemented to solve
the pricing problem, which is the problem of finding the feasible single-machine schedule
s that minimizes

1−
n∑

j=1

ajsλj −
n∑

j=1

 ∑
h∈Pj

δhjCjs −
∑
k∈Sj

δjkCjs

 . (4)

Solving the original pricing problem is equivalent to finding the single-machine schedule
that obeys the release dates and deadlines and maximizes

n∑
j=1

λjajs +
n∑

j=1

Cjs

 ∑
h∈Pj

δhj −
∑
k∈Sj

δjk

 . (5)

If we define Qj =
∑

h∈Pj
δhj −

∑
k∈Sj

δjk, then we have to maximize

n∑
j=1

λjajs +
n∑

j=1

QjCjs (6)

Looking at this formula we see that, if job Jj gets selected, then this Qj value determines
whether it is more profitable to execute the job as late as possible (Qj > 0) or as early
as possible (Qj < 0). In a preprocessing step, we can even determine the time interval
during which we must complete job Jj, if selected, since its total contribution to the
objective function would be negative otherwise, in which case it would have been better
not to select Jj.

In our local search we use a two-phase procedure. In the first phase, we determine
the jobs that are selected and the order in which they are executed. In the second phase,
we then determine the optimal set of completion times. We first discuss the procedure
used in the second phase. Since the values Qj are fixed, we can solve this subproblem in
linear time using the following shifting procedure, which resembles the procedure for a
similar problem given by Garey, Tarjan, and Wilfong (1988).

Procedure Optimize completion times

1. Consider the selected jobs in the given order and place all jobs as early as possible,
that is, each job is started at the maximum of its release date and the completion
time of its predecessor.

2. Look at the jobs in reversed order. Suppose that we are currently working on job
Jj. If Qj > 0, we will delay the job until either

(a) Job Jj reaches its deadline: we put Cj = d̄j.

10

(b) Job Jj hits its successor: Jj is glued to its successor Jk (which may already
have been glued to some of its successors) to form a new job Jnew with Qnew =
Qj + Qk and the new deadline is the deadline that is reached first when this
job Jnew is shifted towards the end of the schedule.

i. If Qnew > 0, we try to shift Jnew further to the right as described before.

ii. If Qnew ≤ 0, Jnew stays at this position.

Note that if and only if there is no placement possible for the given selection and order,
step (1) will be forced to end a job after its deadline. It is straightforward to show that
the above procedure finds the optimum set of completion times for the given selection
of jobs and the given order in which these are scheduled. Since in each step we either
take a job on an earlier position into consideration, or we glue together some jobs, we
are done after O(n) steps, where n is the number of jobs that have been selected. Since
each step can be implemented to run in constant time, the algorithm runs in linear time.

We now describe the first step of the local search procedure. We define a solution
in our local search as a selection of the jobs and the order in which they should be
processed, after which we find the value of this solution by solving the second step. Our
local search uses the following methods to exploit the solution space:

(i) Remove a random job from the set of selected jobs;

(ii) Add a random, yet unselected job at a random place in the order of selected jobs;

(iii) Replace a random job from the current selection by a random, yet unselected job;

(iv) Swap the positions of two random jobs in the set of selected jobs.

In our computational experiments, we added up to 50 columns with negative reduced
cost per iteration. We computed the intermediate lower bound this was conducted after
each

8 Time indexed formulation

The last item on the list is to find an upper bound for ĉ, which is defined as the outcome of
the maximization problem (5), such that we can compute the intermediate lower bound.
To this end, we formulate the problem as an integer linear programming problem using
a time-indexed formulation. Here we have variables xjt (j = 1, . . . , n; t = rj, . . . , d̄j−pj),
which get value 1 if job Jj is started at time t, and value 0 otherwise. The corresponding
cost coefficient cjt is easily determined. We need constraints to enforce that each job
is started at most once and that the machine executes at most one job at a time. The
corresponding ILP-formulation is

max
n∑

j=1

d̄j−pj∑
t=rj

cjtxjt

11

subject to

d̄j−pj∑
t=rj

xjt ≤ 1 ∀j = 1, . . . , n

n∑
j=1

t∑
s=t−pj+1

xjs ≤ 1 ∀t = 1, . . . , T

xjt ∈ {0, 1} ∀j = 1, . . . , n;∀t = rj, . . . , d̄j − pj

Here T denotes the largest time at which at least two jobs can be executed. In our
experiments, we computed this upper bound every 50 iterations, or when our local
search algorithm could not find any column with negative reduced cost. It is well known
(see for instance Sousa and Wolsey (1992) and Van den Akker (1994)) that solving the
LP-relaxation gives a very strong upper bound if each job must be executed. In our case,
however, we can (partly) select jobs. In some cases, the possibility of executing a job
partly decreases the quality of the upper bound, which disables the intermediate lower
bound to decide the feasibility problem. If in this situation our local search algorithm
cannot find a column with negative reduced cost, then we get stuck. To avoid this,
we then turn to the original ILP formulation of the pricing problem. We compute for
which value of the objective function of the pricing we find an intermediate lower bound
equal to m. We then ask our ILP solver CPLEX whether there exists a solution to the
pricing problem with this value or larger. If the answer to this decision problem is ‘no’,
then we can conclude that m machines are not enough; if the answer is ‘yes’, then we
add the corresponding column and continue with solving the LP-relaxation by column
generation. In general, we do not solve the ILP formulation of the pricing problem to
optimality. It turns out that the increased running time of solving the ILP instead of
the LP does not add significantly to the total running time, for the number of ILP solves
needed is limited.

9 Computational results

Compared methods

Since we could not find other results of reports trying to solve the problem P |rj, prec|Lmax,
we have compared our method to the rather straightforward and direct approach using
a time-indexed ILP formulation of this problem like the one stated in Section 8.

min L

subject to

d̄j−pj∑
t=rj

xjt = 1, for each j = 1, . . . , n;

12

n∑
j=1

t′∑
t=t′−pj+1

xjt′ ≤ m, for each t′ = 0, . . . , T ;

d̄j−pj∑
t=rj

xjtt + pj − dj ≤ L, for each j = 1, . . . , n;

d̄j−pj∑
t=rj

xjtt−
d̄i−pi∑
t=ri

xitt ≥ qij, for each (i, j) ∈ A1;

d̄j−pj∑
t=rj

xjtt−
d̄i−pi∑
t=ri

xitt ≤ qij, for each (i, j) ∈ A2;

d̄j−pj∑
t=rj

xjtt−
d̄i−pi∑
t=ri

xitt = qij, for each (i, j) ∈ A3;

xjt ∈ {0, 1}, for each j = 1, . . . , n and each t = 0, . . . , T.

To reduce the number of variables in the above formulation, we only allow L to be
smaller than or equal to a some value of L′ for which a feasible solution has been found
through some heuristic; this is achieved by using deadlines d̄j that are equal to dj + L′.
Moreover, we check the number of jobs that are being executed at time t′ only until we
reach the time point at which we are sure that no more than m jobs can be executed
simultaneously.

When we compared the column generation approach that we had originally in mind,
that is, with the branch-and-bound based on splitting the execution intervals, to the
method of using CPLEX to solve this direct ILP formulation, we noticed that these
methods have difficulty with exactly opposite problems. We noticed that for all our
testing instances the lower bound on Lmax found by the LP-relaxation coincided with
the optimal value of Lmax. The problem with our method is that it is often not able
to generate a set of columns in the LP-relaxation that form a solution to the original
ILP formulation. CPLEX has exactly the opposite problem and mostly has a very hard
time to conclude that a solution is optimal. Therefore, we tried to exploit the best of
both worlds in defining a hybrid method, using the very strong lower bound LB on Lmax

found by our column generation method and then let CPLEX find a solution with this
value (thus adding the constraint L = LB and ignoring a big part of the variables).

13

Number pj rj dj n m # prec
0 U[1,20] U[0,60] U[50,80] 40 4 20
1 U[1,20] U[0,40] U[30,60] 70 5 35
2 U[1,20] U[0,80] U[80,150] 80 7 30
3 U[1,20] U[0,40] U[60,80] 100 9 40
4 U[1,20] U[0,60] U[80,110] 120 9 50
5 U[1,20] U[0,60] U[80,110] 140 10 50
6 U[1,20] U[0,60] U[80,110] 160 10 50
7 U[1,20] U[0,60] U[80,110] 180 10 60
8 U[1,20] U[0,60] U[40,80] 60 3 30
9 U[1,20] U[0,60] U[40,80] 60 5 30
10 U[1,20] U[0,60] U[40,80] 60 7 30
11 U[1,20] U[0,60] U[50,80] 30 3 15
12 U[1,40] U[0,120] U[100,160] 30 3 15

Table 1: Test scenario’s

Results

In our experiments we compare our hybrid algorithm to the direct ILP solved by CPLEX.
We have applied both algorithms on 13 scenarios; for each scenario we ran five test
instances. The scenario’s are described in Table 1; n denotes the number of jobs, m the
number of machines, and # prec denotes the number of precedence constraints. The first
8 scenario’s are used to compare our hybrid algorithm to CPLEX. The scenario’s 8-10
are used to find out the influence of the number of machines, whereas in the last two the
influence of a doubling of the times value is measured. The results of the experiments
are summarized in Table 2. The results of the hybrid algorithm are denoted in the
row starting with Hi, where i denotes the number of the scenario; the results of CPLEX
(Version 9.0) for the ILP formulation appear in the row starting with Ci. The algorithms
were encoded in Java (Version 1.4.2 05) and the experiments were run on a Dell Optiplex
GX270 P4 2,8 Ghz computer. For each instance we let each algorithm run for at most
30 minutes. We keep track of the number of times out of 5 that an optimum was found
(‘# success’) and also the average and maximum amount of time in seconds needed for
the successful runs (‘Avg t’ and ‘Max t’). For the hybrid algorithm, we have gathered
some more information, by (‘#LB=OPT’) we denote the number of times that we could
prove that the lower bound equalled the optimum; also we denoted the proven difference
between the optimum and the lower bound (‘Max dif’). Next, we measured the average
and maximum time needed to find the lower bound for the successful runs (‘Avg t LB’
and ‘Max t LB’). Finally, by (‘Avg #ILP’ and ‘Max #ILP’), we denote the number of
times that we solved the ILP formulation of the pricing problem; this was conducted
after each series of 50 runs of the local search algorithm, since we wanted to find out
whether the intermediate lower bound could decide the problem already, and whenever

14

the local search algorithm could not find an improving column.

Avg t Max t #LB=OPT Max Avg t Max t Avg Max
success dif LB LB #ILP #ILP

H0 5 66 194 5 0 38 92 33 77
C0 2 27 53
H1 4 53 170 4 0 14 26 4 16
C1 3 30 37
H2 5 153 396 5 0 83 180 47 139
C2 3 231 645
H3 5 342 1109 5 0 110 174 14 33
C3 0 - -
H4 5 342 393 5 0 183 302 38 57
C4 0 - -
H5 5 452 689 5 0 228 269 25 41
C5 0 - -
H6 5 636 1045 5 0 354 415 29 37
C6 0 - -
H7 1 553 553 1 0 470 470 27 27
C7 0 - -
H8 3 199 296 3 0 158 266 40 98
C8 0 - -
H9 5 88 197 5 0 53 85 17 42
C9 2 80 351
H10 5 6 9 5 0 5 8 0 0
C10 5 2 3
H11 5 31 55 5 0 24 35 15 50
C11 5 92 180
H12 4 101 150 4 0 73 147 24 54
C12 0 - -

Table 2: Results of comparing CPLEX and the hybrid algorithm

We also tested the performance of our local search algorithm on the pricing problem
by comparing it to the method of only generating columns by solving the ILP of the
pricing problem. For the scenario’s 0, 5, 11 and 12 we ran 5 instances each. We deter-
mined the lower bound on these instances by using our local search algorithm and by
using the optimal solutions to the ILP only. The results are depicted in Table 3. Here
Hi denotes the hybrid algorithm run on scenario i, where Ii denotes the results obtained
on scenario i by the algorithm in which the ILP of the pricing algorithm. Scenario 0 is
used to show the difference for easy instances, where scenario 5 is used to investigate
difficult instances. Finally scenario’s 11 and 12 are used to investigate the influence of

15

the doubling of time values on the results.

success Average time Maximum time
H0 5 36 89
I0 5 108 230
H5 5 190 298
I5 0 - -

H11 5 28 48
I11 5 88 127
H12 5 51 91
I12 4 307 506

Table 3: Results of comparing LS to only ILP solving

Evaluation of our experiments

Our results clearly show our hybrid algorithm outperforms the method of letting CPLEX
solve the full ILP by far. CPLEX is not able to solve the full ILP in less than 30 minutes
for most of the tested instances, where our hybrid algorithm easily solves nearly all
instances. Looking at scenario 3 we already see that CPLEX fails to solve any of the 5
instances with 100 jobs and 9 machines within 30 minutes, where our hybrid algorithm
solves all instances we tested up to 160 jobs and 10 machines (scenarios 3-6).

Our results also show that for all instances we managed to solve, the derived lower
bound was equal to the optimal value. There are some instances for which we could not
check whether optimum and lower bound coincided, for we could not solve them within
30 minutes. It seems reasonable that in at least some of these cases this is due to the
fact that the lower bound was not strict. However, we never were able to show that the
lower bound differed from the optimum for any instance. Altogether we may draw the
conclusion that our lower bound is extremely strong.

If we compare the CPLEX algorithm with the second part of the hybrid algorithm,
then we see that specifying the optimum makes a lot of difference. If we for instance
stopped an instance of C5, then the best found upper bound so far in general was way off
the optimum. This may be explained partly by the reduction in size of the model, but it
is most certainly also due to the preprocessing steps performed by CPLEX. Therefore, we
may expect the technique of constraint satisfaction to work very well to find a solution
of value L′ if such solution exists.

The hardness of the problem seems to depend mostly on the number of jobs per
machine: if we look at scenarios 8-10 we can see that 20 jobs per machine gets really
difficult. However, doubling the time values (scenarios 11 and 12) adds a relatively
little increase to the average time needed to solve an instance, but one problem becomes
unsolvable for our hybrid algorithm. But also here our hybrid algorithm shows its merit
in comparison to the CPLEX method, for doubling the times makes CPLEX incapable

16

to solve any of the instances: it does not even find any solution for these instances, which
is of course due to the large increase in variables in the ILP model.

Table 2 already shows the quality of our local search algorithm since the number
of (costly) ILP solves of the pricing problem is limited and does not seem to depend
much on the size or difficulty of the problem. Table 3 further validates that our local
search algorithm performs very well, for without the local search algorithm easy instances
already take 3 times as much time to compute the lower bound. And difficult instances
even become unsolvable within 30 minutes, while our local search algorithm only needs
a little more than 3 minutes on average to compute the lower bound for these instances.
Next, doubling the time values also doubles the time needed to compute the lower bound,
where using only ILP solves quadruples the average time for 4 instances and is not able
to compute a lower bound for one instance within 30 minutes.

10 Conclusion and future research

We have described how the parallel machine scheduling with identical machines and a
minimax objective function can be solved by applying column generation, even in the
presence of complications like release dates and precedence constraints. We have tested
the algorithm on the objective of maximum lateness and with greater than or equal
precedence constraints only. We expect (but this is only a guess) that problems with
maximum cost are harder to solve, since changing the upper bound on the cost with a
small amount does not necessarily change the deadlines of all jobs. We expect that the
nature of the precedence constraints does not change the effectiveness of the algorithm.
It is an interesting, nontrivial step to extend this algorithm to the case with uniform, or
even unrelated machines.

The next step in the research will be to investigate the natural connection with
constraint satisfaction, which for instance can be used to tighten the release dates and
deadlines (see for instance the book by Baptiste, Le Pape, and Nuijten, 2001). This
looks a very promising direction to improve the effectiveness of the algorithm, as already
witnessed by the success of the preprocessing phase of the CPLEX algorithm.

References

[1] J.M. van den Akker (1994). LP-based solution methods for single-machine
scheduling problems, PhD Thesis, Eindhoven University of Technology.

[2] J.M. van den Akker, J.A. Hoogeveen, and S.L. Van de Velde (1999).
Parallel machine scheduling by column generation. Operations Research 47, 862–
872.

17

[3] J.M. van den Akker, J.A. Hoogeveen, and S.L. Van de Velde (2005).
Applying column generation to machine scheduling. G. Desaulniers, J. Desrosiers,
and M.M. Solomon (eds.). Column Generation, Springer, 303–330.

[4] P. Baptiste, C. Le Pape, and W. Nuijten (2001). Constraint-based schedul-
ing: Applying constraint programming to scheduling problems. Kluwer Academic
Publishers, Dordrecht, The Netherlands.

[5] M.S. Bazaraa, J.J. Jarvis, and H.D. Sherali (1990). Linear Programming
and Network Flows, Wiley, New York.

[6] P. Brucker and S. Knust (2000). A linear programming and constraint
propagation-based lower bound for the RCPSP. European Journal of Operational
Research 127, 355–362.

[7] P. Brucker and S. Knust (2002). Lower bounds for scheduling a single robot
in a job-shop environment. Annals of Operations Research 115, 147–172.

[8] P. Brucker and S. Knust (2003). Lower bounds for resource-constrained
project scheduling problems. European Journal of Operational Research 149, 302–
313.

[9] J. Carlier (1987). Scheduling jobs with release dates and tails on identical ma-
chines to minimize the makespan. European Journal of Operational Research 29,
298–306.

[10] Z.L. Chen and W.B. Powell (1999). Solving parallel machine scheduling prob-
lems by column generation. INFORMS Journal on Computing 11, 78–94.

[11] M.R. Garey, R.E. Tarjan, G.T. Wilfong (1988). One-processor schedul-
ing with symmetric earliness and tardiness penalties. Mathematics of Operations
Research 13, 330–348.

[12] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G.Rinnooy Kan
(1979). Optimization and approximation in deterministic sequencing and schedul-
ing: a survey. Annals of Discrete Mathematics 5, 287–326.

[13] J.R. Jackson (1955). Scheduling a production line to minimize maximum tardi-
ness, Research Report 43, Management Sciences Research Project, UCLA.

[14] E.L. Lawler and J.M. Moore (1969). A functional equation and its application
to resource allocation and sequencing problems. Management Science 16, 77–84.

[15] J.P. de Sousa and L.A. Wolsey (1992). A time-indexed formulation of non-
preemptive single-machine scheduling problems. Mathematical Programming 54,
353–367.

18

