
Theorem Prover Supported Logics for

Small Imperative Languages

I.S.W.B. Prasetya, A. Azurat, T.E.J. Vos
A. van Leeuwen, H. Suhartanto

institute of information and computing sciences, utrecht university

technical report UU-CS-2005-046

www.cs.uu.nl

Theorem Prover Supported Logics for Small Imperative

Languages

I.S.W.B. Prasetya (UU) and A. Azurat (UI) and T.E.J. Vos (UPV)

and A. van Leeuwen (UU) and H. Suhartanto (UI)

November 15, 2005

UU: Department of Information and Computing Sciences, Utrecht University. P.O.Box 80.089, 3508 TB Utrecht, the

Netherlands. UI: Fakultas Ilmu Komputer, Universitas Indonesia. Kampus UI Depok, Indonesia. UPV: Instituto

Tecnológico de Informática , Universidad Politécnica de Valencia.

Emails: wishnu@cs.uu.nl, ade@cs.ui.ac.id, tanja@iti.upv.es, arthurvl@cs.uu.nl

Abstract

This report describes a simple imperative programming language L0 and its logic, which are
integrated to the theorem prover HOL through syntactical embedding. The approach allows
HOL’s own type checker to be reused and its concrete syntax to be, to some degree, customized.
The logic of L0 is Hoare-based and is completely syntax driven. Depending on how we limit
its assertion language it can be made first order. A possible application of L0 is to use it as
a core in rapid prototyping of small imperative languages with integrated verification support.
This report gives two examples of new languages built on L0: a language to write a suite of
L0-unit tests and a language for scripting database transactions.

1

Contents

1 Introduction 3

2 Semantical and Syntactical Embedding 4

2.1 Semantical Embedding . 4
2.2 Syntactical Embedding . 5

3 The Language L0 6

4 Embedding L0 7

4.1 Program Call . 8

5 L0 Logic 9

5.1 Substitution . 9
5.2 reduce . 10

6 Implementing the Logic 13

7 TEST 14

8 Lingu 15

8.1 S Expression . 16
8.2 Lingu Expressions and Database Specific Instructions 18
8.3 Implementation . 19
8.4 Integrity Constraint . 19
8.5 Generating Fresh Keys . 19
8.6 Folded Operation . 20

9 Closing Remarks 21

A Syntax of L0 22

B Syntax of TEST 22

C Syntax of Lingu 22

2

1 Introduction

Theorem provers like Isabelle, COQ, and HOL have very expressive base logics so that we can
embed a wide range of other logics in them, including programming logics. There have been many
examples of the latter, ranging from logics for simple languages, e.g. UNITY [7], to that of real
languages, e.g. ML [1], C [5], and Java [2]. Most embeddings (of programming logics), including
the examples just mentioned, are semantical embedding. If L is the object language, a semantical
embedding maintains representations of L syntax, up to some level of detail, and its semantic.
Distinction between shallow and deep embedding is often made, depending on how detailed the
syntax is represented. We can also embed L syntactically, which means that we only embed L’s
syntax, though usually in (much) higher detail than in a semantical embedding, for example up to
its concrete syntax. A semantical embedding allows meta properties about L (e.g. the soundness
of its logic) to be proven. However, it does not usually provide a concrete syntax. So, for actual
use a full language-front-end is still needed, e.g. as the LOOP front-end compiler [12] is used
to drive its in HOL semantically embedded Java logic back-end [2]. Meta properties cannot be
proven in a syntactical embedding, but the approach allows a language front end, including the
type checker, to be built with minimun effort, provided L’s syntax and type system are still close
to what the host theorem prover can express. Isabelle provides a dedicated infrastructure to do
syntactical embedding. Examples of syntactically embedded logics (in Isabelle) are FOL, HOL,
and ZF. Syntactical embedding of programming logics is rare.

We will discuss here a simple imperative programming language L0 featuring: basic statements,
block, program call, return value, value and reference based parameter passing, and old keyword
to refer to a variable’s initial state1. The logic of L0 is Hoare based and is completely syntax driven.
L0 and its logic are integrated to the theorem prover HOL through syntactical embedding. L0

itself is not a directly implementable language. Through restriction we can turn it to a concrete
language which can be used stand alone. Our L0 library includes a minimalistic example of such
a concrete instance, called Lmin

0
, which comes with an ML translator for execution (and few other

utilities, e.g. a test generator). We can quite easily customize L0 in various other ways. We can for
example introduce syntactic sugar, and use HOL built-in rewriting functions to desugar. L0 logic
is specified abstractly as a folded algebra. It is a well known technique in functional programming
to abstractly specify a recursion over a data type. An algebra is a highly compositional structure,
whose components can easily be adapted. In this way, we can easily adapt L0 logic. L0 can
thus be used as a core when developing other small imperative languages, in particular when an
integrated verification support is desired. We will give two examples of new languages obtained
by customizing L0: TEST, a language to write a suite of unit tests for L0 programs, and Lingu,
a language for scripting database transactions. In both cases we can reuse much of what we have
built for L0. We have chosen HOL as our embedding host. Isabelle is probably a better choice; we
did it in HOL mainly because our familiarity with it. HOL shares some of Isabelle’s key features: it
is based on typed λ-calculus which is used as the embedding medium, and it allows customization
of its concrete syntax. These are sufficient to build our current prototypes. The work here can also
be particularly interesting for HOL community. L0, L

min
0

, TEST, and Lingu can be downloaded
from:

http://www.cs.uu.nl/~wishnu/research/projects/xMECH

Report Structure

This report is organized as follows. Section 2 gives small examples of semantical and syntactical
embeddings in HOL and explains the distinction between them. Section 4 introduces L0, explains
how it is syntactically embedded in HOL, and describes the logic. Section 5 discusses the im-
plementation of this logic in the meta language of HOL. Section 7 describes TEST. Section 8
describes Lingu . Finally, 9 gives some closing remarks.

1Examples of features which are not in L0: recursion, exception, expressions with side effect, object (as in Java),
and compilation module (as in ML or Haskell).

3

2 Semantical and Syntactical Embedding

To better illustrate the difference between syntactical and semantical embedding we will give
examples. Consider the following simplistic statement language L —the typing rules are not
shown; they are quite standard.

Stmt :: skip

| Variable := Expr

| { Statement; . . . ; Statement }

Expr :: Variable | Bool-constant | Integer-constant

2.1 Semantical Embedding

We can represent L statements in HOL with (higher order) functions from state to state, and
states by functions from variable-names (e.g. represented by strings) to values. In the same line
we can represent expressions and assertions:

state = string→ val

stmt = state→ state

expr = state→ value

assertion = state→ bool

The type value represents values which our program variables may take. For L, it has to be rich
enough to represent Boolean values and integers. This HOL data-type representation will do:

hol datatype value = Bval of bool | Ival of int

Constants of appropriate types can be introduced to represent the three kinds of statements of L:

skip : stmt

asg : string→ expr→ stmt

seq : stmt→ stmt→ stmt

This is sufficient to embed the language, up to its abstract syntax. An (abstract) semantics can
be added simply by defining those constants, e.g.:

skip s = s

asg v e s = (λ x. if x=v then e s else s x)
seq S1 S2 s = S2 (S1 s)

A notion of Hoare-triple can be defined semantically, e.g.:

HOA (P, S, Q) = (∀s. P s⇒ Q (S s))

Inference rules for the corresponding Hoare logic can be represented as HOL formulas; e.g. this
rule for skip:

P ⇒ Q
{P} skip {Q}

(1)

is represented by the formula:

(∀s. P s⇒ Q s) ⇒ HOA (P, skip, Q)

Because we have a semantics, we can actually verify that L’s inference rules, like the one above for
skip, follow from L’s semantics. By doing so we effectively verify the soundness of L’s logic. This
feature is the main advantage of semantical embedding. Once verified the rules can be turned to
HOL theorems. Subsequent proofs built purely on HOL theorems are guaranteed to be safe.

The first problem with semantical embedding is that we have no concrete syntax. For example,
the statement {x := 0; b := F} is represented by this hard to read formula:

4

seq (asg "x" (Ival 0)) (asg "b" (Bval F))

Secondly we also lose type checking. We would expect HOL built-in type checker to do that.
Unfortunately, statements like this one:

seq (asg "x" (Ival 0)) (asg "x" (Bval F))

will be accepted by HOL. It represents {x := 0; x := F}, which would be type incorrect in L.

2.2 Syntactical Embedding

In the syntactical embedding we are not concerned with the embedding of the semantics of L. It
is sufficient to know that a statement is an object which is different than, for example, Boolean
values and integers. To enforce this, we represent statements with a new type, say Stmt. To
represent skip and sequence (of statements), we can introduce these constants:

skip : Stmt

seq : Stmt→ Stmt→ Stmt

There is no need to give concrete definition for these constants as in the semantical embedding.
The syntax of L uses the infix symbol := to denote assignment. HOL already uses this symbol

for something else, and unfortunately its syntax customization does not allow us to overload the
symbol. We will use a different infix symbol, and overload it to allow both boolean and integer
assignments:

/:= : bool→ bool→ Stmt

/:= : int→ int→ Stmt

The concrete syntax for sequences can be obtained via HOL syntax customization of its list-like
syntax. The customization code is shown below. We choose to use different delimeter symbols:

add_listform {separator = ";",

leftdelim = "/{",

rightdelim = "/}",

cons = "seq", nilstr = "skip"};

So now we can write /{ x/:=0; b/:=F /}, which will be parsed by HOL to:

seq (x/:=0) (seq (b/:=F) skip)

and typed as a value of type Stmt. Note that the statement /{ x/:=0; x/:=F /} is now rejected by
HOL type system (because it requires the HOL variable x to have both the type int and bool).
Inference rules such as (1) are coded at the meta level. In HOL we have ML serving as its meta
programming language. The implementation of (1) in ML could look like:

fun skip_rule spec =

let val (P,Q) = match_skip spec

in

mk_imp(P,Q)

end

where match skip is a function that checks if an input term has the form of a Hoare triple over a
skip, and if so it returns its pair of pre- and post-conditions. Notice that unlike the counterpart
of this rule in semantical embedding, the rule above is not a HOL formula. It is a plain ML code;
HOL cannot say anything about its soundness.

5

3 The Language L0

L0 is a simple imperative programming language. Below is a simple example of an L0 program
called swap:

swap (REF x,REF y)

=

pre T

post (x = old y) /\ (y = old x)

do

let tmp = 0

in /{ tmp /:= x ;

x /:= y ;

y /:= tmp /}

return void

A program can take parameters. The keyword REF before a formal parameter means that the
parameter will be passed as a reference; without the keyword it will be passed as a value. The pre
and post sections specify pre- and post-conditions. In the post-condition of a program P we can
use an assertion of the form old y where y is a (formal) parameter of P . This refers to the initial
value of y; that is the value of y when it is passed to P during the call to P . So, the specification
above says that when the program ends, the value of x and y will be swapped.

The syntax of various kind of statements (or ’instructions’, as they are called in L0) is listed
below. The complete syntax is the Appendix.

1. skip

2. An instruction to print to the screen: print (Expr). Only an expression of type int or
string can be an argument of print.

3. Assignment: Expr /:= Expr

4. Sequence of instructions: /{ Instr ; . . . ; Instr /}

5. Program call. In the first variant the return value is ignored; in the second the return value
is assigned to the target (variable) at the left-hand side:

/@ ProgName (ActualParams)

Expr /@= ProgName (ActualParams)

6. Conditional: if (Expr) then /{ Instr /} else /{ Instr /}

7. Introducing initialized local variables:

let

Var = Expr and

. . .
Var = Expr

in /{ Instr /}

8. Loop: while (Expr) wdo /{ Instr /}

9. assert (Assertion). This instruction is used to add an assertion to the code. This is used
for verification purpose only. During the verification it will be seen as a specification that
the asserted predicate must hold at that point. During the execution it will be ignored2

2Optionally, one can opt to check the asserted predicate at the run time, though this will affect the performance
and may require expensive roll back. Here, we simply assume that asserted predicates in a program are first verified
before the program is used.

6

The syntax of program declaration is shown below:

ProgDecl → ProgName (FormalParams) = ProgDeclRHS

ProgDeclRHS → pre (Assertion)

post (AssertionRet)

do /{ Instr /} return (Expr)

The pre and post sections are obligatory. A return instruction can only appear as the last
instruction in a program, and is obligatory. The assertion in the post may use the keyword ret,
which refers to the value returned by the program. Recursion is not supported.

In principle, L0 distinguishes assertions from expressions. An expression is intended to be
executable whereas an assertion is part of a program’s specification and as such does not have to
be executable. Assertions are used in the pre- and post-conditions and in the assert statement.
Expressions are used for example in the assignment and as the guard of a loop. In the actual syntax
of L0 the distinction between the two is however small, but this is more because in this respect
L0’s syntax is intentionally left under specified. One of the distinction is that in an assertion we
can write old v where v is a program variable3. This refers to the ’old’ value of v; more precisely,
the value of v when it is initialized in the innermost block that encloses the assertion. Passing
parameters during a program call counts as a block. So, if v is a parameter of a program P ,
then old v in the body of P (if it is not overshadowed by a local v) as well as in the pre- and
post-conditions of P refer to the value of v when it is passed to P during the call to P . Such a
notation is really convenient, though its treatment in the logic is quite complicated (see Subsection
5). This probably applies to all ’add-on notations’ that try to enhance the ’temporal’ expresiveness
of Hoare logic.

An L0 program is not allowed to access any global variable, except if it is passed as a REF

parameter to it. This can be enforced by checking that a program declaration contains no free
variable.

The above constraint also means that in pre- and post-conditions of a program P we can only
refer to the parameters of P . Note that if v is a pass-by-value parameter of P , occurences of v in
the post section of P refers to its initial value (hence, equal to old v), and not to v’s final value4.

L0 leaves the syntax of expressions, assertions, and the left hand side of assignment under
specified: any well-formed HOL term is allowed at those positions. This leaves some room for
customization. However, this makes L0 not directly implementable; e.g. assignments like:

b /:= (∃f′. (∀x. f′(sin x) = x))

would be rather hard to implement. For implementation, an instance of L0 whose syntax is
sufficiently narrowed is needed.

4 Embedding L0

We introduce a new type INSTR to represent instructions. Skip and sequence are represented as
in Subsection 2.2, except that we call the type INSTR here instead of Stmt. The representation of

3In JML assertion like old e where e is an arbitrary assertion is allowed. We won’t allow this because its meaning
is sometimes dubious. For example, what is the meaning of the assertion old (x + y) in:

let x=0 in assert (old (x+y))

Does this refer to the meaning of x + y when x is initialized, or do we mean that only x should be interpreted in
this state? Of course, we can define a meaning, but at the moment we decide to simply disallow it.

4The motivation is that the pre and post sections, in addition to specifying a notion of correctness for P , are
treated by the L0 logic as the abstraction of P when handling a program call. For the caller Q, the final value of v

is irrelevant, because it cannot see it. So there is no point in specifying it in post. Q still knows the ’initial’ value
v though (that is, the value of v when Q passed it to P), which is our chosen interpretation of v in post.

7

assignment also remains the same, except that we generalize its type to accomodate assigments of
values of arbitrary types:

/:= : ′a→ ′a→ INSTR

Notice that the typing forces that the assigned expression to be of the same type as the assigment
target.

There is no need to introduce a new syntax for if-then-else and the let construct; HOL
already has them. The following constant is added to abstractly represent a while loop:

wloop : bool→ INSTR→ INSTR

The concrete syntax for while is introduced via HOL syntax customization, e.g.:

add_rule{term_name = "wloop", fixity = TruePrefix 19,

pp_elements = [PPBlock([TOK "while", BreakSpace(1,0),

TM, BreakSpace(1,0),

TOK "wdo",

BreakSpace(1,0)],

(PP.CONSISTENT,3)),

BeginFinalBlock(PP.CONSISTENT,0)],

paren_style = OnlyIfNecessary,

block_style = (AroundEachPhrase,(PP.CONSISTENT,0))};

This allows us to write for example while (0 < i) wdo /{ i /:= i− 1 /}, which will be parsed by
HOL to:

wloop(0 < i)(seq (i /:= i− 1) skip)

Notice also that the type of wloop forces the type of the loop guard to be bool.
The print instruction can be represented by a constant of function type, which is overloaded

so that it can take either an int or a string as an argument:

print : int→ INSTR

print : string→ INSTR

The representation of assert is straight forward:

assert : bool→ INSTR

4.1 Program Call

Program call is a bit more complicated. A program call like x /@ = P(0, 1) requires that the type
of x matches the return type of P. To coerce HOL type checker to check this we make P to have
the type:

(int#int) → τ PROG

So, P(0, 1) would have the type τ PROG. This type can be thought to represent programs that
return values of type τ . We now can introduce the constant /@ = (denoting program call), having
this type:

/@ = : ′a→ ′a PROG→ INSTR

Notice that this forces the type of the assigment target to be matched with the program’s return
type.

L0 allows parameters to be passed either by value or by reference. We introduce a new HOL
data-type to represent reference (pointer):

8

hol datatype REF = REF of ’a

So, a HOL term of type, for example, int REF represents an L0 pointer pointing to an L0 value
of type int. So, the program swap (at the beginning of this Section) would have the HOL type:

(int REF # int REF) → void PROG

HOL will then accept calls like swap(REF e1, REF e2), but not swap(0, 1) because 0 and 1 are not
of type REF. We may want to restrict the syntax of actual parameters, for example, so that e1 and
e2 here should be variables. Unfortunately, there is no way we can incorporate such a restriction
in HOL now. So if it is desired, it has to be implemented as a separate syntax check (which is
called after HOL’s own syntax and type checks).

5 L0 Logic

L0 has a Hoare-styled, partial correctness based logic. It is quite standard; though the reader
may find it interesting to look at how we deal with program call and old back-reference. We will
deviate from the standard presentation of Hoare logic. We will express the logic in terms of a
reduction function.

Given an instruction S and a post-condition q the function reduce returns another predicate p
—note that with respect to L0, reduce is a meta function. There is a global list of predicates V on
which reduce operates by adding new predicates to it, or modifying existing ones. The predicates
in V are also called verification conditions and the function reduce is also called verification

condition generator.
Let p = reduce S q. The function works in such a way so that the validity of all predicates in V

obtained after executing reduce S q implies the (partial) correctness of {p} S {q}. Consequently,
when given a specification {p0} S {q}, it is sufficient to: calculate p = reduce S q; prove the
validity of all predicates in the final V ; and prove p0 ⇒ p. In our embedding, all these predicates
would be plain HOL formulas; they can be proven in the standard way in HOL.

As we will see, the logic is not trivial. The major source of complication is the old construct.
For example, this is no longer valid in L0:

{q[0/v]} v /:= 0 {q}

Since old v in q refers to initial value of v, its meaning is not affected by the assignment above,
and hence should not be replaced by 0 in the pre-condition. A more sophisticated subsitution is
now needed to handle assignment.

5.1 Substitution

In the sequel, q[e/v] denotes the expression obtained by subsituting all free occurences of v in
q with e; q[e1/v1, e2/v2] denotes simultaneous substitution. If V is a list of expressions, V [e/v]
denote the list obtained by applying the substitution [e/v] on every expression in V . These are
quite standard. Additionally we introduce the following ’macros’:

1. q[e/v except old v] means that we replace every (free) v in q, which is not in the form
old v, with e. For example:

(v > old v)[0/v except old v] = 0 > old v

except substitution can be implemented in terms of ordinary substitution:

q[e/v except old v] = q[@z/old v][e/v][old v/@z]

where @z is a fresh variable. The rule for assignment can now be conveniently captured by:

{q[e/v except old v]} v /:= e {q}

9

2. q[e/old v orelse v] means that we simultaneously replace every old v and every v in q, the
latter should not be in the form old v, with e. For example:

(v = old v)[v + 1/old v orelse v] = v + 1 = v + 1

It can be implemented in terms of ordinary substitution:

q[e/old v orelse v] = q[@z/old v][e/v, e/@z]

where @z is a fresh variable.

5.2 reduce

The algorithm of reduce is described below. Variables whose name start with @ as in @x and @y
are assumed to be freshly introduced variables.

1. Print:

reduce (print e) q = return q

2. Assignment:

reduce (x /:= e) q = return q[e/x except old x]

3. Sequences:

reduce (i1; i2) q = { p2 := reduce i2 q ; p1 := reduce i1 p2; return p1 }

4. The rule for conditional is standard:

reduce (if g then i1 else i2) q = { p1 := reduce i1 q ;
p2 := reduce i2 q ;
return ((g ⇒ p1) ∧ (¬g ⇒ p2)) }

5. The rule for loop requires an invariant. Automatically constructing invariant is in general
undecidable, though for special cases this can be done. We are not going to concern ourselves
with this issue. The programmer may specify an invariant using an assert instruction, which
must be the first instruction in the loop’s body. If it is not specified, then an assert T is
inserted. The rule:

reduce (while g wdo /{ assert inv; i /}) q
=
{ p := reduce i inv ;

V := [inv ∧ g ⇒ p, inv ∧ ¬g ⇒ q] ++V ;
return inv }

6. The rule for assert is simple:

reduce (assert p) q = return (p ∧ q)

10

7. Abstractly, the rule for local declaration looks like this:

reduce (let v = e in i) q = (reduce i q[@v/v])[e/v][v/@v]

The substitution [e/v] reflects the initialization of v to e. Note that occurences of v in q
refers to a different v than the v locally declared by the let. The substitution q[@v/v]
prevents the ’global’ v from being substituted by the reduction as it encounters assignments
to v inside S. After the body is reduced, the temporary name @v can be restored to v, which
is what the substitution [v/@v] does.

The above does not however take into account assertions like old v which may occur in the
pre-condition and verification conditions that result from the reduction on i. For example
cosider:

let v = 0 in i

Suppose reducing the body i produces old v ≥ 0 as a verification condition. This cannot be
proven, unless we use the knowledge about old v. We know it is initialized to 0, so we can
actually further reduce the verification condition to 0 ≥ 0, which is a tautology.

Consider another example:

let v = x in i

Suppose reducing the body i produces old v = x as a verification condition. This is not
and should not be provable. However, if we blindly replaces old v with the initialization
expression as we did above we would transform the verification condition to x = x, which is
a tautology. This transformation is not sound. The right thing to do, in general case:

let v = e in i

is to replace old v (in the verification conditions coming from i) with a version of e in which
we have replaced all free variables (of e) with fresh names. We will call this:

freshed e

This scheme will work for both examples above. To capture it in a rule:

reduce (let v = e in i) q = { p := reduce i (q[@v/v]) ;
V := V [freshed e/old v] ;
return p[e/old v orelse v][v/@v] }

One thing is still incorrect: we should not apply the substitution [freshed e/old v] on all
verification conditions in V , but only to those added by reduce i (q[@v/v]). Free occurences
of v in other predicates in V refer to another v and should not be substituted. This final
rule cures the problem:

reduce (let v = e in i) q = { V := V [@v/v] ;
p := reduce i (q[@v/v]) ;
V := V [freshed e/old v][v/@v] ;
return p[e/old v orelse v][v/@v] }

Introduction of multiple local variables are handled analogously.

11

8. L0 logic treats a called program P as a black-box. It means that the logic assumes that the
source code of P is not available, though its specification is.

Cosider a program P with the following header and specification:

P (REF r, v) = pre p
post q′

. . .

The black-box based reduction for calls to P looks abstractly like this:

reduce (x/@ = P (s, e)) q′ = { V := [q ⇒ q′[ret/x]] ++ V ;
return p[s/r, e/v] }

However this ignores these details:

(a) If q′ set a constraint on some variable z which does not occur in q, we will not be able
to prove q ⇒ q′[ret/x]. To get around this, we will express the condition as part of the
calculated pre-condition instead. In this way subsequent information about x produced
by the ’ancestral’ calls to reduce will also be added to the implication. However note
that s in q′ refers to the state of s after the call. If it is shifted as it to the pre-condition
side its meaning changes, namely the state of s before the call. This is incorrect. So to
prevent this, s in q′ will be renamed with a fresh variable. Similar thing has to be done
to s in q.

(b) Occurrences of v in q actually refers to v’s value when it is passed to P . Similarly, old r
and old v also refer to the the values of these variable when they are passed.

(c) old s occuring in q′ does not refer to the value of s when it is passed to P . Instead it
refers to the value of s when it is initialized in the scope that directly encloses the call
to P . It should be left unchanged.

(d) old x in q′ should not be replaced with ret.

The following rule does it:

reduce (x/@ = P (s, e)) q′

=
return (p[@s/old r orelse r][e/old v orelse v][s/@s]

∧
(q[@s/r][e/old v orelse v][s/old @s,]
⇒
q′[ret/x except old x][@s/s except old s])

The case for programs with more parameters, or calls using /@ (instead of /@ =), can be
handled analogously.

We still have to give the reduction algorithm at the program level. This is given below. The
function is also called reduce. It takes a program declaration, and reduces it to a list of verification
conditions. The function itself returns nothing. The resulting verification conditions are stored in
V .

reduce (P (REF r, v) = pre p post q do i return e)
=
{ w := reduce (i; ret/:=e) (q[old v/v]) ;

V := [p ⇒ w] ++ V }

12

6 Implementing the Logic

Implementing L0 logic amounts to implementing the reduce functions. They have been described
in sufficient detail so that their implementation is in principle straight forward. L0 instructions,
programs, and predicates are all, in our embedding, HOL terms. So, the reduce functions are
just functions that operates on HOL terms. They can be implemented in HOL’s meta-language
(moscow-ML). The variable V can be implemented by an assignable ML variable of the type list
of (HOL) terms.

Implementing the substitutions requires a lot more work, if we have to do it from scratch.
Luckily we can just borrow subsitution utilities already provided by HOL. By writing few addi-
tional combinators we can then code the substitutions almost as abstract as in the algorithm in
the previous section.

It is actually more convenient, in particular for implementing reduce on instructions, to work
on a separate data-type that reflects the structure of L0 instructions more explicitly rather than
working directly on HOL terms, because the latter is more low level.

For simplicity, let us consider only three sort of instructions: skip, assignment, and sequence.
The following ML data-type can be used to represent them:

datatype INSTR = SKIP

| ASG of term * term

| SEQ of INSTR list

where term is the ML-type of HOL terms. A function can be written to build an INSTR-
representation out of a HOL term representing a L0 instruction, for example as shown below.

fun destAsg t =

let val match = (map #residue o fst o match_term (Term ‘xxxx /:= yyyy‘)) t

in

SOME (el 1 match, el 2 match) handle _ => NONE

end

fun buildINSTRtree t =

(* SEQ *)

case destSeq t of

SOME z => SEQ (map buildINSTRtree z)

| NONE =>

(* ASG *)

case destAsg t of

SOME (v,e) => ASG (v,e)

| NONE =>

(* SKIP *)

case destSkip t of

SOME _ => SKIP

| NONE => (* if nothing matches then raise error *)

The function buildINSTRtree recurses over the tree of the input term t. At eact point it checks
if the top term of t matches either the pattern of a sequence of statements, an assignment, or a
skip. The matching is done by the dest- functions. If one of these patterns is encountered, the
corresponding dest function will deconstruct the term, and subsequently buildINSTRtree uses
the resulting fragments to construct the corresponding INSTR structure. For pattern matching the
dest- functions can use HOL built-in pattern matcher (match term).

The reduce function (over instructions) can be implemented in the algebraic-style ala [4],
namely as an so-called algebra folded over INSTR-trees (if we view values of INSTR as trees). The
corresponding fold function (for INSTR) is:

fun foldINSTR (fskip,fasg,fseq) i =

let

13

fun fold SKIP = fskip

| fold (ASG (lhs,rhs)) = fasg lhs rhs

| fold (SEQ instructions) = fseq (map fold instructions)

in

fold i

end

The tuple (fskip, fasg, fseq) is called an INSTR-algebra. The function foldINSTR performs a
recursion over an INSTR-tree. An algebra is passed to it which controls how values are combined
during the recursion. Now, reduce can be implemented by folding the algebra below; V is here not
needed because none of the instructions in this simplified setup produce verification conditions:

val simplified_L0Logic_alg =

let

val fresh = mk_fresh x

fun fskip q = q

fun fasg x e q = q<-(fresh/old x)<-(e/x)<-(fresh/old x)

fun fseq fs q = foldr (op o) id fs q

in

(fskip,fasg,fseq)

end

The advantage of this style of implementation is that variations of the existing logics can be easily
and compositionally constructed by applying some alteration on the algebra that specifies the
existing logics. For example if we want to have a variant of the above logic where assignments are
treated differently, we can do it like this:

val new_L0Logic_alg =

let

val (fskip,_,fseq) = simplified_L0Logic_alg

val new_fasg = ...

in

(fskip,new_fasg,fseq)

end

Had we implemented simplified L0Logic directly as a recursive function, then altering its re-
cursive behavior will be impossible. See also our paper about compositional development of VCG:
[8].

Other syntax-driven functions on L0 can also be built as folded algebras, for example a function
for translating L0 to some an executable language, e.g. ML.

Current implemenation of L0 is prototype version 1 featuring: syntactical embedding in HOL,
the logic, a translator to ML to produce executables, a unit test specification language , a test
generator, and a test verifier (for the last three, see Section 7 for details).

7 TEST

TEST is a simple language to write a suite of unit tests on an L0 program. A test suite is either
a test instruction or a list of other test suites. A test instruction is just an L0 instruction which
includes one or multiple calls to the tested program. Such a call can be additionally marked with
the keyword whitebox —we will explain its meaning later. We will assume that we have a way to
execute L0 programs, so that we can also execute a TEST suite. An example of a suite is given
below:

SUITE /:: main.

14

/{ TEST /:: one. let x=0 and y=1

in

/{ whitebox (/@ swap(REF x, REF y))

; assert((x=1) /\ (y=0))

/}

; TEST /:: two. let x0=x and y0=y

in

/{ whitebox (/@ swap(REF x, REF y))

; whitebox (/@ swap(REF x, REF y))

; assert((x=x0) /\ (y=y0))

/}

/}

The suite is called main; it consists of two test-instructions (which begins with the keyword TEST).
The names after the symbol /:: are just labels associated to the corresponding test instruction
or suite. The second test instruction, for example, calls swap twice, and asserts that the value of
x and y should then be restored to their initial values.

The syntax of TEST is given in Appendix B. Like L0, it has been syntactically embedded in
HOL. We will not show how it is done, but it follows the same line as the embedding of L0.

The executional semantic of L0 ignores assert instructions. In TEST assert has a different
semantic: assert e checks e; if it is true then nothing happens, else an exception is thrown. So, in
TEST assert is used to actually test conditions. This does imply that e should be a computable
predicate. Since Assertion is in general uncomputable, whereas Expr is, we restrict e (in TEST)
to be an Expr.

Rather than executing a test suite, we can also verify it. A test suite is passed if none of the
constituting test instructions throws an assert-violation exception. Under partial correctness,
this is equivalent to showing that each test instuction t satisfies {T} t {T} in the L0 logic. The
program P we test is called somewhere in t. L0 logic will however treat P as a black box, which
may not be what we want here because as we may actually have access to P ’s source code and
want to use it. In other words, we want an option to treat P as a white box. This is possible
in TEST by ’tagging’ the call to P with the word whitebox, which will have the effect that the
body of P will be expanded5. This flag is only meaningful for verification: during the execution
it is simply ignored. The whitebox expansion can be implemented as a pre-processor, using HOL
built-in rewrite functions to do it. After the expansion we get an ordinary L0 instruction, which
can be reduced normally using the reduce function from Section 5.

8 Lingu

Database scripting is an interesting application. Databases usually have so-called integrity con-

straints which have to be maintained by every transaction. A common technique is to check the
constraints on the run time, and to roll back when they are violated. However, this is at the
expense of performance since run time check and roll back are expensive operations. The alter-
native is to do verification at the compile time. In [9] Qian describes a simple database scripting
language with a Hoare-styled logic. For many practical purposes, it is sufficiently expressive. It
is also first order, which is especially attractive for verification. We will describe here another
first order database scripting language called Lingu (short hand of ”little language”) built by cus-
tomizing L0. Its expresiveness is at the same level as [9]. Lingu shares much of L0 syntax and
logic, and most Lingu specific constructs can be translated to L0 constructs. However, Lingu is
neither a subset or superset of L0. For example, it forbids L0 while-loop, but it extends L0 with
special syntax to specify queries and table manipulations. To handle some features (namely fresh

5Special care must be taken if P is recursive; this beyond our scope however, since L0 does not support recursion.

15

key and aggragate function) the logic of Lingu also deviates from L0. Here is an example of a
simple Lingu script:

move6 (REF all, REF selected)

=

pre T

post (all union selected = (old all) union (old selected))

do

/{ selected /:= selected

union

select (map r. r) (only r. r.score>=6) all ;

delete all (drop r. r.score>=6)

/}

return void

It defines a script called move6 that moves all entries r in the table all such that r.score ≥ 6 to
the table selected. The post-condition in the specification says that the union of the two tables
is left unchanged, thus implying that there is no entry lost during the operation.

A database is a set of tables. A Lingu script such as the one above specifies an operation, also
called transaction, on a subset of the database. In practice a database system often serves multiple
applications, which may concurrently try to execute transactions. In this context note that Lingu
assumes that with respect to each other, transactions are executed atomically. Compared to e.g.
[6] Lingu uses a simplistic model of table: it is just a finite set of basic typed or ’flat record’ entries.
Recall that L0 allows arbitrary HOL term as expressions and assertions. This will now be limited.
We will first discuss the language S of limited set expressions. An important aspect of S is that
it is first order and implementable. Lingu expressions have a more complicated syntax, but they
are translated to S.

8.1 S Expression

Basic types are types such as bool and int. A flat record is a record whose fields are not of a set
type. A flat set is a set whose elements are of basic types or flat records. As said, we use a set to
model a table. More precisely, Lingu tables are non-hierarchical; hence they are all flat sets. The
names of the fields of a record are also called attributes. The term attributes of a table is also used
to mean the attributes of the elements of the table, assuming that they are records.

Allowed types for S expressions, and also for Lingu expressions, are basic types, the types of
flat records, and the types of flat sets.

An S expression is either a simple expression or a set expression. The syntax of simple expres-
sion is below; UnOp and BinOp are respectively unary and binary numeric or boolean operators;
BinOp can also be = comparing two records.

SimplExpr → Constant | Variable
| SimplExpr.FieldName \\ field selection
| UnOp SimplExpr
| SimplExpr BinOp SimplExpr
| \\ record forming

<| FieldName := SimplExpr , . . . , FieldName := SimplExpr |>

Allowed set expressions in S are listed below; e is a simple expression, p, t, u are S expressions, p
is a predicate (it is of type bool):

1. ø (empty set), {e} (a singleton set), t ∪ u (set union)

2. Set comprehension: {e(r) | r ∈ t ∧ p(r)}

3. Set predicates: e ∈ t and (∀r. r ∈ t ⇒ p(r))

16

Expressions of the form (∃r. r ∈ t∧p(r)) are not in the syntax, but are also allowed as shorthands
for the negation of the corresponding ∀ expressions. Furthermore, all set typed variables in S are
assumed to specify finite sets. The following two lemmas can be proven quite straight forwardly
by induction over the structures of simple expressions and of S:

Lemma 8.1 : Every simple expression is either of a basic type or a flat record.

Lemma 8.2 : Every S expression is either a flat record, a flat set, or has a basic type.

Notice that the second lemma implies that the syntax of S itself enforces the restriction that all
tables in S should be flat sets.

Let FOLS be the first order logic over the follwing set T of terms. T consists of all S expressions
which are either a set typed variable or a simple expression of a non-boolean type. The predicate
symbols of FOLS are all numeric relations of S (such as ≤), = over simple and flat record types,
and ∈. An S expression of type bool is also called an S predicate. An S predicate is called first

order if it can be translated to an equivalent FOLS formula.

Theorem 8.3 : All S predicates are first order.

Proof: by induction. The non-trivial cases are:

• (∀r. r ∈ u ⇒ p(r)) is first order if: (1) r ranges over the elements of a flat set, (2) r ∈ u is
first order, and (3) p(r) is first order. The first follows from Lemma 8.2, which says that u
must be a flat set; (2) and (3) follow from the inductive assumption.

• Case e ∈ t. We have a number of sub-cases, depending on the form of t:

1. t is a set-typed variable: then both e and t are T -terms and e ∈ t is thus a FOLS
formula.

2. e ∈ ø is equivalent to false.

3. e ∈ {e′} is equivalent to e = e′. Furthermore, e and e′ must be of a simple or flat record
type. So, they are T -terms, and hence e = e′ is a FOLS formula.

4. e ∈ u1 ∪ u2 can be translated to e ∈ u1 ∧ e ∈ u2; each conjunct is first order by the
inductive assumption.

5. e ∈ {e′(r) | r ∈ u ∧ p(r)} can be translated to ¬(∀r. r ∈ u ⇒ p(r) ⇒ ¬(e = e′(r))),
which is first order. This can be argued in almost the same way as the ∀-case before,
plus the fact that e and e′(r) must be T -terms and therefore e = e′(r) is a FOLS
formula.

2

It follows that general results on the first order logic apply to S predicates. For example, if
the resulting first order logic translation is monadic or is in the Pressburger syntax (which admits
a limited form of numeric expressions) then it is decidable. HOL suports a number of automated
proof tools to handle first order formulas.

Lemma 8.4 : Every set typed S expression specifies a finite set.

Proof: This can be proven inductively. The non-trivial cases are:

• {e(r) | r ∈ t ∧ p(r)} is finite because t, by the inductive assumption, is finite.

• t ∪ u is finite, because t and u are, by the inductive assumption, finite.

2

Theorem 8.5 : If simple expressions are implementable, then so is S.

Proof: We only have to consider set expressions. By Lemma 8.4, every set typed S expression
specifies a finite set. Operations ∪, ∈, ∀, as well as comprehension, over finite sets are imple-
mentable.
2

17

8.2 Lingu Expressions and Database Specific Instructions

A Lingu expression is either a simple expression (with the same syntax as used in S) or a table

expression. A table expression is essentially a query to a table. Before evaluation, a table expres-
sion is first translated to an S expression. Allowed table expressions are listed below, along with
their S semantic; e is here a simple expression, p, t, u are Lingu expressions, p is of type bool:

1. Empty, select, and union:

empty = ø
select t (map r. e(r)) (only r. p(r)) = {e(r) | r ∈ t ∧ p(r)}
t union u = t ∪ u

2. Table predicates:

e IN t = e ∈ t
ALLof t (satisfy r. p(r)) = (∀r. r ∈ t ⇒ p(r))
SOMEof t (satisfy r. p(r)) = (∃r. r ∈ t ∧ p(r))

Notice that the syntax allows for example select and ALLof expressions to be nested in each
other.

A Lingu predicate is a Lingu expression of type bool. Lingu has the following database specific
instructions; whose meaning are defined in terms of L0 assignments over S expressions; e is here
a simple expression, t, t0 are Lingu expressions, p is a Lingu predicate:

1. Insertion:

ins e t = t /:= {e} ∪ t
insert t0 t (map r. e(r)) (only r. p(r)) = t /:= {e(r) | r ∈ t0 ∧ p(r)} ∪ t

2. Deletion:

del e t = t /:= {r | r ∈ t ∧ (r 6= e)}
delete t (drop r. p(r)) = t /:= {r | r ∈ t ∧ ¬p(r)}

3. Update:

update t (map r. e(r)) (only r. p(r))
=
t /:= {r | r ∈ t ∧ ¬p(r)} ∪ {e(r) | r ∈ t ∧ p(r)}

Only a Lingu expression is allowed to be used as an assertion (plus the use of special keywords
like ret and old).

Given the above semantics, a Lingu program and its pre/post specification can be translated
into a plain L0 specification where the assertions and expressions are all S expressions. This can be
reduced using L0 logic, resulting in verification conditions which are S predicates. The latter, by
Theorem 8.3, can be further translated to first order logic formulas for verification. Furthermore,
by Theorem 8.5 all Lingu expressions are also implementable. Also, since the language of assertions
in Lingu is just the same as expressions, with the exception of the use of old and ret , checking
them at the run time is implementable.

So far the logic of Lingu is the same as L0. However, later we will alter it slightly to handle
keys and aggregate functions.

18

8.3 Implementation

Lingu extends L0 with its own syntax of expressions and a number of its own specific instructions.
We can (syntactically) embed it in HOL simply by extending our L0 embedding. For example, to
add the syntax and semantic of select we do:

Define ‘select t f p = {f r | r IN t /\ p r}‘ ;

new_binder_definition ("map_def", --‘(map:(’a->’b)->(’a->’b)) body = body‘--) ;

new_binder_definition ("only_def", --‘(only:(’a->bool)->(’a->bool)) body = body‘--) ;

The first line defines the semantic of select, the other two introduce the syntax and semantic of
the map and only quantifiers. Now we can write in HOL:

select t (map r. 0) (only r. r>0)}

which would have the semantic {0 | r IN t ∧ r > 0} in HOL.
The logic of Lingu works by first translating a Lingu specification to S (see previous Subsec-

tion), and then calling L0 logic. Implementing the translation is quite easy by using HOL built-in
rewrite utilities.

The current implementation of Lingu is prototype 4.1. It can accepts, for example, the script
move6 at the beginning of Section 8 and reduce it to verification conditions; a simple HOL tactic can
prove the latter. The next subsections discuss some further features which are not yet supported
in the current prototype.

8.4 Integrity Constraint

A database often have a set of global invariants, also called integrity constraints, which have to
be maintained by any transaction on it. Lingu can express various sorts of constraints, although
of course they must be first order. For example a table t can be constrained to have its attribute
K as a primary key, which means that the values of the K attribute in t uniquely identify the
elements of t. This can be expressed by this Lingu predicate:

ALLof t (satisfy r. ALLof t (satisfy r′. (r.K = r′.K) ⇒ (r = r′)))

Given a Lingu script P , to verify it against an integrity constraint c we can simply extend P ’s
pre- and post-condition with c and verify the new specification.

8.5 Generating Fresh Keys

Primary key constraints are very common in database. Often, we need a way to generate a fresh
key. There is a slight complication in how L0 handles this.

We introduce with a special instruction. If t is a table, the assigment k /:= newkey t assigns
a value of type ′a KEY (for some compatible type ′a) as a ’fresh’ key to k. The key is fresh in the
sense that it does not occur anywhere in t. The type ′a has to be an infinite type to guarantee
that we can always generate a fresh key (so, bool is not allowed.). We will make a number of
decisions to simplfy the formal treatmant of newkey:

1. newkey can only be used with the above syntax (it cannot be used in an arbitrary expression).

2. The generated key depends only on the state of the specified table. It means that, for
example:

k1 /:= newkey t ; k2; /:= newkey t

will actually assign the same key to k1 and k2. If a different (fresh) key is desired for k2,
then k1 has to be inserted first to t.

19

3. The logic treats the exact result of newkey as unspecified, except for the fact that it
is fresh. This does mean that from the logic’s view a newkey assignment behaves non-
deterministically, so the original L0 rule for assignment cannot be used. We alter it as
follows. Assume a table t with attributes K1, . . . ,Kn as primary keys:

reduce (k /:= newkey t) q = return (∃k. Fk,t,K1
∧ . . . ∧ Fk,t,Kn

⇒ q)

where Fk,t,K is an S predicate stating that k does not occur in the K-column of t. So:

Fk,t,K = ¬(k ∈ {r.K | r ∈ t})

The predicate returned by the altered rule above is actually not an S expression, though it is
still first order.

8.6 Folded Operation

If ⊕ is a binary operator, the fold of ⊕ over a sequence of values, for example x1, x2, x3, is just
x1⊕ (x2⊕x3). For example, the sum function can be obtained by folding +. A folded operation is
also called aggregate. In database we often want to fold over a column of a table. This is however
more difficult in our set model. Because a set is unordered, only a commutative and associative
operation can be folded. So, addition will work, but not substraction. We introduce the following
syntax to denote fold:

fold $⊕ t (map r. e(r))

The expression denotes the value obtained by folding ⊕ over the sequence e(r0), e(r1), . . ., where
the ri’s are elements of t —each element should only be taken once. If t is empty, the fold returns
the identity element of ⊕. fold can be represented by a HOL function of type:

(′b →′ b →′ b) →′ a set→ (′a →′ b) →′ b

The complete definition of fold requires a sequence (permutation) of elements of t to be chosen,
over which we then fold the ⊕. Such a definition makes proving properties about folded operations
in general hard, since we may have to quantify over the possible permutations over the elements
of t. For example to show:

fold $+ t (map r. r) = fold $+ u (map r. r)

comes down to finding two permutations that will order elements of t and u respectively to the
same sequence.

Alternatively, we can extend HOL theorem-base with a list of useful first order (but ab-
stract/incomplete) properties of the fold of various operators and program the verification tatcics
to also make use such a theorem-base. Example of such a property is the following, which assumes
that ⊕ is ≤-monotonic:

ALLof t (satisfy r. e(r) ≥ 0) ⇒ fold $⊕ t (map r. e(r)) ≥ 0 (2)

The propertyt gives a sufficient condition to prove that a fold returns a non-negative value. Another
example is this set of general properties, which can be quite effective to simplify a fold expression
as long as the target set expression is not a set comprehension:

fold $⊕ ø (map r. e(r)) = id⊕

fold $⊕ {r} (map r. e(r)) = r

(ALLof t (satisfy r. ¬ r∈u)) ⇒ (fold $⊕ (t ∪ u) (map r. e(r))
=
fold $⊕ t (map r. e(r)) ⊕ fold $⊕ t (map r. e(r)))

20

9 Closing Remarks

Syntactical embedding in a theorem prover offers an interesting alternative for rapid prototyping
of small programming languages with an integrated theorem proving support. The main advatages
are: the integration, a language front-end can be quickly obtained with few simple customizations,
and high reuse of the theorem prover’s own type checker. However, the approach is probably not
suitable larger languages. Such a language may require a parser which is beyond the customization
range of the host theorem prover and a type system which cannot be mapped naturally to the
(often simple) type system of the theorem prover.

An alternative is to embed directly in the meta programming language of the theorem prover.
The meta language is usually a functional language. Functional languages are known to be an
excellent medium to implement Domain Specific Languages (languages for a specific sets of tasks,
in contrast to general-purpose programming languages such as Java) or DSLs, by embedding
the DSLs in the functional languages [3, 11]. However to also integrate a theorem prover as a
verification support to a DSL embedded in the prover’s meta language means that we would use
the theorem prover directly on fractions of its own meta language; this requires some reflection
ability at the meta language level. There is at the moment not much theorem provers with such
a feature. HOL and Isabelle for example use Moscow-ML and Poly-ML respectively; both do
not support reflection. Agda or Prufrock [13] may be (future) options. Both are implemented in
Haskell which supports reflection e.g. via Template Haskell [10]. However, as software product
neither is yet as mature as HOL and Isabelle (Prufrock is even still in development).

References

[1] D. Syme. Machine Assisted Reasoning About Standard ML Using HOL. Technical report, Australian
National University, November 1992. ftp://ftp.cl.cam.ac.uk/hvg/papers/MLinHOL.thesis.ps.gz.

[2] Marieke Huisman. Java Program Verification in Higher-Order Logic with PVS and Isabelle. PhD
thesis, University of Nijmegen, The Netherlands, 2001.

[3] D. Leijen and E. Meijer. Domain specific embedded compilers. In 2nd USENIX Conference on
Domain Specific Languages (DSL’99), pages 109–122, 1999.

[4] G. Malcolm. Data structures and program transformation. Science of Computer Programming, 14(2–
3):255–280, October 1990.

[5] Michael Norrish. C formalised in HOL. Technical Report UCAM-CL-TR-453, University of Cam-
bridge, Computer Laboratory, December 1998.

[6] Jan Paredaens, Paul De Bra, Marc Gyssens, and Dirk Van Gucht. The Structure of the Relational
Database Model. Springer, 1989.

[7] Lawrence C. Paulson. Mechanizing UNITY in isabelle. ACM Trans. Comput. Log, 1(1):3–32, 2000.

[8] I.S.W.B Prasetya, A. Azurat, T.E.J. Vos, and A. van Leeuwen. Building verification condition
generators by compositional extensions. In Proceedings of 3rd IEEE International Conference on
Software Engineering and Formal Methods. IEEE Computer Society Press, 2005.

[9] Xiaolei Qian. An axiom system for database transactions. Information Processing Letters, 36(4):183–
189, 15 November 1990.

[10] Tim Sheard and Simon Peyton Jones. Template metaprogramming for Haskell. In Manuel M. T.
Chakravarty, editor, ACM SIGPLAN Haskell Workshop 02, pages 1–16. ACM Press, October 2002.

[11] S. D. Swierstra and L. Duponcheel. Deterministic, error-correcting combinator parsers. In Lecture
Notes in Computer Science, volume 1129, pages 184–207, 1996.

[12] Joachim van den Berg and Bart Jacobs. The LOOP compiler for java and JML. In Proceeding of
TACAS 2001, pages 299–312, 2001.

[13] J. Ward, G. Kimmell, and P. Alexander. A general first-order theorem prover for Rosetta. http:

//www.ittc.ku.edu/Projects/SLDG/files/prufrock-0.1.pdf.

21

A Syntax of L0

ProgDecl → ProgName (FormalParam , . . .) = ProgDeclRHS

ProgDeclRHS → pre (Assertion)

post (AssertionRet)

do /{ Instr /} return (Expr)

FormalParam → REF? Var

Var → Identifier | (Identifier : HOLType)

Assertion → HOLTerm \\ ret is not allowed

AssertionRet → HOLTerm \\ ret is allowed

Expr → HOLTerm \\ ret and old are not allowed

Instr → skip

| Expr /:= Expr

| /{ Instr ; . . . /}
| /@ ProgName (ActualParam , . . .)
| Expr /@= ProgName (ActualParam , . . .)
| if (Expr) then /{ Instr /} else /{ Instr /}
| let

Var = Expr and

. . .
in /{ Instr /}

| while (Expr) wdo /{ Instr /}
| assert (Assertion)

ActualParam → REF Var \\ pass-by-reference
| Expr \\ pass-by-value

B Syntax of TEST

Test-Suite → TEST Label? Test-Instr

— SUITE Label? /{ Test-Suite ; . . . ; Test-Suite /}

Label → /:: Identifier .

The syntax of Test-Instr is as Instr, except:

1. The following syntax is also allowed (white box call):

whitebox (ProgramCall)

2. The syntax for assert is restricted to: assert(Expr)

C Syntax of Lingu

Lingu has the same syntax as L0, except the following. The syntax for assertions and expressions
are the same:

22

Expr → SimpleExpr | TableExpr

SimpleExpr → Constant | Var

| SimplExpr.FieldName

| UnOp SimpleExpr

| SimpleExpr BinOp SimpleExpr

| <| FieldName := SimplExpr , . . . , FieldName := SimplExpr |>

TableExpr → empty

| select Expr (map Var . SimpleExpr) (only Var . Expr)

| TableExpr union TableExpr

| SimpleExpr IN Expr

| ALLof Expr (satisfy Var . Expr)

| SOMEof Expr (satisfy Var . Expr)

Lingu extends L0 instruction sets with the following:

Instr → . . . \\ as in L0

| ins SimpleExpr Expr

| insert Expr Expr (map Var . SimpleExpr) (only Var . Expr)

| del SimpleExpr Expr

| delete Expr (drop Var . Expr)

| update Expr (map Var . SimpleExpr) (only Var . Expr)

23

