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Abstract

A polyhedral terrain is the graph of a continuous piecewise linear function defined
over the triangles of a triangulation in the zy-plane. Two points on or above a terrain
are visible to each other if the line-of-sight does not intersect the space below the terrain.
In this paper, we look at three related visibility problems in terrains. Suppose we are
given a terrain T with n triangles and two regions Ry and Rs on T, i.e., two simply
connected subsets of at most m triangles. First, we present an algorithm that determines,
for any constant € > 0, within O(n**¢m) time and storage whether or not R; and Ry are
completely intervisible. We also give an O(m3n?) time algorithm to determine whether
every point in R; sees at least one point in Ry. Finally, we present an O(m?n?logn) time
algorithm to determine whether there exists a pair of points p € Ry and ¢ € R, such that
p and g see each other.

1 Introduction

Visibility computations in 3D, especially those with respect to terrain models, have their main
application in geographic information systems (GIS). Examples are computations regarding
horizon pollution and signal transmission, e.g., for mobile phone networks. Other application
areas in which visibility problems in 3D arise are computer graphics and game design. This
research area has received increasing attention from computational geometers over the last
two decades.

The most common terrain model is the polyhedral terrain, which is the graph of a contin-
uous piecewise linear function defined over the n triangles of a triangulation in the zy-plane.
Three surveys of a variety of visibility problems and their solutions are [8, 11, 28]. Interest in
algorithmic exploration of visibility in terrains is growing. For instance, there is a number of
recent articles that study how the shortest pair of watchtowers that guards a terrain can be
found efficiently [1, 3, 6].

Given a viewpoint on or above a terrain, the visibility map for that point is defined as
the subdivision of the terrain into visible and invisible connected components. The most
efficient and output sensitive algorithms to compute the visibility map of a terrain from
a given viewpoint use hidden surface removal techniques. Reif and Sen [26] developed an
O((n + k)lognloglogn) time algorithm, where k is the size of the resulting visibility map,
which can be quadratic. A few years later, Overmars, Katz and Sharir [20] reported an
O((na(n) + k)logn) time algorithm, where a(n) is the extremely slowly growing inverse
of the Ackermann—function.

In GIS, visibility problems on terrains are referred to as viewshed analysis. Efficient com-
putation of the viewshed, i.e., the visibility map from a given viewpoint, has been studied
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extensively over the years [14, 15, 18, 27, 29]. In addition, some studies addressed the relation
of the height of (points on) the terrain to visibility [18, 23]. The computation of visibility in GIS
is usually performed with heuristical algorithms and provides approximate solutions [13, 17].
Recently, a method of terrain simplification that aims to preserve inter-point visibility was
proposed [4]. In the algorithms community, the goal is to establish the computational com-
plexity of GIS-inspired visibility problems and the worst-case running times of exact solutions
are analyzed [5, 16]. This paper falls into the last category.

Previous algorithmic intervisibility studies only address either point-to-point or point-
to-region visibility. In contrast, we study region-to-region visibility. A region is a simply
connected subset of O(m) triangles of the terrain. We introduce three ways to define region-
to-region visibility: complete, semi-complete, and partial intervisibility. In the case of complete
intervisibility, every point in one region sees every point in the other region and vice versa.
Partial intervisibility signifies that there is a point in the one region that sees at least one
point in the other region. Semi-complete intervisibility is a hybrid: every point in one region
sees at least one point of the other region, and vice versa.

In this paper, we present three algorithms for the above mentioned problems. First, we
determine whether two regions on a terrain are completely intervisible within time and storage
bounds of O(n'*m). We show that this problem is 3suM-hard, so it is likely that our solution
is close to optimal. The second algorithm we present tests for semi-complete intervisibility
in O(m3®n?) time. Finally, we give an O(m?n?logn) time algorithm to determine partial
intervisibility.

The paper is structured as follows. In Section 2 we give definitions which we use in the
rest of the paper. In Sections 3, 4, and 5, we consider complete, semi-complete and partial
region intervisibility, respectively. In the last section, we summarize our results and give our
views on future research. A preliminary abstract of this paper appeared earlier, containing
only the results of Section 3.1 to 3.3 [30].

2 Preliminaries

In this section, we give several definitions regarding terrains and visibility that we use through-
out this paper.

We define a terrain T C R3 to be a triangulated polyhedral surface with n vertices
V(T) = {v1,v2, ...,v,}. Each vertex v; is specified by three real numbers (x;,y;, z;), which
are its cartesian coordinates. Furthermore, T' can be intersected by any vertical line at most
once. Therefore, T can also be viewed as the image of a piecewise linear function on R?. A
region is a simply connected subset of O(m) triangles of T'.

We denote the plane that contains a given triangle ¢ by P;. The half-space induced by
P, that contains the points above P; is denoted by P, and the other half-space by P, . The
set of points above the entire terrain 7 is denoted by 7", and the set of points below T is
denoted by T~. We assume that a triangle ¢ of a terrain 7' is the union of its interior int(t)
and its boundary Jt, i.e., t is a closed set. We denote the boundary of a region R by R and
the remainder of the points in R by int(R). The closure of a (possibly open) set S is the
union of S and 95, and is denoted by cl(S). Throughout this paper, we use O*(f(n,m)) as
a shorthand for the bound O(f(n,m) - n), where € > 0 is an arbitrarily small constant. The
O*(..)-notation supresses polylogarithmic factors of n, and factors n.

Given a terrain T in 3D and two points p and ¢, with p,q € TUT™T, we say that p sees q
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if the line segment pg does not intersect 7, i.e. grazing contact of the line-of-sight with the
terrain is permitted. Visibility is only defined on and above the terrain; so, if a point ¢ in the
interior of a triangle ¢ sees a point p, then p must lie in ¢l (P;L ).

Definition 1 Let R; and Ry be two regions on a terrain T. R1 and Ry are said to be com-
pletely intervisible if every point in Ri sees every point in Rs. Ry and Rs are partially
intervisible if there exists a point in Ry that sees at least one point in Ry. Furthermore, Ry is
said to weakly see Rs if every point in Ry sees at least some point in Ro. If Ri weakly sees
Ry and R weakly sees Ry, then R1 and Ry are semi-completely intervisible.

Observe that the above definitions are symmetric. Also note that if Ry and Rg have O(m)
straight line segments as edges, but do not consist of whole triangles of T', then we can refine
T such that both regions do consist of whole triangles, while we add no more than O(m)
triangles.

Throughout this paper, we assume that two regions R; and Rs on a terrain T' are given,
and we study complete, semi-complete, and partial intervisibility between R; and Rs in
Section 3, 4, and 5, respectively.

3 Complete Intervisibility

In this section, we look at complete visibility between two regions R; and Rs; in other words,
we answer the following question:

Problem COMPLETEINTERVISIBILITY
Does every point in R; see every point in Ry, and thus does every point in Ry see every point
in Ry as well?

First, we obtain some preliminary results. In Section 3.2, we describe the algorithm and
the data structures we use to test for complete intervisibility. Next, in Section 3.3, we derive
an upper bound for the problem by analyzing the running time and storage of our algorithm,
and we improve this bound by a time-memory trade-off. Finally, in Section 3.4, we prove that
COMPLETEINTERVISIBILITY is 3SUM-hard, which indicates that our algorithm is probably
close to optimal.

3.1 Geometric Properties

To get started, we study the geometry of the problem. First, we investigate the orientations of
R; and Ry in space, i.e., for the time being, we ignore that other parts of T than the regions
themselves can block visibility between R; and Ro; we remove this restriction later on. If R;
and Ro see each other completely, then all points in R; must lie in the intersection of the
positive half-spaces induced by the triangles of Ry, and vice versa. Formally, the following
condition has to be satisfied:

Vpl € Ry p1 € m Cl(Pt-g) A Vpg € Ry 1p2 € m Cl('Pt—’l—) (1)
to€R2 t1€R1
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Observe that if a point p in R; does not lie in the intersection of the half-spaces induced by
the triangles of Ry, then at least one of the triangles of Ry does not see p. Thus, condition (1) is
necessary for complete visibility between two regions on a terrain. Note that it is not sufficient.
We say that regions Ry and Ry are facing each other if condition (1) is satisfied. It is easy
to verify that condition (1) need only be satisfied for the vertices of R; and Rs, in order for
it to be satisfied for all points in the two regions, because (), cp, cl(Ph) and N, cp, cL(P)
both are convex. Only when two regions Ry and Ry on a terrain T are facing each other,
we have to consider the rest of the terrain as well to determine complete intervisibility. The
visibility between points from R; and R now depends on the rest of the triangles of T, i.e.,
those should not block the view.

Lemma 2 Two regions Ry and Ry on a terrain T are completely intervisible if and only if

1. Ry and Ry are facing each other, and
2. ORy and ORy are completely intervisible.

PRrROOF. The necessity of the first condition follows from the discussion above. The ne-
cessity of the second condition is easily understood. Because a region is a closed set, the
boundary is a subset of it, and hence the boundaries of R; and Ry have to see each other if
the entire regions see each other.

To prove the sufficiency of the two conditions, we assume that 1. and 2. are satisfied,
but for the sake of contradiction, we assume that there exist two points p € int(R;) and
g € int(Rg) that do not see each other, and show that this implies that there are points
p' € ORy and ¢’ € ORy that are not mutually visible.

Consider the vertical plane p containing p and ¢. Let T), = T'N u be the cross section of
the terrain induced by p; this is a lower-dimensional terrain itself, see Figure 1.

Figure 1: Illustration of the proof of Lemma 2.

The set R; N v consists of one or more connected components on 7),, and p lies in the
interior of one of them; the same holds for Ry and g. We only need to consider the visibility
in T}, to show that there exist a point p’ € T, N OR; and a point ¢’ € T), N IRy that do not
see each other. Because the two triangles on which p and ¢ lie are facing each other, the line
segment pg does not intersect 7, in an e-neighborhood of p, nor in an e-neighborhood of g.
Let r be the point on T, closest to p that is in the closure of T}, N pq. If p and r are in the
same connected component of Ry Ny, then the triangle containing r is not facing the triangle
containing ¢, which contradicts the assumption. Otherwise, there exists a point p’ € OR; N T},
that lies between p and 7 on T}, such that p’ cannot see q. We repeat this argument with ¢
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and p/, which gives us a point ¢’ € 9Ry NT), that cannot see p’. Since p’ € Ry and ¢’ € IRy,
we have a contradiction, which proves the lemma.

Note that checking complete intervisibility only between the vertices of OR; and the
vertices of Ry is not sufficient, because a skinny spike in the terrain can block two boundary
edges from being completely intervisible, while their endpoints can indeed see each other.

Definition 3 Let R; and Ry be two regions on a terrain T. The visibility triangle set VT'S
is defined to be the set containing all triangles that are induced by either (i) a vertexr of ORy
and an edge of ORa, or (ii) an edge of Ry and a vertex of OR.

Because grazing contact with the terrain is permitted, intervisibility between dR; and
ORy (and thus between R; and Ry is blocked if and only if there is a triangle ¢ € VTS for
which the intersection ¢ N7~ is nonempty. Now the name wvisibility triangles becomes clear: if
all triangles in VTS are free from intersections with 7', then there is complete intervisibility
between R; and Rsy. The following lemma holds for an arbitrary triangle with its vertices in
V(T), so it holds for the triangles in VTS in particular.

Lemma 4 Let T be a terrain, and let t be an arbitrary triangle with its vertices in V(T).
The intersection t T~ is nonempty if and only if at least one of the following two situations
oceurs:

1. a wvertex of T lies strictly above t, or

2. an edge of T lies strictly above an edge of t.

PROOF. First, we observe that if tN7T~ is nonempty, then there cannot be a single terrain
triangle that lies above every point in ¢, since the vertices of ¢ are vertices of T', and every
vertical line intersects T' at most once.

Necessity: Suppose the intersection ¢ N1~ is nonempty, and let p be an arbitrary point in
t NT~. There is a unique point g € T that lies vertically above p; let ¢’ be the triangle of T
that contains ¢. Because a triangle is a closed set, we have that a vertex of ¢’ (and of T') lies
strictly above ¢, that an edge of t' (and of T) lies strictly above an edge of ¢, or both.

Sufficiency: If no vertex or edge of T' is strictly above t, there are two situations: ¢ is

completely contained in 7', or ¢ intersects both T' and T". In both cases, ¢ does not intersect
T.

3.2 Algorithm

In this section, we describe the algorithm to determine complete visibility between two regions
in a terrain, and the data structures it uses. Using the results from Section 3.1, this algorithm
can be described as follows:

Algorithm CoOMPUTE_COMPLETE_INTERVISIBILITY
INPUT: A terrain 7" and two regions Ry and Ry on T'.
OoUTPUT: True if Ry and Ry are completely intervisible, False otherwise.

1. Compute whether R; and Ry satisfy condition (1), i.e., whether they are facing each
other; return False if they are not.
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2. Construct the set VTS as defined in Definition 3.
3. Determine whether OR; and 0Ry are intervisible in two steps:

(a) Test whether there is a vertex of T that lies above some triangle of VTS.

(b) Test whether there is an edge of T' that lies above some edge of a triangle in VTS.
4. If both step 3(a) and 3(b) yield False, return True. Otherwise, return False.

In the first step, we determine whether the two regions are facing each other. For each
region R;, i = 1,2, we compute [),c R, P;7, which is the intersection of O(m) half-spaces
and can be computed in O(mlogm) time [10]. Next, we check for all O(m) vertices of the
other region whether they are contained in C; = cl([;cp, P;5). Since C; is unbounded in the
z-direction, point location for the 3D volume C; corresponds to planar point location with
respect to its zy-projection. Thus, we can preprocess C; for point location in O(mlogm) time
and then query with O(m) points in O(log m) time per query [10]. In conclusion, we can check
if two regions on a terrain are facing each other in O(mlogm) time.

Constructing VTS can trivially be done in O(m?) time. For the third step of the algorithm
(as a whole), we have to check for intersections between a set of O(n) terrain triangles and
a set of O(m?) triangles induced by the edges and vertices of 9R; and dRy. In a brute-force
algorithm, this leads to O(nm?) time. However, we can do better if we perform steps 3(a)
and 3(b) separately.

Step 3(a): No terrain vertex above a visibility triangle

To reduce the time complexity, it is helpful to take a different look at the geometry. For a
given vertex v of the terrain, we want to check whether there is any triangle in VTS that lies
strictly below v. Obviously, we want to limit the number of triangles to test against v.

If v lies vertically above a triangle ¢ in VTS, then the projection of v onto the xy-plane lies
in the projection of t. The set VTS contains O(m?) non-disjoint triangles; we want to retrieve
exactly those triangles S(v) C VTS that contain the projection of v in their projections. Thus,
the remaining question is: does v lie below all triangles of S(v)? This question can also be
simplified by looking at the geometry. If a point p in 3D does not lie below all triangles in a
set S(v), it lies outside of the polyhedron (,cg,) Py -

To find the triangles from VTS that contain a given point in their projections on the
ry-plane, we construct a partition tree of O(m?) size [10]. Given a query point p, it returns
O*(m) canonical subsets of triangles from VTS that contain p in their projection. We give
every node p in the partition tree an associated data structure of linear complexity in the
cardinality of the canonical subset c(u). This structure is used to determine whether the
query point lies in the intersection of the half-spaces induced by all triangles in ¢(u). This
query can be answered in O(logm) time after O(mlogm) preprocessing time, by using the
Dobkin—Kirkpatrick hierarchy [12, 24].

The construction time for a partition tree of size O(m?) is O(m?T€) for any constant
e > 0 [10]. Fortunately, the space required for the partition tree’s associated structure does
not increase the total storage space much, in particular, nothing at all in O*-notation. The
total data structure requires O(m?logm) space. The construction time is O*(m?) and the
total query time is O(n) times O*(m), which is O*(mn).
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Step 3(b): No terrain edge above a visibility edge

We want to limit the number of terrain edges against which we check the visibility edges. We
project the terrain edges onto the xy-plane and for every edge from VTS, we want to find
the terrain edges whose projections intersect the projection of the query edge. Note that no
edge projects to a single point. When edges of the terrain and the query edge intersect in the
projection, we can treat both these terrain edges and the query edge as full lines in 3D. The
objective now is to find out whether the line supporting the query edge lies above all lines
supporting the selected terrain edges.

The data structure that we use stores the projections of the terrain edges onto the zy-
plane in a cutting tree of size O(n?) [10]. An ordinary cutting tree stores unbounded lines and
given a query point, it returns those lines that lie above the query point. Because we want
to query with a line segment s, and would like to retrieve those line segments that intersect
54, we create a four-level cutting tree of the same size. With the first two levels, we retrieve
those line segments whose supporting lines lie above one of the endpoints of s, and below the
other. To narrow this set of line segments down to the ones that actually intersect with s,
we add another two levels in the cutting tree; these are cutting trees on the dual arrangement
of the endpoints of line segments that appear in canonical subsets of the first two levels.

We perform at most m? queries on this tree with edges from VTS, each taking O(logn)
query time. The query returns all intersecting terrain edges in O(logn) canonical subsets. We
give each node p in the cutting tree an associated structure of size O(n?*€) for the canonical
subset ¢(u) of edges as the supporting lines in space [7]. Consequently, we can decide whether
a query line lies above all lines in the canonical subset in O(log n) query time.

The storage required for the cutting tree and its associated structure is O(n?*€), and the
total data structure can be constructed in O*(n?) time. The total query time is O(m?logn),
or O*(m?), and thus the total time complexity of step 3(b) is O*(n? + m?) = O*(n?).

3.3 Running Time Analysis

So far, we have achieved an upper bound of O*(n?) for problem COMPLETEINTERVISIBILITY,
which improves the O(nm?) time of a brute-force algorithm. In Table 1, we summarize the
time and storage complexities for the partition tree with its associated structures (PT) and
the cutting tree with its associated structures (CT).

‘ ‘ Preprocessing ‘ Total queries ‘ Storage ‘
PT | O*(m?) O*(mn) O(m?)
CT | O*(n? O*(m?) O*(n?)

Table 1: Summary of time and storage complexities

Now we perform a trade-off between the storage and query time to improve the upper
bound to O*(mn) time.

In step 3(b), we determined whether any terrain edge lies above any visibility edge by
constructing an O*(n?) size cutting tree with an associated structure for lines in space on
the terrain edges. To make the time complexity more dependent on m than on n, we create
k = n/m groups of terrain edges of size n/k each and build k of the augmented cutting trees
described above, one for each group. This implies that every structure has size O*(Z—;) =
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O*(m?) and the total complexity of all structures is O*("%) = O*(nm). If we query these
k structures with a single visibility edge, this takes O(klog ) time, so for m? queries, this
takes O(m?klog %) = O*(nm) time. This is the same time complexity as we need to perform
step 3(a), so there is no need to improve that step as well (even though we could perform a
time-memory trade-off there to achieve a running time of O*(n%m% +n)).

By putting the results of Sections 3.3 to 3.4 together, we get the following result.

Theorem 5 Let T be a terrain, and let Ry and Ry be two regions on T, with O(m) triangles
each. Complete intervisibility of Ry and Rg can be determined in O*(nm) time and space.

3.4 3suM-hardness

In this section, we prove that COMPLETEINTERVISIBILITY is at least as difficult as the well-
known problem 3suM.

Problem 3sum
Given a set S of m integers, are there three elements of .S that add up to 07

The best known algorithm for this problem takes ©(m?) time. If a problem is at least
as difficult to solve as 3SUM, we say that it is 3suM-hard, which implies that there is little
hope of finding a subquadratic time algorithm for that problem. In [19], a large collection of
problems is described, with proofs that all of these problems are 3sum-hard. One of these
problems is GEOMBASE.

Problem GEOMBASE [19]

Given a set of m points S with integer coordinates on three horizontal lines y = 0, y = 1, and
y = 2 in the plane, determine whether there exists a non-horizontal line containing three of
the points.

We give a reduction from GEOMBASE to our problem and thus prove that COMPLETEIN-
TERVISIBILITY is 3sUM-hard. To achieve this, we first assume that grazing contact of the
line-of-sight between two points is not permitted; later, we show how we can relax this re-
striction to obtain the reduction in our original setting. Assume we are given an instance S of
the problem GEOMBASE. We transform this into an instance of COMPLETEINTERVISIBILITY,
such that the answer we obtain by solving COMPLETEINTERVISIBILITY is the same as the
answer we would have obtained had we solved GEOMBASE directly. Let A be those points of
S that lie on the line y = 0, let B be those on the line y = 1, and C those on y = 2. The aim
is to create a terrain T' in which there is no complete intervisibility if and only if there exists
a line through a point in A, one in B and one in C.

We construct T' by placing two copies of a steep slope opposite each other. We place the
two regions R; and Ry on these slopes; the regions are both similar, namely a rectangular
shape with a number of small protrusions at the bottom. This construction is displayed in
Figure 2. The vertices of the protrusions of both R; and Rs are located at the same height
value, say z = 1. The vertices of R; are located at the z- and y-coordinates of the O(m) points
in A and the vertices of Ry at the z- and y-coordinates of the O(m) points in C. In between
R; and Ry, we place a number of skinny peaks with their summits at the - and y-coordinates
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of the O(m) points in B and height z = 1. Finally, we connect all subconstructions such that
they form a terrain.

y =1

Figure 2: Reduction of GEOMBASE to COMPLETEINTERVISIBILITY.

Now it is clear that if and only if the answer to GEOMBASE is “no”, the answer to
COMPLETEINTERVISIBILITY is “yes”, i.e., the regions Ry and Ry are completely intervisible.
The reduction takes O(nlogn) time, since we connect everything to obtain a single terrain,
which involves triangulating the different parts of the construction. Because we did not allow
grazing contact of the line-of-sight in this reduction, we have to adjust our construction such
that it also is valid if grazing contact is permitted. To achieve this, we symbolically say that the
summits of the peaks that correspond to the points in B are infinitesimally higher whenever
we compare them in height to another feature of the terrain. Therefore, we have a valid
reduction from GEOMBASE and our problem is 3suM-hard. Since ©(n) is also an (obvious)
lower bound for COMPLETEINTERVISIBILITY, we conclude that it is unlikely that an optimal
algorithm to determine complete region intervisibility has a running time of o(m? + n).

4 Semi-Complete Intervisibility

We next present an algorithm to determine whether two regions R; and Ry are semi-completely
intervisible. Semi-complete intervisibility is much less restricted than complete intervisibility.
For example, the triangles in the set VTS (from Definition 3) can be intersected by the ter-
rain many times while the two region boundaries are still semi-completely intervisible. We
expect an algorithm to determine semi-complete intervisibility to be more complex and time-
consuming than an algorithm to determine complete intervisibility. Furthermore, contrary to
the approach of the previous section, computing only intervisibility between the boundaries
of the two regions is not sufficient; see Figure 3(a) for a schematic display of the zy-projection
of a counterexample, and Figure 3(b) for a cross section. Let the flat disk (red) be the first
region, and the upper ridge (blue) the second region. While the boundaries of the two regions
are semi-completely intervisible, even completely, there is a point in the interior of the disk
that does not see any point on the ridge.
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(a) (b)

Figure 3: The boundaries of two regions can be semi-completely intervisible, while the regions
themselves are not semi-completely intervisible.

4.1 Aspect Graph Approach

To start, we compute whether every point in R; sees at least some point in Rs, i.e., we
compute whether Rs is weakly visible from every point in R;. The other way around can
be computed analogously. To obtain some more intuition for the problem at hand, we first
describe a brute-force approach to compute whether Ry is weakly visible from every point in
Ry. In Section 4.2, we significantly improve on the O(mn®logn) brute-force time bound.

The aspect graph, first proposed by Koenderink and van Doorn [22], is an important
structure for studying visibility in 3D. For our setting of a polyhedral terrain, this structure
is defined as the graph in which the nodes represent the set of combinatorially different views
of the terrain, and the arcs represent the transitions between these views due to continuous
movement of the viewpoint. In this definition, a view refers to a view of the terrain such that
an infinitesimal movement will yield a view of the object that has the same combinatorial
structure. We do not use the aspect graph itself, but the subdivision of space it induces.
This subdivision of R? consists of cells in which all points in the same cell have the same
view combinatorially. A shared boundary between two cells indicates a transition between
the views of the corresponding cells. Although this is a slightly different structure than the
original graph from [22], we call it an aspect graph in this paper.

There are O(n?) transitions between different views of the terrain, and these can be
subdivided into three types: O(n3) transitions are defined by three edges of the terrain, O(n?)
transitions are defined by a vertex and an edge, and O(n) are defined by a single triangle [9].
In Figure 4 these three types are illustrated.

All of these transitions define either a plane or an algebraic surface of constant degree. If
the viewpoint is on one side of such a plane or surface, the view is combinatorially different
than if the viewpoint is on the other side. Because grazing contact of the line-of-sight with
the terrain is allowed, the boundary between two cells has the same combinatorial view as the
cell that ‘sees the most’ of the two. These O(n?) planes and surfaces and their intersections
subdivide space into cells and thus the aspect graph has complexity O(n?). However, in [2], the
complexity of this structure for a polyhedral terrain is proven to be O(n®*¢). If we compute
the aspect graph of the terrain on Ry, we get a partition of R; into a finite set of aspect graph
cells inside which all points have the same view of the terrain. We compute the intersection of
the visibility map and Rs for one sample point in each such cell. This intersection is nonempty
for each cell if and only if Ry is weakly visible from Rj.
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—y

Figure 4: The three types of transitions between different views.

Because the O(n?®) planes and surfaces partition a single triangle into O(n®) cells, we
have O(n®) sample points for every triangle of Ry. For every sample point, we can compute
the visibility map of the terrain in O(n?logn) worst-case time [20], so for a region of O(m)
triangles, the total time complexity will be O(mn®logn). In the next section, we improve on
this bound by taking a different approach.

4.2 Using the Edge Visibility Map

In this section, we take a conceptually different look at semi-complete intervisibility between
two regions. In general, visibility and illumination problems are closely related; therefore, let
us assume that every point in Ry emits light, and then consider which points on the terrain,
and in particular on R;, are illuminated. These are exactly the points that see at least one
point in Rs. In the terminology of Definition 1, we now have that Ry weakly sees Ry if and only
if Ry is completely illuminated. The following observation follows directly from the property
that every vertical line intersects a terrain at most once.

Observation 6 Let p be a point and R a region, both on a terrain T. If p is illuminated by
some point in R, it is illuminated by a point on an edge of one of the triangles in R.

This observation gives us a new way to test for semi-complete intervisibility between R;
and Ry. First, for every illuminating edge of Rs, we compute the subdivision of T into illumi-
nated and shadow points. Next, we overlay these O(m) subdivisions. Finally, we determine
whether or not R is completely illuminated.

It has recently been shown that an illuminating edge induces a shadow map of complex-
ity ©(n?) onto another terrain edge and a shadow map of complexity ©(n*) onto a terrain
triangle [21]. The computation of these shadows takes O(n?logn) and O(n*logn) time, re-
spectively. Note that the shadow map of a point light source is equivalent to the visibility
map of that point acting as a viewpoint.

Fortunately, we do not need to overlay all the separate shadow maps explicitly, which
would very time-consuming. The O(n*logn) time algorithm that computes the shadow map
of a single illuminating edge e onto a triangle ¢ of 7" first computes an arrangement on ¢ that is
induced by O(n?) critical surfaces and then labels each cell of this arrangement as being either
illuminated or in the shadow [21]. A multi-edge shadow map for O(m) illuminating edges can
be computed in the same way, with the difference that there now are O(mn?) critical surfaces
that induce the arrangement, which thus has complexity O(m?n*). This arrangement A can
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be computed in O(m?n?*) randomized expected time [25]. If we compute the O(m) individual
shadow maps in advance, in O(mn*logn) time, we can walk through each of these maps and
simultaneously label the cells in A that are contained in an illuminated cell of one of the
shadow maps as illuminated. This labeling can be performed in O(mn*logn) time, since we
walk through O(m) arrangements of complexity O(n?). Thus, we can compute which parts of
a terrain triangle ¢ are illuminated by the edges of the triangles in Ry in O(m?n*) time, and
for the entire terrain in O(m3n?*) time. Once we have this information, it is easy to determine
whether Rs is completely illuminated within the same time bound.

Theorem 7 Let T be a terrain, and let Ry and Ry be two regions on T, with O(m) triangles
each. Semi-complete intervisibility of Ry and Ry can be determined in O(m3n?) time.

5 Partial Intervisibility

Finally, we consider the problem of determining whether there exists a point in region R
that sees any point in Ro. The proof of the following lemma is straightforward and in fact
very similar to the proof of Lemma 2.

Lemma 8 Two regions Ry and Ro on a terrain are partially intervisible if and only if there
exrists a point p on an edge of a triangle in Ry and a point q¢ on an edge of a triangle in Ro
such that p sees q.

PROOF. The if-part of the proof is immediate from Definition 1.

For the only if-part, let p be a point in R; and let ¢ be a point in R, such that p sees ¢q. Let
p be the vertical plane through the line segment pg, and let T}, = T'N p be the cross section
of T induced by p. We only need to consider the visibility in 7}, to show that there exist a
point v on an edge of R; and a point w on an edge of Ry that see each other. Because T},
is a lower-dimensional terrain, we can rotate the ray emanating from p and directed towards
g upwards around p, until we hit a vertex v of T),, such that v and p are mutually visible.
Note that v is a point on an edge of Ro; recall that Ry consists of complete triangles of T
We repeat this process by rotating the ray from v towards p upwards, to find a vertex w of
T, such that v sees w. Now we have that w is a point on an edge of Ry, and the fact that v
and w see each other completes the proof.

Using the same concept of illumination instead of visibility as in the previous section,
this problem turns out to be quite easy to tackle. It is easy to verify that if the edges of Ry
act as light sources, and R; and Ry are partially intervisible, then some edge in Ro contains
an illuminated point. As we showed in the previous section, the shadow map induced by an
illuminating edge onto another edge has complexity ©(n?) and can be computed in O(n?logn)
time. Since the shadow map is a one-dimensional structure, there is no need to actually overlay
m shadow maps on every edge; we simply compute them sequentially and stop as soon as
we find an illuminated point. In particular, we run the O(n?logn) time edge-to-edge shadow
map algorithm of [21] for all O(m?) different edge pairs of one edge in Ry and one in Ry. This
gives us the following theorem:

Theorem 9 Let T be a terrain, and let Ry and Ry be two regions on T, with O(m) triangles
each. Partial intervisibility of Ry and Ry can be determined in O(m?n?logn) time.
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6 Concluding Remarks

In this paper, we considered three problems related to the intervisibility of two regions of
at most m triangles on a terrain with n triangles. We first developed an algorithm that, for
any € > 0, determines in O(n'**m) time whether the two regions in a terrain are completely
intervisible, whereas a brute-force algorithm would require O(m?n) time. The algorithm uses
a partition tree and a cutting tree, both with associated structures, leading to a total of
O*(mn) storage. Moreover, we proved that computing complete visibility between two regions
is 3suM-hard.

Secondly, we developed an algorithm to determine in O(m>n*) time whether two regions
in a terrain are semi-completely intervisible. The algorithm involves computing the shadow
maps of the edges of the first region onto the second region, and checks whether the second
region is completely illuminated (and vice versa). Finally, we presented a similar algorithm
to determine partial region intervisibility, which runs in O(m?n?logn) time.

It should be noted that within the same time bounds, the different kinds of intervisibility
between a constant number of regions can be determined, because every extra region requires
a constant number of repetitions of the algorithm which does not increase the execution time
asymptotically.

A number of other intervisibility problems are still unexplored, especially those that con-
cern partial visibility. A possible topic for future research is partial visibility from a watchtower
of, for example, a path through a terrain or a collection of other watchtowers.
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