
Transformations for Abstractions

Eelco Visser

Technical Report UU-CS-2005-034
Department of Information and Computing Sciences

Universiteit Utrecht

July 2005

This is an extended version of the following paper (the published paper does not have the appendices):
E. Visser. Tranformations for Abstractions. Fifth IEEE International Workshop on Source Code Analysis and Manipulation
(SCAM 2005). IEEE, Budapest, Hungary. September 2005. (Keynote paper)

Copyright c© 2005 Eelco Visser

ISSN 0924-3275

Address:
Department of Information and Computing Sciences
Universiteit Utrecht
P.O.Box 80089
3508 TB Utrecht

Eelco Visser
visser@acm.org
http://www.cs.uu.nl/∼visser

Transformations for Abstractions

Eelco Visser
Department of Information and Computing Sciences, Universiteit Utrecht

PO Box 80.089, 3508 TB Utrecht, The Netherlands
http://www.cs.uu.nl/∼visser, visser@acm.org

Abstract

The transformation language Stratego provides high-
level abstractions for implementation of a wide range of
transformations. Our aim is to integrate transformation in
the software development process and make it available to
programmers. This requires the transformations provided
by the programming environment to be extensible. This pa-
per presents a case study in the implementation of extensible
programming environments using Stratego, by developing a
small collection of language extensions and several typical
transformations for these languages.

1. Introduction

Stratego/XT is a language and toolset for the construc-
tion of program transformation systems. The goal of the
Stratego language is to unify different types of transforma-
tions into one language, i.e., to provide abstractions for im-
plementing a wide range of transformations. The basic as-
sumption underlying Stratego is that transformations should
be expressed by rewrite rules that are under the control of a
user-definable strategy—as opposed to rule-based systems
with an implicit strategy.

Stratego/XT is applied in a number of research projects.
First of all the Stratego compiler itself, the Stratego inter-
preter, and the XT toolset with numerous grammar engi-
neering tools are implemented in Stratego. The CodeBoost
transformation system for C++ [2] supports domain-specific
optimization of numerical software. A compiler for Tiger
includes all aspects of compilation, from type checking, via
optimizations, to instruction selection. A compiler for Oc-
tave includes loop vectorization, and partial evaluation of
types and values [19]. Finally, we are working on a transfor-
mation framework for Java geared towards domain-specific
language embeddings and meta-programming [8, 6].

In these projects we1 have implemented numerous types

1The Stratego/XT group

of transformations including desugaring of syntactic ab-
stractions; assimilation of language embeddings [8]; bound
variable renaming; optimizations, such as function inlin-
ing; data-flow transformations such as constant propaga-
tion, copy propagation, common-subexpression elimina-
tion, and partial evaluation [5, 20]; instruction selection [7];
and several analyses including type checking [6], escaping
variables analysis, and bound-unbound variables analysis
for Stratego. Thus, we have been successful in exploring
the implementation of individual transformations, and the
range of transformations that we know how to encode ef-
fectively and elegantly grows. Along the way we keep dis-
covering better idioms and abstractions for implementing
transformations.

What is common in the transformations that we are ex-
ploring is that they are for supporting abstractions.2 That
is, to enable programming at a higher-level of abstraction.
Our aim is to integrate such transformations in the software
development process and make them available to program-
mers. That is, create programming environments with full
meta-programming support that let the (meta-) program-
mer extend the language, the compiler, and other aspects
of the environment such as documentation generators. This
requires the transformations provided by the programming
environment to be extensible. The base programming lan-
guage should be extensible with new constructs and/or with
new (primitive) APIs implementing new abstractions. Like-
wise the compiler should be extensible with new transfor-
mations, and existing transformations should be extensible
to new language constructs. New constructs may be im-
plemented by reduction to the base language, or by exten-
sion of the back-end of the compiler. APIs may require
domain-specific optimizations to ensure efficient execution.
While syntactic extensibility is covered by the syntax defi-
nition formalism SDF [22], extensibility of transformations
is a topic of research. The scale of the projects mentioned

2Note that Stratego/XT is not intrinsically restricted to this application
area. There are also applications of Stratego to software evolution. For
example, the Proteus project at Lucent has built a transformation system
for C/C++ programs [25] using Stratego.

1

above, prohibits studying these issues ‘in vivo’.
This paper presents a case study in bringing together

the essence of the techniques from the various application
projects, in an ‘in vitro’ model of an extensible program-
ming environment. The restricted scale makes experimen-
tation with different implementation styles easy. The TFA
project is an extensible framework consisting of a family of
language extensions to a tiny core language. The rest of this
paper presents the TFA languages, shows the implementa-
tion of some typical transformations, and discusses how ex-
tensibility for these transformations has been achieved. The
paper may also be read as a tutorial with an overview of dif-
ferent styles for the implementation of transformations in
Stratego. Since an in depth explanation of the Stratego con-
cepts is out of the scope of this paper, the reader is referred
to relevant papers.

2. Languages and Transformations

TFA is a collection of languages extending a tiny core
language. Figure 1 defines the syntax of a number of these
extensions. The core language introduces variables, assign-
ments of values to variables, function and procedure calls,
and blocks of statements. The int extension adds integer
constants and the usual arithmetic, relational, and short cir-
cuit Boolean operators, where Boolean values are repre-
sented by integers as in C. Given this data type, the control
extension adds control-flow constructs for choice and itera-
tion. The string extension adds string literals. The eblocks
extension adds expression blocks, allowing statements to be
used in expressions; an expression begin st1* return
e; st2* end first executes the statements st1*, then com-
putes the result e of the expression, and finally executes the
statements st2*. The definitions extension adds function
and procedure definitions. The regexps extension embeds
the domain-specific language of regular expressions in the
language, introducing the match expression /re/e, which
matches the string resulting from the evaluation of the ex-
pression e to the regular expression re. Not shown here
are extensions adding stack operations and labels and go-
tos, to model low-level programs. There is no end to further
possible extensions, of course.

In addition to the syntax, the TFA programming envi-
ronment provides a collection of transformations that can
be applied to programs. Desugarings reduce a program to
use a smaller set of extensions. These types of transfor-
mations are also known as assimilation [8], normalization,
simplification, or compilation (when the result is a low-level
language). The run transformations reduce a program and
its inputs to its outputs, and thus implement an interpreter.
Bound-variable renaming is a transformation that assigns
unique names to all declared identifiers in a program. Data-
flow transformations optimize programs using knowledge

p := b
e := x | f(e1, ...,en)

st := var x : t; | x := e; | f(e1,...,en); | b
b := begin sts end

sts := st∗

t := void core

i := [0− 9]+
e := i | e1 + e2 | e1 * e2 | ... | e1 & e2 | e1| e2

t := int int

st := if e then sts else sts end
if e then sts end
while e do sts end
for x := e1 to e2 do sts end control

str := "¬["]∗"
e := str
t := string string

e := eb
eb := begin sts return e; sts end eblocks

p := def∗

def := function f(arg∗,) : t eb
procedure f(arg∗,) b

arg := x : t definitions

re := str | alpha | re1|re2 | re1re2 | re* | re+
e := /re/ e | /re;f/ x
t := regexp regexps

Figure 1. Core language with extensions

syn desugar run ren. d-flow ...
core X X X X
int L/S X A E
control X X X X X
string L A E
eblocks S R X X
defs X X X X
regexps S R
stack T A
gotos X T X X
...

X = general extension
L = literals added
S = syntactic sugar
R = extension is reduced to underlying base language
A = an API for the new data type has been added
E = evaluation rules (for the API) have been added
T = target of reduction for other extensions

Figure 2. Extensions and transformations

2

of the flow of data in the program. Examples are constant
propagation and common-subexpression elimination. Par-
tial evaluation or specialization specializes a program to its
inputs. It can be seen as a special case of constant prop-
agation. A translation transforms a program to a program
in another language. These transformations can be com-
bined into various complete transformation systems, such
as a complete compiler, a source-to-source partial evalua-
tor, an interpreter, and a source-to-source preprocessor (sup-
porting a language extension or embedding).

The matrix in Figure 2 shows which languages extend
which transformations. An implementation is not needed
everywhere. The symbols in the matrix indicate the type
of extension. For instance, the string extension only adds
literals to the syntax, and requires an extension of the in-
terpreter to implement an API for string manipulation. In
the following sections we examine a selection of points in
the matrix focusing on the following issues: how to con-
cisely implement a transformation, and how to make these
implementations extensible.

3. Desugaring

A simple but effective way to implement language ex-
tensions is by desugaring, that is, by reducing a syntactic
abstraction (also known as syntactic sugar) to constructs
in the base language. It depends on the complexity of
the abstraction, how difficult the transformation is. Prefer-
ably, desugarings can be implemented by means of simple
rewrite rules. Figure 3 shows desugaring rules for the int,
control, and eblocks extensions.

A rewrite rule R : p1 -> p2 defines a transformation
from a program fragment matching p1 to a program frag-
ment p2. The BinOpToCall rule generically rewrites an
abstract syntax term representing a binary operator applica-
tion to a function call. The ForToWhile rule defines for
loops in terms of while loops. The HoistEBlock rules de-
fine how eblocks in expressions can be lifted to statement
level. The auxiliary collect-eblocks strategy lifts all
eblocks from a list of expressions at once, producing a list
of statements consisting of the statements from the eblocks
and a list of expressions without eblocks. These rules de-
fine single transformation steps. The desugar strategy
combines these rules using the generic innermost strat-
egy with Desugar as argument. Since there is nothing to
desugar in the core language, Desugar is initially defined
to be fail, the transformation that always fails. By simply
extending the definition of Desugar in the extensions, the
transformation is adapted to cover the extended languages.
The innermost strategy exhaustively applies its argument
transformation rules, starting with the innermost nodes of
the abstract syntax tree of a program, and thus normalizes
to a form in which none of the rules is applicable.

desugar = innermost(Desugar)

Desugar = fail core

Desugar = BinOpToCall

BinOpToCall :

f#([e1, e2]) -> |[f(e1, e2)]|

where <is-bin-op> f int

Desugar = ForToWhile <+ IfThenToIfElse

ForToWhile :

|[for x := e1 to e2 do st* end]| ->

|[begin

var x : int; var y : int;

x := e1; y := e2;

while x <= y do

st* x := x + 1;

end

end]|

where new => y

IfThenToIfElse :

|[if e then st* end]| ->

|[if e then st* else end]| control

Desugar = HoistEBlockFromFunCall <+ ...

HoistEBlockFromFunCall :

|[f(e1*)]| ->

|[begin st1* return f(e2*); end]|

where <collect-eblocks> e1* => (st1*,e2*)

HoistEBlockFromAssign :

|[x := begin st1* return e; end;]| ->

|[begin st1* x := e; end]|

HoistEBlockFromWhile :

|[while begin st1* return e; end

do st2* end]| ->

|[begin

st1* while e do st2* st1* end

end]| eblocks

Figure 3. Desugaring

4. Assimilation of Embedded Languages

The desugarings in the previous section were concerned
with reducing new types of expressions and statements to
old types of expressions and statements. Another kind of
language extension is the embedding of a domain-specific
language in the base language. The difference with the pre-
vious type of extension is that the embedded language is
of a completely different type. Also it often involves non-
local transformations, i.e., that affect the context of the con-
struct. We have explored DSL embedding with Java as base
language and described MetaBorg [8], a general approach
for DSL embeddings. In that context, we have coined the
term assimilation for the transformation that melds the em-
bedding with its host code. Here we illustrate this type of

3

extension and transformation by embedding regular expres-
sion matching and its assimilation to expressions and new
functions.

The expression /re/e matches the regular expression re
against the string resulting from the evaluation of the ex-
pression e. To make assimilating this operation easier, the
additional ‘match with continuation’ expression /re;f/x
has been added to the extension. It succeeds (returns true)
for the string in variable x if the regular expression re
matches a prefix of x and the Boolean function f succeeds
for the suffix. Using this construct we can give a composi-
tional definition of regular expression matching by extend-
ing our desugaring transformation, that is by adding new
rules to the definition of Desugar. Figure 4 shows (most
of) the rules and Figure 5 shows the result of applying the
transformation to an example program.

Rule ReMch transforms the match /re/e to x := e;
/re;isEmpty/x, in order to first evaluate e and then check
that re matches the entire string, i.e., with the empty string
as suffix. The strategy new generates a unique new name.
Rule ReStr transforms a string regular expression str to a
check that the prefix of the string in x matches with str,
and that the continuation function f succeeds on the suffix.
Note that these rules use functions from the basic string API
for analysing strings (isPref, getSuf, isEmpty). Rule
ReAlt simply reduces the regular expression alternative to
the Boolean or (|), where we need the fact that the | opera-
tor in our language is a short circuit operator. Also we need
the fact that the subject of the match is a variable and not an
arbitrary expression, since then we would risk duplicating
computations, and possibly even side effects.

While these rules perform local transformations, the fol-
lowing rules have a local and a non-local effect. Rule
ReSeq reduces the sequential composition /re1 re2;f/x
to /re1;g/x, where the continuation g is a new function
that matches /re2;f/. Similarly, rule ReKle generates a
new function g for the Kleene star /re*;f/. This function
checks whether the prefix of its argument string matches
re, and then recursively uses g as continuation. When the
match of re fails, the continuation f is called. Thus, the
function g checks whether the prefix of the string matches
re zero or more times.

These functions are created while rewriting some local
expressions and clearly cannot be placed at that point, but
should rather be added to the program at top-level; a so
called ‘local to global’ transformation problem [26]. This
problem is solved here by means of dynamic rewrite rules,
rewrite rules that are defined at run-time, inheriting infor-
mation from their definition context. The strategy add-def
defines a dynamic rule AddDef that rewrites a program (a
list of definitions) to the same program with the new def-
inition added in front. Since this rule extends the existing
AddDef rule, multiple function definitions can be created.

Desugar = ReMatch <+ ReStr <+ ReAlt <+ ReSeq

<+ ReKle <+ once-AddDef

ReMch : |[/re/ e]|

-> |[begin

var x : string; x := e;

return /re; isEmpty/ x;

end]|

where new => x

ReStr : |[/str;f/ x]|

-> |[isPref(str,x) & f(getSuf(str,x))]|

ReAlt : |[/re1|re2;f/ x]|

-> |[/re1;f/x | /re2;f/x]|

ReSeq : |[/re1 re2;f/ x]| -> |[/re1;g/ x]|

where new => g

; add-def(||[

function g(a : string) : int

begin

return /re2;f/ a;

end]|)

ReKle : |[/re*;f/ x]| -> |[g(x)]|

where new => g

; add-def(||[

function g(a : string) : int

begin

return /re;g/a | f(a);

end]|)

add-def(|def) =

rules(

AddDef :+ |[def*]| -> |[def def*]|

) regexps/desugar

Figure 4. Assimilating regular expressions

function match(x : string) : int

begin

return / ("a" | "b")* "c" / x;

end

function c_0 (a : string) : int

begin

return isPref("c", a) & isEmpty(getSuf("c", a));

end

function d_0 (a : string) : int

begin

return (isPref("a", a) & d_0(getSuf("a", a)))

| (isPref("b", a) & d_0(getSuf("b", a)))

| c_0(a);

end

function match (x : string) : int

begin

var b_0 : string; b_0 := x; return d_0(b_0);

end

Figure 5. Regular expressions assimilated

4

The new definition is added to the program at top-level by
an invocation of once-AddDef, which produces one of the
right-hand sides of the AddDef rule at a time, which is then
consumed, i.e., will not be produced the next time AddDef
or once-AddDef is invoked. Thus, all generated functions
will be added to the program one by one as part of the
rewriting process. The new function definitions generated
by ReSeq and ReKle again contain invocations of a regular
expression match. These will in turn be normalized after
being added to the program, which may give rise to further
functions being generated.

5. Renaming

Programs use names to denote entities such as run-time
values, functions, and modules. The same identifier can be
used to name multiple entities. Bound variable renaming
is a transformation that replaces declared identifiers with a
unique new name, such that it becomes straightforward to
see which entity an occurrence refers to. Figure 6 defines
an extensible bound variable renaming strategy with exten-
sions for the control and eblocks languages.

What distinguishes renaming from the previous transfor-
mations, is that it is context-sensitive. It requires replacing
the name of a variable declaration with a new name, and
then consistently replacing all variable uses referring to that
declaration with the same new name. Again dynamic rules
come to the rescue. Consider the rename-declaration
rule for renaming variable declarations. Given a declara-
tion of a variable x, it uses the new strategy to generate a
unique new name y, and then defines a new RenameVar
rule, rewriting x to y. By applying the RenameVar rule to
the right occurrences of x, the renaming can be propagated.

Another issue that plays a role here is that renaming
touches only a few types of syntax tree nodes, i.e., variable
declarations and variable uses. At the same time, we cannot
use a general rewriting approach as in desugarings of the
previous sections; we have to carefully control where the
renaming rules are applied. The implementation in Figure 6
achieves this by means of a user-defined traversal strategy.
The rename strategy first checks if some special case ap-
plies, otherwise performs a generic traversal to the direct
subterms of the current term using the generic traversal
combinator all. The rename-special strategy handles
the special cases, that is, performing traversals for specific
constructs, renaming declarations, or restricting the scope
of the dynamic RenameVar rules. The latter ensures that
these rules are only applied in those places where the re-
named variable is in scope. The strategy is extended to the
control and eblocks languages by extending the definition of
rename-special. Only for constructs that introduce new
variable bindings the rename strategy needs to be extended,
since generic traversal takes care of other constructs.

rename = rename-special <+ all(rename)

rename-special =

Var(RenameVar)

<+ Stats({| RenameVar : map(rename) |})

<+ |[<id:RenameVar> := <rename>;]|

<+ rename-declaration

rename-declaration :

|[var x : t;]| -> |[var y : t;]|

where new => y

; rules(RenameVar+x : x -> y) core

rename-special :

|[for x := e1 to e2 do st1* end]| ->

|[for y := e3 to e4 do st2* end]|

where <rename> e1 => e3; <rename> e2 => e4

; new => y

; {| RenameVar

: rules(RenameVar+x : x -> y)

; <rename> st1* => st2*

|} control

rename-special :

|[begin st1* return e1; st2* end]| ->

|[begin st3* return e2; st4* end]|

where {| RenameVar

: <rename> (st1*, e1, st2*)

=> (st3*, e2, st4*)

|} eblocks

Figure 6. Renaming bound variables

6. Evaluation

If part of a program is constant, i.e., does not depend
on any unknown values, it can be transformed to the result
of the computation it defines. This is clearly the case in
the implementation of an interpreter, but is also useful in
the definition of optimizations such as constant propagation
and partial evaluation. This section defines a full interpreter,
while Sections 7 and 8 focus on data-flow transformation,
and function specialization, respectively.

Figure 7 defines evaluation rules that reduce the appli-
cation of a function with constant arguments to a constant.
Thus, these rules define the semantics of the functions of
the primitive datatypes. In the next section we see that these
rules can be used in optimizations as well. In Figure 8 the
rules are used in the definition of interpreters for the core,
control, and definitions extensions. The definition of the
eval strategy follows the same pattern as that for renam-
ing: the eval-special strategy deals with special cases,
while the default case is to first evaluate the direct subterms,
and then apply an evaluation rule added to the definition
of eval-exp. The special cases deal with variable defini-
tion and control-flow constructs. The evaluation of function
calls is done using another extension of eval-exp.

5

EvalAdd : |[Add(i, j)]| -> |[k]|

where <addS>(i,j) => k

EvalMul : |[Mul(i, j)]| -> |[k]|

where <mulS>(i,j) => k int

EvalIf : |[if i then st1* else st2* end]|

-> |[begin st1* end]| where <not-zero>i

EvalIf : |[if 0 then st1* else st2* end]|

-> |[begin st2* end]| control

EvalStrapp : |[strapp(str1, str2)]|

-> |[str3]|

where <conc-strings>(str1, str2) => str3

EvalStrlen : |[strlen(str)]| -> |[k]|

where <string-length> str => k string

Figure 7. Evaluation rules

The interpreter uses the dynamic EvalVar rule to prop-
agate the values of variables from their definitions to
their uses. Thus, when encountering an assignment, first
the right-hand side expression is evaluated, and then an
EvalVar rule is defined rewriting an occurrence of the left-
hand side variable to its value. When encountering a vari-
able declaration, the EvalVar rule for the variable with that
name is undefined, to prevent that the value assigned to a
variable with the same name in an enclosing scope is used
in the local scope. When encountering a list of statements
in a block (Stats), dynamic rule scope is used to limit the
scope of EvalVar rules for variables declared in that block.

The if control construct is evaluated by first evaluating
the condition, and then using the EvalIf rules to reduce the
construct to one of its branches, which is then further eval-
uated. The while construct is evaluated by unrolling the
loop to an if statement with an occurrence of the original
loop after the body of the loop.

The interpretation of the definitions extension concerns
the evaluation of function calls defined by function defini-
tions, rather than being built-in to the interpreter (as is the
case for the integer and string functions in Figure 7). To
achieve this, a dynamic EvalFunCall rule is defined for
each function definition in the program. This rule evaluates
a function call by creating EvalVar rules binding the ar-
guments of the function to its formal parameters, and then
evaluating the body of the function resulting in a value val.

7. Data-Flow Transformations

Programs can often be simplified and optimized, in par-
ticular after desugaring. In imperative languages, optimiza-
tions often require knowledge of the data-flow in a program,
that is, the relation between uses of variables and their defi-

eval = eval-special <+ all(eval); try(eval-exp)

eval-special =

EvalVar <+ eval-stats

<+ eval-assign <+ eval-declaration

eval-assign =

|[x := <eval => e>]|

; rules(EvalVar.x : |[x]| -> |[e]|)

eval-declaration =

?|[var x : t;]|

; rules(EvalVar+x :- |[x]|)

eval-stats = Stats({| EvalVar : map(eval) |})

eval-exp = fail core

eval-special = eval-or <+ eval-and

eval-exp = EvalAdd <+ EvalMul <+ ... int

eval-special = eval-if <+ eval-while; eval

eval-if =

|[if <eval> then <*:id> else <*:id> end]|

; EvalIf; eval-stat

eval-while :

st@|[while e do st* end]| ->

|[if e then st* st else end]| control

eval-exp = EvalStrapp <+ ... string

eval-program =

|[<def*:map(register-def)>]|

; !|[main();]|

; eval

register-def =

?|[function f(x*) : t eb]|

; rules(

EvalFunCall :

|[f(e*)]| -> val

where {| EvalVar

: <zip(InitArg)> (x*, e*)

; <eval> eb => val

|}

)

InitArg =

?(|[x : t]|, e)

; rules(EvalVar+x : |[x]| -> e)

eval-exp = EvalFunCall definitions

Figure 8. Interpretation

nitions. This is similar to the situation in evaluation, where
values of variables are propagated from definitions to uses.
In fact, evaluation can be considered a special case of data-
flow transformation, where control-flow always reduces to a
single branch, and all assignments produce constant values.
The generalization of evaluation is constant propagation,
which propagates constant values when possible, but leaves

6

programs intact otherwise.
Figure 9 generalizes the interpreter of the previous sec-

tion to the definition of constant propagation for the core,
int, control, and string languages. The organization of the
strategy is the same as in the case of evaluation, but now
catering for the fact that not all expressions and statements
can be fully evaluated. Thus, when the right-hand side of
an assignment is not a constant, no constant value can and
should be propagated for the left-hand side variable x. Also
no previous PropConst rule for x should remain acces-
sible. Therefore, the propconst-assign strategy checks
whether the result of propagation in the right-hand side ex-
pression is a constant value. If not, the PropConst rule is
undefined for x.

Similarly, when the condition of an if statement does
not reduce to a constant, the statement cannot be reduced
to one of its branches. Therefore, propagation should pro-
ceed in both branches where these transformations should
not affect each other. That is, the rule set for PropConst
should be cloned so that the propagation in each branch
can pretend to be the only branch executing. Afterwards,
propagation should proceed with those PropConst rules
that are consistent in both branches. This is achieved us-
ing the /PropConst\ intersection operator. In the case of a
loop, propagation should be repeated until a stable rule set
has been reached, which is achieved by the /PropConst*
operator. This abstract interpretation style of constant prop-
agation, combined with the unreachable code elimination
achieved by the EvalIf rules, is more powerful than a sep-
arate analysis and transformation phase, as is illustrated in
Figure 10. The fact that the assignment of x in the loop body
can be ignored comes only after reducing the if statement
when assuming that x is 10.

Other data-flow transformations such as copy propaga-
tion, common-subexpression elimination, forward substitu-
tion, and dead code elimination can be defined in a similar
manner. Since these transformations propagate expressions
with variables (not just constant values), simply redefining
or undefining the dynamic rule for a variable does not work
any more. Using dependent dynamic rules [20], the depen-
dencies of a rule on multiple entities such as variables can
be declared.

8. Function Specialization

Extending constant propagation to programs with func-
tions and procedures comes down to partial evaluation, i.e.,
specialization of programs to statically known inputs or to
constants in the program. Partial evaluation supports ab-
straction by allowing programmers to write general pro-
grams that are instantiated for many different specific prob-
lems [16]. Here we consider one aspect of partial evalua-
tion, namely function specialization. For each function call

propconst =

propconst-special

<+ all(propconst); try(propconst-eval)

propconst-special =

PropConst <+ propconst-stats

<+ propconst-decl <+ propconst-assign

propconst-stats =

Stats({| PropConst : map(propconst) |})

propconst-decl =

?|[var x : t;]|

; rules(PropConst+x :- |[x]|)

propconst-assign =

|[x := <propconst => e>;]|

; if <is-value> e then

rules(PropConst.x : |[x]| -> e)

else

rules(PropConst.x :- |[x]|)

end core

propconst-eval = EvalExp int

propconst-special =

propconst-if <+ propconst-while

propconst-if =

If(propconst,id,id)

; (EvalIf; propconst

<+ If(id,propconst,id)

/PropConst\ If(id,id,propconst))

propconst-while =

?While(_, _)

; (/PropConst*

While(propconst, propconst)) control

propconst-eval = EvalExp string

Figure 9. Constant propagation

begin
var x : int;
var y : int;
x := 10;
while readInt() do

if x = 10 then
y := y + 1;

else
x := x + 1;

end
end
writeInt(x, y);

end

begin
var x : int;
var y : int;
x := 10;
while readInt() do

y := y + 1;

end
writeInt(10, y);

end

Figure 10. Constant propagation applied

a new function is generated that is specialized to the con-
stant valued arguments of the call. For example, the par-
tially constant call to the power function in Figure 12 is

7

declare-def =

?|[function f(x1*) : t begin st1* return e1; end]|

; rules(

SpecializeCall :

|[f(e1*)]| -> |[g(e2*)]|

where <split-static-dynamic-args> (x1*, e1*) => (st2*, (x2*, e2*))

; new => g

; <propconst>|[begin st2* st1* return e1; end]| => eb2

; rules(

Specialization :+ |[function f(x1*) : t eb1]| -> |[function g(x2*) : t eb2]|

)

)

propconst-eval = SpecializeCall

propconst-definitions =

Definitions(

map(declare-def); where(<SpecializeCall> |[main();]| => st)

; ![|[procedure main() begin st end]| | <mapconcat(bagof-Specialization)>]

) definitions/propconst

Figure 11. Function specialization

replaced by a call to a new function b 0, which implements
the power function specialized to the constant argument 3.
This specialization gives rise to an invocation of power with
constant argument 2, which is specialized to a call the func-
tion d 0, and so on. Note that the result can be further im-
proved by ‘transition compression’, i.e., function unfold-
ing. Furthermore, memoization of specializations should
avoid multiple function definitions for the same constant ar-
guments. For brevity, these aspects are ignored here.

The program in Figure 11 extends the definition of con-
stant propagation of Section 7 to function specialization.
(Since the definition is mostly the same for procedures,
only the specialization of functions is shown.) Given the
definition of a function f, declare-def declares a dy-
namic rule SpecializeCall. This dynamic rule rewrites
a call f(e1*) to a call g(e2*), with e2* the non-static
arguments of the original call, and the function g a spe-
cialization of f to the static (constant) arguments of the
call. The definition of the new function g is created in
the condition of the SpecializeCall rule. The strategy
split-static-dynamic-args separates the static from
the dynamic arguments. The static arguments are trans-
lated into a list of statements st2* that assign these con-
stant values to the corresponding formal parameters of f.
Using these statements the body of f is instantiated. It
would be unsafe to substitute the occurrences of the for-
mal parameters by their values, since the variables may be
re-assigned during execution of the body. Constant prop-
agation on the resulting expression block with the invoca-
tion of propconst takes care of propagating the constant
assignments into the body of the function. Of course, any
function calls within the body will give rise to further func-
tion call specializations. The result is a specialized function

body eb2. The dynamic rule Specialization is extended
to rewrite the original definition of f to the new definition
for g which has the remaining non-static arguments x2* as
parameters and the specialized e-block eb2 as body.

Specialization of the definition in a program now pro-
ceeds as follows (propconst-definitions). For each
function or procedure definition, a SpecializeCall rule
is defined using declare-def. The specialization of
the call to main() then ensures that all calls reach-
able from main() are specialized. An application of
bagof-Specialization, then rewrites each function def-
inition to the list of its specializations. A new definition
for main() calls the result of specializing the original main
function.

function power(x : int, n : int) : int
begin

var power : int;
if n = 0 then power := 1;
else if (n % 2) = 0 then power := power(x * x, n/2);
else power := x * power(x, n - 1);
end end
return power;

end
procedure main()
begin writeInt(power(readInt(), 3)); end

procedure main () begin a_0(); end

procedure a_0() begin writeInt(b_0(readInt())); end

function b_0 (x : int) : int
begin return Mul(x, c_0(x)); end

function c_0 (x : int) : int
begin return d_0(Mul(x, x)); end

function d_0 (x : int) : int
begin return Mul(x, 1); end

Figure 12. Power function specialized

8

9. Discussion

Related Work The idea of integrating transformation
in the software development process is becoming main-
stream, as suggested by recent proposals of approaches
such as software factories [15], model-driven software en-
gineering (MDSE) [3], and language oriented-programming
(LOP) [10]. All these approaches have in common the de-
velopment of domain-specific languages (DSLs) for captur-
ing abstractions in a problem domain and the use of trans-
formations to implement DSL programs. However, soft-
ware factories and MDSE seem to be in the more traditional
setting of separate DSLs and software generators, while
LOP aims at extending a language with domain abstractions
with assimilations for reducing these to the base language.
In this respect, the approach is similar to macro systems
such as Dylan [21] and metamorphic macros [4] that allow
a programmer to define new abstractions within a program.
However, macro systems allow only limited syntactic ex-
tensions, only support local to local transformations, and
most macro systems do not allow the macro programmer
to analyse the environment, consider typing information, or
transform the arguments in arbitrary ways.

Another related approach is the modular definition of
languages [11], in which language features are defined as
individual components and composed in different combina-
tions to form complete programming languages. This may
become a useful approach to DSL implementation, although
the research has mostly concentrated on the specification of
the semantics of programming language features. Also the
approach only covers the semantics of language features,
not their transformations. Independent composability is a
desirable features as it allows extensions to be provided
as plugins. In the TFA languages and transformations in
this paper, the extensions are not independently composable
since knowledge about the base language is assumed.

Extensible compilers such as the Polyglot [18] compiler
for Java are aimed at language designers and compiler im-
plementers to support the implementation of new language
features. The abc [1] compiler is an extension of Polyglot
to an aspect compiler. An important point in the design of
PolyGlot is scalable extensibility; the effort of creating an
extension should be proportional to the number of abstract
syntax tree nodes affected by the extension. In the Strat-
ego setting this property is achieved by relying on generic
traversals, which require only to define non-standard be-
haviour. One of the problems with existing extensible com-
pilers is that they lack the right abstractions for program
transformation and compilation, such as pattern matching,
abstractions for scoping, generic traversals, and are there-
fore more difficult to extend.

Attribute grammars provide a declarative formalism for
specifying analyses and translations for abstract syntax

trees. Attribute grammars modularize well into either sep-
arate rules for a specific attribute, or into rules for a lan-
guage construct. Attribute grammars with forwarding [27]
allow the specification of replacement nodes to compute at-
tribute values where the forwarding node provides none.
Thus, new constructs can be defined in terms of old ones,
in a similar way to desugarings. JastAdd [12, 13] extends
attribute grammars with rewrite rules for normalizing tree
nodes, which has a similar function as forwarding with the
difference that nodes are replaced by their normal form. An
issue with this set up is that the application of rewrite rules
cannot be controlled.

Conclusion This paper presented a case study of lan-
guage extensibility using Stratego/XT, showing that Strat-
ego supports various styles of transformation: basic term
rewriting applying local transformations; term rewriting
with local-to-global transformations to add function defini-
tions to the top-level; global-to-local transformations prop-
agating context information in renaming, evaluation, and
constant propagation; the merging of context information in
constant propagation; and a combination of global-to-local
with local-to-global transformation (specialization) where
one dynamic rule defines another.

The use of extending strategy definitions to extend trans-
formations works well. The implementations of the vari-
ous transformations are neatly modularized per extension.
The main issue with this feature is that the order of eval-
uation of extensions is undefined. This was intentional to
encourage definition of mutually exclusive rules, but forces
an extra level of indirection (e.g., the propconst-special
hook) when a default case should be specialized. It would
be preferable to add a case to the main strategy, e.g.,
propconst = eval-while, since that would also allow
unanticipated extensibility. Realizing this requires more ex-
plicit control over the order of evaluation of extensions, sim-
ilar to overriding in TXL [9]. Even better would be an inva-
sive approach to extending definitions, which allows unan-
ticipated extension at the exact location where needed.

Another issue is the fact that extensions are currently in-
tegrated based on the Stratego sources, rather than com-
piled components. Binary deployable extensions would
be preferable since that would allow extensions to be dis-
tributed as plugins. This also requires some way to check
for interferences between extensions.

While further experimentation with other language ex-
tensions and with other transformations both in the realm
of standard language features and with domain-specific lan-
guage embeddings is needed to test the approach sketched
in this paper, it appears to be a promissing path to realize
transformations for abstractions.

9

Availability Stratego/XT is available from http:
//www.stratego-language.org. The sources of
the TFA project are available for experimentation from
http://www.stratego-language.org/Stratego/
TransformationsForAbstractions

Acknowledgements I would like to thank the SCAM
2005 program chairs, Jens Krinke and Giulio Antoniol, for
inviting me as keynote speaker. The TFA project grew
out of the TIL language designed together with Jim Cordy
at Dagstuhl Seminar 05161 on Transformation Techniques
in Software Engineering. I would like to thank Mar-
tin Bravenboer and Karl Trygve Kalleberg for numerous
discussions on program transformation and extensibility,
and for their help with this paper. This work is part of
NWO/JACQUARD project 638.001.201 TraCE: Transpar-
ent Configuration Environments.

A Stratego

The design of the Stratego language follows a similar
pattern as the small imperative languages in Part I. A small
core language is extended to a full-fledged transformation
language, providing expressive abstractions for implement-
ing transformations. In practice the design of the language
has evolved over time, and the implementation does not fol-
low the clean separation of concerns exhibited by the TFA
framework. However, one of the goals of that project is to
recast the implementation of Stratego in order to make it
into an easily extensible language. In this part we briefly
discuss the elements of the language following the syntax
definition in Figure 13. A more thorough definition of the
language, including an operational semantics can be found
in [5].

B Matching and Building

Stratego programs transform terms, which are isomor-
phic to trees, and are convenient for representing abstract
syntax trees produced by parsers. For example, the state-
ment if 0 then else a := d; end is represented by
the term If(Int("0"),[],[Assign("a",Var("d"))]).
The basic concept of Stratego is that of a transformation
strategy, which is a function that transforms a term into
another term, or fails at doing so. Strategies were intro-
duced to control the application of rewrite rules. One of
the key insights in the first version of Stratego [24] was
that rewrite rules are not primitive operations, but that these
are composed from more atomic operations, namely match-
ing (?p) and building (!p) term patterns. For instance, the
first EvalIf rule from Figure 7 consist of the operations
?If(Int("0"),st1*,st2*) and !Block(st2*), using
the abstract syntax representation of the program fragments.

A strategy is implicitly applied to a term, called the subject
or current term. The effect of matching a pattern against
the subject term is either failure when there is no match, or
a binding of the pattern variables to the corresponding sub-
terms. The effect of a build !p is the replacement of the
subject term with the instantiation of the pattern p. Once
a variable is bound by a match operation, it cannot be re-
bound to another term. To reuse variables multiple times,
their scope should be limited. The pattern variable scope
construct {x1,...,xn:s} limits the scope of pattern vari-
ables xi to the strategy s.

C Strategy Composition

Other basic strategies are the identity strategy id, which
always succeeds; and the failure strategy fail, which
always fails. These basic operations can be combined
into compound transformation strategies using a number of
strategy combinators. The sequential composition (s1;s2),
first applies s1 to the subject term and then s2 to the result.
For example, the strategy expression

{st1*,st2*:?If(Int("0"),st1*,st2*);!Block(st2*)}

implements the EvalIf rewrite rule from Figure 7, by first
matching the left-hand side of the rule, and then building

p ::= str | i | r | x | c(p∗
,) | (p∗

,) | [p∗
, |p] | [p∗

,]

s ::= ?p | !p | {x∗:s}
x ::= variable
c ::= constructor match/build

s ::= id | fail | s1;s2 | s1<+s2

| s1 < s2 + s3 | if s1 then s2 else s3 end

| where(s) | <s>p | s => p composition

P ::= d1...dn

d ::= dsig = s
dsig ::= f(sd∗

, |vd∗
,) | f(sd∗

,) | f
sd ::= f | f:tp
vd ::= x | x:tp
s ::= let d∗ in s end | f(s∗, |p

∗
,) | f(s∗,) | f

f ::= strategy operator definitions

d ::= dsig : p1 -> p2 (where s)? rules

s ::= c(s∗,) | tr(s)
tr ::= all | one traversals

s ::= rules(drd1 ... drdn) | {|f1, ..., fn : s|}
| s1/f

∗
, \s2 | s1\f

∗
, /s2 | /f∗

, *s | \f∗
, /*s

drd ::= drsig : p1 -> p2 (where s)?
| drsig :+ p1 -> p2 (where s)?
| drsig : p | drsig :- p | f+p

drsig ::= sig | sig.p | sig+p dynamic rules

Figure 13. Syntax of Stratego

10

the right-hand side. The sequential composition is typically
also used to chain a number of transformations as the

If(eval, id, id); EvalIf; eval

composition from Figure 8.
Choice operators allow choosing between transforma-

tions. The core choice operator is the guarded left choice
s1<s2+s3, which first applies s1 and if that succeeds s2, oth-
erwise s3. The other choice operators are defined in terms
of guarded choice. The left choice s1<+s3 is equivalent to
s1<id+s3. This is the most common choice combinator and
is typically used in compositions such as

ReMatch <+ ReStr <+ ReAlt <+ ReSeq <+ ReKle

to try a number of rules one after the other.
The conditional choice if s1 then s2 else s3 end is

equivalent to where(s1) < s2 + s3. Here, the where(s)
combinator is an abstraction for {x:?x;s;!x}, i.e., it saves
the current term by matching it against the variable x, then
applies the strategy s, and finally restores the original term
bound to x. Finally, the strategy application <s>p is equiv-
alent to !p;s, and the apply-match strategy s => p is equiv-
alent to s;?p. These combinators are typically used in the
condition of a rewrite rule. For instance, the evaluation rules
in Figure 7 use conditions like <addS>(i,j) => k to ap-
ply a strategy addS to the pair (i,j) and match the result
against the variable k.

D Strategy Definitions

Strategy definitions of the form dsig=s can be used to
give names to frequently used strategy expressions. For ex-
ample, the following definition names the example strategy
above:

EvalIf = {st1*,st2*: ?If(Int("0"),st1*,st2*)

; !Block(st2*)}

There are no global pattern variables in Stratego. There-
fore, the scope of pattern variables in a top-level definition
is restricted to that definition. Thus, the definition

EvalIf = ?If(Int("0"),st1*,st2*); !Block(st2*)

is equivalent to the one with an explicit scope above.
A strategy operator may have a list of strategy, and a

list of term arguments, which are separated by a |. Typical
examples of parameterized strategies are the following:

try(s) = s <+ id

repeat(s) = try(s; repeat(s))

When a strategy operator has no strategy or term arguments,
it can be written without parentheses, e.g., EvalIf, instead
of EvalIf(|). Strategy definitions may be recursive, as in
the definition of rename from Figure 6:

rename = rename-special <+ all(rename)

An uncommon feature of definitions in Stratego is that
there may be multiple definitions with the same name,
which do not have to be textually adjacent. Definitions ex-
tending an existing definition may even be given in a sep-
arate module. This is the key feature we have used in Part
I to cater for extensibility. For example, to allow for the
addition of new desugaring rules to the desugaring transfor-
mation the Desugar strategy is introduced as an indirection
in the definition of desugar. Each extension then added
new rules to its definition:

Desugar = fail core
Desugar = BinOpToCall int
Desugar = ForToWhile <+ IfThenToIfElse control

The semantics of definition extension is the choice be-
tween the bodies of the definitions. Thus, the definition of
Desugar in control is equivalent to

Desugar = fail <+ BinOpToCall <+ ForToWhile

<+ IfThenToIfElse

Since fail is a unit for the choice operator it is safe to
use this as the initial definition. There is one caveat with
this extension mechanism. In the current design of Stratego
the order in which the bodies are combined is not defined.
Thus, such compositions are only safe if the definitions are
independent, i.e., do not succeed for the same terms. This
issue should be addressed to get better control over exten-
sions of transformations.

E Rewrite Rules

A rewrite rule is an abstraction for a specific combination
of a match and a build. Thus, the EvalIf definition from
the previous section can be written as a rewrite rule:

EvalIf : If(Int("0"),st1*,st2*) -> Block(st2*)

Such rules are desugared to definitions with a match of the
left-hand side, followed by a build of the right-hand side.
Similarly, a conditional rewrite rule

EvalAdd : Call("Add",[Int(i),Int(j)]) -> Int(k)

where <addS> (i, j) => k

is syntactic sugar for a definition

EvalAdd = ?Call("Add", [Int(i), Int(j)])

; where(<addS> (i, j) => k)

; !Int(k)

11

F Concrete Syntax

Specifying transformation rules using the abstract syntax
of a language, as in previous sections of Part II, can become
tedious to write and hard to read. By embedding the syn-
tax of the object language (TFA) in the syntax of the meta
language (Stratego) we can use the concrete syntax of the
object language for specifying term patterns. For example,
the EvalAdd rewrite rule written in abstract syntax above
can be rendered with concrete syntax as:

EvalAdd : |[Add(i, j)]| -> |[k]|

where <addS> (i, j) => k

The delimiters |[...]| are used to distinghuish concrete
syntax fragments from normal Stratego fragments. An addi-
tional feature of this embedding is the declaration of meta-
variable schemas. For example, identifiers i j, and k are
used as meta-variables of type integer constant. In the TFA
Stratego programs we have used the convention that the
non-terminal names in the grammar in Figure 1, are used
as meta-variables in concrete syntax fragments. A general
approach for creating concrete syntax embeddings for ar-
bitrary context-free object and meta languages is described
in [23, 14, 6].

G Traversal Strategies

The strategy combinators discussed above allow the se-
quential composition of two transformations and the choice
between two transformations. These transformations will
apply at the root of the subject tree. However, for most
transformations it is necessary to apply transformations
to subtrees. For this purpose, Stratego provides traversal
combinators that descend one level into a tree [17, 24].
These can be combined with the other combinators to de-
fine full tree traversals. There are two flavours of traver-
sal combinators, congruence operators and generic traver-
sal operators. For each abstract syntax tree constructor c
with arity n there is a corresponding congruence operator
c(s1,...,sn), which can be defined using the following
rewrite rule schema:

c(s1,...,sn) :

c(t1,...,tn) -> c(t′1,...,t
′
n)

where <s1> t1 => t′1; ...; <sn> tn => t′n

That is, the strategy argument are applied to the correspond-
ing term arguments. For example, the strategy expression
IfElse(propconst, id, id), applies the propconst
strategy to the first argument of an IfElse term, and the
id strategy to the second and third argument. In Part
I concrete syntax versions of congruence operators were
used, using the |[...]| delimiters to distinghuish a TFA

fragment and <s> to apply a strategy to one of the ar-
guments. For example, the concrete syntax congruence
|[x := <eval,=> e>]| is equivalent to Assign(?x,
eval => e).

While congruence operations define traversal through a
specific constructor, we are often not interested in the con-
structor, but just want to traverse the tree in a mostly uni-
form manner. For this purpose Stratego provides generic
traversal combinators. The combinator all(s) applies the
transformation s to each direct subterm of the subject term.
The combinator one(s) applies s to one direct subterm.
These combinators can be used to define various full traver-
sal strategies. For example, the following definitions

bottomup(s) = all(bottomup(s)); s

topdown(s) = s; all(topdown(s))

define a bottom-up, or post-order traversal in which the s
transformation is applied to each node after visiting its di-
rect subterms, and a top-down, or pre-order traversal in
which s is applied to a node before visiting its subterms.
These one-pass traversals can be used to define normaliza-
tion strategies, such as the following innermost strategy:

innermost(s) = bottomup(try(s; innermost(s)))

This strategy is used in Figure 3 to implement the extensible
desugaring component of TFA.

In the programs in Part I we have often used the all
combinator directly in strategies such as

eval = eval-special <+ all(eval); try(eval-exp)

from Figure 8. This corresponds to a bottomup strategy
with an escape to allow alternative traversals for specific
constructors through eval-special.

H Dynamic Rules

Many of the transformations we encountered in Part I are
context-senstive, that is, rules need non-local information to
perform a transformation. This is a problem in term rewrit-
ing since term rewrite rules are context-free, i.e., have only
access to the term matched by the left-hand side of the rule.
Dynamic rules [5, 20] solve this problem by defining rules
at run-time at the place where the context information is
available, and then propagating the rule to the place where
the information is needed. For example, consider the defini-
tion of the dynamic EvalVar rule in the following definition
of eval-assign:

eval-assign =

?Assign(x, Int(i))

; rules(EvalVar : Var(x) -> Int(i))

12

The dynamic rule is defined after the match
?Assign(x,Int(i)) has succeed and the variables x
and i bound. The new EvalVar rule inherits these bind-
ings, and only succeeds when applied to a Var term with
the same identifier.

When defining a rule, while some other rule with the
same left-hand already existed, the older rule is replaced.
However, when in extend mode (indicated with :+), a new
rule is added and the dynamic rule can rewrite to multiple
right-hand sides. We saw examples of this in regular ex-
pression assimilation and function specialization. A rule
can also be explicitly undefined (indicated with :-). We
saw examples of rule undefinition in the implementation of
constant propagation in Figure 9. The scope of a dynamic
rule can be controlled using the scope construct {|R: s|};
any rules added to the current scope while applying s are
removed afterwards. Using scope labels one can control the
scope in which a rule can be defined. Finally, dynamic rule
sets can be forked afterwards pointwise intersected or uni-
fied, as we saw in the definition of constant propagation for
control-flow constructs.

Dynamic rules are an extension to the base Stratego lan-
guage. The compiler front-end translates dynamic rule def-
initions in terms of hashtable insertions and lookups.

References

[1] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,
J. Lhoták, O. Lhoták, O. de Moor, D. Sereni, G. Sittam-
palam, and J. Tibble. abc: an extensible AspectJ compiler.
In AOSD ’05: Proceedings of the 4th international confer-
ence on Aspect-oriented software development, pages 87–
98, New York, NY, USA, 2005. ACM Press.

[2] O. S. Bagge, K. T. Kalleberg, M. Haveraaen, and E. Visser.
Design of the CodeBoost transformation system for domain-
specific optimisation of C++ programs. In D. Binkley and
P. Tonella, editors, Third IEEE International Workshop on
Source Code Analysis and Manipulation (SCAM’03), pages
65–74, Amsterdam, The Netherlands, September 2003.
IEEE Computer Society Press.

[3] J. Bézivin. On the unification power of models. Software
and Systems Modelling, 4(2):171 – 188, May 2005.

[4] C. Brabrand and M. I. Schwartzbach. Growing languages
with metamorphic syntax macros. In Proceedings of the
2002 ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-based Program Manipulation (PEPM’02), pages
31–40. ACM Press, 2002.

[5] M. Bravenboer, A. van Dam, K. Olmos, and E. Visser.
Program transformation with scoped dynamic rewrite rules.
Fundamenta Informaticae, 2005. (To appear).

[6] M. Bravenboer, R. Vermaas, J. Vinju, and E. Visser. Gen-
eralized type-based disambiguation of meta programs with
concrete object syntax. In R. Glück and M. Lowry, ed-
itors, Proceedings of the Fourth International Conference
on Generative Programming and Component Engineering
(GPCE’05), volume 3676 of Lecture Notes in Computer

Science, pages 157–172, Tallin, Estonia, September 2005.
Springer. (To appear).

[7] M. Bravenboer and E. Visser. Rewriting strategies for in-
struction selection. In S. Tison, editor, Rewriting Techniques
and Applications (RTA’02), volume 2378 of Lecture Notes in
Computer Science, pages 237–251, Copenhagen, Denmark,
July 2002. Springer-Verlag.

[8] M. Bravenboer and E. Visser. Concrete syntax for ob-
jects. Domain-specific language embedding and assimila-
tion without restrictions. In D. C. Schmidt, editor, Pro-
ceedings of the 19th ACM SIGPLAN Conference on Object-
Oriented Programing, Systems, Languages, and Applica-
tions (OOPSLA’04), pages 365–383, Vancouver, Canada,
October 2004. ACM Press.

[9] J. Cordy. TXL - a language for programming language tools
and applications. In Proceedings of the 4th International
Workshop on Language Descriptions, Tools and Applica-
tions, volume 110 of Electronic Notes in Theorectical Com-
puter Science, pages 3–31, April 2004.

[10] S. Dmitriev. Language oriented programming: The next
programming paradigm. JetBrains ’onBoard, Novem-
ber 2004. http://www.onboard.jetbrains.com/is1/

articles/04/10/lop/.
[11] K.-G. Doh and P. D. Mosses. Composing programming lan-

guages by combining action-semantics modules. Science of
Computer Programming, 47(1):3–36, 2003.

[12] T. Ekman. Separation of concerns in compiler construction
using jastadd ii. In Proceedings of the Third AOSD Work-
shop on Aspects, Components, and Patterns for Infrastruc-
ture Software, March 2004.

[13] T. Ekman and G. Hedin. Reusable language specification
modules in jastadd ii. In Proceedings of the Workshop on
Evolution and Reuse of Language Specifications for DSLs,
June 2004.

[14] B. Fischer and E. Visser. Retrofitting the AutoBayes pro-
gram synthesis system with concrete object syntax. In
C. Lengauer et al., editors, Domain-Specific Program Gen-
eration, volume 3016 of Lecture Notes in Computer Science,
pages 239–253. Spinger-Verlag, 2004.

[15] J. Greenfield, K. Short, S. Cook, and S. Kent. Software
Factories: Assembling Applications with Patterns, Models,
Frameworks, and Tools. Wiley, August 2004.

[16] N. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and
Automatic Program Generation. Prentice Hall, 1993.

[17] B. Luttik and E. Visser. Specification of rewriting strate-
gies. In M. P. A. Sellink, editor, 2nd International Work-
shop on the Theory and Practice of Algebraic Specifica-
tions (ASF+SDF’97), Electronic Workshops in Computing,
Berlin, November 1997. Springer-Verlag.

[18] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An
extensible compiler framework for Java. In Proceedings of
the 12th International Conference on Compiler Construc-
tion, volume 2622 of Lecture Notes in Computer Science,
pages 138–152. Springer-Verlag, April 2003.

[19] K. Olmos and E. Visser. Turning dynamic typing into
static typing by program specialization. In D. Binkley and
P. Tonella, editors, Third IEEE International Workshop on
Source Code Analysis and Manipulation (SCAM’03), pages

13

141–150, Amsterdam, The Netherlands, September 2003.
IEEE Computer Society Press.

[20] K. Olmos and E. Visser. Composing source-to-source data-
flow transformations with rewriting strategies and dependent
dynamic rewrite rules. In R. Bodik, editor, 14th Interna-
tional Conference on Compiler Construction (CC’05), vol-
ume 3443 of Lecture Notes in Computer Science, pages 204–
220. Springer-Verlag, April 2005.

[21] A. Shalit. The Dylan reference manual: the definitive guide
to the new object-oriented dynamic language. Addison Wes-
ley Longman Publishing Co., Inc., 1996.

[22] E. Visser. Syntax Definition for Language Prototyping. PhD
thesis, University of Amsterdam, September 1997.

[23] E. Visser. Meta-programming with concrete object syntax.
In D. Batory, C. Consel, and W. Taha, editors, Genera-
tive Programming and Component Engineering (GPCE’02),
volume 2487 of Lecture Notes in Computer Science, pages
299–315, Pittsburgh, PA, USA, October 2002. Springer-
Verlag.

[24] E. Visser, Z.-e.-A. Benaissa, and A. Tolmach. Building pro-
gram optimizers with rewriting strategies. In Proceedings of
the third ACM SIGPLAN International Conference on Func-
tional Programming (ICFP’98), pages 13–26. ACM Press,
September 1998.

[25] D. G. Waddington and B. Yao. High fidelity C++ code
transformation. In Proceedings of the 5th workshop on
Language Descriptions, Tools and Applications, Electronic
Notes in Theoretical Computer Science. Elsevier Science,
April 2005.

[26] J. van Wijngaarden and E. Visser. Program transforma-
tion mechanics. a classification of mechanisms for program
transformation with a survey of existing transformation sys-
tems. Technical Report UU-CS-2003-048, Institute of Infor-
mation and Computing Sciences, Utrecht University., May
2003.

[27] E. van Wyk, O. de Moor, K. Backhouse, and
P. Kwiatkowski. Forwarding in attribute grammars
for modular language design. In Proceedings of the
11th International Conference on Compiler Construction,
volume 2304 of Lecture Notes in Computer Science, pages
128–142. Springer-Verlag, 2002.

14

