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Abstract

Some type systems are first described formally, to be sometimes followed by an
implementation. Other type systems are first implemented as a language extension,
to be sometimes retrofitted into a formal description. In neither case it is an easy
task to keep both artefacts consistent. In this paper we present Ruler, a domain
specific language for type rules. Our prototype compiler for Ruler both generates
(1) a visual ISIEX rendering, suitable for use in the presentation of formal aspects,
and (2) an attribute grammar based implementation. Uniting these two aspects
in Ruler contributes to bridging the gap between theory and practice: mutually
consistent representations can be generated for use in both theoretical and practical
settings.

1 Introduction

Theory and practice of type systems often seem to be miles apart. For example, for the
programming language Haskell the following artefacts exist:

o A language definition for the Haskell98 standard [24], which defines Haskell’s
syntax and its meaning in informal terms. Part of this is specified in the form of
a translation to a subset of Haskell.

o A formal description of the static semantics of most of Haskell98 [15].
e Several implementations, of which we mention GHC [2] and Hugs [1].

e Experimental language features of which some have been formally described in
isolation, some of them found their way into Haskell, or are available as non-
standard features. As an example we mention Haskell’s class system [19], and
multi-parameter type classes [25, 14] present in extensions [2, 1] to Haskell98.

o A Haskell description of type inferencing for Haskell98 [20], serving at the same
time as a description and an implementation.

We can ask ourselves the following questions:

o What is the relationship between all the descriptions (i.e language definition and
static semantics) of Haskell and available implementations?



e What is the effect of a change or extension which is first implemented and sub-
sequently described?

e What is the effect of a change or extension which is first described and subse-
quently implemented?

For example, if we were to extend Haskell with a new feature, we may start by ex-
ploring the feature in isolation from its context by creating a minimal type system for
the feature, an algorithmic variant of such a type system, a proof of the usual proper-
ties (soundness, completeness), or perhaps a prototype. Upto this point the extension
process is fairly standard; however when we start to integrate the feature into a work-
ing implementation this process and the preservation of proven properties becomes
less clear. Whatever route we take, that is, first extend the implementation then give
a formal description or the other way around, there is no guarantee that the formal
description and the implementation are mutually consistent. Even worse, we cannot
be sure that an extension preserves the possibility to prove desirable properties. As a
example, it has already been shown that Haskell does not have principal types, due to
a combination of language features and seemingly innocent extensions [16].

Based on these observations we can identify the following problems:

Problem 1. It is difficult, if not impossible, to keep separate (formal) descriptions and
implementations of a complex modern programming language consistent.

Our approach to this problem is to maintain a single description of the static seman-
tics of a programming language. From this description we generate both the material
required for a formal treatment as well as the implementation.

Problem 2. The extension of a language with a new feature means that the interac-
tion between the new and all old features needs to be examined with respect to
the preservation of desirable properties, where a property may be formal (e.g.
soundness) or practical (e.g. sound implementation).

The Ruler language that we introduce in this paper aims to make it easy to describe
language features in relative isolation. The separate descriptions for these features
however can be combined into a description of the complete language. Note that tradi-
tional programming language solutions, like the use of modules and abstract data types,
are not sufficient: a language extension often requires the extension of the data types
representing the abstract syntax and the required implementation may require changes
across multiple modules.

How our approach contributes to solving the problems We explore these problems
and our solution by looking at the final products that are generated by the Ruler system
as described in this paper, and which are presented in figures 1 through 3. The reader
does not need to understand the content of these figures. The focus of this paper is on
the construction of the figures, not on their meaning. Our aim is to look at these figures
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data Expr

| App f : Expr
a: Expr

attr Expr [g: Gam | c:C|ty: Ty]

sem Expr
| App (f.unig,loc.uniql)

= rulerMklUniq @lhs.uniq

loc.tv_ = Ty_Var @uniql

(loc.c_,loc.mtErrs)
= (@a.ty ‘Ty Arr* @tv))= @a.c> @f.ty

lhs.c = @c_» @a.c

Ay = @c_» @ac> @tv.

Figure 3: Part of the generated implementation

from a metalevel, to see how type rules can be specified and how their content can be
generated using our Ruler system. Nevertheless, we have chosen a realistic running
example: the Hindley-Milner (HM) type system. Fig. 1 gives the equational rules,
Fig. 2 the algorithmic variant and Fig. 3 part of the generated implementation. In later
sections we will come back to the technical part of these figures. For now we only use
their content to discuss the general idea of our approach.

The need for a system producing these artefacts arose in the context of the Essential
Haskell (EH) project [12, 8, 9]. The design goal of EH is to build a compiler for
an extended version of Haskell, and to build (simultaneously) an explanation of its
implementation, in which we try to keep both versions consistent by generating corre-
sponding parts from a single source. This approach resembles the one taken by Pierce,
which in his book [26] explains both non-alogoirthmic and algorithmic variant of type
systems. The EH projects start with the description of a very simple language, and ex-
tend it in a sequence of steps, leading to full Haskell with extensions (including higher
ranked polymorphism, mechanisms for explicitly passing implicit parameters [11, 13],
extensible records [17, 21], higher order kinds). Each step introduces new features and
describes the associated compiler.

Both type rules and fragments of corresponding source code are used in the explanation
of the compiler. For example, rule e.app from Fig. 2 and the corresponding attribute
grammar (AG) implementation from Fig. 3 are jointly explained, each strengthening
the understanding of the other. However, later versions of EH introduce more features,
resulting in the following problems:

e Type rules and AG source code both become quite complex and increasingly
difficult to understand.

o A proper understanding may require explanation of a feature both in isolation as
well as in its context. These are contradictory requirements.



e With increasing complexity comes increasing likeliness of inconsistencies be-
tween type rules and AG source code.

Part of our solution to these problems is the use of the concept of views on both the type
rules and AG source code. Views are ordered in the sense that later views are built on
top of earlier views. Each view is defined in terms of its differences with its ancestor
view; the resulting view on the artefact is the accumulation of all these incremental
definitions.

This, of course, is not a new idea: version managment systems use similar mechanisms.
The difference is that a version management system stores delta’s between versions in
order to save space, whereas for us the changes themselves are object of discussion. A
version management system allows access to one version at a time, usually the latest,
whereas we need simultaneous access to all versions, which we call views, in order
to build both the explanation and the sequence of compilers. A version management
systems uses versions as a mechanism for evolution, whereas we use views as a mech-
anism for explaining and maintaining EH’s sequence of compilers.

For example, Fig. 1 view E (equational), and Fig. 2 displays view A (algorithmic) on
the set of type rules. View A is built on top of view E by specifying the differences with
view E. The incremental definition of these views is exploited by using a color scheme
to visualise the differences. The part which has been changed with respect to a previous
view is displayed in blue (or black when printed); the unchanged part is displayed in
grey (we will come back to this in our discussion). In this way we address “Problem
27

Independently from the view concept we exploit the similarity between type rules and
AG based implementations. To our knowledge this similarity has never been exploited.
We use this similarity by specifying type rules using a single notation, but which con-
tains enough information to generate both the sets of type rules (in Fig. 1 and Fig. 2)
as well as part of the AG implementation (in Fig. 3). Fig. 3 shows the generated imple-
mentation for rule e.app. In this way we address “Problem 1.

Our Ruler system allows the definition of type rules, views on those rules, and the
specification of information directing the generation of a partial implementation. In
addition, Ruler allows the specification of the structure of type rules: the type of a type
rule. This “type of a type rule” is used by Ruler to check whether concrete type rules
follow the correct pattern.

In the course of the EH project the Ruler system has become indispensable for us:

e Ruler is a useful tool for describing type rules and keeping type rules consis-
tent with their implementation. In subsequent sections we will see how this is
accomplished.

o Itis relatively easy to incorporate the generation of output to be used as input for
other targets (besides I&TEX and AG). This makes Ruler suitable for other goals
while at the same time maintaining a single source for type rules.

e We also feel that it may be a starting point for a discussion about how to deal
with the complexities of modern programming languages, and both their formal



and practical aspects. In this light, this paper also is an invitation to the readers
to improve on these aspects. In our conclusion (Section 8) we will discuss some
developments we foresee and directions of further research.

We summarize Ruler’s strong points, such that we can refer to these points from the
technical part of this paper:

Single source. Type rules are described by a single notation, all required type rule
related artefacts are generated from this.

Consistency. Consistency between the various type rule related artefacts is guaranteed
automatically as a consequence of being generated from a single source.

Incrementality. It is easy to incrementally describe type rules.

The remainder of this paper is organised as follows: in Section 2 we present an overview
of the Ruler system. This overview gives the reader an intuition of what Ruler can do
and how it interacts with other tools. Preliminaries for the example language and type
systems are given in Section 3. In Section 4 we specify the contents of Fig. 1, in
Section 5 we extend this specification for the contents of Fig. 2. In Section 6 we ex-
plain the AG (attribute grammar) system. In Section 7 we extend the example Ruler
specification so that Ruler can generate AG code. Finally we discuss and conclude in
Section 8.

2 Ruler overview

Infrastructure around Ruler Although the Ruler system allows us to generate part
of an implementation, it is by no means the only tool we use in the construction of our
compilers. Fig. 4 gives an overview of the tools used to construct the example compiler
for the type rules presented in this paper. In the left branch we generate an executable
compiler using the following sources:

o Ruler code (in box ‘Ruler’) for type rules, out of which attribute grammar AG
code is generated by Ruler.

e AG code (in box ‘AG main’) for the specification of a pretty printed representa-
tion of the input and error handling. The AG compiler generates Haskell.

e Haskell code (in box ‘HS main’) for the specification of a parser, interaction with
the outside world and remaining functionality.

In the right branch we generate IXTgX commands for Ruler type rules which can be
used in a IfTEX document (in box ‘latex main’). The major part of generating IKTEX is
delegated to lhs2TeX [23].
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Figure 4: Ruler overview

scheme X =
view A =
holes ...
judgespec ...
view B =
holes ...
judgespec ...
ruleset x scheme X =
rule r =
view A =
judge ... -- premises

judge ... -- conclusion
view B = ...
rule s =
view A = ...
view B = ...

Figure 5: High level structure of Ruler source



The use of tools for the EH compilers is slightly more complicated because we need to
specify different views on AG and Haskell code as well. A separate fragment manage-
ment tool, called shuffle (part of the EH project [8]), is used to generate AG and Haskell
code from code fragments describing the view inheritance chains for AG and Haskell
code. Because we do not discuss this any further, this part has been displayed in grey
(in Fig. 4). Our approach is similar to, but also different from literate programming;
we will discuss this in Section 8.

The design of Ruler In the remainder of this section we discuss the concepts used in
Ruler by inspecting elements of figures 1, 2 and 3.

The design of Ruler is driven by the need to check the following properties of type
rules:

o All judgements match the structure it should have. For example, in Fig. 1 all
judgements for an expression should match the structure of an expression judge-
ment in the box at the top of the same figure.

e All identifiers used in a type rule are defined.

o For all the rules in a set of rules displayed together in a figure the conclusion
should be of the structure in the box at the top of the figure.

Other properties can be added to this list, but we limit ourselves to this list and the
requirement of output generation for different targets.

The structure of a judgement is described by a scheme. Each scheme consists of a set
of views on the scheme. A view on a scheme consists of named holes and a set of
templates referring to these holes. Such templatse, called judgeshapes, come in two
varieties:

o A judgespec, used to specify a judgement.
o A judgeuse, used to display a judgement for an output target.

Rules are grouped into rulesets. A ruleset corresponds to a figure like Fig. 1, so it
consists of a set of rules, the scheme for which the rules specify a conclusion and
additional information like the text for the caption of the figure. Each rule in a ruleset
consists of views on the rule. Each view on a rule consists of a set of judgements for the
premises and a judgement for the conclusion. Each of these judgements, called judge,
follows of a particular scheme, and consists of bindings of hole names (of its scheme)
to Ruler expressions.

Views are ordered by a view hierarchy. A view hierarchy specifies which view in-
herits from which other (ancestor) view. A view on a scheme inherits the holes and
judgeshapes. A view on a rule inherits the hole bindings.

Fig. 5 presents a schematic, high-level Ruler specification. The syntactic structure of
a Ruler specification reflects the relationships between the aforementioned concepts.
The incremental definition of views on a rule is supported by two different variants of
specifying a judgement:



e A judgement in a rule can be specified by using a judgespec as a macro where
the values of the holes are defined by filling in the corresponding positions in the
judgespec. This variant is useful for the first view in a viewhierarchy, because
all holes need to be given a value.

e A judgement in a rule can be specified by individually specifying values for each
hole. This variant is useful for views which are built on top of other views,
because only holes for which the value differs relative to the ancestor view need
to be given a new value.

The incremental definition of views on a scheme is supported in a similar way: only
the holes not present in an ancestor view need a definition.

The Ruler system is open-ended in the sense that some judgements can be expressed
in a less structured form, for which its implementation is defined externally. For ex-
ample, the premises of rule E.varR consist of arbitrary conditions. These arbitrary (i.e.
as far as Ruler is concerned unstructured) conditions (relation) are treated like regular
judgements, but their implementation has to be specified explicitly.

3 Preliminaries

In this section we introduce notation used by our running example, that is, the set of
type rules to be specified by Ruler. There should be no surprises here as we use a
standard term language based on the A-calculus (see Fig. 6). A short overview of the
type related notation is included in Fig. 8. Our example language contains e.g. the
following program:

let id = Ax —> x
in letv, =id 3

in let v, = id id
in v, v

Values (expressions, terms):

leti =eine local definitions

e =int literals
| i program variable
| ee application
| Ai—>e abstraction
|

Figure 6: Terms

The type language for our example term language is given in Fig. 7. Types are either
monomorphic types 7, called monotypes, or universally quantified types o, called poly-
morphic types or polytypes. A monotype either is a type constant Int, a function type



T — T, or an unknown type represented as a type variable v. We discuss the use of
these types when we introduce the typing rules for our term language in the following
sections.

Types:
T = Int literals
| v variable
| T —> 1 abstraction
ou=Yvr universally quantified type, v possibly empty

Figure 7: Types

The typing rules use an environment I, holding bindings for program identifiers with
their typings:

=i 0o

During HM type inferencing, type variables will be bound to monotypes:

Ci=veT1

A C represents constraints on type variables, usually called a substitution which can
be seen as a representation for the more specific type information with which a type
variable (representing unknown type information) will be substituted during HM type
inferencing. This operation is denoted by the juxtapositioning of a C and a type o:

Cvs= o o)eC

v, otherwise
C(O’1 —>0’2)=CO‘1 —>CO’2
C (Yv.o) = Yv.(C\v) o

Notation Meaning

type (possibly polymorphic)

type (monomorphic)

sequence of x (possibly empty)

type variable

i — o, assumptions, environment, context
Vv > T, constraints, substitution

type matching relation, unification

ROH< =-9

Figure 8: Legenda of type related notation

10



4 Describing typing rules using Ruler notation

In this section we make the use of Ruler more precise. We start by describing how to
specify the content of Fig. 1 using Ruler notation. The full Ruler syntax is given in
Fig. 9 and Fig. 10. The rules in Fig. 1 specify the non-algorithmic version of the typing
rules for our term language. The transition (instantiation) from polytypes to mono-
types is performed by inst, whereas the transition (generalisation) from monotypes to
polytypes is combined with rule E.LET.

Because the rules implicitly state that certain equalities between types (of terms) should
hold, we call this the equational view; the subscript E is used throughout this paper to
identify equational views.

The use of an equational version of typing rules usually serves to explain a type system
and to prove properties about the type system. An algorithmic version subsequently
is introduced to specify an implementation for such a type system. In this paper we
follow the same pattern, but use it to show how Ruler can be used to describe both
type systems in such a way that its type rule representation can be included in the
documentation (read here: this paper) and its partial implementation can be integrated
into a full implementation.

The basics: judgement schemes A typing rule consists of judgements describing
the conclusion and premises of the rule. Judgements have a structure of their own,
described schemes. A scheme plays the same role in rules as types do for expressions
in our example term language. In our example, we want to specify a judgement for
terms (expressions), so we start a new scheme declaration by:

scheme expr =

which is immediately followed by the views on this scheme. Each view defines empty
slots (holes), the judgement shape (judgeshape) by which concrete judgements will be
specified (judgespec) and judgement shapes that will be used for output generation
(judgeuse). The view E on scheme expr is defined by:
view E =

holes [| e : Expr, gam : Gam,ty : Ty |]

judgespec gam + e : ty

judgeuse tex gam + .."e" e : ty
Here we specified for view E, that is the equational view, three empty slots (e, gam, ty),
or holes, denoted by names (alphanumerical identifiers), which are to be filled in by
judgements based on this scheme. Each hole has an associated hole type, so #y has type
Ty; we postpone the discussion of hole types until Section 7. Holes can be filled in two
different ways:

e A judgespec can be used as a macro by passing arguments at the hole positions.

o Holes are individually assigned a value by referring to their name.

11



Judgeshapes are introduced by the keyword judgespec or judgeuse. A judgespec
judgement shape introduces the template which is to be used to specify a concrete
judgement. A judgeuse judgement shape introduces the template which is used for the
generation of output. A judgeuse specifies the kind of output, called a rarget, as well.
The target tex indicates that the shape is to be used to generate IATEX; later we will use
the target ag to indicate that the shape is to be used for AG generation. We will refer to
these three shapes as the spec, tex and ag judgement shapes.

A Ruler expression (rexpr), is used to specify the shape. The text for a Ruler expression
already appears in pretty printed form throughout this paper, but in the original source
code (included in the appendix) the spec judgement shape appears as:

judgespec gam :- e : ty

A Ruler expression consists of a distfix operator with simple expressions as its operands.
A distfix operator consists of operator symbols, which are denoted by combinations of
operator like characters such as ‘:” and *-’. A simple expression may be the (possibly
empty) juxtapositioning of a mixture of identifiers, parenthesized expressions or one of
the other (rexpr_base) alternatives in Fig. 10.

The identifiers of a judgeshape should refer to the introduced hole names. When using
a judgespec, the expression is matched against its associated judgespec, thus binding
the hole identifiers occurring in the judgespec.

The dot character ‘" has a special role in Ruler expressions and names for the tex target
output generation. It is used to specify subscripts, superscripts and stacking on top of
each other. For example, x.1.2.3 pretty prints as:

3
2

X
The part after the first dot is used as a subscript, the part after the second dot is used
as a superscript, and the part after the third dot is stacked on top. In this context the
underscore character ‘_’ denotes a horizontal line for use in vector like notations, so
V..._ pretty prints as v. Additional dots are ignored.

Names, rexpr’s and operators all may be immediately followed by this dot notation.
For names however, the dots and their related information form part of the name.

Since the judgespec and an associated judgeuse tex are usually quite similar, we have
decided to make the latter default to the first. For this reason we allow the dot notatation
to be used in the judgespec too, although it only will play a role in the defaulted use.

The basics: rulesets Rules are grouped in rulesets to be displayed together in a
figure. So the description of Fig. 1 starts with:

ruleset expr.base scheme expr "Expression type rules" =

specifying the name expr.base of the ruleset, the scheme expr for which it defines rules,
and text to be displayed as part of the caption of the figure. The judgespec of (a view
on) the scheme is used to provide the boxed scheme representation in Fig. 1. ETEX

12



(ruler_prog)  ::= ( (scheme_def) | (format_def) | (rewrite_def)
| (rules_def’) | (viewhierarchy_def’)
| {external_def’)
) *
(scheme_def) ::= (scheme | relation)(nm)[{ag_nm)]
'="(scm_view_def) *
(scm_view_def ) ::= view(vw_nm)’ =" (hole_def )(shape_def)
(hole_def) ::= hole ’ [’ (hole_defs)
" | "Chole_defs)
" | "(hole_defs)

2K
(shape _def’) ::= judgeuse [(target) |(rexpr)

| judgespec(rexpr)
(target) =tex | ag]| ...
(hole_defs) ::= [thread [{hole_nm)’ :’ (hole_type)
(hole_type) = (nm)
(rules_def’) .= rules(nm)scheme({scm_nm)"info"

'="(rule_def)

(rule_def) 2= rule(nm)[{ag_nm)] = (rl_view_def)
(rlview_def) ::= view(vw_nm)

'="(judge_rexpr)

(judge_rexpr)

Figure 9: Syntax of ruler notation (part I)
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(judge_rexpr) = judge [(nm)’ :’ [{scm_nm)

( >="(rexpr)

| (" |’ (hole_nm)’ =’ (rexpr)) *

)
(rexpr) ::= (rexpr_app){op){rexpr) | {rexpr_app)
(rexpr_app)  ::= (rexpr_app){rexpr_base) | (rexpr_base) | €
(rexpr_base) ::= (nm) | {rexpr_parens) | unique

=
| int | "string"
(rexpr_parens) ::= (" ({rexpr)
| (rexpr)’ | ’ (hole_type)
| node int = (rexpr)
| text "string"

[CT 1 7="17=" | (keyword)) =
)
")’ (. (rexpr_base)) *
(op) = (op-base)(’ .’ (rexpr_base)) *
(op_base) = V#SR&F+/<=>7@\" -5, [1{}7) *
SCI =

(viewhierarchy_def’)
::= viewhierarchy(vw_nm)(’ <’ (vw_nmy)) s

(format_def) ::= format [(target)]
(nm)’ =" (rexpr)
(rewrite_def) ::= rewrite [(target)] [def | use]

(rexpr)’ =’ (rexpr)
(ag_nm),{(scm_nm), {vw_nm), (hole_nm)
= (nm)

(nm) = (nm_base)(’ .’ ({(nm_base) | int)) *
{(nm_base) = "a-zA-Z_’ ’a-zA-7Z_0-9’ %
(keyword) = (scheme | ...) — (unique)

(external_def) ::= external(nm > =

Figure 10: Syntax of ruler notation (part II)
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commands are generated for all the individual rules as well as for the figure for the full
ruleset, for all defined views. The ruleset name expr.base is used to uniquely label the
names of these I£[EX commands. We do not discuss this further; we only note that part
of the ISTEX formatting (e.g. for a single rule) is delegated to external IZTEX commands.

The ruleset heading is immediately followed by a list of rules, of which only one is
shown here (e.int is pretty printed in small caps as E.INT); for a complete description
see appendix A :

rule e.int =

view E =

judge R : expr = gam v int : Ty_Int

Before discussing its components, we repeat its IATEX rendering from Fig. 1 to empha-
size the similarities between the rule specification and its visual appearance:

———— EINTg
I' +¢int: Int

All views of arule are jointly defined, although we present the various views separately
throughout this paper. We will come back to this in our discussion.

Each view for a rule specifies premises and a conclusion, separated by a ‘-’. The
rule E.INT for integer constants only has a single judgement for the conclusion. The
judgement has name R, is of scheme expr, and is specified using the spec judgement
shape for this view. The name of the judgement is used to refer to the judgement
from later views, either to overwrite it completely or to adapt the values of the holes
individually. In the latter case the hole values of the previous view which are not
adapted are kept. Later, when we introduce subsequent views we will see examples of
this.

The rule for integer constants refers to 7y_Int. This is an identifier which is not in-
troduced as part of the rule. and its occurrence generates an error message unless we
specify it to be external:

external Ty_Int

Additionally we also have to specify the way Ty_Int will be typeset as Ruler does not
make any assumptions here. Ruler outputs identifiers as they are and delegates format-
ting to l[hs2TeX [23]. A simple renaming facility however is available as some renaming
may be necessary, depending on the kind of output generated. Formatting declarations
introduce such renamings:

format tex 7y_Int = Int

Here the keyword tex specifies that this renaming is only used when IXTEX (i.e. the tex
target) is generated. The formatting for the names gam and ty are treated similarly.

The rule e.app for the application of a function to an argument is defined similarly to
rule E.INT. Premises now relate the type of the function and its argument:

15



rule e.app =

view E =
judge A : expr = gam v a: ty.a
judge F :expr = gam+ f: (ty.a - ty)

judge R : expr = gam v+ (f a) : ty

which results in (from Fig. 1):

I'ta:t,
I'esfeor, -
W E.APPE
The dot notation allows us to treat ty.a as a single identifier, which is at the same
time rendered as the subscripted representation 7,. Also note that we parenthesize
(ty.a — ty) such that Ruler treats it as a single expression. The outermost layer of
parentheses are stripped when an expression is matched against a judgement shape.

Relations: external schemes The rule E.vAR for variables is less straightforward as
it requires premises which do not follow an introduced scheme:

imoel
T = inst (0)
This rule requires a binding of the variable i with type o to be present in I'; the instan-
tiation 7 of ¢ then is the type of the occurrence of i. These premises are specified by
judgements G and I respectively:

rule e.var =

view E =
judge G : gamLookupldTy = i — pty € gam
judge I : tylnst = ty ‘=" inst (pty)

judge R : expr = gam v i:ty

Judgements G and / use a variation of a scheme, called a relation. For example, the
judgement G must match the template for relation gamLookupldTy representing the
truth of the existence of an identifier i with type ty in a gam:
relation gamLookupldTy =
view E =
holes [| nm : Nm, gam : Gam,ty : Ty |]
judgespec nm +— ty € gam

16



A relation differs only from a scheme in that we will not define rules for it. It acts
as the boundary of our type rule specification. As such it has the same role as the
foreign function interface in Haskell (or any other programming language interfacing
with an outside world). As a consequence we have to specify an implementation for it
elsewhere. The relation tylnst is defined similarly:

relation tylnst =
view E =
holes [| ty : Ty, ty.i : Ty |]
judgespec 1y.i ‘="inst (ty)

S Extending to an algorithm

In this section we demonstrate the usefulness of views and incremental extension by
adapting the equational rules from Fig. 1 to the algorithmic variant in Fig. 2. We call
this the A view. We only need to specify the differences between two views. This
minimises our specification work; Ruler emphasises the differences using color. The
resulting type rules are shown in Fig. 2.

Fig. 2 not only shows the adapted rules but also shows the differences with the previous
view by using colors. The unchanged parts of the previous view (E) are shown in grey,
whereas the changed parts are shown in black (blue, if seen in color). In our opinion,
clearly indicating differences while still maintaining an overview of the complete pic-
ture, contributes to the understandability of the type rules when the complexity of the
rules increases.

For this to work, we specify which view is built on top of which other view:
viewhierarchy = £ <A < AG

The view hierarchy declaration defines the A view to be built on top of view E, and AG
again on top of A. A view inherits the hole structure and the judgement shapes from
its predecessor. Similarly, for each rule the bindings of hole names to their values are
preserved as well. As a consequence we only have to define the differences.

In order to turn the equational specification into an algorithmic one based on HM type
inference, we need to:

e Specify the direction in which values in the holes flow through a rule. This
specifies the computation order.

e Represent yet unknown types by type variables and knowledge about those type
variables by constraints.

Both modifications deserve some attention, because they are both instance of a more

general phenomenon which occurs when we shift from the equational to the algorithmic
realm: we need to specify a computation order.
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From relationships to functions In an equational view we simply relate two values.
In an algorithmic view this relation is replaced by a function mapping input values to
output values. For example, rule e.app from Fig. 1 specifies that the type of a and the
argument part of the type of f must be equal. The use of the same identifier 7, expresses
this equality. To compute 7, however we either need to:

e compute information about a’s type first and use it to construct f’s type,

e compute information about f’s type first and use it to deconstruct and extract a’s
type,

e compute information about both and then try to find out whether they are equal
(or remember they should be equal).

The last approach is taken for hole ¢y, because it allows us to compute types composi-
tionally in terms of the types of the children of an Expr.

Using yet unknown information In an equational view we simply use values with-
out bothering about how they are to be computed. However, computation order and
reference to a value may conflict if we to refer to a value before its value is computed.
For example, rule E.LET allows reference to the type of i (in e) before its type has been
computed. In rule E.LET the type of i is available only after HM’s generalisation of the
type of a let-bound variable. The standard solution to this problem is to introduce an
extra indirection by letting the type of i be a placeholder, called a type variable. Later,
if and when we find more information about this type variable, we gather this infor-
mation in the form of constraints, which is the information then used to replace the
content of the placeholder.

Adding direction to holes In Ruler notation, we specify the direction of computation
order as follows for view A on scheme expr:
view A =
holes [e : Expr, gam : Gam | thread cnstr: C | ty : Ty]

judgespec cnstr.inh; gam v .."e" e : ty ~» cnstr.syn
judgeuse — tex

The holes for expr are split into three groups, separated by vertical bars ‘|’. Holes
in the first group are called inherited, holes in the third group are called synthesized
and the holes in the middle group are both. The type rules now translate to a syntax
directed computation over an abstract syntax tree (AST). Values for inherited holes are
computed in the direction from the root to the leaves of the AST providing contextual
information; values for synthesized holes are computed in the reverse order providing
a result. We will come back to this in following sections.

In our A view on scheme expr both e and gam are inherited, whereas ty is the result.
This, by convention, corresponds to the standard visualisation of a judgement in which
contextual information is positioned at the left of the turnstyle ‘+’ and results are placed
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after a colon ‘:’. As we will see, the hole e plays a special role because it corresponds
to the AST.

Besides being declared as both an inherited and a synthesized hole, cnstr is also de-
clared to be threaded, indicated by the keyword thread. For a threaded hole its com-
putation proceeds in a specific order over the AST, thus simulating a global variable.
For now it suffices to know that for a threaded hole /. two other holes are introduced
instead: h.inh for the inherited value, h.syn for the synthesized value. Because cnstr
is declared threaded, cnstr.inh refers to the already gathered information about type
variables, whereas this and newly gathered information is returned in cnstr.syn. For
example, view A on rule E.INT fills cnstr.syn with cnstr.inh.

view A =
judge R : expr
| cnstr.syn = cnstr.inh
| cnstr.inh = cnstr.inh

Although a definition for cnstr.inh is included, we may omit the hole binding for
cnstr.inh, that is cnstr.inh = cnstr.inh (we will do this in the remainder of this pa-
per). If a binding for a new hole is omitted, the hole name itself is used as its value.

Instead of using a shape to specify the rule, we may bind individual hole names to their
values. In this way we only need to define the holes which are new or need a different
value. The Ruler system also uses this to highlight the new or changed parts and grey
out the unchanged parts. This can be seen from the corresponding rule from Fig. 2
(value cnstr.inh shows as C* by means of additional formatting information):

Ck' e - - Ck E.INT4

For rule e.app both the handling of the type (hole 7y) and the constraints need to be
adapted. The type ty.a of the argument is used to construct ty.a — v which is matched
against the type ty.f of the function. Constraints are threaded through the rules. For
example constraints cnstr.f constructed by the judgement for the function f are given
to the judgement a in the following fragment (which follows view E of rule E.app in the
Ruler source text):
view A =
judge V : tvFresh = tv
judge M : match = (ty.a — tv) = (cnstr.a ty.f)
~> cnstr
judge F : expr
|ty =0 f
| cnstr.syn = cnstr.f
judge A : expr
| cnstr.inh = cnstr.f
| cnstr.syn = cnstr.a
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judge R : expr
| ty = cnstr cnstr.a tv
| enstr.syn = cnstr cnstr.a

The rule E.App also requires two additional judgements: a tvFresh relation stating that
tv should be a fresh type variable and a match relation performing unification of two
types, resulting in additional constraints under which the two types are equal. The
resulting rule (from Fig. 2) thus becomes:

CLTH iy~ Gy
Cril'veair,~ C,
v fresh
Ta > vECurr~>C
CK T ke :CCv~ CCy

E.APP4

The way this rule is displayed also demonstrates the use of the inherited or synthesized
direction associated with a hole for ordering judgements. The value of a hole in a
judgement is either in a position where the identifiers of the value are introduced for
use elsewhere or in a position where the identifiers of a value are used:

o A synthesized hole corresponds to a result of a judgement. Its value specifies
how this value can be used; it specifies the pattern it must match. This may be a
single identifier or a more complex expression describing the decomposition into
the identifiers of the hole value. For example, cnstr.f in the premise judgement
F for function f is in a so called defining position because it serves as the value
of a hole which is defined as synthesized.

e For an inherited hole the reverse holds: the hole corresponds to the context of,
or parameters for, a judgement. Its value describes the composition in terms of
other identifiers introduced by values at defining positions. For example, cnstr.f
in the judgement A for argument a is in a so called use position because its hole
is inherited.

e For the concluding judgement the reverse of the previous two bullets hold. For
example, cnstr.inh of the conclusion judgement R, implicitly defined as cnstr.inh =
cnstr.inh, is on a defining position although its hole is inherited. This is because
it is given by the context of the type rule itself, for use in premise judgements.

Ruler uses this information to order the premise judgements from top to bottom such
that values in holes are defined before used. Because judgements may be mutually
dependent this is done in the same way as the binding group mechanism of Haskell: the
order in a group of mutually dependent judgements cannot be determined and therefore
is arbitrary.

Relation match represents the unification of two types; it is standard. Relation tvFresh
simply states the existence of a fresh type variable; we discuss its implementation in
Section 7.
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6 Target language: attribute grammar

In this section we give a brief overview of the AG system used as the target language
for Ruler to generate code for. Ruler generates a partial implementation expressed as
an attribute grammar (AG); we discuss this in the next section. We present as much
as is required for an understanding of the next section; more can be found elsewhere
[6, 12]. This section can safely be skipped by those who are familiar with our AG
system.

An attribute grammar describes computations over an AST by means of attributes. An

AST is a data structure similar to data types in Haskell. For example, part of the AST
required for our type rule implemention is defined as follows:

data Expr
|App f : Expr
a : Expr

| Int int : {Int}
| Var i :{String}

This AST for an Expr node defines alternatives (or variants, productions) for appli-
cation, integer constants and use of variables respectively. The application alternative
App has two Expr children, whereas Int and Var have a field holding the integer and
identifier respectively. In the context of an alternative the node itself is called the par-
ent.

An attribute holds the value of a computation; it has a name, a type and is defined as
inherited (before the first vertical ‘|’), synthesized (after the second vertical ‘") or both
(in between both ‘|’). In AG code we define attributes for a node, for example for Expr:

attr Expr [g: Gam | c:C | ty: Ty]

Our AG system and Ruler use similar notation for attribute and hole definitions. For
example, attribute ¢y is synthesized and has type 7.

We define the value of an attribute for each alternative of a node by specifying an
attribute equation for the synthesized attributes of the parent and the inherited attributes
of all children. For example, for the Inf alternative of Expr we define the value of the
ty attribute of the parent (referred to by lhs) to be Ty_Int:

sem Expr
| Int lhs.ty = Ty_Int

Each attribute equation is of the form
| {alternative) (node).(attr)y = (Haskell expr)
A (node) may be:

o lhs: reference to parent.

e (child): reference to child.
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o loc: reference to a local attribute. The scope of a local attribute is the alternative
it is declared in.

Our implementation (based on [7, 18]) uses Haskell expressions to define values for an
attribute. From within these Haskell expressions we refer to attributes by means of the
notation @{node).{attr):

o @lhs.(attr): reference to (inherited) (attr) of parent.
o @(child).{attr): reference (synthesized) {attr) of {child).

e @(arttr): reference to a local attribute {attr).

For example, the following combines this notation (where > is a Haskell operator for
applying constraints as a substitution):

sem Expr
| App (f .uniq,loc.uniql)
= rulerMklUniq @lhs.uniq
loc.tv_ = Ty_Var @uniql
f . = @lhs.c -- may be omitted
f .g = @lhs.g -- may be omitted
a c =@fc -- may be omitted
. = @lhs.g -- may be omitted
(loc.c_,loc.mtErrs)
= (@a.ty) ‘Ty Arr' (@1tv))) = (@a.c > (@f .ty))
lhs.c = @c_> (@a.c)
By = @c_> @ac> (@)

In this fragment

e @lhs.c refers to the c attribute of the parent which is passed on to the ¢ attribute
of child f.

e tv_is defined locally and is referred to by @¢v_in an expression for @lhs.zy.
Additionally, the AG notation allows the following notational variations:

e For a sequence of attribute equations defining a value for the same (node), only
the first one needs to mention (node). In the example this has been done for a
but not for f.

e The rules for f and a may be omitted anyway as the AG system uses built-in
copy rules for attributes for which no equation has been given. We omit the
details; the intuition is that values of attributes with the same name are copied
top-to-bottom (if inherited), bottom-to-top (if synthesized) and left-to-right (if
inherited + synthesized).
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o AG allows pattern matching for tuples. For example, loc.c_ and loc.mtErrs are
defined via AG’s pattern matching notation.

o AG fragments may be specified at textually different locations. The AG system
gathers all fragments.

7 Extensions for AG code generation

In this section we discuss the modifications to our type rule specification required for
the generation of a partial implementation, and the additional infrastructure required
for a working compiler. The end result of this section is a translation of type rules to
AG code. For example, the following is generated for rule E.app; the required additional
Ruler specification and supporting code is discussed throughout this section:

attr Expr [g: Gam | c:C | ty: Ty]

sem Expr
| App (f.unig,loc.uniql)

= rulerMkl Unig @lhs.uniq

loc.tv_ = Ty_Var @uniql

(loc.c_,loc.mtErrs)
= (@a.ty ‘Ty Arr* @tv))= @a.c> @f.ty

lhs.c = @c_>» @a.c

1y = @c_> @a.c> @tv_

We need to deal with the following issues:

o Type rules need to be translated to AG code that describes the computation of
hole values. We exploit the similarity between type rules and attribute grammars
to do this.

o Fresh type variables require a mechanism for generating unique values.

o Type rules are positive specifications, but do not specify what needs to be done
in case of errors.

e We mention in passing the need to parse input into an AST as well as to produce
output from the AST and to make the result of type analysis available.

Type rule structure and AST structure The structure of type rules and an abstract
syntax tree are often very similar. This should come as no surprise, because type rules
are usually syntax directed in their algorithmic form so choosing which type rule to
apply can be made deterministically. We need to tell Ruler:

e Which hole of a scheme acts as a node from the AST, the primary hole.

e Which values in this primary hole in the conclusion of a rule are children in the
AST.
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o To which AG data a scheme maps, and for each rule to which alternative.

The AST is defined externally relative to Ruler (this may change in future versions of
Ruler). For example, the part of the AST for expression application is defined as:

data Expr

| App f : Expr
a: Expr

The keyword node is used to mark the primary hole that corresponds to the AST node
for scheme expr in the AST:

view AG =
holes [node ¢ : Expr ||]

For each rule with children we mark the children and simultaneously specify the order
of the children as they appear in the AST. For example, for rule e.App we mark f to be
the first and a to be the second child (the ordering is required for AG code generation
taking into account AG’s copy rules):

view AG =
judge R : expr
| e = (node 1 = f) (node 2 = a))

The scheme expr is mapped to the AST node type Expr by adapting the scheme defini-
tion to:

scheme expr "Expr" =

Similarly we adapt the header for rule E.app to include the name App as the name of the
alternative in the AST:

rule e.app "App" =

Ruler expressions and AG expressions Expressions in judgements are defined us-
ing a notation to which Ruler attaches no meaning. In principle, the Ruler expression
defined for a hole is straightforwardly copied to the generated AG code. For example,
for rule E.ApP the expression ty.a — tv would be copied, including the arrow —. Be-
cause AG attribute definitions are expressed in Haskell, the resulting program would
be incorrect without any further measures taken.

Ruler uses rewrite rules to rewrite ruler expressions to Haskell expressions. For exam-
ple, ty.a — tv must be rewritten to a Haskell expression representing the meaning of
the Ruler expression. We define additional Haskell datatypes and functions to support
the intended meaning; unique identifiers UID are explained later:
type Tvid = UID
data7y =Ty Any| Ty Int | Ty_Var Tvld
| Ty Arr Ty Ty
| Ty All [Tvid] Ty
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deriving (Eq, Ord)

A Ty_All represents universal quantification V¥, Ty_Arr represents the function type —,
Ty_Var represents a type variable and Ty_Any is used internally after an error has been
found (we come back to this later). We define a rewrite rule to rewrite fy.a — v to
ty.a ‘Ty Arr tv:

rewrite ag def a — r = (a) ‘Ty_Arr‘ (r)

A rewrite declaration specifies a pattern (here: a — r) for an expression containing
variables which are bound to the actual values of the matching expression. These
bindings are used to construct the replacement expression (here: (a) ‘Ty_Arr‘ (r)). The
target ag limits the use of the rewrite rule to code generation for AG. The flag def
limits the use of the rule to defining positions, where a defining position is defined as a
position in a value for an inherited hole in a premise judgement or a synthesized hole
in a conclusion judgement. This is a position where we construct a value opposed to
a position where we deconstruct a value into its constituents. Although no example
of deconstructing a value is included in this paper, we mention that in such a situation
a different rewrite rule expressing the required pattern matching (using AG language
constructs) is required. The flag use is used to mark those rewrite rules.

The rewrite rule used for rewriting fy.a — tv actually is limited further by specifying
the required type of the value for both pattern and the type of the replacement pattern:

rewrite ag def (a | Ty) — (r | Ty) = (@) Ty Arr* (r) | Ty)

The notion of a type for values in Ruler is simple: a type is just a name. The type of
an expression is deduced from the types specified for a hole or the result expression of
a rewrite rule. This admittedly crude mechanism for checking consistency appears to
work quite well in practice.

Limiting rewrite rules based on Ruler type information is useful in situations where we
encounter overloading of a notation; this allows the use of juxtapositioning of expres-
sions to keep the resulting expression compact. We can then specify different rewrite
rules based on the types of the arguments. The meaning of such an expression usually
is evident from its context or the choice of identifiers. For example, cnstr cnstr.a tv
(rule E.ApPP, Fig. 2) means the application of constraints cnstr and cnstr.a as a substitu-
tion to type #v. Constraints can be applied to constraints as well, similar to Haskell’s
overloading. To allow for this flexibility a pattern of a rewrite rule may use (Ruler)
type variables to propagate an actual type. For example, the rewrite rule required to
rewrite cnstr cnstr.a tv is defined as:

rewrite ag def (c/ | C) (c2|C) (v|a)
=(cl>c2> ) |a)
Rewrite rules are only applied to saturated juxtapositionings or applications of opera-
tors. Rewrite rules are non-recursively applied in a bottom-up strategy.

The rule assumes the definition of additional Haskell types and class instances defined
elsewhere:

type C = [(TvId, Ty)]
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class Substitutable a where
>)uC—-a—a
ftv ia — [Tvid]
instance Substitutable Ty where
s >t @(Ty_Var v) = maybe t id (lookup v s)
s >-TyArrtl 12 =Ty Arr (s>tl) (s>12)

_>t =1

ftv (Ty_Var v) =[v]

ftv (TIy Arrtl t2) =ftvtl Uftv 12
Jv - =11

Unique values Our implementation of “freshness” that is required for fresh type vari-
ables is to simulate a global seed for unique values. Ruler assumes that such an im-
plementation is provided externally. From within Ruler we use the keyword unique to
obtain a unique value. For example, the relation tvFresh has a ag judgement shape for
the generation of AG which contains a reference to unique:

relation tvFresh =
view A =
holes [|| tv: Ty]
judgespec rv
judgeuse tex tv (text "fresh")
judgeuse ag tv ‘=‘ Ty_Var unique

The presence of unique in a judgement for a rule triggers the insertion of additional
AG code to create an unique value and to update the unique seed value. We repeat the
translation of rule E.ApP as an example:

sem Expr
| App (f .unig,loc.unigl)

= rulerMklUnig @lhs.uniq

loc.tv_ = Ty_Var @uniql

(loc.c_,loc.mtErrs)
=(@a.ty ‘Ty Arr* @tv)) = @a.c> @f.ty

lhs.c = @c_> @a.c

1y = @c_> @ac> @

Ruler automatically translates the reference to unique to unigl and inserts a call to
rulerMklUniq. The function rulerMklUniq is assumed to be defined externally. It
must have the following type:

rulerMkl Uniq :: (X) — ({X),(Y))
rulerMklUniq = ...

For (X) and (Y) any suitable type may be chosen, where (X) is restricted to match the
type of the seed for unique values, and (Y) matches the type of the unique value. Our
default implementation is a nested counter which allows a unique value itself to also act
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as a seed for an unlimited series of unique values. This is required for the instantiation
of a quantified type where the number of fresh type variables depends on the type (we
do not discuss this further):

newtype UID = UID [Int] deriving (Eq, Ord)
uidStart = UID [0]

rulerMklUniq :: UID — (UID, UID)
rulerMklUnig u @(UID Is) = (uidNext u, UID (0 : Is))

uidNext :: UID — UID
uidNext (UID (1 :1s)) = UID (I +1: Ls)

When a rule contains multiple occurrences of unique, Ruler assumes the presence of
rulerMk{(n)Unig which returns (n) unique values; (n) is the number unique occur-
rences. We have omitted the declaration and initialisation of attribute unigq.

The Ruler code for relation tvFresh also demonstrates how the ag judgement shape for
tvFresh is inlined as an attribute definition. The ag shape for a relation must have the
form (attrs) ‘="‘(expr).

Handling errors The generated code for rule E.app also shows how the implementa-
tion deals with errors. This aspect of an implementation usually is omitted from type
rules, but it cannot be avoided when building an implementation for those type rules.
Our approach is to ignore the details related to error handling in the ISTEX rendering of
the type rules, but to let the generated AG code return two values at locations where an
€ITOr may occur:

e The value as defined by the type rules. If an error occurs, this is a “does not
harm” value. For example, for types this is 7y_Any, for lists this is an empty list.

o A list of errors. If no error occurs, this list is empty.

For example, the AG code for relation match as it is inlined in the translation for
rule E.app is defined as:

relation match =
view A =
holes [1y.l: Ty, ty.r: Ty || cnstr : C]
judgespec 1y.l = ty.r ~» cnstr
judgeuse ag (cnstr,mtErrs) ‘=‘(ty.l) = (ty.r)

The operator = implementing the matching returns constraints as well as errors. The
errors are bound to a local attribute which is used by additional AG code for error
reporting.

8 Discussion, related work, conclusion

Experiences with Ruler Ruler solves the problem of maintaining consistency and
managing type rules; it is a relief to avoid writing IZIgX for type rules by hand and to
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know that the formatted rules correspond directly to their implementation.

Ruler enforces all views on a type rule to be specified together. This is a consequence
of our design paradigm in which we both isolate parts of the type rules specification
(by using views), and need to know the context of these isolated parts (by rendering
parts together with their context). As a developer of a specification all views can best
be developed together, to allow for a understandable partitioning into different views
while at the same time keeping an overview.

Literate programming Literate programming [3, 22] is a style of programming
where the program source text and its documentation are combined into one document.
So called tangling and weaving tools extract the program source and documentation.
Our Ruler system is different:

e Within a literate programming document program source and documentation are
recognizable and identifiable artefacts. In Ruler there is no such distinction.

o Ruler does not generate documentation; instead it generates fragments for use in
documentation.

We think Ruler is mature enough to be used by others, and we are sure such use will
be a source of new requirements. Since Ruler itself has been produced using the AG
system new extensions can be relatively easily incorporated.

Emphasizing differences We use colors to emphasize differences in type rules. For
black-and-white print this is jardly a good way to convey information to the reader.
We believe however that in order understand more complex material, more technical
means (like colors, hypertext, collapsable/expandable text) must be used to express and
explain the complexity.

Future research We foresee the following directions of further research and devel-
opment of Ruler:

e The additional specification required to shift from equational to algorithmic type
rules is currently done by hand. However, our algorithmic version of the type
rules uses a heuristic for dealing with yet unknown information and finding this
unknown information. We expect that this (and other) heuristics can be applied
to similar problems as an automated strategy.

o Ruler currently generates output for two targets: IIEX and AG. We expect the
Ruler to be useful in many different situations, requiring different kinds of output,
such as material for use in theorem provers. We already have started to develop
a plugin architecture for this kind of extensibility.
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Related work We are not aware of other work which aims at consistency and under-
standability of compiler artefacts. However, we feel that the POPLmark challenge [5]
and the Programmatica project [4] are relevant to Ruler:

e The POPLmark challenge aims at accompanying papers on programming lan-
guages by machine-checked proofs. This overlaps with our Ruler system which
can be easily extended to generate input for external verification systems.

e The Programmatica project provides mechanisms and tools for proving proper-

ties of Haskell programs.

As mentioned in our future research, in both cases we envision many useful extensions
to Ruler for the generation of material for theorem provers. We want to stress however
that, already in its current state, we have found it an indispensable tool in keeping the
formal description of a whole series of compilers and the associated implementations
consistent. Ruler can be downloaded as part of EHC [10].
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A Source code using Ruler notation

The preambles are specific to the generation for this paper because of the need for
additional preprocessing to include pretty printed fragments of the Ruler source code
in this paper.

preamble tex "%include lhs2TeX.fmt\n%include afp.fmt\n"

preamble ag "%%[0\n%include 1lhs2TeX.fmt\n¥include afp.fmt\n%%]\n"
external Ty_Int

format tex Ty_Int = Int

format tex Gam = Gamma

format tex gam = Gamma

format tex ty = tau
format tex pty = sigma
format tex mty = tau
format tex tv = v

format tex cnstr.inh = Cnstr..k
format tex cnstr.syn = Cnstr

format tex cnstr = Cnstr
format ag cnstr =c
format ag gam =g

rewrite ag def (a | Ty) -> (r | Ty) = ((a) ‘Ty_Arr‘ (r) | Ty)
rewrite ag def (cl | Cnstr) (c2 | Cnstr) (v | a)
=(l |=c2 |= (V) | a
rewrite ag def (c | Cnstr) (v | @) = (c |=> (v) | a)
rewrite ag def (i :-> (t|Ty)) = ([(i,t)] | Gam)
rewrite ag def (gl | Gam), (g2 | Gam) = ((gl) ++ (g2) | Gam)
viewhierarchy = E < A < AG < 3
scheme expr "Expr" =
view E =
holes [ | e: Expr, gam: Gam, ty: Ty | ]
judgespec gam :- e : ty

judgeuse tex gam :-.."e" e : ty

view A =
holes [ e: Expr, gam: Gam | thread cnstr: Cnstr | ty: Ty ]
judgespec cnstr.inh ; gam :-.."e" e : ty "> cnstr.syn
judgeuse - tex

view AG =
holes [ node e: Expr | | ]

ruleset expr.base scheme expr "Expression type rules" =
rule e.int "Int" =
view E =
judge R : expr = gam :- int : Ty_Int
view A =

judge R : expr
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| cnstr.syn = cnstr.inh

| cnstr.inh = cnstr.inh
rule e.var "Var" =
view E =
judge G : gamLookupIdTy = i :-> pty ‘elem‘ gam
judge I : tyInst = ty ‘=‘ inst(pty)

judge R : expr = gam :- i : ty
view A =
judge R : expr
| cnstr.syn = cnstr.inh
rule e.app "App" =
view E =
judge A : expr = gam :- a : ty.a
judge F : expr = gam :- £ : (ty.a -> ty)

judge R : expr = gam :- (f a) : ty

view A =

judge V : tvFresh = tv
judge M : match = (ty.a -> tv) <=> (cnstr.a ty.f)
“> cnstr
judge F : expr
| ty = ty.f
| cnstr.syn = cnstr.f
judge A : expr
| cnstr.inh = cnstr.f
| cnstr.syn = cnstr.a
judge R : expr
| ty = cnstr cnstr.a tv
| cnstr.syn = cnstr cnstr.a

view AG =

judge R : expr
| e = ((node 1
rule e.lam "Lam" =
view E =
judge B : expr = ((i :-> ty.i) , gam) :- b : ty.b

) (node 2 = a))

judge R : expr gam :- (\i -> b) : (ty.i -> ty.b)
view A =
judge V : tvFresh = tv
judge B : expr
| cnstr.syn = cnstr.b
| gam = (i :-> tv) , gam
judge R : expr
| ty = cnstr.b tv -> ty.b
| cnstr.syn = cnstr.b
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view AG

judge R : expr
| e =\i -> (node 1 = b)
rule e.let "Let" =

view E =
judge D : expr = gam :- e : ty.e
judge B : expr = ((i :-> pty.e), gam) :- b : ty.b
judge G : tyGen = pty.e ‘=‘ ty.e \\ gam
judge R : expr = gam :- (let i ‘= e in b) : ty.b
view A =
judge V : tvFresh = tv
judge D : expr
| cnstr.syn = cnstr.e
| gam = (i :-> tv) , gam
judge B : expr
| cnstr.inh = cnstr.e
| cnstr.syn = cnstr.b
judge G : tyGen
| gam = cnstr.e gam
judge R : expr
| cnstr.syn = cnstr.b
view AG =
judge R : expr
| e =1et i ‘= (node 1 = e) in (node 2 = b)
relation match =
view A =
holes [ ty.l: Ty, ty.r: Ty | | cnstr: Cnstr ]
judgespec ty.l <=> ty.r "> cnstr
judgeuse ag (cnstr,mtErrs) ‘=° (ty.l) <=> (ty.r)

relation gamLookupIdTy =
view E =

holes [ | nm: Nm, gam: Gam, ty: Ty | ]

judgespec nm :-> ty ‘elem‘ gam
view AG =

holes [ nm: Nm, gam: Gam | | ty: Ty ]
judgeuse ag (ty,nmErrs) ‘=‘ gamLookup nm gam
relation tvFresh =
view A =
holes [ | | tv: Ty ]

judgespec tv

judgeuse tex tv (text "fresh'")

judgeuse ag tv ‘=‘ Ty_Var unique
relation tyInst =

view E =
holes [ | ty: Ty, ty.i: Ty | 1
judgespec ty.i ‘=‘ inst(ty)
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view AG =

holes [ ty: Ty | | ty.i: Ty ]
judgeuse ag ty.i ‘=‘ tyInst unique (ty)
relation tyGen =
view E =
holes [ ty: Ty, gam: Gam | | pty: Ty ]
judgespec pty ‘= ty \\ gam
judgeuse tex pty ‘=‘ forall v..._ ‘.‘ ty, "°7 v..._ ‘notElem‘ ftv(gam)
view A =
judgeuse tex pty ‘=‘ forall (ftv(ty) \\ ftv(gam)) ‘.‘ ty
view AG =

judgeuse ag pty ‘=‘ mkTyAll (ftv(ty) \\ ftv(gam)) (ty)

B Supporting AG

{

module Main

where

import IO

import Data.List

import UU.Pretty

import UU.Parsing

import UU.Scanner

import UU.Scanner.Position (initPos,Pos)
import DemoUtils

}

{

}

INCLUDE "demo.ag"
WRAPPER AGItf

{
-- main
main :: I0 O
main
= do { txt <- hGetContents stdin
; let tokens = scan ["let", "in"] ["->", "=", "\\"]
"O" "\\->=" (initPos "") txt
; pres <- parselOMessage show pAGItf tokens
; let res = wrap_AGItf pres Inh_AGItf
; putStrLn (disp (pp_Syn_AGItf res) 200 "")
}
-- Parser
pAGItf :: (IsParser p Token) => p T_AGItf
PAGItf
= pAGItf
where pAGItf =  sem_AGItf_AGItf <$> pExpr
pExprBase = pParens pExpr
<|> sem_Expr_Var <$> pVarid
<|> (sem_Expr_Int . read) <$> pInteger
pExprApp = foldll sem_Expr_App <$> pListl pExprBase
pExprPre = sem_Expr_Let

34



<$ pKey "let" <*> pVarid

<* pKey "=" <*> pExpr <* pKey "in"
<|> sem_Expr_Lam
<$ pKey "\\" <*> pVarid
<* pKey "->"
pExpr = pExprPre <*> pExpr
<|> pExprApp
}
-- AST
DATA AGItf
| AGItf e : Expr
DATA Expr
| App £ : Expr
a : Expr
| Int int {Int}
| Var i {String}
| Lam i : {String}
b : Expr
| Let i : {String}
e . Expr
b 1 Expr
-- Initialisation
SEM AGItf
| AGItf e g = [1]
. c = [1
-- Pretty printing
ATTR AGItf Expr [ | | pp: PP_Doc ]
SEM Expr
| App 1lhs pp = @f.pp >#< pp_parens @a.pp
>-< mkErr @mtErrs
| Int 1lhs pp = pp @int
| Var 1lhs pp = pp @i >-< mkErr @nmErrs
| Lam 1lhs pp = "\\" >|< pp @i >#< "->" >#< @b.pp
| Let 1lhs pp = "let" >#< pp @i
>#< """ >#< show @pty_e_
> =" >#< @e.pp
>-< "in " >#< @b.pp
-- Uniq
ATTR Expr [ | uniq: UID | ]
SEM AGItf
| AGItf e uniq uidStart

C Supporting Haskell

Type, unification

module DemoUtils

where

import Data.List
import UU.Pretty

-- Error
mkErr ::

[PP_Doc] -> PP_Doc
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mkErr [] = empty
mkErr p = "<ERR:" >#< vlist p
-- Unique identifier

>|< ">

newtype UID = UID [Int] deriving (Eq,Ord)

uidStart = UID [0]

rulerMklUniq :: UID -> (UID,UID)

rulerMk1Uniq u@(UID 1ls) = (uidNext u,UID (0:1s))

uidNext :: UID -> UID

uidNext (UID (1:1s)) = UID (1+1
mkUIDs :: UID -> [UID]

mkUIDs = iterate uidNext

instance Show UID where
show (UID 1)
= concat . intersperse
-- Type
type TvId
data Ty

UID

| Ty_Arr Ty Ty
| Ty_All [Tvid] Ty
deriving (Eq,Ord)

:1s)

. map show .

Ty_Any | Ty_Int | Ty_Var TvId

reverse § 1

mkTyAll tvs t = if null tvs then t else Ty_All tvs t

instance Show Ty where

show Ty_Any = "?"
show Ty_Int = "Int"
show (Ty_Var v) = "v" ++ show v
show (Ty_All vs t) = "forall" ++ concat (map ((’ ’:) . show) vs)
++ " " ++ show t
show (Ty_Arr tl1 t2) = "(" ++ show tl1l ++ ") -> " ++ show t2
-- Gam

type Gam = [(String,Ty)]

gamLookup :: String -> Gam -> (Ty, [PP_Doc])

gamLookup n g

= maybe (Ty_Any,[n >#< "undefined"]) (\t -> (t,[]))

$ lookup n g
-- Constraints
type Cnstr = [(TvId,Ty)]

class Substitutable a where
(]=>) :: Cnstr ->a -> a

ftv roa -> [Tvid]

instance Substitutable Ty where

s |=> t@(Ty_Var v) = maybe t id (lookup v s)

s |=> Ty_Arr tl t2 = Ty_Arr (s |=> tl1) (s |=> t2)
_ = t = t

ftv (Ty_Var v) = [v]

ftv (Ty_Arr tl1 t2) = ftv tl1 ‘union‘ ftv t2

ftv = [1

instance Substitutable Cnstr where
sl |=> s2 = sl ++ map (\(v,t) -> (v,sl |=> 1)) s2

ftv = foldr union []

. map (ftv .

snd)
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instance Substitutable Gam where
s |=g¢g =map (\{E,) > {E,s |=> 1)) g
ftv = foldr union [] . map (ftv . snd)
-- Type matching (unification)
(<=>) :: Ty -> Ty -> (Cnstr, [PP_Doc])

Ty_Any <=> t2 = ([1,[D
t1 <=> Ty_Any = ([1,ID
Ty_Int <=> Ty_Int = ([1,[D
Ty_Var vl <=> Ty_Var v2

| vl == v2 = ([1,[D
Ty_Var vl <=> t2

| vl ‘notElem‘ ftv t2 = ([1,t2)]1,[D
tl <=> Ty_Var v2

| v2 ‘notElem‘ ftv tl = ([(v2,tD],[D

Ty_Arr al rl <=> Ty_Arr a2 r2
= (sr |=> sa,ea ++ er)
where (sa,ea) = al <=> a2
(sr,er) = (sa |=> rl) <=> (sa |=> r2)
tl <=> t2 = ([1,["could not match"
>#< show tl >#< "with"
>#< show t2]

-- Type instantiation
tyInst :: UID -> Ty -> Ty
tyInst u (Ty_All vs t) = c |=> t
where ¢ = zipWith (\v u -> (v,Ty_Var u))
vs (mkUIDs u)
tyInst _ t =t
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D Generated AG

ATTR Expr [g: Gam | c: Cnstr | ty: Ty]
SEM Expr
Int lhs . ty = Ty_Int
SEM Expr
| Var (lhs.uniq,loc.uniql)
= rulerMklUniq @lhs.unig
(loc.pty_,loc.nmErrs)
= gamLookup @i @lhs.g
lhs . ty = tyInst @Quniql @pty_
SEM Expr
App (f.uniq,loc.uniql)
= rulerMklUniq @lhs.uniq
loc . tv_ = Ty_Var @uniqgl
(loc.c_,loc.mtErrs)
= (@a.ty ‘Ty_Arr‘ @tv_) <=> @a.c |=> @f.ty
lhs . <c = @c_ |=> @a.c
ty = @c_ |=> @a.c |=> @tv_

SEM Expr
Lam (b.uniq,loc.uniql)

= rulerMklUniq @lhs.uniq
loc . tv_ = Ty_Var @uniql

b .9 = ([ (@i , @v_) 1) ++ @lhs.g
lhs . ty = (@.c |=> @tv_) ‘Ty_Arr‘ @b.ty

SEM Expr
Let (e.uniq,loc.uniql)
= rulerMklUniq @lhs.uniq
e .9 = ([ (@i , Ty_Var @uniql) ]) ++ @lhs.g
b . g = ([ (@i , mkTyAll (ftv @e.ty \\ ftv (@e.c |=> @lhs.g)) @e.ty) ]) ++ @lhs.g
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