
On the Issue of Reinstatement in Argumentation

Martin Caminada

Utrecht University

Abstract

Dung’s theory of abstract argumentation frameworks [8] led to the formalization of
various argument-based semantics, which are actually particular forms of dealing with
the issue of reinstatement. In this paper, we re-examine the issue of semantics from the
perspective of postulates. In particular, we ask ourselves the question of which (minimal)
requirements have to be fulfilled by any principle for handling reinstatement, and how this
relates to Dung’s standard semantics. Our purpose is to shed new light on the ongoing
discussion on which semantics is most appropriate.

1 Introduction

Dung’s abstract theory of formal argumentation [8] has been a guide for researchers in the
field of formal argumentation and nonmonotonic logic for more than ten years. During
this period, a significant amount of work has been done on proof procedures for Dung’s
various argument-based semantics [16, 4], as well as on concrete argumentation formalisms
(such as [14, 9, 5] based on Dung’s theory.

One specific issue that has received relatively little attention is the nature of rein-
statement. Although reinstatement as a principle is not totally uncontroversial [10], the
current consensus among many researchers in formal argumentation and nonmonotonic
logic is that reinstatement of arguments is an essential feature of defeasible reasoning (as
is for instance expressed in [12]). Dung provides several approaches for dealing with rein-
statement, like stable semantics, preferred semantics, complete semantics and grounded
semantics. Our contribution is not to criticize Dung’s theory but rather to strengthen
it. In particular, we ask ourselves the question: “Why do these semantics actually make
sense?”

In previous work, we have stated a number of postulates which, in our view, every
argumentation formalism should satisfy [3]. In the current paper, we will follow the
same approach and state some simple and intuitive properties for dealing with the issue
of reinstatement (section 3). We then show how these properties are satisfied by Dung’s
standard semantics and how the differences between the various semantics could be viewed
(section 4). We also show that a careful examination of reinstatement postulates reveals
a semantics not currently known (section 4.8). Based on this discussion, we then share
some thoughts on which type of semantics is most appropriate (section 5).

2 Dung’s Standard Semantics

A central notion in Dung’s theory of abstract argumentation [8] is that of an argumenta-
tion framework, which is defined as follows.

definition 1 (argumentation framework). An argumentation framework is a pair
(Args , def) where Args is a set of arguments and def ⊆ Args ×Args.

1

We say that argument A defeats argument B iff A def B. The shorthand notation
A+ and A− stands for, respectively, the set of arguments defeated by A and the set of
arguments that defeat A.

definition 2 (defense / conflict-free). Let A ∈ Args and A ⊆ Args.

• We define A+ as {B | A def B} and A+ as {B | A def B for some A ∈ A}.

• We define A− as {B | B def A} and A− as {B | B def A for some A ∈ A}.

• A defends an argument A iff A− ⊆ A+.

• A is conflict-free iff A ∩ A+ = ∅.

In the following definition, F (A) stands for the set of arguments that are acceptable
(in the sense of [8]) with respect to A.

definition 3 (acceptability semantics). Let A be a conflict-free set of arguments and
let F : 2A → 2A be a function such that F (A) = {A | A is defended by A}.

• A is admissible iff A ⊆ F (A).

• A is a complete extension iff A = F (A).

• A is a grounded extension iff A is the minimal (w.r.t. set-inclusion) complete
extension.

• A is a preferred extension iff A is a maximal (w.r.t. set-inclusion) complete exten-
sion.

• A is a stable extension iff A is a preferred extension that defeats every argument in
Args\A.

Note that there is only one grounded extension. It contains all the arguments which
are not defeated, as well as that arguments which are directly or indirectly defended by
non-defeated arguments.

3 Reinstatement Labellings

The issue of quality postulates, or axioms, has recently received some attention in the
field of formal argumentation and non-monotonic logic [3, 2]. An interesting question is
whether one can also quality postulates for dealing with the reinstatement of arguments.
Although the reinstatement has to a great extent been studied by Dung [8], the issue of
which postulates have to be satisfied in order for a specific criterion for reinstatement to
make sense has received relatively little attention.

One possible approach would be to start labelling the arguments in an argumentation
framework. We distinguish three labels: “in”, “out” and ”undec” (undecided).

definition 4. Let (Args , def) be a Dung-style argumentation framework. An AF-labelling
is a (total) function L : Args −→ {in, out, undec}. We define in(L) as {A ∈ Args |
L(A) = in}, out(L) as {A ∈ Args | L(A) = out} and undec(L) as {A ∈ Args | L(A) =
undec}.

In a reinstatement labelling, an argument is “in” iff al its defeaters are “out” and an
argument is “out” if it has a defeater that is “in”, as is stated in the following definition.

definition 5. Let L be an AF-labelling. We say that L is a reinstatement labelling iff it
satisfies the following:

• ∀A ∈ Args : (L(A) = out ≡ ∃B ∈ Args : (Bdef A ∧ L(B) = in)) and

• ∀A ∈ Args : (L(A) = in ≡ ∀B ∈ Args : (Bdef A ⊃ L(B) = out)).

2

The above definitions can be illustrated using the argumentation frameworks in fig-
ure 1. In the leftmost argumentation framework, there exists just one reinstatement
labelling (L1) with L1(A) = in, L1(B) = out, L1(C) = in. In the middle argumenta-
tion framework, there exist three reinstatement labellings (L2,L3,L4) with L2(D) = in,
L2(E) = out, L3(D) = out, L3(E) = in, L4(D) = undec and L4(E) = undec. In the
rightmost argumentation framework, there exists just one reinstatement labelling (L5)
with L5(F) = undec.

Notice that definition 5 can actually be seen as a postulate, as it specifies a restriction on
an AF-labelling. It turns out that different kinds of reinstatement labellings correspond
with different kind of Dung-style semantics. This is explored in the remainder of this
paper.

A

B

C

D

E

F

Figure 1: Three argumentation frameworks.

4 Labellings versus Semantics

We now define two functions that, given an argumentation framework, allow a set of argu-
ments to be converted to a labelling and vice versa. The function Ext2Lab(Args,def) takes
a set of arguments (sometimes an extension) and converts it to a labelling. The function
Lab2Ext(Args,def) takes an AF-labelling and converts it to a set of arguments (sometimes
an extension). Notice that as an AF-labelling is defined as a function (definition 4), which
in its turn is essentially a relation, it is possible to represent the labelling as a set of pairs.

In the following definition, the resulting AF-labelling does not yet need to satisfy the
properties of a reinstatement labelling as stated in definition 5.

definition 6. Let (Args , def) be an argumentation framework, A ⊆ Args and L : Args −→
{in, out, undec} a labelling function. We define Ext2Lab(Args,def)(A) = {(A, in) | A ∈
A} ∪ {(A, out) | ∃A′ ∈ A : A′def A} ∪ {(A, undec) | A 6∈ A ∧ ¬∃A′ ∈ A : A′def A}. We
define Lab2Ext(Args,def)(L) = {A | (A, in) ∈ L}.

When the associated argumentation framework is clear, we sometimes simply write
Ext2Lab and Lab2Ext instead of Ext2Lab(Args,def) and Lab2Ext(Args,def).

4.1 Reinstatement labellings without restrictions

It is interesting to notice that a reinstatement labelling coincides with Dung’s notion of a
complete extension. This is stated by the theorems 1 and 2.

theorem 1. Let (Args , def) be an argumentation framework and let L be a reinstatement
labelling. Then Lab2Ext(L) is a complete extension.

Proof. Let A = Lab2Ext(L). We now prove that A is a complete extension, that is,
F (A) = A. For this, we prove two things.

3

1. A ⊆ F (A)
Let A ∈ A. Then L(A) = in. The fact that L is a reinstatement labelling means
that each defeater B of A is labeled out. This again means (still by the fact that L
is a reinstatement labelling) that each such B has a defeater (say C) that is labeled
in. By definition of Lab2Ext, it holds that C ∈ A. This means that for each defeater
B of A, there is a C ∈ A that defeats B. Therefore, A ∈ F (A) (A is defended by
A).

2. F (A) ⊆ A
Let A ∈ F (A). Then each B that defeats A is defeated by some C ∈ A means by
definition of Lab2Ext that C is labeled in by L. The fact that L is a reinstatement
labelling means that B is labeled out. This again means that A is labeled in.
Therefore, by definition of Lab2Ext, A ∈ A.

theorem 2. Let (Args, def) be an argumentation framework and let A be a complete
extension. Then L = Ext2Lab(A) is a reinstatement labelling.

Proof. In order to prove that Ext2Lab(A) is a reinstatement labelling, we have to prove
four things:

1. ∀A ∈ Args : (L(A) = out ⊃ ∃B ∈ Args : (Bdef A ∧ L(B) = in))
Let A ∈ Args such that L(A) = out. Then, according to the definition of Ext2Lab,
the fact that L(A) = out means that there is an A′ ∈ A that defeats A. And the
fact that A′ ∈ A means that L(A′) = in.

2. ∀A ∈ Args : (L(A) = out ⊂ ∃B ∈ Args : (Bdef A ∧ L(B) = in))
Let A ∈ Args be such that it has a defeater B labeled in. The fact that L(B) = in

means that B ∈ A (Ext2Lab). By definition of Ext2Lab, L(A) = out.

3. ∀A ∈ Args : (L(A) = in ⊃ ∀B ∈ Args(Bdef A ⊃ L(B) = out))
Let A be an argument that is labeled in. The fact that L(A) = in means that
A ∈ A. The fact that A is a complete extension implies that it is an admissible set.
That is, A defeats every defeater of A. By the definition of Ext2Lab, this means
that every defeater of A is labeled out.

4. ∀A ∈ Args : (L(A) = in ⊂ ∀B ∈ Args(Bdef A ⊃ L(B) = out))
Let A ∈ Args be such that every defeater of A is labeled out. This means, by
definition of Ext2Lab, that for every defeater B of A there is a C ∈ A that defeats
B. But as A is a complete extension (everything that is defended by A is already in
A) this means that A ∈ A. By definition of Ext2Lab, this means that A is labeled
in.

The correspondence between reinstatement labellings and complete extensions is an
important one. Theorem 1 and 2 have a central position in this paper and will be used
in many subsequent proofs, sometimes even without explicitly mentioning them.

4.2 Reinstatement labellings with empty undec

Reinstatement labellings where undec is empty coincide with stable extensions. This is
stated by the theorems 3 and 4.

theorem 3. Let (Args , def) be an argumentation framework and let L be a reinstatement
labelling such that undec(L) = ∅. Then Lab2Ext(L) is a stable extension.

4

Proof. Let A = Lab2Ext(L). Now consider an arbitrary A ∈ Args\A. From the fact
that undec(L) = ∅, it follows that L(A) = out. By definition, this means that A is
defeated by an argument (say B) labelled in. The fact that B is labelled in means
that B ∈ A. Therefore, A is defeated by some argument in A. As this holds for any
arbitrary A ∈ Args\A, it means that A defeats any argument not in it. Thus, A is a
stable extension.

theorem 4. Let (Args , def) be an argumentation framework and let A be a stable exten-
sion. Then L = Ext2Lab(A) is a labelling such that undec(L) = ∅.

Proof. Let A ∈ Args. We distinguish two possibilities:

1. A ∈ A. Then, by definition, L(A) = in.

2. A 6∈ A. As A is a stable extension, this means that some argument in A defeats A.
This means that L(A) = out.

In both cases, L(A) 6= undec. As this holds for any arbitrary A ∈ Args, it holds that
undec(L) = ∅.

4.3 Reinstatement labellings with maximal in

Reinstatement labellings where in is maximal coincide with preferred extensions. This is
stated by the theorems 5 and 6.

theorem 5. Let (Args , def) be an argumentation framework and let L be a reinstatement
labelling such that in(L) is maximal. Then Lab2Ext(L) is a preferred extension.

Proof. Let L be a reinstatement labelling such that in(L) is maximal. Now, suppose
that A = Lab2Ext(L) is not a preferred extension. Then, by definition of a preferred
extension (Definition 3) there must be a complete extension A′ such that A (A′. Let
L′ = Ext2Lab(A′). Then, in(L) (in(L′). But then in(L) would not be maximal.
Contradiction.

theorem 6. Let (Args , def) be an argumentation framework and let A be a preferred
extension. Then L = Ext2Lab(A) is a labelling such that in(L) is maximal.

Proof. Let A be a preferred extension and let L be Ext2Lab(A). Now, suppose that in(L)
is not maximal. Then there must be some reinstatement labelling L′ with in(L) (in(L′).
Let A′ = Lab2Ext(L′). Then A′ is a complete extension with A (A′. But then A would
not be a preferred extension. Contradiction.

4.4 Reinstatement labellings with maximal out

It is interesting to notice that, contrary to what one might expect, reinstatement labellings
in which out is maximized coincide with preferred extensions, just like (as was proved in
section 4.3) labellings in which in is maximized.

We start our proofs with two lemmas.

lemma 1. Let L and L′ be two reinstatement labellings. If in(L) (in(L′) then out(L) (

out(L′).

Proof. Suppose in(L) (in(L′). This means two things:

1. ∀A ∈ in(L) : A ∈ in(L′)

2. ∃B ∈ in(L′) : B 6∈ in(L)

We now prove the following two things:

5

• ∀C ∈ out(L) : C ∈ out(L′).
Let C ∈ out(L). By the definition of a reinstatement labelling (Definition 5) this
means that C is defeated by some A ∈ in(L). But then, according to 1, it also holds
that A ∈ in(L′). This, by the definition of a reinstatement labelling, means that
C ∈ out(L′).

• ∃D ∈ out(L′) : D 6∈ out(L).
Let B be an argument (taken from 2) such that B ∈ in(L′). Then, according to the
definition of a reinstatement labelling, it must also be the case that each defeater of
B is labelled out in L′, but there is some defeater of B that is not labelled out in
L. This means that ∃D ∈ out(L′) : D 6∈ out(L)

lemma 2. Let L and L′ be two reinstatement labellings. If out(L) (out(L′) then
in(L) (in(L′).

Proof. Suppose out(L) (out(L′). This means two things:

1. ∀A ∈ out(L) : A ∈ out(L′)

2. ∃B ∈ out(L′) : B 6∈ out(L)

We now prove the following two things:

• ∀C ∈ in(L) : C ∈ in(L′)
Let C ∈ in(L). By the definition of a reinstatement labelling (Definition 5) this
means that every defeater of C is labelled out in L. But then (according to 1) every
defeater of C is also labelled out in L′. This, by the definition of a reinstatement
labelling, means that C is labelled in in L′.

• ∃D ∈ in(L′) : D 6∈ in(L)
Let B be an argument (taken from 2) such that B ∈ out(L′) and B 6∈ out(L).
Then, according to the definition of a reinstatement labelling, this means that some
defeater of B is labelled in in L′, but no defeater of B is labelled in in L. This
means that ∃D ∈ in(L′) : D 6∈ in(L).

Using these two lemmas, we can now state and prove the main theorems.

theorem 7. Let (Args , def) be an argumentation framework and let L be a reinstatement
labelling such that out(L) is maximal. Then Lab2Ext(L) is a preferred extension.

Proof. Let L be a reinstatement labelling such that out(L) is maximal. Now, suppose that
Lab2Ext(L) is not a preferred extension. Then, by theorem 5, in(L) is not maximal. This
means that there exists some L′ such that in(L) (in(L′). By lemma 1 this also means
that out(L) (out(L′). But then out(L) would not be maximal. Contradiction.

theorem 8. Let (Args , def) be an argumentation framework and let A be a preferred
extension. Then L = Ext2Lab(A) is a labelling such that out(L) is maximal.

Proof. Let A be a preferred extension. Then, by theorem 6, Ext2Lab(A) is a labelling (L)
such that in(L) is maximal. Now suppose that out(L) is not maximal. Then there exists
some reinstatement labelling L′ with out(L) (out(L′) By lemma 2, this also means that
in(L) ⊆ in(L′). But then in(L) would not be maximal. Contradiction.

6

4.5 Reinstatement labellings with maximal undec

A reinstatement labelling where undec is maximal coincides with the grounded extension.
This is stated by the theorems 9 and 10.

theorem 9. Let (Args, def) be an argumentation framework and L be a reinstatement
labelling such that undec(L) is maximal. Then Lab2Ext(L) is the grounded extension.

Proof. (by contraposition) Suppose Lab2Ext(L) is not the grounded extension (GE).
Then it must be a strict superset of the grounded extension (which, by definition, is the
smallest complete extension). That is: GE (Lab2Ext(L). Let L′ = Ext2Lab(GE). From
GE (Lab2Ext(L) it follows directly that in(L′) (in(L). From lemma 1 it follows that
out(L′) (out(L). Therefore, it holds that undec(L) (undec(L′). But then undec(L)
would not be maximal.

theorem 10. Let (Args , def) be an argumentation framework and A be the grounded ex-
tension in this framework. Then Ext2Lab(A) is a reinstatement labelling where undec(L)
is maximal.

Proof. Let A′(6= A) be an arbitrary complete extension. As the grounded extension
is the smallest complete extension, it follows that A (A′. Let L = Ext2Lab(A) and
L′ = Ext2Lab(A′). From A (A′ it directly follows that in(L) (in(L′). This also means
(by lemma 1) that out(L) (out(L′). Therefore, it holds that undec(L′) (undec(L). As
this result holds for arbitrary A′(6= A) (and therefore also for arbitrary L′(6= L)), it holds
that undec(L) is maximal.

4.6 Reinstatement labellings with minimal in

A reinstatement labelling with minimal in coincides with the grounded extension. This
is stated by the theorems 11 and 12.

theorem 11. Let (Args , def) be an argumentation framework and L be a reinstatement
labelling such that in(L) is minimal. Then Lab2Ext(L) is the grounded extension.

Proof. Let L be a reinstatement labelling such that in(L) is minimal. Now, suppose
A = Lab2Ext(L) is not the grounded extension. Then, according to the definition of the
grounded extension (Definition 3) there must be some complete extension A′ with A′ with
A′ (A. Let L′ = Ext2Lab(A′). Then in(L′) (in(L). But then in(L) would not be
minimal. Contradiction.

theorem 12. Let (Args , def) be an argumentation framework and A be the grounded
extension in this framework. Then Ext2Lab(A) is a reinstatement labelling where in(L)
is minimal.

Proof. Let A be the grounded extension. Let L = Ext2Lab(A). Now, suppose in(L) is
not minimal. Then there exists some L′ with in(L′) (in(L). Now, let A′ = Lab2Ext(L′).
It now holds that A′ (A. But then A would not be a grounded extension. Contradiction.

4.7 Reinstatement labellings with minimal out

A reinstatement labelling with minimal out coincides with the grounded extension. This
is stated by the theorems 13 and 14.

theorem 13. Let (Args , def) be an argumentation framework and L be a reinstatement
labelling such that out(L) is minimal. Then Lab2Ext(L) is the grounded extension.

7

Proof. Let L be a reinstatement labelling such that out(L) is minimal. Then, according
to lemma 1 in(L) is also minimal. Then, by theorem 11, Lab2Ext(L) is the grounded
extension.

theorem 14. Let (Args , def) be an argumentation framework and A be the grounded
extension in this framework. Then Ext2Lab(A) is a reinstatement labelling where out(L)
is minimal.

Proof. Let A be the grounded extension. Let L = Ext2Lab(L). Then, by theorem 12,
in(L) is minimal. Then, by lemma 2, out(L) is also minimal.

4.8 Reinstatement labellings with minimal undec

The last remaining case to be examined is that of reinstatement labellings where undec

is minimized. We show that this does not coincide with any currently known semantics.
There is a one-way relation between reinstatement labellings with minimal undec and

preferred extensions, as is stated in the following theorem.

theorem 15. Let (Args , def) be an argumentation framework and L be a reinstatement
labelling such that undec(L) is minimal. Then Lab2Ext(L) is a preferred extension.

Proof. (reductio ad absurdum) Suppose A = Lab2Ext(L) is not a preferred extension.
Then there exists an admissible set A′ that is a strict superset of A (A (A′). Now
consider Ext2Lab(A′) = L′. Obviously, it holds that in(L) (in(L′). This also im-
plies (lemma 1) that out(L) (out(L′). From the facts that in(L) (in(L′) and
out(L) (out(L′), it follows that undec(L′) (undec(L). But then undec(L) is not
minimal. Contradiction.

Unfortunately, it doesn’t work the other way around. If A is a preferred extension,
then it is not necessarily the case that Ext2Lab(A) is be a reinstatement labelling where
undec(L) is minimal. This is shown in the following example.

example 1. Let Args = {A, B, C, D, E} and let A defeat B, B defeat A, B defeat C, C

defeat D, D defeat E, and E defeat C (see also figure 2). Here, there exists two preferred
extensions: E1 = {B, D} and E2 = {A}. As E1 is also a stable extension, it holds that
Ext2Lab(E1) yields a labelling (say L) with undec(L) = ∅. However, Ext2Lab(E2) yields a
labelling (say L′) with undec(L′) = {C, D, E}. So, even though E2 is a preferred extension,
Ext2Lab(E2) is not a reinstatement labelling in which undec is minimal.

E

A B C

D

Figure 2: A preferred extension does not necessarily imply minimal undec.

Before continuing with our analysis, we first state two helpful lemmas.

lemma 3. Let (Args, def) be an argumentation framework and A be a complete extension.
Let L = Ext2Lab(A). Then:

1. in(L) = A

2. out(L) = A+

3. undec(L) = Args\(A ∪A+)

8

Proof. This follows directly from the definition of Ext2Lab (Definition 6).

lemma 4. Let (Args , def) be an argumentation framework and let L be a reinstatement
labelling. Let A = Lab2Ext(L). Then:

1. A = in(L)

2. A+ = out(L)

3. Args\(A∪ A+) = undec(L)

Proof.

1. This follows directly from the definition of Lab2Ext (Definition 6).

2. This follows from 1 and the definition of a reinstatement labelling (Definition 5).

3. This follows from 1 and 2, together with the fact that a reinstatement labelling is a
total function (it assigns exactly one label from {in, out, undec} to each argument).

Labellings in which undec is minimized can be seen as produced by an agent that is
eager to take a position (in or out) on as many arguments as possible. It is not too difficult
to specify what such an “eager semantics” would look like as a Dung-style semantics.

definition 7. Let (Args , def) be an argumentation framework and A ⊆ Args. A is called
an eager extension iff A is a complete extension where A ∪ A+ is maximal.

The following two theorems state that eager semantics indeed coincides with reinstate-
ment labellings in which undec is minimal.

theorem 16. Let (Args , def) be an argumentation framework and L be a reinstatement
labelling such that undec(L) is minimal. Then A = Lab2Ext(L) is an eager extension.

Proof. This follows directly from Lemma 4 and Definition 7.

theorem 17. Let (Args , def) be an argumentation framework and A be an eager exten-
sion. Then L = Ext2Lab(A) is a reinstatement labelling such that undec(L) is minimal.

Proof. This follows directly from Lemma 3 and Definition 7.

An interesting property of eager extensions is the following.

theorem 18. Let (Args, def) be an argumentation framework. If there exists a stable
extension, then the eager extensions coincide with the stable extensions.

Proof. Suppose there exists a stable extension A. Let L = Ext2Lab(A). From Theo-
rem 4 it follows that undec(L) = ∅. As an eager extension minimizes undec (Theorem
17), the fact that A has empty undec means that in the particular argumentation frame-
work (Args , def) every eager extension should have empty undec. This means that in
(Args , def) every eager extension is a stable extension. The fact that every stable exten-
sion is an eager extension follows from the fact that the empty set is the minimal element
w.r.t. set-inclusion.

9

restriction Dung-style linked by
reinst. labellings semantics theorems

no restrictions complete semantics theorems 1 and 2

empty undec stable semantics theorems 3 and 4

maximal in preferred semantics theorems 5 and 6

maximal out preferred semantics theorems 7 and 8

maximal undec grounded semantics theorems 9 and 10

minimal in grounded semantics theorems 11 and 12

minimal out grounded semantics theorems 13 and 14

minimal undec eager semantics theorems 16 and 17

Table 1: Reinstatement labellings versus Dung-style semantics.

4.9 Overview

From the previous discussion, it is clear that there exists a connection between the various
forms of reinstatement labellings on one hand and the various Dung-style semantics on
the other hand. This connection is summarized in table 1.

There also exists a partial ordering between the various Dung-style semantics. Every
stable extension is an eager extension, every eager extension is a preferred extension, every
preferred extension is a complete extension, and every grounded extension is a complete
extension. This is graphically depicted in figure 3.

preferred

eager
stable

grounded

complete

Figure 3: An overview of the different semantics.

5 Semantics Revisited

In essence, a reinstatement labelling can be seen as a subjective but reasonable point
of view that an agent can take with respect to which arguments are in, out or undec.
Each such position is internally coherent in the sense that, if questioned, the agent can
use its own position to defend itself. It is possible for the position to be disagreed with,
but at least one cannot point out an internal inconsistency. The set of all reinstatement
labellings therefore stands for all possible and reasonable positions an agent can take.

When determining the overall justified arguments, two approaches are possible: the
sceptical and the credulous one. Under the credulous approach, an argument is justi-
fied iff there is at least one reasonable position (= reinstatement labelling) where it is
labelled in. Under the sceptical approach, an argument is justified iff it is in in every
reasonable position; that is, a reasonable agent cannot deny that the argument is in. As
reinstatement labellings coincide with complete extensions (as was explained in section
4.1), it would seem that credulous and sceptical inference could be modelled by applying
complete semantics.

10

It is interesting to compare complete semantics with some current approaches. Let us
consider the example of figure 4

A

B
C D

Figure 4: A floating argument.

In the case of the argumentation framework of Figure 4 there are three reinstatement
labellings, as stated in Figure 5.

D: in D: undecC: out
B: out

C: undec
B: undecA: in

C: out D: in
A: undec

L1 L2 L3

A: out B: in

Figure 5: Three reinstatement labellings.

When all reinstatement labellings are taken into account (such is the case in complete
semantics) then A, B and D are credulously justified, whereas no arguments are sceptically
justified.

It is interesting to compare this approach with preferred semantics, which has been
the subject of much recent research [16, 7, 6]. As was explained in section 4.3, a preferred
extension coincides with a reinstatement labelling in which the set of arguments labelled
in is maximal. In case of figure 4, for instance, the relevant labellings are only L1 and
L3; thus, L2 is ruled out (see figure 6).

D: in D: undecC: out
B: out

C: undec
B: undecA: in

D: in
A: undec

C: out

L1 L2 L3

A: out B: in

Figure 6: Preferred semantics rules out particular labellings.

What preferred semantics essentially does is to rule out zero or more reinstatement
labellings before determining which arguments are credulously or sceptically justified.
Under the sceptical approach, this can lead to more conclusions becoming justified. In
the case of figure 4, for instance, argument D is sceptically justified under preferred
semantics but not under complete semantics.

The fact that under preferred semantics, reinstatement labelling L2 is ruled out can
be seen as odd. L2, after all, is a perfectly valid reinstatement labelling. The fact that it
is ruled out under preferred semantics means that those who defend preferred semantics
must have some reason to justify this. This reason should state why L2 is “wrong” or
“irrelevant”, thus making it possible to ignore L2. One such reason could be (theorems 5
and 6) “L2 should be ignored because the set of in-labelled arguments is not maximal.”
This reason does not appear to be a very strong one.

A more pragmatic reason in favor of preferred semantics is the issue of floating conclu-
sions and floating arguments. Suppose the following information is available: (1) Lars’s
mother is Norwegian, (2) Lars’s father is Dutch, (3) Norwegians like ice-skating and (4)

11

Dutch like ice-skating. We can now construct two arguments that defeat each other: (A)
Lars likes ice-skating because he’s Norwegian and (B) Lars likes ice-skating because he’s
Dutch. Under sceptical complete semantics, the proposition that Lars likes ice-skating
is not justified, despite the fact that, intuitively, it should be. Under sceptical preferred
semantics, on the other hand, the proposition that Lars likes ice-skating is justified. At a
first sight, this seems to illustrate a clear advantage of preferred semantics above complete
semantics.

If we take a closer look, however, the situation becomes more complex. This is because
the issue of whether or not Lars likes ice-skating depends on whether or not the principle of
the excluded middle is regarded as valid. In monotonic logic, the validity of a statement
p ∨ ¬p depends on the number of truth-values. Whereas in a two-valued logic (where
each proposition is either true or false in a given model) the proposition p ∨ ¬p is
usually regarded as valid, it is not regarded as valid in, for instance, three-valued logics.
Similarly, for one of the two conflicting arguments A and B to be regarded as valid (or
justified), one should require that an argument is either in or out, resulting in a two-valued
reinstatement labelling (without undec). In section 4.2, it was shown that this essentially
boils down on stable semantics. Stable semantics, however, suffers from the problem
that for some argumentation frameworks, no stable extensions exist. Consequently, it
is not always possible to have a reinstatement labelling with only in and out. A third
possibility (undec) is needed. Therefore, the principle of the excluded middle, as an
absolute criterion, should be rejected.1 For those who nevertheless feel that the principle
of the excluded middle should perhaps not hold at all times, but at least as much as
possible (thus not completely ruling out undec but merely minimizing it), eager semantics
would seem a more appropriate choice than preferred semantics.

Given the observation that the principle of complete semantics can be given a de-
cent philosophical justification, it is interesting to examine how complete semantics could
be implemented. Fortunately, it turns out that both sceptical and credulous complete
semantics have relatively easy and well-documented proof procedures.

As for sceptical semantics, an argument is in each complete extension iff it is in the
grounded extension.

theorem 19. Let CE1, . . . , CEn be the set of complete extensions and GE be the grounded
extension. Let A be an argument. It holds that A ∈ GE iff A ∈ CE1 ∩ . . . ∩ CEn.

Proof. See [8].

As for credulous semantics, an argument is in some complete extension iff it is in some
admissible set.

theorem 20. Let CE1, . . . , CEn be the set of complete extensions and AS1, . . . , ASm be
the set of admissible sets. Let A be an argument. It holds that ∃CEi ∈ {CE1, . . . , CEn} :
A ∈ CEi iff ∃ASj ∈ {AS1, . . . , ASm} : A ∈ ASj .

Proof.
“−→”:
Suppose A is in some complete extension CEi. AS F (CEi) = CEi, it holds that A is
admissible. Therefore, A is in some admissible set.
“←−”:
Suppose A is in some admissible set ASj . Then there also exists a maximal admissible
set A′ such that ASj ⊆ A′. By definition, this maximally admissible set is a preferred

1Another issue where the principle of the excluded middle does not hold in most formalisms for defeasible

reasoning is in handling disjunctive information. If {p ∨ q} ⊆ P and {p ⇒ r; q ⇒ r} ⊆ D then in most

formalisms for defeasible reasoning, r is not justified, although intuitively it should be, if one accepts the

principle of the excluded middle.

12

extension. Furthermore, every preferred extension is also a complete extension [8]. This
means that A is also in some complete extension.

The fact that sceptical complete semantics coincides with grounded semantics, and
credulous complete semantics coincides with credulous preferred semantics is advanta-
geous, as these have relatively straightforward and well-studied proof procedures. Proof
procedures for grounded semantics are given in [14, 1], and proof procedures for credulous
preferred semantics are given in [16, 4].

6 Summary and Conclusions

In this paper, we showed it is possible to describe Dung’s standard semantics in terms of
reinstatement labellings, which provide an intuitive and relatively simple way of dealing
with the issue of reinstatement. We also showed how reinstatement labellings can be used
to pinpoint the exact differences between Dung’s standard semantics. Using a systematic
analysis of reinstatement labellings, we were also able to specify an additional form of
semantics (eager semantics) and showed how this semantics fits into the overall picture
(Figure 3. We then reexamined the various semantical approaches and made a case
for grounded semantics for sceptical entailment and credulous preferred semantics for
credulous entailment.

One of the researchers who has done some work on the relation between reinstatement
labellings (“status assignments”) and Dung’s various semantics is Prakken. In particular,
Prakken proofs (in his own terms and particular formalization) that reinstatement la-
bellings without undec correspond to stable extensions, and that reinstatement labellings
with maximal in correspond to preferred extensions. [13]. It was the work of prakken
that served as an inspiration for the more thorough analysis in this paper.

Other recent work on reinstatement labellings has been done by Jakobovits and Ver-
meir [11]. Their definition of a labelling, however, is different than ours. First of all, they
allow for an argument to be labelled in, out, both in and out, or neither in or out.
Furthermore, their main reinstatement postulate is different.

definition 8 ([11], syntax and formulation adjusted). L is a labelling iff:

• ∀A ∈ Args : (L(A) = out ≡ ∃B ∈ Args : (Bdef A ∧ L(B) = in)) and

• ∀A ∈ Args : (L(A) = in ⊃ ∀B ∈ Args : (Bdef A ⊃ L(B) = out)).

The difference between Definition 8 and the earlier presented Definition 5 is that the
former does not require an argument of which all defeaters are out to be labelled in.
This is quite strange, since it also means that an argument that has no defeaters at all
is not required to be labelled in. To some extent, this problem is repaired for complete
labellings, in which each argument is labelled either in, out or both.

The overall aim of Jakobovits and Vermeir is to come up with a semantics that is
different from Dung’s. Jakobovits and Vermeir justify their approach by discussing a
number of small examples. However, the general approach of using examples in order
to justify a particular formalism has some important downsides. To illustrate our main
point, consider the following example provided in [11].

example 2.
A: If the bacteria in the patient’s blood is not of type X then it must be of type Y.
B: If the bacteria in the patient’s blood is not of type Y then it must be of type X.
C: If the patient does not have bacterial infection then giving antibiotics to the patient is
superfluous.
D: If it is not superfluous to give the patient antibiotics then the antibiotics should be
prescribed.

13

Example 2 is represented in the argumentation framework of Figure 7.

A

B
C D

Figure 7: The argumentation framework of Example 2 and 3.

Jakobovits and Vermeir argue that the correct outcome should be that argument D is
justified. However, it is quite easy to provide another example, with essentially the same
structure, where the desired outcome is totally different.

example 3.
A: The suspect killed the victim by stabbing him with a knife.
B: The suspect killed the victim by shooting him with a gun.
C: The suspect is innocent.
D: The suspect should go to jail.

This essentially gives the argumentation framework of Figure 7. However, an analysis
of this case yields a different outcome. As essentially none of the witness statements is
without doubt, none of them can serve as a good reason to refute the innocence of the
suspect, and the conclusion that suspect should go to jail is definitely not an intuitive or
desired one.

The main problem of working with small informal examples (like examples 2 and 3) is
that they have an inherent ad-hoc nature. The use of examples for justifying a particular
logic formalism is therefore criticized by researchers such as Vreeswijk [15] and Caminada
[1].

It is the author’s opinion that a better justification for the design of a particular logic
can be found in postulates, as these have a more general nature than separate examples.
And for reasons explained earlier, we feel that Definition 5 can serve as a more intuitive
and acceptable postulate for reinstatement than Definition 8. It is the author’s firm
opinion that Dung’s traditional semantics have a solid basis and that one should have
very good reasons for adjusting them.

References

[1] M. Caminada. For the sake of the Argument. Explorations into argument-based rea-
soning. Doctoral dissertation Free University Amsterdam, 2004.

[2] M. Caminada. Collapse in formal argumentation systems. Technical Report UU-CS-
2005-023, Utrecht University, 2005.

[3] M. Caminada and L. Amgoud. An axiomatic account of formal argumentation. In
Proceedings of the AAAI-2005, 2005.

[4] C. Cayrol, S. Doutre, and J. Mengin. Dialectical Proof Theories for the Credulous
Preferred Semantics of Argumentation Frameworks. In ECSQARU 2001, volume
2143 of LNAI, pages 668–679. Springer-Verlag, 2001.

[5] ASPIC consortium. Deliverable D2.5: Draft formal semantics for ASPIC system,
June 2005.

[6] Y. Dimopoulos, B. Nebel, and F. Toni. Finding Admissible and Preferred Argu-
ments Can be Very Hard. In Proc. of the 7th Int. Conf. on Principles of Knowledge
Representation and Reasoning, pages 53–61, 2000.

14

[7] S. Doutre and J. Mengin. On sceptical vs credulous acceptance for abstract ar-
gument systems. In Tenth International Workshop on Non-Monotonic Reasoning
(NMR2004), pages 134–139, 2004.

[8] P. M. Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelligence,
77:321–357, 1995.

[9] G. Governatori, M.J. Maher, G. Antoniou, and D. Billington. Argumentation se-
mantics for defeasible logic. Journal of Logic and Computation, 14(5):675–702, 2004.

[10] J. Horty. Argument construction and reinstatement in logics for defeasible reasoning.
Artificial Intelligence and Law, 9:1–28, 2001.

[11] H. Jakobovits and D. Vermeir. Robust semantics for argumentation frameworks.
Journal of logic and computation, 9(2):215–261, 1999.

[12] H. Prakken. Intuitions and the modelling of defeasible reasoning: some case studies.
In Proceedings of the Ninth International Workshop on Nonmonotonic Reasoning,
pages 91–99, Toulouse, France, 2002.

[13] H. Prakken. Commonsense reasoning. Technical report, Institute of Information and
Computing Sciences, Utrecht University, 2004. Reader.

[14] H. Prakken and G. Sartor. Argument-based extended logic programming with de-
feasible priorities. Journal of Applied Non-Classical Logics, 7:25–75, 1997.

[15] G. A. W. Vreeswijk. Studies in defeasible argumentation. PhD thesis at Free Uni-
versity of Amsterdam, 1993.

[16] G. A. W. Vreeswijk and H. Prakken. Credulous and sceptical argument games for
preferred semantics. In Proceedings of the 7th European Workshop on Logic for
Artificial Intelligence (JELIA-00), number 1919 in Springer Lecture Notes in AI,
pages 239–253, Berlin, 2000. Springer Verlag.

15

