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Abstract. The problem of type correctness of a functional program can be formulated as
a constraint satisfaction problem. Detecting that the set of constraints is inconsistent is not
enough: to improve programming efficiency, finding the constraints that are most likely to be
responsible for the inconsistency is crucial. Being able to indicate how the source program
should be changed to resolve the inconsistency is yet another step forward.
First, a collection of constraints is represented as a type graph. Then we propose heuristics
that work on the type graph data structure, each of which may suggest reasons for inconsist-
encies by selecting a constraint. Some of the more domain specific heuristics can even show
how the program may be corrected, by considering local reformulation of the constraint
satisfaction problem.

Keywords: type inferencing, type graph, constraints, heuristics, error messages, error re-
covery



1 Introduction

Over the last few years we have developed the Top framework for constraint-based type inferen-
cing [2], and applied it to the development of a compiler for a substantial part of the higher-order
functional programming language Haskell, called Helium [6]. The main focus of the system is to
improve the error messages that are returned by the compiler on detecting a type error, which is
essential for teaching students to program Haskell. Our proposed solution consists of the following
steps: step one is to formulate type correctness as the satisfiability of a set of constraints. These
constraints are constructed during a simple traversal of the abstract syntax tree of the program.
The problem that remains is that the order in which constraints are considered strongly influences
the constraints that we find to be inconsistent with the others. In existing compilers (which tend
to solve constraints as they go), this has the disadvantage that a bias exists for finding errors
towards the end of the program, even if there is more evidence to the contrary.

We deal with this problem by considering a collection of constraints at the time. We construct
a type graph from (possibly inconsistent) sets of constraints. We have developed a collection
of heuristics that work on this type graph to suggest which constraints are most likely to be
responsible for the error. The more language specific heuristics of these, also suggest how to
improve the program, e.g., by telling the programmer he should interchange certain function
arguments. These heuristics consider a local reformulation of the original constraint set, to see
whether certain slight changes to the source code would resolve the inconsistency.

Many of the heuristics are tried in parallel, and a voting mechanism decides which constraints
will be blamed for the inconsistency. These constraints are then removed from the type graph, and
each of them results in a type error message reported back to the programmer.

Our choice for specifying the type inference problem using constraints has given us the usual
benefit of decoupling specification and computing a solution, which tends to simplify both to a
large extent. Furthermore, the fact that many program analyses share the same types of constraints
allows us to reuse our solvers. Finally, the separation also allowed us to formulate user-defined
specialized type rules, which are the subject of another paper [5].

In outline, our paper proceeds as follows. In the next section we set the scene and introduce
the constraints we are going to use. Then we introduce type graphs, our main data structure for
solving sets of constraints. Finally, we consider the heuristics we have developed in turn. The final
section concludes.

2 Constraints

Our type language has monomorphic types (τ) and type schemes (σ). Type schemes are used
to capture polymorphic types such as ∀a.a → a, which is the type of the identity function. The
monomorphic types are type variables (v1, v2, . . .), type constants (the primitive types like Int ,
but also type constructors, like → for function types), or the application of a type to another.
For example, the type of functions from integers to booleans is written ((→ Int)Bool . Type
application is left-associative, and we omit parentheses. We often write the function constructor
→ infix, resulting in Int → Bool . We assume the types are well-kinded: types like Int Bool and
→ Int do not occur.

The Hindley-Milner type system is based on performing unification of types. These can be
readily expressed using equality constraints on types: τ1 ≡ τ2. Although equality constraints suffice
for dealing with polymorphism, there are good reasons to have special constraints for modeling it.
For the expression

let f = λx y → if x then 0 else x
in (f True False, f 2 3)

we generate a set of constraints Cf for the definition of f , which, for example, tells us that x
should be of type Bool , because of its use in the condition, but also that x should be of type Int ,
because the types of the two branches should be equal. The lack of constraints on y tells us that
f is in fact polymorphic in y: an argument of any type will do.



A simple way to handle this is to duplicate the set of constraints Cf and to solve these separately
for each use of f : the soundness of this method is a consequence of the semantics of the let, which
is that each use of f may be replaced by a copy of its definition. This, however, has consequences
for the type error messages: the set Cf is inconsistent, which means that the inconsistency is
duplicated as well. And even if Cf is consistent, then we have just doubled the amount of work.

This led Damas and Milner to come up with algorithm W which essentially first computes the
type of f (generalizing it appropriately to a type scheme), and only then continues with the body,
giving each use of f its own instance [1].

Although we do not to go into exact details, we would like to sketch how type inference on a
program as a whole proceeds. Because we first want to generate constraints, we use a special kind
of implicit instance constraint which essentially administers the fact that the uses of f in the body
of the let should be instances of the type which will at some point be found for f . To make this
work, we insist that the constraints in Cf are solved before constraints arising from the body are
considered: first Cf will be made consistent, resulting in a (polymorphic) type for f . This type
will be propagated into the constraints generated for the body of the let, which allows us at this
point to transform the implicit instance constraints into equality constraints, after which we can
make these consistent as well. For more details on the special types of constraints we use, and the
specific type rules necessary to inference Haskell, the reader is referred to [4].

3 Type graphs

For constructing high quality type error messages, it is crucial to have as much information as pos-
sible available. Type graphs store information about each unification, and in our implementation
the constraints themselves additionally keep track of a lot of information, e.g., location inform-
ation that refers back to the location in the source code from which the constraint arose. Type
graphs prevent the introduction of bias, because a set of equality constraints can be solved ’at
once’, which is possible because type graphs can represent inconsistent sets of constraints. This
gives us strictly more information in comparison to more traditional approaches, that compute
types on the fly: after unification of two types, the fact that this unification has taken place and
which types were unified is lost.

Of course, constructing and inspecting a type graph involves additional overhead, which slows
down the inference process. In a practical setting (teaching Haskell to students), we have exper-
ienced that the extra time spent on type inference does not hinder programming productivity.
Besides, accurate error messages reduce the time programmers have to spend correcting their
mistakes.

The type graphs presented in this paper resemble the path graphs that were proposed by
Port [10], and which can be used to find the cause of non-unifiability for a set of equations. However,
we follow a more effective approach in dealing with derived equalities (i.e., equalities obtained by
decomposing terms, and by taking the transitive closure). Besides, we have a special interest in
type inference and type error messages, and formulate special-purpose heuristics. McAdam has
also used graphs to represent type information [8]. In his case parts of the graph are duplicated
to handle let-constructs.

Constructing a type graph Constructing a type graph for a given set of constraints is done
by considering each constraint in the set in turn. We shall use the following constraint set as
illustration.

{ v1
#0
≡ F v0 v0 , v1

#1
≡ F v2 v3 , v2

#2
≡ A , v3

#3
≡ B }

We illustrate the construction using the constraint v1 ≡ F v0 v0. Term graphs are constructed
for both the left-hand side type and right-hand side type of the equality constraint as follows. The
term graph for a type variable, like v1, is a single vertex: this vertex is shared by all occurrences
of this type variable in the constraint set. The term graph for a type constant, like F , is a single
vertex, which we annotate with the constant. For each occurrence of this constant in the constraint
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Fig. 1. An inconsistent type graph

set, we introduce a new vertex. In case of a composite type ((F v0) v0), we first construct term
graphs for the two subterms, F v0 and v0. Then, we introduce a new vertex for the composite
type, and we add directed edges (child edges) to indicate the parent-child relation between the
vertices. These edges are labeled with (`) or (r) for the left and the right subterm respectively.
See Fig. 1 in which a term graph for the type F v0 v0 is given to the left (and, similarly, one for
F v2 v3). Here, vertices labeled with (@) correspond to type application in composite types. Note
that our term graphs are directed acyclic graphs. An edge is inserted between the two vertices
that are the roots of the term graphs just constructed. We call such an edge an initial edge, since
it represents type equality imposed directly by a single type constraint. Additional information
that is supplied with a constraint is stored with the edge. Equivalence groups are the connected
components of a type graph when do not take the child edges into account. The vertices of an
equivalence group are supposed to correspond to the same type. The insertion of an initial edge
in the previous step may cause two equivalence groups to be merged. For all pairs of composite
types that are in the same equivalence group, we have to propagate equality to the children. In
Fig. 1, v5 and v8 are connected via an implied (dashed) edge, because the former is a left child of
v4, the latter is a left child of v7, which reside in the same equivalence group. Insertion of implied
equality edges may cause other equivalence groups to be merged. This, again, may result in the
insertion of other implied edges, and so on.

Note that for reasons of efficiency in dealing with the large clique-like subgraphs of implied
edges, our actual implementation uses a special encoding [4].

3.1 Analyzing the type graph

Equality paths and error paths The type graph of Fig.1 contains four equivalence groups,
including one that contains all the shaded vertices. This group contains both type constants A
and B. Since the two are different, this implies an inconsistency in the constraint set. The first
question is how to determine this, and we consider it next. The question of finding the constraint
to blame for the inconsistency is addressed in detail in the next section on heuristics.

An equality path between two constants is a path consisting of initial and implied edges,
that witnesses the supposed equality. We want to put the blame of the inconsistency on equality
constraints from which the type graph was constructed. Each initial edge corresponds directly to
such an equality constraint, but for implied edges we have to trace why such an edge was inserted
in the type graph. For this reason, we expand equality paths to paths that contain only initial
constraints. Expanding a path entails replacing its implied edges by the equality paths between the
two parent vertices that were responsible for adding the implied edge in the first place. Repeatedly
replacing implied edges yields a path without implied edges.

To denote an expanded equality path, we use the annotations Up(δ)
i and Down(δ)

i , where δ
is either ` (left child) or r (right child). The annotation Up corresponds to moving upwards in
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the term graph by following a child edge, whereas Down corresponds to moving downwards (from
parent to child). Each Up annotation in an equality path comes with a Down annotation at a later
point, which we make explicit by assigning unique Up-Down pair numbers, written as subscript.
These emphasize the stack-like behavior of Up-Down pairs, and serve no other purpose.

Consider Fig. 1 again, and in particular the error path π from the type constant A (v10) to the
type constant B (v11) (via the type variable v0). Expanding the implied edge between v2 and v0

yields a path that contains the implied edge between @ (v8) and @ (v5). Expansion of this implied
edge gives the path between @ (v7) and @ (v4), which consists of two initial edges. Hence, we get the
path [#2,Up(r)

0 ,Up(`)
1 ,#1,#0,Down(`)

1 ,Down(r)
0 ] after expanding the path of initial and implied

edges between A (v10) and v0. Similarly, we expand the path between v0 and B (v11). The expanded
error path π is now:

[#2,Up(r)
0 ,Up(`)

1 ,#1,#0,Down(`)
1 ,Down(r)

0 ,Up(r)
2 ,#0,#1,Down(r)

2 ,#3].

Both #0 and #1 appear twice in π. Note that by following Up(r)
2 from v0, we can arrive at either

v4 or v5. In general, Up annotations do not uniquely determine a target vertex. This ambiguity
can be circumvented straightforwardly by including a target vertex in each Up annotation.

Avoiding detours Note that we can restrict ourselves to error paths that do non-trivially contain
an induced error path: removing a constraint on the smaller path removes both error paths at the
same time. More savings can be made by avoiding detours: a detour is a path that consists of two
(consecutive) implied edges from the same clique, a subgraph in which all vertices are connected
to each other. A detour equality path is an equality path that contains at least one detour. A
shortcut of a detour path is the path in which we remove the two implied edges that form a detour,
say from v0 to v1 and from v1 to v2, and replace it by the implied edge from v0 to v2.

We can safely ignore detour equality paths (see [4] for the proof):

Lemma 1. Let π be a detour equality path, and let π′ be a shortcut for π. If removal of a constraint
removes π′ from the graph, then π is removed as well.

Consider the following set of type constraints (see Fig. 2 for the type graph).

C = { v0
#0
≡ G B , v1

#1
≡ G A , v0

#2
≡ v1 , v0

#3
≡ G v3 , v1

#4
≡ G v2 , v2

#5
≡ v3 }

The only irregularity in the type graph is that the constants A and B are part of the same
equivalence group. The most obvious error path is the implied edge from the vertex A (v12) to
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B (v13). Expansion of this edge gives us a path between the application vertices v9 and v8. Hence,
our first error path is

π0 = [Up(r)
0 ,#1,#2,#0,Down(r)

0 ].

But this is not the only error path – if that were the case, then removing #0, #1, or #2 would
make the constraint set consistent. For the first two constraints this is true, but removing #2 from
C leaves the constraint set inconsistent.

A second possibility is the error path from A (v12) to v3 to B (v13). However, Lemma 1 tells us
that this equality path is a detour. And indeed, expanding this path gives us

[Up(r)
0 ,#1,#2,#3,Down(r)

0 ,Up(r)
1 ,#3,#0,Down(r)

1 ],

which is a detour of π0.
The additional error path π1 is from A (v12) to v2 by following the implied edge, then taking

the initial equality edge #5 to vertex v3, and from there to B (v13) with an implied edge. This path
visits the implied equality clique twice, but there are no two consecutive steps within the same
clique. A third path π2 exists, going first to v3, then to v2, before ending in B (v13).

π1 = [Up(r)
0 ,#1,#4,Down(r)

0 ,#5,Up(r)
1 ,#3,#0,Down(r)

1 ]

π2 = [Up(r)
0 ,#1,#2,#3,Down(r)

0 ,#5,Up(r)
1 ,#4,#2,#0,Down(r)

1 ]

The error path π1 remains after the removal of #2, which confirms that only removing #2 does
not make the type graph consistent.

Infinite types and paths There is a another category of error paths, which are closely related to
the occurs check found in unification algorithms. Such a path starts and ends in the same vertex
v, and may contain any number of equality edges (both initial and implied), and at least one edge
from parent to child, without a matching edge in the opposite direction. Such a path, an infinite
path, is a proof that v represents an infinite type.

Consider the following set of type constraints (see Fig. 3 for the type graph).

{ v0
#0
≡ G v1 , v0

#1
≡ G v2 , v1

#2
≡ G v2 }

From the first two constraints (#0 and #1) we conclude that v1 and v2 should be the same type,
but the third constraint (#2) contradicts this conclusion. Starting in v1, we follow edge #2 and
arrive at v2 by taking the right-child edge of the application vertex. The implied equality edge
brings us back to our starting point v1. After expansion of this implied edge, we get the following
error path π.

π = [#2,Down(r)
∞ ,Up(r)

0 ,#1,#0,Down(r)
0 ]



The one child edge followed downwards with no matching upward child edge is annotated with∞.
Infinite paths can be found by analyzing the parent-child dependencies between the equivalence

groups of a type graph: map all vertices belonging to the same equivalence group to a single vertex,
while retaining the adjacencies of the child edges. In the example, we obtain a vertex that represents
the group {v1, v2, v8} which has a loop, because of the child edge from v8 to v2. The existence of
this cycle implies that an infinite path is present in the type graph.

A type graph as a substitution To make a type graph consistent, we first determine all
(expanded) error paths, and then remove at least one initial edge from each path. When we remove
an initial edge from the type graph, all implied edges that rely on this initial edge disappear.

A consistent type graph represents a substitution. Given a vertex v in an equivalence group
E, the type (or type variable) associated with v can be determined as follows.

– If E has exactly one type constant and no application vertices, then this type constant is the
type we assign to v.

– If E has no type constants, but there is at least one application vertex, then the type associated
with v is a composite type. Choose one left child of one of the application vertices in E (say v0)
and one right child (say v1). Now, assign to v the application of the type associated with v0 to
the type associated with v1. The absence of infinite paths ensures that this process terminates.

– If E has no type constants and there is no application vertex in E, then a type variable is
chosen to represent all vertices of E.

We continue the example of Fig. 1 which had a single error path,

π = [#2,Up(r)
0 ,Up(`)

1 ,#1,#0,Down(`)
1 ,Down(r)

0 ,Up(r)
2 ,#0,#1,Down(r)

2 ,#3].

We can choose to remove any of the four constraints on π to make the type graph consistent,
each choice leading to a substitution obtained from the remaining type graph. For example, if we
remove #0, then the resulting substitution maps v1 to F A B, v2 to A, and v3 to B. If we choose
to remove #3 instead, then the substitution maps v0, v2 and v3 to A, and v1 to F A A.

Whichever constraints we choose to remove: each will result in a single error message to be
reported to the user (the part on heuristics will show some typical examples). The content of the
message is determined by which constraint we choose to remove.

Dealing with type synonyms Type synonyms introduce new type constants as abbreviations
for existing types. This serves two purposes: complex types become easier to write and read,
and one can introduce intuitive names for a type. Simple examples of type synonyms in Haskell
include:

type Number = Int
type Telephone = Number
type String = [Char ]
type Parser s a = [s ]→ [(a, [s ])]

Many implementation completely unfold type synonyms. This is not satisfactory if we want to
report type error messages (or present inferred types) in terms of the original program. Therefore,
a conservative unfolding policy is to be preferred. In a type graph, we associate type synonym
information with each vertex. Let τ be a type for which we want to construct a term graph. We
unfold τ until the top-level type constructor is not a type synonym. For this unfolded type we
build a term graph, and we remember the original type τ in the top-level vertex. Likewise, type
synonyms “inside” τ are handled.

When we determine the type associated with some equivalence group E, we take into account
the original types stored in the vertices of E. For instance, if E has two type constants Int, and
both are annotated with the type synonym Telephone, then the latter constant will be used it is



the more informative. If the constants Int, Number, and Telephone are the original types in an
equivalence group, then it is unclear which of the three should be appointed as representative.
The type constant Int is the safest alternative, since this is the common unfolded type, although
one could also follow the reasoning that Number and Telephone are user-defined types, and opt
for these instead.

4 Heuristics

In principle, all the constraints that are on an error path are candidates. However, some constraints
are better candidates for removal than others. To select the “best” candidate for removal, we
consult a number of type graph heuristics. These heuristics are mostly based on common techniques
used by experts to explain type errors. In addition to selecting what is reported, heuristics can
specialize error messages, for instance by including hints and probably fixes. For each initial edge
removed from the type graph, we create one type error message using the constraint information
stored with that edge. The approach naturally leads to multiple type error messages being reported.

Many of our heuristics are independent, so we need some facility to coordinate the interaction
between them. The compiler uses a voting mechanism based on weights attached to the heuristics,
and the “confidence” that a heuristic has in its choice. Some heuristics can override all others (the
user-defined specialized type rules which are the subject of another paper [5]), while a collection
of others, the tie-breakers, are only considered if none of the other heuristics came up with a
suggestion.

A final consideration is how to present the errors to a user, taking into consideration the
limitations imposed by the used output format. In this paper we restrict ourselves to simple
textual error messages.

4.1 General heuristics

The heuristics in this section are not restricted to constraint satisfaction problems for type infer-
ence.

Share in error paths Our first heuristic applies some common sense reasoning: if a constraint
is involved in more than one error path, then it is a better candidate for removal than a constraint
appearing in just one error path. The set of candidates is thus reduced to the constraints that
occur most often in the error paths. Note that this heuristic helps to decrease the number of
reported error messages, as multiple error paths disappear by removing one constraint. However,
repeatedly removing the constraint on the largest number of error paths does not necessarily
lead to the minimum number of error messages. We show this by example. Consider the set P
consisting of six error paths.

{{#1,#2,#5}, {#1,#3,#6}, {#1,#4,#7}, {#2,#8}, {#3,#9}, {#4,#10}}

For each set in P , we have to remove at least one of its constraint from the type graph. At first
sight, the constraint #1 is the best candidate for removal because it is present in three error paths.
The smallest set is, however, {#2,#3,#4}.

The share-in-error-path heuristic implements the approach suggested by Johnson and Walz [11]:
if we have three pieces of evidence that a value should have type Int, and only one for type
Bool, then we should focus on the latter. In general, this heuristic does not yet reduce the set of
candidates to a singleton.

Constraint number heuristic The next heuristic we present is used as a final tie-breaker since
it reduces the number of candidates to one. This is an important task: without such a selection
criteria, it would be unclear (even worse: arbitrary) what is reported. We propose a tie-breaker
heuristic which considers the position of a constraint in the constraint list.



Another report [3] suggests how to flatten an abstract syntax tree decorated with constraints
into a list. Although the order of the constraints is irrelevant in constructing the type graph, we
store it in the constraint information, and use it for this particular heuristic.

For each error path, we take the constraint which completes the path – i.e., which has the
highest constraint number. This results in a list of constraints that complete an error path, and
out of these constraints we pick the one with the lowest constraint number.

4.2 Language dependent heuristics

The second class of heuristics involves those that are driven by domain knowledge. Although the
instances we give depend to some extent on the language under consideration, it is likely that
other constraints satisfaction problems allow similarly styled heuristics.

Trust factor heuristic The trust factor heuristic computes a trust factor for each constraint,
which reflects the level of trust we have in the validity of a constraint. Obviously, we prefer to
report constraints with a low trust factor. We discuss five cases that we found to be useful.

(1) Some constraints are introduced pro forma: they trivially hold. An example is the constraint
expressing that the type of a let-expression equals the type of its body. Reporting such a constraint
as incorrect would be highly inappropriate. Thus, we make this constraint highly trusted. The
following definition is ill-typed because the type signature declared for squares does not match
with the type of the body of the let-expression.

squares :: Int
squares = let f i = i ∗ i

in map f [1 . . 10]

Dropping the constraint that the type of the let-expression equals the type of the body would
remove the type inconsistency. However, the high trust factor of this constraint prevents us from
doing so. In this case, we select a different constraint, and report, for instance, the incompatibility
between the type of squares and its right-hand side.

(2) Some of the constraints restrict the type of a subterm (e.g., the condition of a conditional
expression must be of type Bool), whereas others constrain the type of the complete expression
at hand (e.g., the type of a pair is a tuple type). These two classes of constraints correspond very
neatly to the unifications that are performed by algorithmW and algorithmM [7] respectively. We
refer to constraints corresponding toM as folklore constraints. Often, we can choose between two
constraints – one which is folklore, and one which is not. In the following definition, the condition
should be of type Bool , but is of type String .

test :: Bool → String
test b = if "b" then "yes!" else "no!"

AlgorithmW detects the inconsistency at the conditional, when the type inferred for "b" is unified
with Bool . As a consequence it mentions the entire conditional and complains that the type of the
condition is String instead of Bool . Algorithm M, on the other hand, pushes down the expected
type Bool to the literal "b", which leads a similar error report, but now only the literal "b" will
be mentioned. The former gives more context information, and is thus easier to understand for
novice programmers.

(3) The type of a function imported from the Prelude should not be questioned. Ordinarily
such a function can only be used incorrectly.

(4) Although not mandatory, type annotations provided by a programmer can guide the type
inference process. In particular, they can play an important role in the reporting of error messages.
These type annotations reflect the types expected by a programmer, and are a significant clue
where the actual types of a program differ from his perception. We can decide to trust the types



that are provided by a user. In this way, we can mimic a type inference algorithm that pushes
a type signature into its definition. Practice shows, however, that one should not rely too much
on type information supplied by a novice programmer: these annotations are frequently in error
themselves.

(5) A final consideration for the trust factor of a constraint is in which part of the program
the error is reported. Not only types of expressions are constrained, but errors can also occur in
patterns, declarations, and so on. Hence, patterns and declarations can be reported as the source
of a type conflict. Whenever possible, we report an error for an expression. In the definition of
increment , the pattern ( : x ) (x must be a list) contradicts with the expression x + 1 (x must be
of type Int).

increment ( : x ) = x + 1

We prefer to report the expression, and not the pattern. If a type signature supports the assumption
that x must be of type Int, then the pattern can still be reported as being erroneous.

The application heuristic Function applications are often involved in type inconsistencies.
Hence, we introduce a special heuristic to improve error messages involving applications. It is
advantageous to have all the arguments of a function available when analyzing such a type incon-
sistency. Although mapping n-ary applications to a number of binary ones simplifies type inference,
it does not correspond to the way most programmers view their programs.

The heuristic behaves as follows. First, we try to determine the type of the function. We
can do this by inspecting the type graph after having removed the constraint created for the
application. In some cases, we can determine the maximum number of arguments that a function
can consume. However, if the function is polymorphic in its result, then it can receive infinitely
many arguments (since a type variable can always be instantiated to a function type). For instance,
every constant has zero arguments, the function map :: (a → b)→ [a]→ [b] has two, and the
function foldr :: (a → b → b)→ b → [a]→ b a possibly infinite number.

If the number of arguments passed to a function exceeds the maximum, then we can report that
too many arguments are given – without considering the types of the arguments. In the special
case that the maximum number of arguments is zero, we report that it is not a function.

To conclude the opposite, namely that not enough arguments have been supplied, we do not
only need the type of the function, but also the type the context of the application is expecting.
An example follows.

The following definition is ill-typed: map should be given more arguments (or xs should be
removed from the left-hand side).

doubleList :: [Int ]→ [Int ]
doubleList xs = map (∗2)

At most two arguments can be given to map: only one is supplied. The type signature for doubleList
provides an expected type for the result of the application, which is [Int ]. Note that the first [Int ]
from the type signature belongs to the left-hand side pattern xs. We may report that not enough
arguments are supplied to map, but we can do even better. If we are able to determine the types
inferred for the arguments (this is not always the case), then we can determine at which position we
have to insert an argument, or which argument should be removed. We achieve this by unification
with holes. First, we have to establish the type of map’s only argument: (∗2) has type Int → Int .
Because we are one argument short, we insert one hole (•) to indicate a forgotten argument.
(Similarly, for each superfluous argument, we would insert one hole in the function type.) This



gives us two cases to consider.

configuration 1 :
function (a→ b) → [a] → [b]
arguments + context • → (Int → Int)→ [Int]

configuration 2 :
function (a→ b) → [a] → [b]
arguments + context (Int → Int)→ • → [Int]

Configuration 1 does not work out, since column-wise unification fails. The second configuration, on
the other hand, gives us the substitution S = [a := Int , b := Int ]. This informs us that our function
(map) requires a second argument, and that this argument should be of type S([a]) = [Int ].

The final technique we discuss attempts to blame one argument of a function application in
particular, because there is reason to believe that the other arguments are alright. If such an
argument exists, then we put extra emphasis on this argument in the reported error message.

The expression (−1) is of type Int , and can thus not be used as the first argument of map.

decrementList :: [Int ]→ [Int ]
decrementList xs = map (−1) xs

The following error message therefore focuses on the first argument of map.

(2,25): Type error in application

expression : map (−1) xs
function : map
type : (a → b)→ [a ]→ [b ]

1st argument : − 1
type : Int
does not match : a → b

Unifier heuristic At this point, the reader may have the impression that heuristics always put the
blame on a single location. If we have only two locations that contradict, however, then preferring
one over another introduces a bias. Our last heuristic illustrates that we can also design heuristics
to restore balance and symmetry in error messages, by reporting multiple program locations with
contradicting types. This technique is comparable to the approach suggested by Yang [12].

The design of our type rules of (Chapter 6 of [4]) accommodates such a heuristic: at several
locations, a fresh type variable is introduced to unify two or more types, e.g., the types of the
elements in a list. We call such a type variable a unifier. In our heuristic, we use unifiers in the
following way: we remove the edges from and to a unifier type variable. Then, we try to determine
the types of the program fragments that were equated via this unifier. With these types we create
a specialized error message.

For example, all the elements of a list should be of the same type, which is not the case in f ’s
definition.

f x y = [x , y , id , "\n"]

In the absence of a type signature for f , we choose to ignore the elements x and y in the error
message, because their types are unconstrained. We report that id , which has a function type,
cannot appear in the same list as the string "\n". By considering how f is applied in the program,
we could obtain information about the types of x and y . In our system, however, we never let the
type of a function depend on the way it is used.

In the example above, the type of the context is also a determining factor. Our last example
shows that even if we want to put blame on one of the cases, we can use the other cases for
justification.

The following definition contains a type error.



maxOfList :: [Int ]→ Int
maxOfList [ ] = error "empty list"
maxOfList [x ] = x
maxOfList (x , xs) = x ‘max ‘ maxOfList xs

A considerable amount of evidence supports the assumption that the pattern (x , xs) in maxOfList ’s
third function binding is in error: the first two bindings both have a list as their first argument,
and the explicit type expresses that the first argument of maxOfList should be of type [Int ]. In a
special hint we enumerate the locations, (1,14), (2,11), (3,11), that support this assumption.

4.3 Program correcting heuristics

A different direction in error reporting is trying to discover what a user was trying to express, and
how the program could be corrected accordingly. Given a number of possible edit actions, we can
start searching for the closest well-typed program. An advantage of this approach is that we can
report locations with more confidence. Additionally, we can equip our error messages with hints
how the program might be corrected. However, this approach has a disadvantage too: suggesting
program fixes is potentially harmful since there is no guarantee that the proposed correction is
the semantically intended one (although we can guarantee that the correction will result in a well-
typed program). Furthermore, it is not immediately clear when to stop searching for a correction,
nor how we could present a complicated correction to a programmer.

An approach to automatically correcting ill-typed programs is based on a theory of type iso-
morphisms [9]. Two types are considered isomorphic if they are equivalent under (un)currying
and permutation of arguments. Such an isomorphism is witnessed by two morphisms: expressions
that transform a function of one type to a function of the other type, in both directions. For each
ill-typed application, we search for an isomorphism between the type of the function and the type
expected by the arguments and the context of that function. We illustrate this idea with a simple
example.

The definition of squareList is not well-typed, although we supply a list to map, and a function
that works on the elements of this list.

square :: Int → Int
square i = i ∗ i

squareList :: Int → [Int ]
squareList n = map ([1 . .n ], square)

To correct the application map ([1 . .n ], square), we search for an adapted version of map which
expects its arguments paired and in reversed order. Consider the following two morphisms between
the real type of map (on the left), and its expected type (on the right).

(a → b)→ [a ]→ [b ]

µ1 = λf (xs, g)→ f g xs
−→←−

µ2 = λf g xs → f (xs, g)
([a ], a → b)→ [b ]

In this case, the type variables a and b are both Int. Note that applying µ1 to map corrects the type
error, and by partial evaluation of µ1 we can obtain the corrected expression map square [1 . .n ].

A second possibility is to change the structure of an abstract syntax tree by inserting or
removing parentheses. Beginning Haskell programmers have a hard time understanding the exact
priority and associativity rules for operators and applications. As a result, every now and then, a
pair of parentheses is missing, which often results in a type error. This led us to search for slightly
modified well-typed abstract syntax trees. The following definition is not type correct.

isZero :: Int → Bool
isZero i = not i == 0



In this definition, not of type Bool → Bool is applied to i , which is (probably) of type Int , because
of the declared type. By looking at the constituents of not i == 0, we learn that not (i == 0)
is the only well-typed arrangement. Hence, we can suggest the programmer to insert parentheses
at these locations. Note that the type signature supports this rearrangement, which increases the
confidence that this is the correction we want.

Clearly, a combination of the two methods just described allow us to suggest complex sequences
of edit operations. However, the more complicated our suggestions become, the less likely it is that
it makes sense to the programmer.

The siblings heuristic Novice students often have problems distinguishing between specific
functions, e.g., concatenate two lists (++) and insert an item at the front of a list (:). We call such
functions siblings. If we encounter an error in an application in which the function that is applied
has a sibling, then we can try to replace it by its sibling to see if this solves the problem (naturally
only at the type level). This can be done quite easily and efficiently on type graphs by a local
modification of the type graph. The main benefit is that the error message may include a hint
suggesting to replace the function with its sibling. The Helium compiler allows programmers to
add new pairs of siblings, which the compiler then takes into account. More details can be found
in an earlier paper [5].

5 Conclusion and future work

We have discussed heuristics for the discovery of and the recovery from type errors in Haskell.
Knowledge of our problem domain allows us to define special purpose heuristics that can suggest
how to change parts of the source program so that they become type correct. Although there is no
guarantee that the hints always reflect what the programmer intended, we do think that they help
in many cases. Discussions with students who have used our compiler are encouraging (especially
with those that worked with other Haskell compilers). We are currently proceeding along two lines:
the first is doing a quantitative analysis of the effect of hints on program productivity (based on
programming sessions logged by the compiler). A second project continues the work on rearranging
abstract syntax trees so that they become type correct.
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