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Hans L. Bodlaender† Alexander Grigoriev‡ Arie M. C. A. Koster§

Abstract

In this paper we present a new technique for computing lower bounds for graph
treewidth. Our technique is based on the fact that the treewidth of a graph G is
the maximum order of a bramble of G minus one. We give two algorithms: one
for general graphs, and one for planar graphs. The algorithm for planar graphs is
shown to give a lower bound for both the treewidth and branchwidth that is at most a
constant factor away from the optimum. For both algorithms, we report on extensive
computational experiments that show that the algorithms give often excellent lower
bounds, in particular when applied to (close to) planar graphs.

1 Introduction

Motivation. In many applications of the notion of treewidth, it is desirable that we can
compute tree decompositions of small width of given graphs. Unfortunately, finding a tree
decomposition of minimum width and determining the exact treewidth are NP-hard; see [3].
Much research has been done in recent years on the problem to determine the treewidth of
the graph: this includes a faster exponential time algorithm [20], a theoretically optimal but
due to the large constant factor hidden in the O-notation impractical linear time algorithm
for the fixed parameter case [5], a polynomial time algorithm for graphs with polynomially
many minimal separators [13], a branch and bound algorithm [22], preprocessing methods
[9, 10], upper bound heuristics [2, 15, 27], and lower bound heuristics [11, 14, 28, 29, 31].
An overview with many references can be found in [7].

In this paper, we focus on lower bound methods for treewidth. Lower bound algorithms
are interesting and useful for a number of different reasons. When running a branch and
bound algorithm to compute the treewidth of a graph, see e.g. [22], a good lower bound
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helps to quickly cut off branches. Lower bounds inform us on the quality of upper bounds.
Also, a high lower bound can tell that we should not aim for a solution of a problem on
a certain graph instance with treewidth techniques: Suppose we decide we want to solve
a certain problem on a given graph with a dynamic programming algorithm on a tree
decomposition. If we have a large lower bound for the treewidth of that graph, we know
in advance that this dynamic programming algorithm will use much time and memory,
and hence we should direct our attention to trying different methods. Finally, better lower
bounds for treewidth sometimes help to obtain further reductions in the size of graphs
obtained by preprocessing [10].

In recent years, several treewidth lower bound methods have been found and evaluated.
A trivial lower bound for the treewidth is the minimum degree of a vertex. Better lower
bounds are obtained by looking at the minimum degrees of induced subgraphs or of graphs
obtained by contractions, see [11]. Often slightly better than the minimum degree is a lower
bound by Ramachandramurthi [31], which is (for non-complete graphs) the minimum over
all pairs of non-adjacent vertices v, w, of the maximum degree of v and w. Another lower
bound, found by Lucena [29] and analyzed in [8], is based on maximum cardinality search.
Combining these bounds with contractions gives often considerable improvements [11, 28].
Further improvements can be obtained by using these techniques in combination with a
method introduced by Clautiaux et al. [14], based upon adding edges between vertices
that have many common neighbors or disjoint paths between them [12].

The experiments carried out in [11, 28] show that for several graphs, the existing lower
bound methods give good bounds that are often close and in several cases equal to the
actual treewidth. However, there are classes of graphs where each of these methods yields
a rather small lower bound that is far away from the real treewidth. For instance, this
holds for planar graphs or graphs that are in a certain sense close to being planar, e.g.,
graphs obtained by taking the union of a small number of TSP-tours on a point set in
the plane [16]. The reason that the above mentioned techniques appear to fail for these
graphs mostly is due to the fact that all these methods in a certain sense are (minimum)
degree-based, and (close to) planar graphs always have vertices of small degree, cf. [41].

For planar graphs, Seymour and Thomas [38] presented an O(n2) time algorithm com-
puting a minimum branchwidth. Branchwidth of a graph is a lower bound for the treewidth,
and moreover, the branchwidth of a graph approximates the treewidth within a factor
of 3/2, see Robertson and Seymour [34]. Unfortunately, the algorithm of Seymour and
Thomas requires a substantial, although polynomial, amount of memory, so it runs out of
memory even for the medium size graphs (from 2000 nodes), see [24, 25]. In the later two
papers, Hicks proposed another algorithm that at cost of slowing down the algorithm of
Seymour and Thomas makes it“memory friendly”. The algorithm of Hicks runs in time
O(n3) and can deal with graphs up to 15000 nodes.

Since the known algorithms for a treewidth lower bound are either slow, or not memory
friendly, or provide a bad quality bound, we were searching for a new method using a
different principle that works well for graphs that are planar or close to planar. In this
paper, we present such a different method, based on the notion of bramble (for the first
time, brambles appeared in [37] with the name screens).
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Notations and preliminaries. Throughout this paper, G = (V, E) denotes an undi-
rected simple graph. We use many of the standard graph theoretic notions in the usual
way, like path, connected subgraph, etc. For a subset S ⊆ V of the vertices, we denote with
N(S) the neighbors of S that are outside S, i.e., N(S) = {w ∈ V \ S : {v, w} ∈ E, v ∈ S}.
With G[S] we denote the subgraph of G induced by S ⊆ V . Instead of G[V \ S] we also
write G \ S.

The vertex connectivity of non-adjacent vertices v, w ∈ V in G is defined as the mini-
mum size of a vertex set S ⊂ V such that v and w are in different components of G\S. By
Menger’s Theorem [30], the number of vertex disjoint paths between v and w equals the
vertex connectivity. The vertex connectivity of a pair v, w and the vertex disjoint paths
can be computed by maximum flow techniques, see e.g. [1].

The notions of tree decomposition and treewidth were first defined by Robertson and
Seymour [33]. Several other, equivalent notions, have been proposed by many different
authors, see e.g., [6].

Definition 1.1 A tree decomposition of a graph G = (V, E) is a pair ({Xi | i ∈ I},
T = (I, F )), with {Xi | i ∈ I} a family of subsets of V and T a tree, such that

• ⋃
i∈I Xi = V ,

• for all {v, w} ∈ E, there is an i ∈ I with v, w ∈ Xi, and

• for all v ∈ V , the set Iv = {i ∈ I | v ∈ Xi} forms a connected subtree of T .

The width of a tree decomposition ({Xi | i ∈ I}, T = (I, F )) is maxi∈I |Xi| − 1. The
treewidth of a graph G, tw(G), is the minimum width among all tree decompositions of G.

A graph H is a minor of G, if H can be obtained from G by a series of zero or more
vertex deletions, edge deletions, and edge contractions. It is well known that if H is a
minor of G, then the treewidth of H is at most the treewidth of G.

A notion closely related to treewidth is the branchwidth of a graph, also introduced by
Robertson and Seymour [34, 35].

Definition 1.2 A branch decomposition of a graph G = (V, E) is a pair (T = (I, F ), σ),
with T a ternary tree (a tree where every non-leaf node has degree 3) with |E| leaves, and
σ a bijection from E to the set of leaves of T .

The order of an edge f ∈ F is the number of vertices v ∈ V , for which there exist
adjacent edges {v, w}, {v, x} ∈ E, such that the path in T from σ(v, w) to σ(v, x) uses f .

The width of branch decomposition (T = (I, F ), σ), is the maximum order over all
edges f ∈ F . The branchwidth of a graph G, bw(G), is the minimum width over all branch
decompositions of G.

Robertson and Seymour [34] proved that max{bw(G), 2} ≤ tw(G)+1 ≤ max{b3bw(G)/2c, 2}.
One easily can convert a branch decomposition into a tree decomposition such that the
respective widths fulfil these inequalities.

We next give the definitions of bramble and related notions, following the terminology
of Reed [32].
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Definition 1.3 Let G = (V, E) be a graph. Two subsets W1, W2 ⊆ V are said to touch if
they have a vertex in common or E contains an edge between them (W1 ∩W2 6= ∅ or there
is an edge {w1, w2} ∈ E with w1 ∈ W1, w2 ∈ W2). A set B of mutually touching connected
vertex sets is called a bramble. A subset of V is said to cover B if it it is a hitting set
for B (i.e., a set which intersects every element of B.) The order of a bramble B is the
minimum size of a hitting set for B. The bramble number of G is the maximum order of
all brambles of G.

The relationship between the bramble order and the treewidth was obtained by Seymour
and Thomas [37]:

Theorem 1.4 (Seymour and Thomas [37]) Let k be a non-negative integer. A graph
has treewidth k if and only if it has bramble number k + 1.

For a short proof of this theorem we refer to Bellenbaum and Diestel [4].

Corollary 1.5 Given a bramble B of order k, tw(G) ≥ k − 1.

So, finding a high order bramble immediately implies getting a good lower bound for
the treewidth. Unfortunately, determining the order of a bramble, is also NP-hard; it
follows directly from the NP-hardness of the minimum hitting set problem [21] by taking
a complete graph G and the collection of subsets as the bramble.

A class of graphs for which the bramble of maximum order can be constructed easily is
the class of grid graphs. It is folklore that an r by r grid has treewidth r; see e.g., Figure 1
for a bramble of order r + 1. We have one set that contains all vertices on the bottom
row, one set that contains all vertices on the last column except the last one, and (r − 1)2

crosses, each consisting of the first r− 1 vertices of one of the first r − 1 rows and the first
r− 1 vertices of one of the first r− 1 columns. A set that covers the bramble must contain
at least r − 1 vertices to cover the crosses, and one vertex in each of the other two sets.

Figure 1: Illustrating a bramble of a grid

In this paper, we therefore restrict our search to brambles for which the order can be
computed easily, due to the construction of the bramble. In Section 2 we construct brambles
for general graphs; and in Section 3 a more sophisticated, though fast, algorithm for planar
graphs is presented. The latter algorithm is a constant approximation algorithm for both
treewidth and branchwidth of planar graphs. In Section 4, we report on computational
results, showing the effectiveness of the brambles as lower bound for treewidth in those
cases that the graph is (close to) planar. We finish the paper with some concluding remarks.
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2 Brambles in general graphs

In this section, we present Algorithm A1. Algorithm A1 gets as input an arbitrary undi-
rected graph G, finds several brambles of G or of minors of G, and outputs the best
treewidth lower bound found this way.

First, in an initialisation step, the set of vertices is split in a number of level sets,
V0, . . . , VR (with R defined within the initialisation). For simplicity, the level sets are
called by their levels. In the basic step, a number of brambles is constructed, and their
order is computed. The maximum order encountered is recorded and returned at the end.

Before we can give a detailed description of the algorithm, we have to introduce some
additional notation. Given a subset S ⊆ V of the vertices with G[S] not connected, we
call a set T a connectivity closure of S in G if G[S∪T ] is connected. If G is not connected,
there does not exist a connectivity closure of S in G.

A, not necessarily minimal, connectivity closure is provided by the following procedure:
Let T := ∅ in the beginning. Construct a bidirectional graph D = (V, A) with two arcs
for every edge in E. For (v, w) ∈ A, define a length of 0 if v, w ∈ S ∪ T and 1 otherwise.
Now, compute the shortest path from an arbitrary vertex v ∈ S ∪ T to all other vertices
in S. The distance between two vertices is either zero or at least two. If the length of a
path between v and w is at least two, v and w are in two different components of G[S∪T ],
and the distance minus one is the minimum number of vertices required to connect both
components. Now, let w be a vertex for which the distance is minimum among those with
distance at least two. We add the vertices on the (v, w)-path to T and restart the procedure
from the construction of D, until no distance between vertices of S ∪ T exceeds zero.

Now, we are ready to define the algorithm.

Algorithm A1

Initialisation.

1. Take an arbitrary vertex r in V . Define V0 := {r}. Set k := 1.

2. Let V ′
k = N(Vk−1) \ {

⋃k−1
i=0 Vi} be the vertices adjacent from Vk−1 that are not part

of the existing subsets. If G[V ′
k ] is connected, then Vk := V ′

k . Otherwise, we search

for a connectivity closure V ′′
k of V ′

k in G \ {⋃k−1
i=0 Vi}. If such a closure exists, let

Vk := V ′
k ∪ V ′′

k . If there is no connectivity closure for the set V ′
k , then redefine

Vk−1 := V \ {⋃k−2
i=0 Vi} and go to step 3 of initialisation. In all other cases, set

k := k + 1 and return to the beginning of step 2.

3. Set R := k. Add to the graph a dummy vertex q; connect all vertices from the level
R − 1 to q; and define VR := {q}.

4. Initialize an integer variable bestlow to -1.
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Basic Step. For all 1 ≤ i ≤ j ≤ R − 1 do the following.

1. Let Gi,j be the graph resulting from G after contraction of the first i levels V0, . . . , Vi−1

into vertex si and contraction of the last R − j levels Vj+1, . . . , VR into vertex tj.

2. Let cij be the vertex connectivity of the pair (si, tj) in Gi,j. Moreover, let P`, ` =
1, . . . , cij , denote the internal vertices of cij vertex disjoint paths between si and tj .

3. Define Bi,j as follows. Let {si} be an element of Bi,j . For all i ≤ k ≤ j and 1 ≤ ` ≤ ci,j

let the set Vk ∪ P` be an element of Bi,j .

4. Set bestlow to the maximum of bestlow and min{ci,j, j − i + 1}.

Output. Output LB1 = bestlow. STOP.

Notice, that the procedure described in step 2 of the initialisation is a classical Breadth-
First-Search (BFS) extended to taking connectivity closures. Moreover, note that for
1 ≤ i ≤ j ≤ R − 1, the vertices si and tj are not adjacent in Gi,j by definition of the level
sets, and thus the vertex connectivity is defined for these vertex pairs.

Theorem 2.1 Set Bi,j , 1 ≤ i ≤ j ≤ R − 1, is a bramble of Gi,j \ {tj}. The order of this
bramble equals min{ci,j + 1, j − i + 2}.

Proof: Take any pair i, j such that 1 ≤ i ≤ j ≤ R − 1 and consider the corresponding
graph Gi,j. Let us check whether all conditions in the definition of brambles are satisfied
for the set Bi,j .

First of all, let us verify that each element of Bi,j induces a connected set. From
initialisation we know that each level is a connected set. The paths P` constructed in the
basic step of A1 are clearly connected and each of those paths crosses all levels in Gi,j.
Hence a union of any level and any path forms a connected set.

Secondly, all elements of Bi,j are mutually touching: all unions of level and path are
touching {si}, and again all paths from the basic step in A1 pass through all levels in Gi,j.
Therefore, Bi,j is a bramble for Gi,j.

Let C ⊂ V be a vertex set that determined the vertex connectivity of the pair si, tj .
Clearly, C∪{si} forms a cover for the constructed bramble. A set of representative vertices,
one from each level k, i ≤ k ≤ R− j, together with si also form a cover for the constructed
bramble. Thus, the order of the bramble is at most min{ci,j +1, j− i+2}. Since the levels
are non-intersecting, the paths constructed at the basic step of A1 are vertex disjoint, and
the bramble contains all combinations of these levels and paths, the order of the bramble
is at least min{ci,j + 1, j − i + 2}, which completes the proof. �

Note that, although Gi,j is a minor of G if j < R− 1, the bramble cannot be extended
with subset {tj} since si and tj are not touching.

Corollary 2.2 For each graph G, LB1 ≤ tw(G).
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Proof: By Theorem 2.1, each time bestlow is increased, it is set to the order of a bramble
of a graph Gi,j minus one. By Corollary 1.5, this value is a lower bound on the treewidth
of Gi,j, and as Gi,j is a minor of G, this is also a lower bound on the treewidth of G. �

Theorem 2.3 Algorithm A1 can be carried out in O(n3m) time on a graph G with n
vertices and m edges.

Proof: Computing the partition of V into the level sets requires at most R constructions
of a connectivity closure. The proposed procedure for this takes at most n computations
of shortest paths from a source to all other nodes in the graph, each taking O(n2) time in
a straightforward implementation of Dijkstra’s algorithm, see [1] pp. 108-112. Thus, the
initialisation requires at most O(Rn3) time.

In the basic step of the algorithm we compute c vertex disjoint (s, t)-paths in a graph,
that can be done in O(nm) time; see [1] pp. 273-277. Together with enumeration over all
possibilities for i and j, it brings the time complexity of the basic step up to O(R2nm).
Since R ≤ n, we have that the total running time of A1 is at most O(n3m), as required. �

At cost of an additional multiplicative factor of n we can find a root vertex r for the
BFS that provides the best lower bound for the treewidth, cf. Section 4.

3 Brambles in planar graphs

Algorithm A1 can be significantly improved in running time when the input graph is
restricted to be planar. Given an embedding of Gi,j\{si, tj}, the vertex disjoint paths P` can
be viewed as layers in the graph, with the remaining vertices laying between (below/above)
these layers. Since every level set Vi is connected as well and all paths intersect with Vi, the
vertices in between the layers can be contracted either to the layer above or below. If we
further contract vertices on a path that belong to the same level set Vi, the resulting graph
contains a cij by j− i+1 grid, and hence the treewidth of Gi,j is at least min{cij, j− i+1}.
The need for a root vertex r, however, causes that for grid graphs the treewidth may not
be reached by Algorithm A1.

In this section we present a different algorithm that searches for grid minors in planar
graphs more directly. Algorithm A2 below finds brambles in several minors of a connected
planar graph G. In the initialisation step, we partition the vertices on the exterior face in
North, East, West, and South. In the basic step, the algorithm builds grid minors of G
for which we know how the maximum order bramble looks like. Algorithm A2 outputs the
largest lower bound due to the grid minors and corresponding brambles it has met.

Algorithm A2

Input. A planar embedding of G with no edge crossings. It is well known that such an
embedding can be constructed in linear time (e.g., the O(n + m) algorithm by Hopcroft
and Tarjan [26]).
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Initialisation. Let F be the exterior face of the embedding and let f be the length of
a single closed clockwise walk along F . Since G is a simple graph, f ≥ |F | ≥ 3. Let
North, East, South, and West be four paths on F (possibly atomic if F is a simple cycle
on 3 vertices) being sequential parts of a closed clockwise walk along F such that North
has one common endpoint with East, East has one common endpoint with South, South
with West, and finally West with North. Moreover, let the lengths of these four paths be
roughly the same, i.e., the length may vary by at most one vertex being either bf/4c + 1
or df/4e+1. Notice that such paths always exist and can be found in linear time. We add
in the exterior four dummy vertices N , E ,S, and W and connect them to all vertices in
North, East, South, and West respectively. Further in the paper we always refer to the
vertices incident to N , E ,S,W as to North, East, South and West, respectively; and we
denote Dummy = {N , E ,S,W}. Finally, we set integer variable bestlow to -1.

Basic step. We view the algorithm as a rooted search tree with a root corresponding to
the graph constructed in the initialisation. At each node of the search tree we perform the
following steps.

1. Given is a node i in the tree and the planar graph Gi = (Vi, Ei) associated with this
node. Let ci be the vertex connectivity of (N ,S) in graph Gi \ {E ,W} and di the
vertex connectivity of (W, E) in Gi\{N ,S}. Find ci vertex disjoint paths connecting
N and S, and di vertex disjoint paths connecting W and E . Clearly, Gi \ Dummy
contains a ci × di grid as a minor, and therefore it contains also a bi × bi grid as a
minor, where bi = min{ci, di}. Create an order bi + 1 bramble Bi for this bi × bi grid
as described in Section 1. Set bestlow to the maximum of bestlow and bi.

2. If bi = ci, we create the child nodes of i as follows. Let Ci ⊂ Vi be a vertex set
determining the vertex connectivity of (N ,S) in Gi \ {E ,W}. Further in the text we
refer to such a set as to separator. Separator Ci specifies at least two components
in Gi \ (Ci ∪ {E ,W}): one containing N and another containing S. Notice that
there can be other components eventually separated by Ci from both N and S. For
each component we create a child node in the search tree and construct the graph
associated with this child node as follows.

Let Gq
i be a component in Gi \ (Ci ∪ {E ,W}). Consider the exterior face X of

Gq
i \ Dummy. Now, like in the initialisation, we define four paths North, East,

South, and West in a single closed clockwise walk along X. If a vertex v ∈ X
belongs to North in Gi, let this vertex belong to North in Gq

i as well. In the similar
way we leave the vertices which are already assigned to East, South, and West in
Gi in the corresponding paths in Gq

i .

Yet unassigned vertices in X we assign to the paths in such a way that, again, the
paths (possibly atomic) become sequential parts of a closed clockwise walk along
X such that North has one common endpoint with East, East has one common
endpoint with South, South with West, and West with North. Finally, we connect
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N to North, E to East, S to South, and W to West. Let the resulting graph be a
graph associated with a child node of i corresponding to component Gq

i .

3. If di < ci, we similarly create the child nodes with respect to the vertex connectivity
of (E ,W).

4. We recurse on the child nodes unless the number of non-dummy vertices in the graph
associated with the node becomes less or equal to the current value of bestlow.

Output. Output LB2 = bestlow. STOP.

Theorem 3.1 The lower bound LB2 on the treewidth of a planar graph can be obtained
by Algorithm A2 in time O(n2 log n).

Proof: We already observed that for any node i in the search tree, bi is a side size of a
square grid minor in G. Since the treewidth of a square grid is its side size we directly
have that bestlow = maxi bi is a lower bound on the treewidth of G.

Notice that the initialisation requires only linear time. In the basic step of the algo-
rithm we compute two vertex connectivities in a planar network, which can be done in
O(n log n) time; see Theorem 8.8 in [1], p. 265. Then we create the child nodes in the
search tree basically determining the connected components in a graph which takes linear
time. Therefore, the basic step of the algorithm requires O(n logn) time.

We perform the basic step for all nodes of the search tree. Let us argue that the number
of nodes in this tree is at most n. Consider leaf nodes of the tree. By construction, the
vertex sets of the graphs associated with all leaf nodes are mutually disjoint. Now, consider
the immediate parent node of some nodes. The graph associated with this parent node
contains a vertex set of G (determining the vertex connectivity of two dummy vertices at
a certain basic step of the algorithm) which is removed from all child nodes. Therefore,
moving up to the root, in each parent node we find at least one vertex which is not present
in any of its children. Since the number of vertices in V is n, we conclude, that the search
tree has size at most n.

Thus, applying the basic step to all nodes of the tree, we have the total running time
of A2 at most O(n2 log n), as required. �

It is noticeable that Algorithm A2, besides estimation of the treewidth, approximates
another parameter of the planar graph, namely the side size of the largest grid minor. It
is well known that planar graphs having a large treewidth must have also a large grid as a
minor; see e.g. [17, 19, 36]. The following theorem and corollary present the algorithmic
consequences of this fact.

Theorem 3.2 For any planar graph G, the lower bound on the treewidth returned by
Algorithm A2 satisfies the inequality b/4 ≤ LB2 ≤ b, where b is a side size of the largest
square grid minor in G.
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(a) graph (b) rooted tree

Figure 2: Graph and rooted tree of Algorithm A2 (trivial child nodes are left out)
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Proof: Let M be the largest square grid minor in G with side length b. By construction,
LB2 is the side size of a square grid minor of G. Therefore, inequality LB2 ≤ b always
holds. Thus, it remains to prove the lower bound for LB2.

Consider a node i in the search tree such that Gi contains at least b2/2 vertices of M
and each of its children contains at most b2/2 vertices of M . Notice that such a node does
always exist otherwise we have a contradiction to the stoppage criteria of the algorithm.

In each node of the search tree, the graphs associated with its child nodes are some
connected components in G \ S where S consists of at most four vertex cuts obtained in
the parent nodes (at most two vertex cuts determining (N ,S) connectivity and at most
two vertex cuts determining (E ,W) connectivity). Let Si be the union of these vertex cuts
determining the child nodes of i, i.e. the child nodes of i are some connected components
in G \Si. By definition of node i, we have that G \ (Vi ∪Si) contains at most b2/2 vertices
of M and each of the child nodes of i contains also at most b2/2 vertices of M .

For a graph G′ = (V ′, E ′), let us refer to a subset S ⊆ V ′ as to balanced separator of G′

if each connected component in G′ \ S has at most |V ′|/2 vertices. It is well known that
a minimum balanced separator in a b × b grid graph has size b (see e.g., [18]; the size of a
minimum balanced separator is also known as the vertex bisection of the graph.) It is well
known, see e.g., [18], that a minimum balanced separator in b × b grid graph has size b.
From observation above we have that Si ∩ M is a balanced separator in M , and therefore
|Si| ≥ b. Since Si consists of at most 4 vertex cuts, one of these cuts must have size at
least b/4 that completes the proof. �

From Theorem 3.2 and the result by Robertson, Seymour, and Thomas [36] that every
planar graph of treewidth tw(G) has an Ω(tw(G)) × Ω(tw(G)) grid graph as a minor, we
deduce the following corollary.

Corollary 3.3 Algorithm A2 is a constant approximation algorithm for the treewidth and
for the branchwidth of planar graphs.

Proof: From Theorem 3.2 we have that S = Θ(LB2). From the result by Robertson,
Seymour, and Thomas [36], we have that tw(G) = Θ(bw(G)) = Θ(S) = Θ(LB2), where
bw(G) is the branchwidth of graph G. �

We complete this section with a brief discussion of advantages and disadvantages of
Algorithm A2 in comparison with the known approximation algorithms for the treewidth
on planar graphs. Seymour and Thomas have shown that the branchwidth of a planar graph
can be computed in polynomial time [38]. By the result of Robertson and Seymour [34]
that each branch decomposition can be converted to a tree decomposition with width at
most 3/2 times the width of the branch decomposition (cf. Section 1), we directly have a
polynomial time approximation algorithm for treewidth of planar graphs with ratio 3/2.

The decision version of the algorithm of Seymour and Thomas [38] runs in O(n2) time.
A version that also constructs branch decompositions of optimal width uses more time;
recently, Gu and Tamaki [23] showed this can be done in O(n3) time. If we want to obtain
lower bounds on the treewidth, we only need to run the decision version. However, an
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important disadvantage of the Seymour and Thomas algorithm is that it is not memory
friendly and even for the medium size graphs it easily runs out of memory; see [24, 25].
Recently, Hicks in [25] made several attempts to get a memory friendly algorithm based on
the Seymour and Thomas ideas. He derived two memory friendly algorithms with running
time O(n3). Clearly, the machinery of Algorithm A2 does not require much of memory
resources and the algorithm has nearly the same running time as Seymour and Thomas’
algorithm, and better running time than Hicks’ algorithm. The disadvantage of Algorithm
A2 is its worse performance ratio in comparison to the other algorithms. On the other
hand, Algorithm A2 eventually estimates another important parameter of a planar graph,
namely, the side size of the largest square grid minor. Moreover, the version of Algorithm
A2 that also constructs a square grid minor with side size at least 1/4 of the side size of
the largest grid minor, runs in the same O(n2 log n) time.

4 Computational experiments

In order to compare in practice the quality of Algorithms A1 and A2 with previously
studied treewidth lower bounds, these algorithms have been implemented in C++ and
tried out on a collection of input graphs. In this section, we report on the obtained results
for two selected sets of instances. The first set contains a number of general graphs,
that have been used in previous studies [11, 28] and originate from different applications
like probabilistic networks, frequency assignment, and vertex coloring. The second set of
instances consists of planar graphs that have been used by Hicks [24, 25] before. From
both sets we selected some instances that are representative for the whole set and/or show
an interesting behavior. The CPU times reported are in seconds and obtained on a Linux-
operated PC with 3.0 GHz Intel Pentium 4 processor. Some extensive experimental results
can be found on [39].

Algorithm A1 for general graphs has been tested on both the selected planar and non-
planar graphs. In the implementation, we skip a graph Gi,j , whenever j− i+1 is not larger
than the current value of bestlow, as such graphs cannot help to increase the lower bound.
This speeds up the algorithm considerably.

As pointed out before, the maximum can be increased further by taking all vertices
as root vertex r once. The additional O(n) complexity of the algorithm can be reduced
in practice by sorting or limiting the number of root vertices. In principle the algorithm
has to be executed for only one of the vertices for which the maximum is achieved. How-
ever, we cannot select on this value before computing it. Experiments have shown that
the eccentricity of a vertex is a reasonable criterion to sort/limit the root vertices. The
eccentricity ε(v) of a vertex v is the maximum depth of a breadth first search with v as
root, cf. [40] and hence the best lower bound with root r is limited by ε(r). Figure 3 shows
for two planar graphs the eccentricity and LB1 for all possible root vertices, sorted first
according to non-increasing eccentricity and second to non-increasing LB1. If the best
bound achieved so far is at least ε(r) for some r ∈ V , we do not have to run algorithm A1

with r as root. By sorting the vertices according to non-increasing eccentricity, the number
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of root vertices for which the algorithm should be executed is limited in our computations
this way. Figure 3 in fact indicates that the computation times can be reduced further by
limiting the number of root vertices to those with high eccentricity, since it is very unlikely
that vertices with ε(v) not close to the maximum achieve the maximum LB1.

(a) u724 (b) nrw1379

Figure 3: LB1 and eccentricity for all possible root vertices

Table 1 reports the results for non-planar graphs, in comparison with a contraction
degeneracy δC(G) lower bound [11]. Different behavior can be observed: for the graphs
originating from probabilistic networks, frequency assignment, and coloring, LB1 is outper-
formed by the contraction degeneracy, both in time and value. For the graphs originating
from a solution approach for the traveling salesman problem, LB1 is significantly higher
than δC(G). It is known that these graphs are close to planar, which restricts the contrac-
tion degeneracy to exceed small values (i.e., δC(G) ≤ 5 + γ(G), where γ(G) is the genus
of G [41]). As was hoped for, the new lower bound turns out to be profitable for exactly
those instances, closing the gap to the best known upper bound UB substantially. Table 2
shows the results for planar graphs. The same behavior as for the close to planar graphs
can be observed.

Table 2 also shows the lower bound LB2 computed by algorithm A2. As initial outer
face, the longest face of the computed planar embedding is taken, and partitioned in
(roughly) equally sized parts North, East, South, and West.

Comparing LB1 and LB2, there is no clear winner. In some cases LB2 is better than
LB1, but more often it is slightly worse. The computation time of LB2 is however signifi-
cantly less than that of LB1, which could be of importance if the bound is incorporated in
a branch and bound approach.

The 3/2-approximation algorithm of Seymour and Thomas [38] for planar graphs com-
putes in fact the branchwidth β(G). It is well-known that the β(G) − 1 is a lower bound
on the treewidth. The values reported in Table 2 are taken from Hicks [24]. In all cases,
this lower bound is higher than LB1 and LB2, as is the computational effort, cf. [24].
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instance |V | |E| δC CPU LB1 CPU UB

link 724 1738 11 0.02 7 89.95 13
munin1 189 366 10 0.00 4 2.19 11
munin3 1044 1745 7 0.01 4 195.35 7
pignet2 3032 7264 38 0.12 5 3456.77 135
celar06 100 350 11 0.00 3 1.50 11
celar07pp 162 764 15 0.01 3 19.40 18
graph04 200 734 20 0.02 5 0.38 55
school1 385 19095 122 0.59 3 46.22 188
school1-nsh 352 14612 106 0.39 3 45.34 162
zeroin.i.1 126 4100 50 0.04 2 0.30 50
fl3795-pp 1433 3098 6 0.04 6 1501.53 13
fnl4461-pp 1528 3114 5 0.05 14 4703.67 33
pcb3038-pp 948 1920 5 0.03 12 383.77 25
rl5915-pp 863 1730 5 0.02 10 470.76 23
rl5934-pp 904 1800 5 0.02 12 378.17 23

Table 1: Results for algorithm A1 on selected non-planar graphs. The last five instances
originate from [16] and close to planar. They have been pre-processed by the rules in [10]
to reduce the size of the graphs.

instance |V | |E| δC CPU LB1 CPU LB2 CPU β(G) − 1

d1655 1655 4890 5 0.04 20 995.62 17 13.76 28
d2103 2103 6290 5 0.07 23 1331.97 24 22.21 28
nrw1379 1379 4115 5 0.04 21 567.85 20 9.56 30
pr1002 1002 2972 5 0.03 16 605.80 17 4.69 20
pr2392 2392 7125 5 0.07 21 16391.82 19 21.46 28
tsp225 225 622 5 0.01 10 15.68 9 0.43 11
u2152 2152 6312 5 0.06 23 60192.11 23 12.53 30
u2319 2319 6869 5 0.06 41 2625.04 31 25.64 43
u724 724 2117 5 0.02 16 550.48 14 2.98 17

Table 2: Results for algorithms A1 and A2 on selected planar graphs.
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5 Concluding remarks

The treewidth of a graph can be characterized by the notion of brambles, introduced by
Seymour and Thomas [38]. In this work, we developed bramble construction algorithms as
to bound the treewidth from below. The constructed brambles turn out to be profitable,
both in theory and practice, for graphs that are (close to) planar. These results complement
previously studied treewidth lower bounds that turned out to be good for graphs that are
far from planar.

The brambles searched for in this paper have structures that allow easy construction
and order computation. An interesting question for further research is whether more such
structures exist. These may perhaps lead to new lower bound algorithms for treewidth.
Experiments (see e.g., [39]) reveal that for many instances, taken from applications, there
still are significant gaps between the best upper and lower bounds, especially for graphs
that are (close to) planar; thus, while this paper makes a usefull step, the quest for better
algorithms for determining or approximating the treewidth of such graphs remains.
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