
Definition and
Validation of the Key
Process Areas of
Release, Delivery
and Deployment for
Product Software
Vendors: turning the
ugly duckling into a
swan

Slinger Jansen

Sjaak Brinkkemper

institute of information and
computing sciences,
utrecht university

technical report UU-CS-2005-041

www.cs.uu.nl

Definition and Validation of the Key Process Areas of
Release, Delivery and Deployment for Product Software

Vendors: turning the ugly duckling into a swan

Slinger Jansen
Institute for Information and Computing Sciences

Utrecht University
Utrecht, The Netherlands

slinger.jansen@cs.uu.nl

Sjaak Brinkkemper
Institute for Information and Computing Sciences

Utrecht University
Utrecht, The Netherlands

s.brinkkemper@cs.uu.nl

ABSTRACT
For software vendors the processes of release, delivery, and de-
ployment to customers are inherently complex. However, software
vendors can greatly improve their product quality and quality of
service by applying a model that focuses on customer interaction
if such a model were available. This paper presents a model for
customer configuration updating (CCU) that can evaluate the ca-
pabilities of a software vendor in these processes. Eight extensive
case studies of medium to large product software vendors are pre-
sented and evaluated using the model, thereby uncovering issues in
their release, delivery, and deployment processes. Finally, organi-
sational and architectural changes are proposed to increase quality
of service and product quality for software vendors.

1. INTRODUCTION
With the advent of increased amounts of bandwidth the commu-

nication between software vendors and their customers can greatly
be improved by introducing automatic error feedback reporting, us-
age feedback reporting, electronic customer feedback, and license,
patch, and update distribution. Whereas in the past customers and
vendors could only communicate by mail and phone, the World
Wide Web can now function as a lifeline between customers and
software vendors, to allow for automatic license retrieval, deploy-
ment and error feedback, automatic updates, and automatic pro-
vision of commercial information to customers. Product software
vendors, however, generally do not implement any of these key
practices.

To date product software is a packaged configuration of software
components or a software-based service, with auxiliary materials,
which is released for and traded in a specific market [1]. Prod-
uct software vendors encounter many problems when attempting to
improve customer configuration updating of their product software.
Customer configuration updating is defined as the combination of
the vendor side release process, the product or update delivery pro-
cess, the customer side deployment process, and the activation pro-
cess. To begin with, these processes are themselves highly complex

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

considering vendors have to deal with multiple revisions, variable
features, different deployment environments and architectures, dif-
ferent distribution media, and dependencies on external products
[2]. Also, there are not many tools available that support the de-
livery and deployment of software product releases that are generic
enough to accomplish these tasks for any product [3]. Finally, CCU
is traditionally not seen as the core business of software vendors,
and seemingly does not add any value to the product, making soft-
ware vendors reluctant to improve CCU.

A number of sources show that CCU is often underestimated
and requires more attention in the quickly changing software in-
dustry. First, the quality of deployment and upgrade processes can
increase customer perceived quality of a software product signif-
icantly [4], making it important that these processes are managed
explicitly. Also, field research has shown that by explicit manage-
ment of CCU, software vendors are able to handle large amounts of
customers [5]. Finally, Niessink et al. have shown that the develop-
ment of software should be seen as product development, whereas
maintenance should be seen as a customer service, thereby improv-
ing customer interaction [6], the latter being stressed again by the
introduction of the Software Maintenance Maturity Model [7].

Even though the previous sources call for more attention to CCU,
it is underemphasized in literature. The SWEBOK, for instance,
gives a generic description in the software configuration manage-
ment (SCM) chapter of the processes of release and delivery. The
Capability Maturity Model (CMM) [8] also does not provide ade-
quate descriptions for CCU, which is explained by the fact that the
CMM does not focus on product software specifically. Attempts
have been made in the release candidate of the IT Service CMM [9],
although the IT Service CMM also does not provide an elaborate
description for the processes of release, delivery, and deployment.
Clearly, even though there is a need for process definitions, there
are no adequate process descriptions available for product software
vendors. This paper attempts to satisfy that need by shedding light
on the ugly duckling that is customer configuration updating.

The contribution of this paper is twofold. First, it attempts to
answer the need for adequate process descriptions by presenting a
model that describes and identifies CCU. Secondly, eight case stud-
ies that have been performed at medium to large software vendors
into their development and CCU processes are presented. These
case studies provide practical knowledge and specific process de-
scriptions which are, similar to the presented model, focussed on
customer interaction. The cases are evaluated using the model,
which reveals that several key practices are left completely uncov-
ered, due to the implementation effort involved, the lack of suf-
ficient process descriptions, and the lack of sufficiently equipped

CustomerOrganization

Sales
Informed
Customer

Uninformed
Customer

Advertise Update

Receive Info

Customer
Possesses Update

Rollback/
Deinstall

Receive Update

Deliver Update

Installed
Customer

Deploy/Install Update

Deployment
Feedback

Activated
Customer Deactivate

Activate Update

Remove

Reconfigure

Configure

Vendor
Release

Repository

Product R1

Product R2

Product Rn

...

Deployment
Support

Usage
Support

Licenses

Usage Feedback

License(s)

C
ustom

er R
elationship M

anagem
ent S

ystem

SW
Development

Software
Configuration
Management

System

A
ct

iv
at

io
n

&
U

sa
ge

D
ep

lo
ym

en
t

D
el

iv
er

y
R

el
ea

se

Figure 1: CCU Model

CCU support tools.
Section 2 describes the CCU model and its process areas, along

with the key practices belonging to each process area. The ap-
proach taken in the case studies and the eight studies that were per-
formed and evaluated using the CCU model are reported in Section
3. A description of the results per case study is also provided there.
The key practices and combined results of the case studies are dis-
cussed in Section 4, where we also defend the claims made in the
paper. Finally, the future work and our conclusions are presented.

2. PROCESS AREAS FOR CUSTOMER CON-
FIGURATION UPDATING

In this section the key process area of customer configuration
updating is modelled. This model explicitly defines customer ac-
tions, enabling a software vendor to better manage and predict the
key practices that need extra focus. Much akin to the CMM [8],
the model uses the concepts of key practices, features, and process
areas. Key practices are practices of a software vendor that enable
features. Features are defined as a property of a process that im-
proves product quality and quality of service. Each process area
identifies a cluster of related features that, when performed collec-
tively, achieve a set of goals considered important for enhancing
process capability. A software vendor possesses a feature within a
process area, once it responds correctly to one of these customer
triggered actions.

To describe the key practices for CCU, its process areas need
to be established. These process areas are found using a previ-
ously established model for software updaters [3] that focuses on
the customer. Due to the fact that software maintenance and de-
ployment focuses solely on the customer, the model is extended
with the organisational interactions that are required to fully sup-
port a customer’s actions after an update is released. The CCU
model, as seen in Figure 1, displays the states a customer can move
through after a product or update release on the right side. On

the left side, the organisational structures that facilitate interaction
are displayed. Within the CCU model four process areas are dis-
tinguished, being release, delivery, deployment, and the activation
and usage process areas. Both the process models of the Software
Dock [10] and SOFA [11] are contained in the presented model.

Processes in the model are triggered by customer actions. These
actions are becoming aware of, downloading, deploying, reconfig-
uring, activating, and deactivating the release. When a vendor re-
ceives a customer request, the customer relationship management
(CRM) system is used to identify the customer. The vendor then
handles the request and interacts with the customer. The customer
moves through a number of states when about to update its config-
uration. At first the customer is unaware of the update, until the
customer requests information about a product. Once received, the
customer hopefully downloads, deploys and activates it for use, in
the mean time communicating with the vendor in the form of soft-
ware, licenses, feedback, and product knowledge.

The presented model provides four process areas, being release,
delivery, deployment, and activation and usage. The process areas
are separated by dotted lines in figure 1 and are further described
in the sections below.

2.1 Release Process Area
The release process area describes the release of a software prod-

uct for a specific vendor and the interaction with its customers. The
features within the release process area are

• Release process management
• Product knowledge management

With respect to release process management a primary key prac-
tice is a formalized release procedure that describes step by step
how a release is created. Another key practice is the sharing of
knowledge within the organisation about the next release, such that
all employees whose jobs are in some way related to the new prod-
uct release are aware of the functionality in the next release, the

release date, and the policy on sharing such information. Such
awareness creates transparency within the software development
organisation, improving the relationship between the sales and de-
velopment departments. This is related to the key practice that the
sales, development, and support departments must all be aware of
the product’s relationships with other components, such that no late
surprises at a customer site are possible. For example, if a prod-
uct comes in simplified Chinese, it might not be compatible with a
large number of commercial database management systems, even
though the original release of the application, which was in English,
did work.

One key practice of the release process area with respect to prod-
uct knowledge management is that all versions of the software that
have been released by an organisation, must be stored in a release
repository that mirrors the releases in the software configuration
management system. This enables customers using older versions
to reinstall and update their product at any time. The same way re-
leases must be managed explicitly, the software vendor must man-
age explicitly all internally used development and CCU support
tools. Finally, the vendor must manage all external components
that are included and packaged with the product.

The vendor must make a conscious effort to keep its customers
updated on the latest news and product releases using any channel
of communication, such that customers are not lagging behind in ei-
ther product releases or product release information. Sales and lead
management includes the use of pilot customers that pre-evaluate
and test the software before an official release. Also, customer
communication in the release process area is most interesting to the
sales department of a product software vendor. A sales department
must have insight into the purchasing guidelines and processes of a
customer organisation. One relevant aspect that determines product
quality is strategic planning of product releases and updates. Cus-
tomer organisations utilize product software in such an intensive
manner that an update is a costly matter, due to down time, sys-
tem instability, and the number of systems that require the update.
A software vendor must establish the best time when an update is
published and what the possible consequences are of deploying the
update [7]. Microsoft, for instance, releases its security updates for
all its products on the second Tuesday of the month1 and they have
communicated this with their customer base.

2.2 Delivery Process Area
The delivery process area concerns the delivery of software, li-

censes, and product knowledge to customers. The key practices
belonging to the delivery process area are focussed on the follow-
ing features:

• Delivery methods to customers
• Customer side delivery

To begin with software vendors must enable customer organisa-
tions to perform deployment using whichever medium a customer
chooses, such as DVD, CD, a local area network, or the Internet.
Secondly, customers must be able to remotely deploy applications
and updates onto a user system without physically having to touch
it. Thirdly, the product must supply a mechanism for automatic pull
of updates, such that the customer can check for updates and down-
load them automatically on a regular basis. The customer must be
able to abstract from the download site of the vendor, allowing the
customer to use an internal download server. If possible, the prod-
uct must send back a deployment report after a customer has de-
ployed the product, to inform the vendor whether the deployment
was successful or not.

1http://www.microsoft.com/athome/security/default.mspx

2.3 Deployment Process Area
Thedeployment process areacontains key practices that enable

a product to be deployed, removed, and updated. The key practices
in the deployment process area are categorized into:

• Environment checking
• Local configuration management
• Deployment process automation

The key practices related to local configuration management are
prone to many issues, such as missing (external) components, in-
complete downloads, erroneous deployments, and overwritten cus-
tomisations. To improve the deployment a deployment tool must
inspect the local configuration, to see whether external compo-
nents are missing and whether the local system provides enough
resources, such as disk space. Also, downloaded packages must
be checked for integrity and completeness. In the cases of miss-
ing components and files that do not pass their integrity checks,
some automatic resolution must be implemented. Finally, it must
be possible to rollback from an update or deployment to return to
the previous configuration.

Customisations are widely applied for specific business domains
and for specific customers. In many cases these customisations ac-
count for a large portion of their total revenue, which proves that
explicit customisation management is vital to many software ven-
dors. A key practice for a software product with many different
customisations at different customers thus is that the main product
is updated without overwriting local customisations.

Once these issues have been tackled [12], the software vendor
can make these processes as quick and easy for the customer as pos-
sible by implementing (semi-)automatic deployment, update, and
rollback procedures. Another key practice is that updates do not re-
quire downtime when performing an update, allowing the customer
to use the product without interruptions.

Customer organisations often use different testing and accep-
tance stages according to the IT Infrastructure Library (ITIL) [13]
before actually implementing software in the entire organisation.
This requires that deployments are done quickly, and that config-
uration settings and data files are moved separately from the soft-
ware. This key practice is related to the externalisation of all user
and configuration data, which enables a transparent configuration
environment [14]. Within such an environment all configuration
and user data is accessed externally from the product, which al-
lows for relationships to be established between configuration data
between products, thus enabling sharing of user configuration data
such as e-mail account settings between e-mail clients, font sizes
between applications, or even appearance settings between operat-
ing systems. Such externalisation allows for the product to perform
product data backups as well, enabling quicker and more reliable
backup retrieval actions.

2.4 Activation and Usage Process Area
Theactivation and usage process areaconcerns the activation

and working of a product at the customer site. The activation and
usage process area focuses on the following features:

• License management
• Feedback management

License management enables a customer organisation to manage
licenses explicitly, and activate the product with a different license
on each start-up, allowing customers to use test and development
versions, and to provide different functionality to different user pro-
files. Another key practice belonging to license management is that
licenses need to be stored in some coded fashion, to hinder piracy

Table 1: Some Statistics on each Organisation
Software Vendor Employees CCU employees Customers Technology CMS

ERPComp 1500 15 160.000 ASP+ Delphi Proprietary
CMSComp 65 5 140 Java SubVersion
FMSComp 160 3 900 Delphi + Java VSS + CVS
OCSComp 115 2 20 C++ CVS
CADComp 60 3 4.000 Delphi PVCS
HISComp 100 2 40 Delphi VSS
IBOSS 710 5to10 1.000.000+ Java CVS
WSOSS 388 NA 1.000.000+ Java SubVersion

of products. Finally, to have maximum commercial flexibility, the
licenses should control large parts of the software, such that any
functionality is activated or deactivated using the licenses.

The vendor must also explicitly manage its customer licenses. To
begin with, a vendor must be able to automatically renew a license
for a customer, such that the vendor can renew or prolong a license
without much effort. To achieve this, it must be possible to generate
licenses from contracts automatically.

Feedback management allows a vendor to gather large amounts
of data about its customers and its product as it acts in the field.
Feedback can come from either automatic sources or manual cus-
tomer triggered sources. Feedback is used, in the automatic case, to
provide knowledge to the vendor about product usage and knowl-
edge about the customer’s configuration. Finally, the user should be
able to report errors and questions to the software vendor through
the software product. This allows users to state questions and report
bugs about specific screens and unclear functions in the product.

3. THE CASES AND THEIR KEY PRAC-
TICES

In this section the anonymised cases are described. Some generic
information is provided on each software vendor and the reasons
why the case was included in this research are stated. A descrip-
tion is also given on how the case studies were performed. Table
1 provides some statistics on each organisation that is part of our
research set. Tables 2, 3, 4, and 5 show the key practices these
software vendors have implemented. Each of the key practices has
been evaluated using a list of criteria, which have been left out for
the sake of brevity. An open circle shows that the vendor has imple-
mented the facilities that provide a key practice, yet it has not im-
plemented the key practice. These can be considered “quick wins”
for the vendor.

3.1 Case Study Approach
To produce these results six descriptive case studies [15] were

performed at Dutch software vendors. These case studies resulted
into six case study reports2. During several months of doing the
case studies, facts have been collected from several sources:

• Interviews - To study the cases and confirm our hypothe-
ses, interviews were held with the people responsible for the
development and usage of the studied product.

• Studying the software -Academic licenses were granted to
the products. These licenses helped to gather many facts by
examining, using, and experimenting with the software and
its updating capabilities.

• Document study -Document study was performed to eval-
uate the development process and cross check the answers
provided by the other sources of information.

2http://www.cwi.nl/projects/deliver/

• Direct observations -Since our research took place at the
development departments (of the non-open source cases), we
were able to directly observe and document day to day oper-
ations.

The interviews consisted of two sessions, one to explore and
elaborate, and one to cross-reference answers from other interviews.
The second session was also used to cross-reference documenta-
tion and confirm the facts stated in these documents. Besides these
reviews we also created a case study protocol and a case study
database. To ensure reliability, the case study report was reviewed
by key informants. Two open source organisations were included
to evaluate their key CCU practices. For these two cases all on-line
material was used, including the source code of the products and
the products themselves were tested extensively. The open source
cases’ high numbers of employees can be explained by the fact
that open source developers are not working on a product full-time.
The open source cases can therefore not be compared to the com-
mercial cases in terms of size. The open source cases have been
added to show that the CCU model can be used for any type of
software vendor or distribution organisation. Also, the open source
cases contrast with the commercial cases in a number of interest-
ing ways. CCU model coverage looks different for an open source
product than for the other products presented. To begin with, li-
censing is an underrepresented aspect of open source products for
obvious reasons and bugs tend to be reported using other channels
than the product itself (Bugzilla, for instance).

The validity threats to our case studies are construct, internal,
external, and reliability [15] threats. With respect to construct va-
lidity, the same protocol was applied to each case study, which
was guarded by closely peer reviewing the case study process and
database. To create a complete and correct overview, both the de-
velopment and CCU processes have been documented extensively.
The internal validity was threatened by incorrect facts and results
from the different sources of information. By crosschecking these
results and observing the processes as they were going on a com-
plete view could be created. With respect to external validity, the
cases are representative for the Dutch software vendor market do-
main because each software vendor has a different number of cus-
tomers and is active in a different problem domain. Also, the gen-
eral information about these vendors has been compared to other
vendors that are active in the Platform for Productsoftware3, an or-
ganization that aims to share knowledge between research institutes
and software vendors in The Netherlands, with over 100 members.
The comparison shows that the six cases are a cross-section of the
Dutch software industry. Finally, to defend reliability we would
gather the same results if we redid the case studies, with one ma-
jor proviso, which is that many of the case study reports, published
after the case study, lead to improvements in each of the software
vendors’ organisations.
3http://www.productsoftware.nl/

Table 2: Release key practices
Release Key Practice Software product vendors

ERPC CMSC FMSC HISC CADC OCSC IBOSS WSOSS

The organisation has pilot customers to test early releases • • • •
Release planning is published internally • ◦ • ◦ ◦ • ◦
Restrictions on configurations due to internal components are managed◦ • • ◦ ◦ • • •
Restrictions on configurations due to external components are managed◦ ◦ • ◦ ◦ • • •
The tools that support release, delivery, and deployment are managed • • ◦ ◦ ◦ • • •
There is a formalized release procedure • • • • • • • •
Releases are stored in repositories (that mirrors the SCM) • • • • • •
The formalized release planning is adjusted to customer requirements • • •
Sending information regularly to customers • ◦ ◦ ◦ ◦ • ◦ ◦
Vendor uses all possible channels for informing customers ◦ • ◦ •

Legend:•: Currently implemented; -: Not applicable; empty: Not implemented
◦ Requires some manual steps, yet would be easy to automate;

3.2 Hospital Information Management System
HISCompbusiness activities are the production and sale of med-

ical information systems, the customization of their products for
customers, and the reselling of all required third-party hardware
and software.HISCompcurrently has a customer base of approx-
imately 40 international hospitals and currently employs approxi-
mately 100 employees.

HISCompis a typical software developer with a traditional and
straight-forward way of distributing software via CDs. Patches are
released on a website and the customer’s system manager is respon-
sible for deploying the patch, using a detailed list of instructions.
Each customisation that is built for a customer is included in a sepa-
rate customisation branch, which is merged with the trunk later on.
Such variable functionality is activated using a coded license file.
HISCompdoes not gather automatically any technical information
on customer sites and the working of the product heavily depends
on the customer’s system manager. [16]HISCompreleases patches
and service packs containing multiple patches irregularly and main
releases periodically.

3.3 On-line ERP Information Portal for Large
Businesses

ERPCompis a manufacturer of software for accounting and en-
terprise resource planning (ERP) that has established an customer
base of over 160,000 customers, mainly in the small to medium
enterprise sector. Through autonomous growth and acquisitions
the number of employees has grown to 2,025 in 2004. The In-
ternational Development department employs 365 developers on
different international locations.ERPProd, ERPComp’s product
is a front office application that provides organizations with finan-
cial information, multi-site reporting, and supports relationship and
knowledge management. Employees, customers and company part-
ners are provided with real-time on-line access to information across
an entire organization.

In an earlier paper [5] the results of this case study were pub-
lished due to the extraordinary integration this company has achieved
within its product data management (PDM), customer relationship
management, and software configuration management. The main
lesson learnt was that a company can serve many customers as long
as it focuses on making CCU effort as low as possible.ERPComp
applies the KISS (Keep it Short and Simple) principle to such an
extent that they have abolished version management. The use of
a proprietary product data management system for software prod-
ucts allowsERPCompto reason and store information about their
software and share knowledge about product items throughout the
company, such as compatibility information. The integration of
their SCM and CRM systems allows customers to log into theER-

PCompcustomer portal and download software the customer has
purchased, including a license file for that customer. This license
file is managed on both the customer and vendor side and must pe-
riodically be renewed by the customer. FurthermoreERPComphas
developed its own product deployment and update tool, and reports
the version number of the latest download by the customer to the
CRM software, such that the support department can always see
what version of the software the customer is currently using.

3.4 Content Management System
CMSCompis a web technology company that focuses on con-

tent management, online application development and integration
of backend systems into web portals. The services ofCMSComp
include consulting, development, implementation, integration and
support of interactive web applications. These services are sup-
ported byCMSCompproducts.CMSCompattempts to find a per-
sonified solution for each customer organisation.CMSCompcur-
rently employs 65 people.CMSComphas been experiencing such
rapid growth over the last years that they have had to limit growth
to keep it manageable at 6%. To serve the growing amount of cus-
tomers with this restriction,CMSComphas started a partner pro-
gram, where partner companies can provide the same services as
CMSComp, using theCMSCompproduct.

CMSComphas only recently started focussing on their product,
instead of the services the company used to provide. The content
management and display product is generally deployed on a web
server, where it will remain unchanged, until updated manually by
customers. The product is checked with an unencoded XML li-
cense file that is accessible to the customer. License files cannot be
generated automatically. Due to the large amount of customisation
that is implemented during the building of a site, the content man-
agement product has a transparent software architecture especially
adjusted to enable such customisations. Due to the complexity of
the software, deployment is a complex two hour process per web
server. Due to the fact thatCMSCompgenerally has access to their
customers’ web servers, remote deployment and updating are pos-
sible.

3.5 Providing a Counter Service On-Line
OCSCompis an application service provider that provides com-

mercial organisations web statistics. They provide page count solu-
tions to any type of customer, from small counters on personal web-
sites, to large navigation tracking counters on e-commerce sites.
OCSCompcurrently employs around 100 people, based on mul-
tiple European locations.OCSCompdoes not deliver software to
customers, since customers visit theOCSCompportal to see the
data that was gathered while people surfed their sites.

Table 3: Delivery key practices
Delivery Key Practice Software product vendors

ERPC CMSC FMSC HISC CADC OCSC IBOSS WSOSS

Automatic pull is available • - •
Delivery through any medium (Internet, DVD, Floppy) • ◦ ◦ ◦ - • •
Download site abstraction • ◦ • ◦ • •
Sending information regularly to customers • ◦ ◦ ◦ ◦ • ◦ ◦
Vendor uses all possible channels for informing customers ◦ • ◦ •

Legend:•: Currently implemented; -: Not applicable; empty: Not implemented
◦ Requires some manual steps, yet would be easy to automate;

The ASP case adds some interesting data to our research. To
begin with OCSCompis much more capable at local configura-
tion management and deployment processes, due to the fact that
their servers are freely accessible by the organisation itself. This
explainsOCSComp’s presence in local configuration management,
and product data and SCM features, and can therefore not be com-
pared to other product software companies in this area. Due to
the fact that customers log intoOCSComp’s website on at least
a weekly basis,OCSCompuses this channel to communicate the
product information and new functionality to its customers. Fi-
nally, licensing has not been connected to CRM and requires an
employee to copy the information from a contract into the license
management system.

3.6 Facility Management System
FMSCompis an international software vendor that produces fa-

cility management and real estate management software for organ-
isations.FMSComp’s products are marketed through four interna-
tional FMSCompsubsidiaries and eight international partners. At
presentFMSCompemploys 160 full time employees. Recently,
they have started testing a new version of their software, which has
been completely reimplemented using J2EE technology.

FMSCompis an extremely good tool builder and has built many
tools that are not managed explicitly, sometimes resulting in loss
of knowledge about the source code or even the source code it-
self. These tools, however, have improved their development and
CCU processes. They are very strong in product development and
provide services to many large companies. They provide different
types of deployment for their product, as to allow bothhigh network
traffic, low deployment effortandlow network traffic, high deploy-
ment effortscenarios.FMSComp’s weakest area is licensing, even
though they have a semi-automatic license generation process. The
software has an in-built function to create a feedback report that
is used to informFMSCompof problems in their software. How-
ever, this report must be e-mailed toFMSCompmanually by the
customer.

3.7 CAD plug-in for Building Design
CADCompcurrently employs 60 employees.CADComppro-

duces software plug-ins for AutoCAD that support building ser-
vices and building management consultants in the Dutch indus-
try, by creating drawing libraries, tools, and enhancements for two
three dimensional drawing tools, being AutoCAD and IntelliCAD.
CADCompand its 60 employees at present serve 4000 customers.

Due to the nature of their product,CADCompmust deliver its
products to customers by unpacking a common CAD application
and repacking it with their plug-in, using InstallShield for the de-
ployment process. They use both software and hardware licensing
mechanisms. Due to the size of their final deployment package they
use CDs for distribution.CADCompmakes no assumptions about
the customer’s network connection and therefore does not do any

user or deployment feedback. Backups of user configuration data
and files are complex, due to the fact that such knowledge is stored
in many different formats, databases, and files, spread out over the
complete deployment. This complexity is caused by a complex
software architecture that allowsCADCompto deliver its plug-in
for different CAD applications.

3.8 Mozilla Firefox
Mozilla, from hereon referred to asIBOSS, currently ownsFire-

fox, one of the most successful open source development projects
currently available. TheIBOSSinternet browser, created by the
Mozilla Foundation, provides a viable alternative to other browsers
such as Opera and Internet Explorer.

On the other handIBOSShas implemented some update key
practices in their product, such as an automatic update function that
is used to update the local product installation. Mozilla does not,
however, keep strong ties with each customer due to its large num-
ber (75 million downloads, according to theIBOSSwebsite). Also,
IBOSSdoes not report any information back to the Mozilla Foun-
dation, by use of feedback servers (such asApache’s TraceBack) or
another form of automatic post-installation feedback.

3.9 Apache’s HTTP Server
Apachedevelopment, from hereon referred to as WSOSS, began

in February 1995 as a combined effort to coordinate existing fixes
to the NCSA http program, to become a well known and success-
ful open source product [17]. At present it is the most used HTTP
server software for servers on the world wide web. The product is
used mostly by web server maintainers with some technical knowl-
edge, and thereforeWSOSSdoes not have many of the key practices
for the features of local configuration management and feedback
management. Another reason for the absence of these key practices
is that theWSOSSHTTP server is used for public websites, where
automatic deployment and feedback could compromise security.

4. EVALUATION OF THE PROCESS AR-
EAS AND FEATURES

This section discusses and describes the impact and effort re-
quired for making improvements in each process area. These re-
sults have been generalised for the eight cases and are summarised
in Table 6. Each of the following paragraphs describes the prob-
lems and the availability of tools per feature.

Therelease process managementfeature describes the skills of
a company to plan and manage their product and update releases.
The maturity of a software vendor can often be established by look-
ing at the key practices for this feature, because it is essential to all
other vendor side process areas. Primarily, to have all key prac-
tices for this feature, the vendor should manage its software with
a PDM system. By doing so, the vendor is forced to manage all
secondary artifacts, such as manuals, boxes, and DVDs as explicit
as the product itself. Both the open source cases do not have a re-

Table 4: Deployment key practices
Deployment Key Practice Software product vendors

ERPC CMSC FMSC HISC CADC OCSC IBOSS WSOSS

Configuration completeness checking of external components• ◦ ◦ ◦ • ◦ •
Automatic resolution of dependency issues ◦
(Semi-)automatic local update process • ◦ ◦ • •
Rollback from an update is possible • •
Rollback from an install is possible ◦ •
Updates require no downtime ◦ ◦ ◦
Test, acceptance, production environments ◦ ◦ • ◦ ◦
Updates can cope with local customisations ◦ • ◦ ◦ ◦ - ◦
External configuration to allow trace ◦ ◦ ◦ •
Integrity checks of SW artifacts at customer • • - • •
Detection and exploration of customer environment ◦ - ◦ ◦
Data backups are done through the product ◦ ◦ ◦ ◦ ◦

Legend:•: Currently implemented; -: Not applicable; empty: Not implemented
◦ Requires some manual steps, yet would be easy to automate;

Table 5: Activation and usage key practices
Activation and Usage Key Practice Software product vendors

ERPC CMSC FMSC HISC CADC OCSC IBOSS WSOSS

Licenses are coded • ◦ ◦ ◦ ◦
Licenses have an effect on software • • ◦ ◦ • ◦
Licenses are managed explicitly by customer • ◦ •
Possible to renew licenses automatically • ◦ ◦ •
Licenses are generated using contracts • ◦ ◦
Temporary licenses are distributed •
Awareness of customers configuration ◦ ◦ ◦ ◦ ◦ •
Feedback from a user is possible through the product • •
Usage reports are created • ◦ • ◦

Legend:•: Currently implemented; -: Not applicable; empty: Not implemented
◦ Requires some manual steps, yet would be easy to automate;

lease planning that is adjusted to customer requirements, due to less
market pressure for early releases. The tools used to support the key
practices in this process area are numerous, and contain tools that
support software configuration management and many proprietary
tools that support software artifact and product management.

The product knowledge managementfeature is strongly rep-
resented for all cases. The vendor must manage the relationships
of its products to other products in both a human readable format,
for the support, sales, and development department, and a com-
puter readable format, to allow for automatic conflict detection and
even automatic dependency resolution. Also, the availability of
past product releases is required such that customers can down-
load older versions.IBOSSdoes not provide such functionality,
due to the fact that the source of their products is always avail-
able. The downside of this is that a customer can never download
older versions of the software automatically to be used with a set
of other applications, without having to build the source code. An-
other example isERPComp, which only provides the latest version
of the software and no other, such that users will always use the
latest version. The question remains whether a vendor wishes to
provide customers with more flexibility, or whether this simplifica-
tion and therefore cost saving method does not scare off customers.
Many tools are available for knowledge management and distribu-
tion, however, each organisation has its own channels for distribu-
tion.

The delivery methods to customersfeature is dependent on
many different factors, such as bandwidth, network policies, se-
curity, and infrastructure. Coverage of all key practices in this pro-
cess area is rather weak, with the automatic pull key practice as an

extreme. To improve in this process area, a software vendor must
carefully review whether the software architecture and the vendor
organisation itself do not restrict customer communication. Inte-
gration of the CRM system throughout the complete organisation
is required to gain serious improve in this area. There are some
tools available that already supply such integration, though a lot of
customisation is required [5].

Thecustomer side distribution feature is dependent on the for-
mat of deployment and installation packages, the product software
architecture, and possible storage locations. The key practice to
allow a customer to use any medium for deployment enables cus-
tomer organisations to freely deploy software using its proprietary
methods of deployment. An example encountered in the cases is
customers requesting for Microsoft Installer packages (msi) be-
cause their internal deployment and distribution tools require msi
packages. The key practice that allows a customer to download up-
dates and deployment packages from any location can reduce net-
work load on the vendor repository as well, since the customer does
not allow each user system to go on-line individually and download
the latest updates from the vendor. Tool support is found in pack-
age managers, such as rpm-update, Portage, and Microsoft’s open
source project Wix4.

Environment checking, a feature of deployment, requires the
deployment application or software product to first scan the system
on which the update will take place, for the availability of required
components and possible resource constraints such as disk space.
If such constraints or missing components are encountered, these
issues must be resolved automatically. There are not many tools

4http://sourceforge.net/projects/wix/

available (besides package managers) that can support these key
practices, mostly due to the complexity and number of different
deployment environments.

TheLocal configuration managementfeature is highly depen-
dent on the operating system and deployment tools used by the
customer. Some deployment tools have integrated the build pro-
cess into the management of software packages [18], whereas other
tools are primarily focussed on copying of files from one location to
another, such as InstallShield5. Implementing the key practices in
this process area require large development efforts and changes to
the software architecture, such as the rollback key practice, which
is generally not implemented because changes to the data model
cannot be rolled back [19] [20] without a versioned database man-
agement system. Subsets of the key practices in this process area
are often covered by the operating system, such as the deployment
capabilities of Gentoo’s Portage or the registry and the deinstall key
practices for Microsoft Windows. Customisation key practices are
hardly represented in the presented case studies, showing a large
opening for product and service quality improvements. Customi-
sation management requires heavy development effort and integra-
tion with the CRM system, to store customer configuration settings,
such as network architecture, used database system, and operating
system. This information is used to deliver the appropriate updates
and fixes to specific customers and to perform market and require-
ments research. The backup of data key practice is usually provided
through commercial database management tools, and therefore the
results presented in Table 4 might be misleading. However, pro-
viding a mechanism to backup all external data and configuration
information with the press of a button is a valuable key practice
because customers are allowed to perform quicker and more reli-
able backups. Some of the key practices ofcustomisation man-
agementare supported by development platforms such as J2EE
that force developers to store configuration information in external
XML files.

To improve the feature ofdeployment process automationthe
two previous features must be combined. Both automatic depen-
dency resolution and local configuration management must be au-
tomated to perform automatic updates and deployments. Tools that
support such automation are not widely available and an automatic
update and deployment solution requires a specially adjusted soft-
ware architecture.

License managementconsists of both license management on
the customer side and the vendor side. Customer side license man-
agement is usually easy to implement, since many license manage-
ment mechanisms, such as to renew the license, are already im-
plemented under the hood. To provide the key practices within
customer side license management development effort is required
mostly. On the other hand, vendor side license management re-
quires changes to the CRM system, such that it can store and dis-
tribute licenses, and requires organisational changes, such that li-
cense generation and renewals are done automatically by the sales
department. Improving vendor side license management requires
little effort, due to the fact that some type of CRM and license
management is usually already present in an organisation. Cus-
tomer side license management solutions exist, such as Manage-
Soft’s6 software management suite. Dedicated vendor side license
management systems, such as Hasp7, provide many key practices
that are required in this process area.

Improving in the area ofsales and lead managementmay re-
quire changes to the product, such that the product are used to com-

5http://www.installshield.com
6http://www.managesoft.com/
7http://www.aladdin.com/

municate with the user, by form of a daily pop-up, or a message to
the sales department if a user attempts to use an unpurchased fea-
ture a number of times. The reasons for this key practice are numer-
ous. Often a customer will have an old version of the software run-
ning, requesting outdated and expensive support on old (and even
buggy) functionality. Also, when customers are not aware of the
newest functionality within a product, they might opt for a competi-
tor who simply told the customer first about one market sensitive
characteristic of their product. Pilot customers can pre-evaluate the
software and have a say in the final set of requirements and in com-
mercial cases use the product at a discount price. Pilot customers
increase market awareness for the vendor and improve relationships
with some of its primary customers. New functionality can also be
made available to customers using temporary licenses, which al-
lows customers to test new functionality before actually purchasing
it. This process area is limited by trust and network infrastructure
issues. It will require some changes to the CRM system to get mes-
sages to the right customer organisations. Some commercial tools
are available in the form of PDM and CRM systems, but once again
integration and customisation effort are large and structural com-
munication between the sales and development departments about
new product features is required.

The feedback managementfeature is valuable to a software
vendor because it will introduce new requirements on the product,
show what the most used functions of a product are, and where
most errors occur. Though improvements in this process area re-
quires a lot of effort, the products discussed in this paper already
implemented different error logging mechanisms, sometimes even
with a “send error report to vendor by e-mail”-button. No commer-
cial tools were found to handle such feedback although some tools
such as Mozilla’s TraceBack and the components presented in [21]
provide similar functionality. Network infrastructure, privacy, and
security should be taken in consideration carefully when improv-
ing these areas. Effort to improve this feature is low, whereas the
implementation of feedback is highly profitable. Such feedback
reports can even be linked to customers, informing the vendor of
its customers’ configuration. This information is used by the sup-
port department to determine a customer’s configuration, but also
to inform the development department of “proven” configurations.
A well-known example of feedback error reporting is the feedback
function in Microsoft’s Windows XP. However, other mechanisms
are imaginable [22], such as usage reports (which can also be used
for pay-per-usage scenarios) that can help improve the knowledge
about which functionalities are most used by customers.

5. DISCUSSION
Now we put the key process area of CCU up for discussion.

The first question that needs to be answered is whether a soft-
ware vendor’s success relies on its customer relationships. In the
commercial cases encountered and presented in this paper 50%-
70% of their yearly revenue was coming from existing customers
which in our view shows that customer retention and the mainte-
nance of relationships is essential to survive in the current industry.
In the case of open source products, where many of the users of
the product are also developers, testers, and quality assurance team
members, the same premise on customer relationship management
holds. Since CCU is a customer focused process, the improvement
of these processes will lead to better customer relationships and
possibly a higher customer retention rate. By applying the CCU
model onto the eight presented cases, Tables 2, 3, 4, and 5 lead to
the following observations:

• Software vendors focus insufficiently on customer side con-
figuration management

Table 6: Process area impact assessment

S
of

tw
ar

e
A

rc
hi

te
ct

ur
e

D
ev

el
op

m
en

tE
ffo

rt

C
R

M
Im

pa
ct

O
rg

an
is

at
io

na
lI

m
pa

ct

A
va

ila
bl

e
to

ol
s

C
ha

ng
e

pr
oj

ec
ts

iz
e

Release
Release process management none none large large SCM systems, no PDM medium
Product knowledge management none none medium medium SCM systems, no PDM medium
Delivery
Delivery methods some none some some none Small
Customer side distribution some medium none none package deployment tools medium
Deployment
Environment checking medium medium some none some deployment tools medium
Local configuration management large medium none some some tools, operating systemsmedium
Deployment process automation large large some some none large
Activation and Usage
License management some medium large medium some medium
Feedback management some heavy medium some some medium

• Licensing and contract integration is rare
• Software vendors do not focus on deployment and usage feed-

back
• Software vendors neglect explicit product knowledge man-

agement

With these observations and customer retention, product quality
and quality of service in mind, a number of conclusions can be
drawn.

Even though some of the cases reported that up to 15% of their
deployments failed at the customer side, Table 4 shows that soft-
ware vendors do not implement key practices in the area ofcus-
tomer side configuration management. The most commonly re-
ported causes for deployment problems are faulty configurations,
incompatible updates, and customisations. By implementing the
key practices stated for the deployment process, these problems
can be avoided.

Also, vendor sidelicense management, which includes con-
tract registration and automated license creation, is not sufficiently
represented in the cases. This area leaves open an opportunity
for an integrated contract and license management tool that plugs
into any CRM system. For obvious reasons license management
is not such a large issue in open source software, although some
sense of consciousness throughout the industry about open source
licenses would improve customer organisations’ awareness of their
acquired (open source) products. Often redistribution rules are not
respected, simply because customer organisations are not aware of
them. Another example where licensing is not such a big issue are
the B2B (business-to-business) software vendors we researched.
CMSComp, for example, provides unencoded XML license files
to its customers and defends that choice by saying that trust in B2B
markets is more important, sinceCMSCompwill simply offer the
functionality to them if the customer chooses to change the license
file.

All cases do not sufficiently implement the key practices ofus-
age and deployment feedback. Such feedback, however, is used
to gather essential product knowledge, such as product incompati-
bilities, common user errors, and usage statistics of product func-
tionality. This knowledge is translated into requirements for future
products and product fixes. For the two open source cases customer
feedback seems to be underrepresented, whereas deployment and

user feedback seem to be integral parts of the open source devel-
opment process. Open source software products, however, can im-
prove their development process by implementing automatic usage
and error feedback as well.

To process customer usage feedback, to store product compati-
bilities, and to handle the huge volume of requirements on a prod-
uct, a software vendor must have ahigh-level product knowledge
infrastructure . Such a product knowledge infrastructure is used
to communicate product information throughout the development
department, the organisation, and even its customers.

Interestingly enough, many key practices in the areas of customi-
sation management, internal product relationship management, and
product data and software configuration management are an inte-
gral part of software product line development [23]. Especially the
explicit manner in which products and product configurations are
managed by the PuLSE approach [24] sets an example for product
software companies. The combination of the concepts of this re-
search and PuLSE paves the way to an integrated software product
data management system that manages all artifacts and information
for a software product family.

In our search for tools that can provide the key practices pre-
sented in this paper and in [3], undiscovered product niches have
been encountered. To begin with it seems that there are no product
data management systems that explicitly manage licenses, software
products, their fixes, and their patches, in such a way that customers
can log in and download them. Secondly, feedback sending and
feedback analysis applications seem to be in short supply. Finally,
operating systems and deployment tools [10] generally do not sup-
port the key practices for local software configuration management.

If anything can be learned from this research, it is that software
vendors must integrate their CRM, PDM, and SCM [5] systems to
automate the processes related to CCU. Such automation provides
more efficient methods to perform repetitive tasks such as license
creation, license renewal, product updating, error reporting, usage
reporting, product release, and manual configuration tasks, such as
backups. The second main lesson is that usage of feedback reports
supplies software vendors with the largest test bed imaginable, and
therefore deserves more attention. The presented CCU model can
be used as a guideline for software vendors or for the development
of a software manufacturing and software product data manage-
ment system.

6. FUTURE WORK
The presented material allows for a larger evaluation of the cus-

tomer configuration updating process. Next to the case studies we
will be performing in the future, we are planning to build a bench-
mark site where software vendors can evaluate their own key prac-
tices and position themselves in the market. This evaluation tech-
nique, however, requires a new classification of software product
companies, which is used to further analyze the results from such
research. As a continuation on one of the cases we have been of-
fered to implement a subset of the presented key practices within
that organisation. We will investigate the implementation of these
key practices and use it to validate the results of this research. We
are currently negotiating with several software vendors whether the
concepts shown by Elbaum et al. [22] can be implemented within
their products, to evaluate the usefulness of such functionalities and
to get more practical experience with field data gathered from cus-
tomers.

7. REFERENCES
[1] L. Xu and S. Brinkkemper, “Concepts of product software:

Paving the road for urgently needed research,” inFirst
International Workshop on Philosophical Foundations of
Information Systems Engineering. LNCS, Springer-Verlag,
2005.

[2] S. Jansen and S. Brinkkemper, “Modelling deployment using
feature descriptions and state models for component-based
software product families,” in3rd International Working
Conference on Component Deployment (CD 2005), ser.
LNCS. Springer–Verlag, 2005.

[3] S. Jansen, S. Brinkkemper, and G. Ballintijn, “A process
framework and typology for software product updaters,” in
Ninth European Conference on Software Maintenance and
Reengineering. IEEE, 2005, pp. 265–274.

[4] A. Mockus, P. Zhang, and P. L. Li, “Predictors of customer
perceived software quality,” inICSE ’05: Proceedings of the
27th international conference on Software engineering.
New York, NY, USA: ACM Press, 2005, pp. 225–233.

[5] S. Jansen, S. Brinkkemper, G. Ballintijn, and A. van
Nieuwland, “Integrated development and maintenance of
software products to support efficient updating of customer
configurations: A case study in mass market erp software,” in
Proceedings of the 21st International Conference on
Software Maintenance. IEEE, 2005.

[6] F. Niessink and H. van Vliet, “Software maintenance from a
service perspective,” inJournal of Software Maintenance:
Research and Practice, vol. 12, no. 2, 2000, pp. 103–120.

[7] A. April, J. H. Hayes, A. Abran, and R. R. Dumke,
“Software maintenance maturity model (smmm): the
software maintenance process model.” inJournal of Software
Maintenance, vol. 17, no. 3, 2005, pp. 197–223.

[8] M. C. Paulk, B. Curtis, M. B. Chrissis, and C. V. Weber,
“The capability maturity model: Guidelines for improving
the software process.” inSEI Series in Software Engineering.
Addison-Wesley Publishing Company, 1995.

[9] F. Niessink, V. Clerc, T. Tijdink, and H. van Vliet, “The it
service capability maturity model,” 2005.

[10] A. Carzaniga, A. Fuggetta, R. Hall, A. van der Hoek,
D. Heimbigner, and A. Wolf, “A characterization framework
for software deployment technologies,” inTechnical Report
CU-CS-857-98, Dept. of Computer Science, University of
Colorado, 1998.

[11] F. Plsil, D. Blek, and R. Janecek, “Sofa/dcup: Architecture
for component trading and dynamic updating,” in

Proceedings of the International Conference on
Configurable Distributed Systems. Washington, DC, USA:
IEEE, 1998, p. 43.

[12] S. Jansen, “Alleviating the release and deployment effort of
product software by explicitly managing component
knowledge,” inProceedings of the Workshop on
Development and Deployment of Product Software. US
Education Service, 2005, pp. 21–30.

[13] Central Computer and Telecommunications Agency, “Itil
service support.” Stationery Office Books, 2003.

[14] E. Dolstra, G. Florijn, M. de Jonge, and E. Visser,
“Capturing timeline variability with transparent
configuration environments,” inIEEE Workshop on Software
Variability Management (SVM’03), J. Bosch and P. Knauber,
Eds. Portland, Oregon: IEEE, 2003.

[15] R. K. Yin, “Case study research - design and methods.”
SAGE Publications, 3rd ed., 2003.

[16] G. Ballintijn, “A case study of the release management of a
health-care information system,” inproceedings of the IEEE
International Conference on Software Maintenance,
ICSM2005, Industrial Applications track, 2005.

[17] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “A case study
of open source software development: the apache server,” in
Proceedings of the 22nd International Conference on
Software Engineering (ICSE 2000). Limerick, Ireland:
ACM Press, 2000, pp. 263–272.

[18] E. Dolstra, “Integrating software construction and software
deployment,” in11th International Workshop on Software
Configuration Management (SCM-11), ser. LNCS,
B. Westfechtel and A. van der Hoek, Eds., vol. 2649.
Portland, Oregon, USA: Springer-Verlag, 2003, pp. 102–117.

[19] S. Jansen, G. Ballintijn, and S. Brinkkemper, “Software
release and deployment at exact: a case study report,” in
technical report SEN-E0414. CWI, 2004.

[20] S. Jansen, “Software Release and Deployment at Planon: a
case study report,” inTechnical Report SEN-E0504. CWI,
2005.

[21] K. Renaud and R. Cooper, “An error reporting and feedback
component for component-based transaction processing
systems,” inProceedings of the 1999 User Interfaces to Data
Intensive Systems. Washington, DC, USA: IEEE, 1999, p.
141.

[22] S. Elbaum and M. Diep, “Profiling deployed software:
Assessing strategies and testing opportunities,” inIEEE
Trans. Softw. Eng., vol. 31, no. 4. Piscataway, NJ, USA:
IEEE, 2005, pp. 312–327.

[23] J. Bosch, “Software product lines: organizational
alternatives,” inICSE ’01: Proceedings of the 23rd
International Conference on Software Engineering. IEEE,
2001, pp. 91–100.

[24] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig,
K. Schmid, T. Widen, and J.-M. DeBaud, “Pulse: a
methodology to develop software product lines,” inSSR ’99:
Proceedings of the 1999 symposium on Software reusability.
New York, NY, USA: ACM Press, 1999, pp. 122–131.

Acknowledgements
We are very grateful to the representatives of the six software ven-
dors that allowed us to study them so closely. Furthermore, the
authors thank Vedran Bilanovic, Hans van Vliet, and Tijs van der
Storm for their many inspiring ideas that contributed to this paper.
Finally, the authors wish to thank Gerco Ballintijn for performing
theHISCompcase study.

