
Proceedings of the
Sixth Stratego User Days

Karl Trygve Kalleberg
Eelco Visser

(editors)

www.stratego-language.org

Institute of Information and Computing Sciences
Universiteit Utrecht

June 14th, 2005

Copyright c© 2005 by the authors of the individual contributions.

Address:
Institute of Information and Computing Sciences
Universiteit Utrecht
P.O.Box 80089
3508 TB Utrecht
email: karltk@cs.uu.nl
http://www.cs.uu.nl/∼karltk/

Preface

These are the proceedings of the Sixth Stratego User Days, which were held on May 3-4, 2005 at
Utrecht University. The User Days were preceded by a full day tutorial on May 2. The workshop
and tutorial were supported by the Software Technology Group of the Institute for Information
and Computing Sciences.

The workshop was attended by:

• Anya Helene Bagge (University of Bergen, Utrecht University)

• Alexandre Borghi (Epita)

• Martin Bravenboer (Utrecht University)

• Valentin David (LIP6, Epita)

• Akim Demaille (Epita)

• Renaud Durlin (Epita)

• Olivier Gournet (Epita)

• Rene de Groot (Utrecht University)

• Magne Haveraaen (University of Bergen)

• Karl Trygve Kalleberg (University of Bergen, Utrecht University)

• Mart Kolthof (Utrecht University)

• Thomas Largillier (Epita)

• Karina Olmos (Utrecht University)

• Nicolas Pouillard (Epita)

• Yaroslav Usenko (Technische Universteit Eindhoven)

• Huanwen Qu (Utrecht University)

• Rob Vermaas (Utrecht University)

• Eelco Visser (Utrecht University)

• Mikal Ziane (LIP6, Université Paris 5)

Utrecht, June 2005

1

Contents

1 C/C++ Disambiguation Using Attribute Grammars 4
1.1 Introduction . 4

1.1.1 The Transformers Project . 4
1.1.2 C++ . 4
1.1.3 Semantics Driven Disambiguation . 5

1.2 Disambiguating with Attribute Grammars (AGs) . 5
1.2.1 Ambiguous synthesis . 5
1.2.2 Template instances . 5

1.3 Discussion . 6
1.3.1 Results . 6
1.3.2 Others solutions . 7
1.3.3 Further works . 7

1.4 Conclusion . 7

2 Implementing Attributes in SDF 9
2.1 Introduction . 9
2.2 Current implementation . 9

2.2.1 Syntax . 10
2.2.2 Evaluator Generation . 10
2.2.3 Evaluation . 11

2.3 Discussion . 11
2.3.1 Related Work . 11
2.3.2 Further Work . 11

2.4 Conclusion . 12

3 Spoofax: An Editor for Stratego 13
3.1 Introduction . 13

3.1.1 Requirements for an Editor . 13
3.1.2 The Weave . 13

3.2 The Spoofax Editor . 14
3.2.1 Syntax Highlighting . 14
3.2.2 Outliner . 14
3.2.3 Code Completion . 15

3.3 Discussion . 15
3.4 Conclusion . 15

4 ESDF: A Proposal for a More Flexible SDF Handling 16
4.1 Introduction . 16
4.2 Extended SDF (ESDF): An Syntax Definition Formalism (SDF) Chain Robust to

New Annotations . 17
4.2.1 Packing Modules: pack-esdf . 17
4.2.2 Filtering Annotations Out: sdf-strip . 17

2

4.2.3 Parsing Extended Grammars: parse-esdf 17
4.3 The lrde-syntax bundle . 17

4.3.1 Pretty-Printing: boxedsdf . 17
4.3.2 Disambiguation Tags: sdf-detgen . 17
4.3.3 AG: sdf-attribute . 18
4.3.4 Flexible Abstract Syntax Tree (AST) generation: sdf-astgen 18

4.4 Conclusion . 19

3

Chapter 1

C/C++ Disambiguation Using
Attribute Grammars

Valentin David
Akim Demaille
Renaud Durlin
Olivier Gournet

Abstract

We propose a novel approach to seman-
tics driven disambiguation based on AGs.
AGs share the same modularity model
as its host grammar language, here SDF,
what makes them particularly attractive
for working on unstable grammars, or
grammar extensions. The framework we
propose is effective, since a full ISO-C99
disambigution chain already works, and
the core of the hardest ambiguities of C++
is solved. This requires specific tech-
niques, and some extensions to the stock
AG model.

1.1 Introduction

1.1.1 The Transformers Project

In order to implement a fast and generic im-
age processing library, the EPITA Research and
Development Laboratory (LRDE) chose a lan-
guage that supports several paradigms and
never sacrifices speed for features. Back at the
end of the 90’s, C++ was the only reasonable
answer, unchallenged as of today thanks to its
incredibly powerful template mechanism al-
lowing meta-programs (i.e., compile-time pro-
grams). Unfortunately, inheriting from C, a lan-
guage designed in the early 70’s, C++ features a
poorly designed syntax and baroque semantics.
This is troublesome both to compiler writers
(most C++ crunching programs are not com-
pliant and fail to capture the whole language)

and to C++writers. Indeed, template intensive
programming is error-prone and often incom-
prehensible. Therefore we considered building
a new language with better meta-programming
support, a daunting task in itself, and rather fo-
cused on means to add syntactic sugar to C++.
This prompted for the inception of the Trans-
formers project, aiming at providing a C++
transformation framework, i.e., a modular C++
front-end (and “back-end”: a pretty-printer),
so as to enable its users to develop transforma-
tions.

1.1.2 C++

The C++ programming language is an object
oriented extension to C. It is large and com-
plex. It inherits from the old and well known
ambiguities of C. For instance, parsing a * b;
depends on the context: if a is a variable name,
it denotes a product, and if a is a type name,
it denotes the declaration of b. Many similar
ambiguities exist, and their common root is the
spirit in which the C++ grammar appears to be
written: it is tailored for compilers which parser
provide feed-back to the scanner to escape from
context-free grammar by being able to distin-
guish different identifier types (variable name,
type name, etc.). Clearly, the C++ grammar
was written with implementations in mind, not
with the language itself.

C++ also adds ambiguities of its own, even
with known identifier kinds. For instance, let T
be a type, depending on the context T(a); de-
notes either the declaration of the variable a, or
a call to the constructor T::T(a). According to
the standard, the latter is the correct interpreta-
tion, unless it cannot be correct in the context.

4

Figure 1.2: Disambiguation process

The template keyword comes with its set of
specific issues, a single of which is be presented
here, Fig. 1.1.

1.1.3 Semantics Driven Disambigua-
tion

Because we aim at using Stratego/XT to write
transformations (such as syntactic sugar) and
in order to enjoy C++ concrete syntax in Strat-
ego code, we chose to use regular “Stratego/XT
parsing techniques” (2): SDF to define a context
free super set of the C++ syntax, Scanner-less
Generalized LR (SGLR) to parse possibly am-
biguous C++ programs and to return an AsFix
parse forest, and then a set of disambiguation
filters. However our approach relies on AGs
to disambiguate: computations similar to type
checking are performed on the attributes, re-
vealing the invalid alternatives of ambiguities.
These branches are flagged, and pruned in a
latter stage. We use a homegrown extension to
SDF with attribute rules embedded (1). Fig. 1.2
presents the parsing chain, from source code to
(unique) AST.

1.2 Disambiguating with AGs

The formalism of AGs is well defined, and well
covered in the literature. Yet little attention was
devoted to using ambiguous AGs: how can in-
formation flow when there is uncertainty. As
usual, C++ added on top of this its own issues,
requiring an extension to AGs.

1.2.1 Ambiguous synthesis

In attribute grammars, evaluation consists
in information flowing across nodes of the
Parse Tree (PT), either upwards (synthesized at-
tributes), or downwards (inherited attributes).
Extension of inherited attributes flow in am-
biguity nodes is straightforward: the node

1 // Is T::t a type, or a value?
2 template <typename T>
3 void g() { int f(typename T::t); }
4

5 // Is T::t a type, or a value?
6 template <typename T>
7 void h() { int f(T::t); }

In the definition of g, using the keyword typename,
the programmer declares any actual parameter will
define t as a type. Conversely, for h, the absence of
typename requires the user to provide actual param-
eters that define t as a value. In this specific case
(extracting a symbol from a template parameter) the
C++ standard mandates explicit disambiguation.

Figure 1.3: The mandatory typename disam-
biguation keyword

simply forwards the unique information flow-
ing downwards to its children. Synthesized
attributes are a problem: each children con-
tributes a possibly different value. In our
model, if the values are equal, this value is
assigned to the ambiguity node, but if they
are different, an error is raised and the evalu-
ation stops. None of our current applications
required a more subtle policy. In the future,
we might consider ambiguity support for at-
tributes, similar to the amb node in AsFix. A
formal treatment of our extension of AGs to
ambiguity remains to be done.

1.2.2 Template instances

C++ templates challenge the compiler writers:
they are the number one reason for lack of com-
pliance with the C++ standard. There is no
exception for AGs: special mechanisms are re-
quired to cope with this part of the language.

One issue with parsing (and disambiguating)
(class or function) templates is that their con-
text is incomplete. Consider for instance the
Fig. 1.3: what is the kind of the symbol T::t?
It turns out that in this case the standard made
provisions to turn this context sensitive prob-
lem into context-free thanks to the typename
keyword.

Therefore template definitions are easily han-
dled. However, template uses are much more
delicate: they require that templates be (par-
tially) instantiated. Consider for instance the
Fig. 1.1: disambiguating lines 7 and 8 require
the instantiation of Awith its actual parameters.

5

1 template <int>
2 struct A { typedef int t; }; // A<i>::t is a type (by default).
3

4 template <>
5 struct A<0> { static int t; }; // A<0>::t is a value.
6

7 int v(A<0>::t); // Defines a variable since A<0>::t is a value.
8 int f(A<1>::t); // Declares a function since A<1>::t is a type.

The last two lines show the two possibilities for a single ambiguity: int a(b);may denote the definition of
the variable a if b is a value (int zero(0);), or the declaration of a function if it’s a type (int abs(int);).
To disambiguate, the class template A must be instantiated with its actual parameter, since there is no
requirement that a symbol (t) defined by a class template (A) has a constant kind (value or type).

Figure 1.1: Ambiguities on A<?>::t need A instantiations

1 // A<I>::t is A<I-1>::t.
2 template <int I>
3 struct A : public A <I-1> {};
4

5 // A<0>::t is a value.
6 template <>
7 struct A<0> { static int t; };
8

9 // A<14>::t is a type.
10 template <>
11 struct A<14> { typedef int t; };

Figure 1.4: Recursive template instantiations

To this end, AGs are troublesome. One sim-
ple solution involves two passes: the first pass
gathers the actual template parameters (0 and
1 in our example), and the second pass instan-
tiates the template definition with them, finally
providing the dependent information (the kind
of A<?>::t) to disambiguate (v is a variable,
and f a function). Unfortunately because tem-
plate instantiations can trigger arbitrarily many
other template instantiations (Fig. 1.4) this is
not possible.

Therefore the template must be carried from its
definition to its uses together with its set of at-
tribute rules, since they have to be evaluated
“on site”. This requires a dramatic extension to
AGs: part of a PT is a possible attribute value,
and a means to fire the evaluation of attributes
is needed.

As a consequence, the template definitions
are no longer evaluated where they are defined,
but where they are used. This is insufficient
though: errors in the template definitions must
also be caught to comply with standard C++.

There are two options to evaluate template
definitions. The simplest solution consists in
instantiating the template with fake parame-
ters. Alternatively, one could exploit informa-
tion gathered from the uses of a template to
disambiguate its body. Consider Fig. 1.3, line
5: any use of this template provides an actual
value for T, hence an explicit definition for T::t.
This framework would relieve the user from
having to use the typename keyword to disam-
biguate by hand template uses.

1.3 Discussion

1.3.1 Results

We developed a complete AG for the ISO-C99
language. Our grammar strictly conforms to
the standard in about 340 rules (half of which
are lexical) and 90 attributes. Contrary to
C++, it has few and easy-to-resolve ambigui-
ties, making it a realistic test bed case. Its devel-
opment represented about 1-2 month-man. The
sheer size of this grammar prompted for the ad-
dition of AG syntax extension in order to mini-
mize code duplication. In the long run, when a
fully blown redesign of AG in SDF is completed,
extensions such as featured by Utrecht Univer-
sity Attribute Grammar System (UU-AG) (3)
will be implemented. Performances are, as ex-
pected from a naive implementation, poor: dis-
ambiguating stdio.h takes 75s on a 3GHz mi-
croprocessor.

The extension of this grammar to support
GNU C is straightforward, and requires no
modification to the baseline grammar. C++ is a
much more challenging grammar to tackle (560

6

rules and more and much harder ambiguities).
As a proof of concept, a mini C++ grammar was
developed to include all the difficult aspects of
C++ disambiguation (virtually everything re-
lated to templates). Its extension into a disam-
biguating AG is completed, which supports our
claim that AG can disambiguate C++.

1.3.2 Others solutions

We propose the use of AGs to perform se-
mantics driven disambiguation, but other tech-
niques have been applied with success.

In (4), the authors use ASF+SDF to disam-
biguate ambiguous parse trees. Nevertheless,
according to our initial experiments, this ap-
proach is delicate to extend to a fully blown
language. It remains yet to be proved that tem-
plates can be properly handled.

Our first experiments using Stratego did not
use the recently introduced dynamic rules, and
therefore the code was entangled with scopes
and tables processing. In addition, because
a primary motivation for the inception of the
Transformers project is to ease the implemen-
tation of C++ grammar extensions, we looked
for seamless modularity. Embedding the dis-
ambiguation specifications in the grammar pro-
vides modularity for free.

1.3.3 Further works

ASF+SDF, Stratego, and AGs provide three dif-
ferent means to write elegantly and concisely
disambiguation filters. Because of template in-
stantiation, C++ challenges these techniques,
and a thorough comparison between the three
paradigms is underway (5). Once completed,
this comparison will address a small subset of
C++ containing the following features: modu-
larity by modeling C++ as an extension of C,
templates to mandate instantiations (compara-
ble to extending the PT during its traversal),
namespaces to introduce named scopes, and
context sensitivity (by introducing two kinds
in C, union and typedef, and a third for C++,
class).

A formalization of our extensions to stock
AGs remains to be done. Yet our model is
still slightly changing, tailored to ease the im-
plementation of disambiguation filters. For in-
stance, it is considered to allow the evaluator to
prune incorrect branches, sort of a cut, instead

of merely flagging them as incorrect. Early ex-
periment show a small speedup, but significant
simplifications of attribute rules.

Finally, to implement actual transformations
we wish to use C++ concrete syntax in Strat-
ego, what prevents C++’s intrinsic ambiguity.
We are toying with the idea of using AGs to dis-
ambiguate embedded languages. A successful
early experiment allows the programmer to dis-
ambiguate C in Stratego by hand as follows.

mytest = ?|Expression[(i0) (i1)]|
with i0 => "typedef",

i1 => "variable"

1.4 Conclusion

We demonstrated how (ambiguous) AGs can be
used to perform semantics driven disambigua-
tion. The disambiguation of difficult languages
demonstrate the validity of the approach: C99
is fully covered, and the most delicate parts of
C++ have been solved. It is ongoing work to
address the full language. AGs are modular
and extendable, which we shall use to imple-
ment grammar extensions, and explore embed-
ded languages disambiguation.

7

References

[1] A. Borghi, V. David, A. Demaille, and
O. Gournet. Implementing attributes in sdf,
May 2005. Comm. to Stratego Users Day
2005.

[2] P. Klint and E. Visser. Using filters for
the disambiguation of context-free gram-
mars. In G. Pighizzini and P. San Pietro,
editors, Proc. ASMICS Workshop on Pars-
ing Theory, pages 1–20, Milano, Italy, Octo-
ber 1994. Tech. Rep. 126–1994, Dipartimento
di Scienze dell’Informazione, Università di
Milano.

[3] S. D. Swierstra, A. Baars, and A. Löh. The
UU-AG attribute grammar system. http:
//www.cs.uu.nl/groups/ST, 2003.

[4] M. van den Brand, S. Klusener, L. Moonen,
and J. J. Vinju. Generalized parsing and
term rewriting: Semantics driven disam-
biguation. volume 82 of ENTCS. Elsevier,
2003.

[5] C. Vasseur. Semantics driven disam-
biguation: a comparison of different
approaches. Technical report, LRDE,
2004. http://publis.lrde.epita.fr/
20041201-Seminar-Vasseur-Disambiguation-Report.

8

http://www.cs.uu.nl/groups/ST
http://www.cs.uu.nl/groups/ST
http://publis.lrde.epita.fr/20041201-Seminar-Vasseur-Disambiguation-Report
http://publis.lrde.epita.fr/20041201-Seminar-Vasseur-Disambiguation-Report

Chapter 2

Implementing Attributes in SDF

Alexandre Borghi
Valentin David
Akim Demaille
Olivier Gournet

Abstract

AGs provide a very convenient means to
bind semantics to syntax. They enjoy an
extensive bibliography and are used in
several types of applications. Yet, to our
knowledge, their use to disambiguate is
novel. We present our implementation
of an evaluator of attributes for ambiguous
AGs, tailored to ambiguous parse trees dis-
ambiguation. This paper focuses on its im-
plementation that heavily relies on Strate-
go/XT, which is also used as language to
express the attribute rules. A companion
paper presents the disambiguation process
in details (2).

2.1 Introduction

In any typical compiler, or structured text
crunching application, semantic passes follow
the usual parser. Some of these passes are gath-
erers and merely compute additional informa-
tion about the AST: binding, type-checking.
Other passes involve modification of the AST,
or even its full rewrite: desugaring, translation
to another language etc. Stratego is a language
of choice to express the latter kind of passes,
where rewriting rules are the core of the pro-
cess. ASF+SDF on the one hand, and Strat-
ego with its dynamic rules on the other hand,
will both happily help one to write annotat-
ing passes. Weirdly enough, the old and well-
known AGs (5) do not seem to have make it into
this world, although they are very well suited
to write gather-and-annotate passes.

An AG is a context-free grammar enriched
with attributes bound to its symbols, and rules
attached to its production rules to express the
relationship between the attributes of the sym-
bols of the rule. A very specific feature of AGs is
that these local relationships suffice: their anal-
ysis reveals their dependencies, from which the
order of evaluation is computed. In other words
the user focuses on local issues, and the sys-
tem conducts the global evaluation. Evaluation
strategies range from extremely naive (repeat-
edly traverse the tree and compute attributes
which definition uses computed attributes), to
extremely smart (“compile” the AG into an
evaluator which makes the best use of statically
computed dependencies).

This paper presents a functional (naive) pro-
totype supporting attributes in SDF. As a novel
feature, our proposal supports ambiguous AGs:
attributes are computed on parse forests. This
makes it possible to express disambiguation fil-
ters thanks to attributes: a special attribute is
used to flag branches that are incorrect accord-
ing to semantic rules; a latter filter prunes them.

2.2 Current implementation

The package sdf-attribute is a set of tools re-
lying on Stratego/XT to provide attributes sup-
port within SDF. It includes an extended SDF
grammar to specify the syntax of attribute rules
(Sec. 2.2.1). An extended SDF grammar is pro-
cessed by a chain of tools in order (i) to check
that the attribute rules are complete, and (ii)
to compile the attribute rules into an evaluator
(Sec. 2.2.2). Finally, this evaluator in run on
an actual input to evaluate the attributes (Sec.
2.2.3).

9

1 e1:Exp "+" e2:Exp → Exp
2 {attributes(eval:
3 root.value := <add> (e1.value, e2.value)
4)}

Attribute rules are (currently) regular SDF annotations under the name attributes. To avoid attribute name
clashes, named scopes are provided (eval in line 2). The SDF symbol labeling feature provides convenient
shorthands for symbol names, or when symbols occur several times (two Exps in line 3). The special identifier
root refers to the symbol defined, here Exp.

Figure 2.1: Example of attributes

2.2.1 Syntax

Attribute rules are embeded into SDF gram-
mars via annotations (Fig. 2.1). In the future,
a nicer syntax might be proposed. Each at-
tribute has a name and a name space name,
written NodeName.namespace:name. The op-
tional name space name defaults to that of the
rule list.

A rule specifies the value of an attribute via
a Stratego strategy as follows: Node.attr :=
strategy. Within the strategies themselves, at-
tributes are used like ordinary Stratego vari-
ables.

The node name is either root to refer to the
produced non terminal, or the symbol name, or
a label name. Label names are useful when a
child is not a simple symbol (lists, options, etc.)
or when symbol name is used several times.

2.2.2 Evaluator Generation

The SDF modules are packed according to
AttrSdf, which extend SDF with our attribute
syntax. This is performed by esdf described
in another paper (3). Then, a parse table
and an evaluator are genererated by the whole
attrsdf2table chain, composed of several
steps (Fig. 2.2).

Firstly, desugaring filters are run on the
syntax definition to handle details such as
adding implicit name spaces (attrs-desugar).
In order to have sdf2table accept the Strat-
ego code in the annotations, some trans-
formations are applied (embed-attributes)
and reversed afterwards in the parse table
(deembed-attributes). Then, missing labels
are inserted (sdf-labelize).

The next filter (attr-desugar-magic) ad-
dresses two important issues. First, at this
stage, it is useful to check whether the attribute
rules are well written or not. Since there is

pack-esdf

parse-attrsdf-definition

attrs-desugar

embed-attributes

sdf2table

deembed-attributes

sdf-labelize

attr-desugar-magic

attrs-buildrules

parse table

Language SDF modules AttrSdf

boxed2pp-table

pp-table

pp-pp-table

attrsdf2table

strc

evaluator

eval-attributerules

Figure 2.2: Parse table generation

no debugging tool it is better to find and re-
port errors instead of creating an invalid table.
This definition checker traverses the graph of
all possible trees beginning from the start sym-
bols, carrying knowledge about attributes de-
pendency. Second, taking advantage of this
traversal, it also automatically propagates at-
tributes which were declared inherited or syn-
thesized, by adding the implicit rules. This is
convenient symbol tables for instance.

Finally, attribute rule code is extracted from
the parse table (attr-buildrules), and put in
a rules section in a Stratego source file. It is
compiled along with the tree traversal code
(eval-attribute) to provide a filter to be used
in the evaluator. This code is then erased from
the parse table, to keep it as simple as possi-
ble. Only dependencies between synthesized
and inherited attributes rules are kept for each

10

node, to help the evaluation.

2.2.3 Evaluation

Figure 2.4: Making attribute more accessible

The evaluation of attributes is also performed
by a chain of tools, presented in Fig. 2.3. SGLR
is run using our tailored parse table to parse
a source file. The resulting AsFix tree has at-
tribute rules dependency and label tables as
production annotations. To ease the evalua-
tion, prepare-attributes moves them a more
accessible place as shown on Fig. 2.4. In ad-
dition, an empty list is added to accept future
attribute values.

Then eval-attributes, the evaluator com-
piled from the attribute rules, evaluates the tree
using dynamic rules. The traversal depends
on what is computed: when new attributes are
evaluated, its dependencies can be visited. Af-
terward, clean-attributes can transform the
tree back into regular AsFix as shown on the fig-
ure 2.5. The attribute values are put into produc-
tion rule annotations. This tree can be imploded
into an AST with attribute values as annotations
(attr-implode).

Figure 2.5: Back to regular AsFix

2.3 Discussion

This implementation of attribute grammars in
SDF was developped over a few weeks, in or-
der to provide a disambiguate-by-AG frame-
work for the Transformers project (2). Many
inspiring AG system exist; eventually our sys-
tem will be completely rewritten to address its
shortcomings.

2.3.1 Related Work

Of the many existing AG systems, a few caught
our attention.

JastAdd II (4) is a language implementation
tool supporting generation of compilers using
extended AGs: Rewritable Reference Attribute
Grammars (ReRAGs) and ordinary Java code.
To test their work they implemented a Java 1.4
compiler which is only four times slower than
the hand written javac compiler. They seem to
be using their AG to specialize their ASTs, a
(weak) form of disambiguation. Their AG sys-
tem is powerful and offers interesting features
to shorten the AGs.

Similarly, the UU-AG system (1), developped
at the University of Utrecht, features nice con-
cepts to factor rules. It also benefits from fea-
tures of its target language, Haskell, to spare
traversals.

2.3.2 Further Work

The current implementation of the attribute
evaluator was quickly written and had for only
goal to serve our needs. Hence, its implementa-
tion is naive and was designed to be as easy to
implement in Stratego as it could be. As a con-
sequence, the performance are poor, although
a thorough comparison with other system was
not done.

A new evaluator will be written to speed up
the evaluation. The current evaluator is fully
dynamic, although a lot of work can be done
statically: to control the data flow between at-
tributes an order of evaluation can be computed
from specificities of the grammar and the at-
tributes associated with.

The implementation language, and the lan-
guage into which attribute rules are written is
also subject to debate within our group. Some
members believe that if Stratego is powerful in
term rewriting, the evaluator does not need this

11

Figure 2.3: Evaluation process

specific feature and needs high speed in other
ones.

2.4 Conclusion

In this paper we presented a simple but effec-
tive implementation of AGs for possibly am-
biguous grammars in the world of SDF, us-
ing Stratego/XT as an implementation and ex-
ecution framework. Lots of issues remain to
be addressed: syntax improvement, additional
features, formalization, and comparison with
other information gathering schemes. This pro-
posal nevertheless suffice to fully disambiguate
ISO-C99, and even the most complex parts of
C++. We are now looking forward meeting in-
teresting in our system, and its development.

References

[1] A. Baars, D. Swierstra, and A. Lï£¡h. UU-AG
System, 1999. http://catamaran.labs.
cs.uu.nl/twiki/st/bin/view/Center/
AttributeGrammarSystem.

[2] V. David, A. Demaille, R. Durlin, and
O. Gournet. C/C++ disambiguation using
attribute grammars, May 2005. Communi-
cation to Stratego Users Day 2005.

[3] A. Demaille, T. Largillier, and N. Pouillard.
Esdf: A proposal for a more flexible sdf han-

dling, May 2005. Communication to Strat-
ego Users Day 2005.

[4] G. Hedin and E. Magnusson. JastAdd,
2001. http://www.cs.lth.se/Research/
ProgEnv/rags/.

[5] D. E. Knuth. Semantics of context-free lan-
guages. Journal of Mathematical System The-
ory, pages 127–145, 1968. Not read, but ac-
cording to all other references, it is the first
text on attribute grammars.

12

http://catamaran.labs.cs.uu.nl/twiki/st/bin/view/Center/AttributeGrammarSystem
http://catamaran.labs.cs.uu.nl/twiki/st/bin/view/Center/AttributeGrammarSystem
http://catamaran.labs.cs.uu.nl/twiki/st/bin/view/Center/AttributeGrammarSystem
http://www.cs.lth.se/Research/ProgEnv/rags/
http://www.cs.lth.se/Research/ProgEnv/rags/

Chapter 3

Spoofax: An Editor for Stratego

Karl Trygve Kalleberg

Abstract Major challenges remain for
Stratego to gain widespread adoption
within the domain of program transforma-
tion. Many of these challenges are not of a
research nature, and are therefore not pri-
oritized. One example of this is the ab-
sence of a good editor. In this article, we
introduce the Spoofax editor for Stratego
which provides syntax highlighing, code
completion and an outliner.

3.1 Introduction

The fundamental question Stratego was de-
signed to answer has been resolved: It is now
apparent that one can build a program transfor-
mation system which is both scalable and effi-
cient around just two operations; ’match’ and
’build’. Many of the challenges introduced by
more widespread adoption of Stratego are not
directly research. Consequently, they do not re-
ceive a high priority from the Stratego commu-
nity, and this turns out to be a serious hindrance
for wider adoption.

One of the most important factors in com-
puter language adoption is the availability of
good documentation, both tutorials, handbooks
and API documentation. Another factor is
tools, going from the traditional set of compil-
ers, debuggers, profilers and editors to more
domain-specific tools such as format checkers,
parsers and parser generators. In the later
years, the state of the basic Stratego toolchain
has advanced rapidly, but there has been one
group of tools which have received little or no
attention, namely the interactive ones. In par-
ticular, there has not been a good, language-
aware editor for Stratego. The fact that Stratego

is a domain-specific language, is not a valid ex-
cuse for this omission.

In this paper, we present the Spoofax editor
for Stratego, which provides syntax highligh-
ing, code completion and an outliner. We will
evaluate its feature set against the popular re-
quirements for a modern editor, with an eye
towards relevant research opportunities in this
domain.

3.1.1 Requirements for an Editor

Arguably, the absolute minimum of functional-
ity for a source code text editor is accurate syn-
tax highlighting. Apart from being pleasing to
the eyes, visual cues about many kinds of syn-
tactical errors is helpful in catching many kinds
syntax errors as early as possible. In present
day software engineering, expectations for ed-
itors are higher. Various kinds of functionality
requiring content awareness is necessary: out-
liner, code completion, structural navigations
and searches, realtime error reporting, docu-
mentation popups, file and module manage-
ment are all examples of this.

At the present time, we have only imple-
mented outlining and code completion, so our
discussion will mostly be restricted to these fea-
tures.

3.1.2 The Weave

The immediate reason for writing the editor was
scratching a personal itch. There is however,
a more fundamental problem this work helps
shed some light on, namely that of suitable pro-
gram representations. As the the editor requires
at least a rudimentary awareness of the pro-
gram it edits, the structure of the program must
be discovered and maintained incrementally by

13

Figure 3.1: This figure shows the editor with a
dropdown box listing possible completions for
the prefix ’make’. The S and R icons denote
strategis and rules, respectively.

the editor. We shall refer to this representation
by the term weave, to signify that it is allowed to
be an arbitrarily linked data structure, and not
merely a traditional abstract syntax tree.

3.2 The Spoofax Editor

The current Spoofax editor provides three main
features that we will discuss in turn: syntax
highlighting, outlining and code completion.

3.2.1 Syntax Highlighting

The source code is coloured as you type. This
made possible by a handcrafted rule-based, in-
cremental parser. This parser detects defini-
tions of rules, strategies and constructor; decla-
rations of module name and module imports;
comments, either one line (//), multiline (/*) or
for documentation (/**).

Each kind of syntactical element the parser
recognizes has formatting associated with it,
that gives details about the presentation of this
element; its color, whether it should be bold
or not, and whether it should be italic or not.
These settings are user-customizable. The edi-
tor window in Figure 3.1 shows an example of
this.

The Spoofax editor also has a similar syn-
tax highlighter for the SDF syntax definition
language, and color settings for identical kinds
of elements are shared between the languages.
The intention is to provide the user with a
consistently-looking environment for the most
important languages in the Stratego/XT eco-
sphere.

Figure 3.2: Parenthesis matching in Spoofax.
The red box indicates that { does not match).

Figure 3.3: The outliner in Spoofax. It is di-
vided into five sections, module, imports, con-
structors, rules, strategies, which may be col-
lapsed independently. Withing each section,
the entries appear in the order they are declared
in the source file.

Parenthesis Highlighting

A minor but highly userful feature of the ed-
itor is a real-time parenthesis highlighter. As
the user moves the cursor either directly with
the arrow keys, or by typing characters, paren-
theses in the immediate vicinity the cursor are
matched. If the cursor is after a closing paren-
thesis or in front of an opening parenthesis, its
matching counterpart is found and marked vi-
sually with a box. If the source contains is a
parenthesis mismatch, the cursor will turn red.
See Figure 3.2 for examples.

3.2.2 Outliner

An outliner is a view (a window) which shows
the main abstractions available inside a code
file. In Stratego, the outliner view shows all
constructor, rule and strategy declarations in-
side the file, in their declared order. Figure 3.3
provides an example.

The outline is retrieved directly from the
weave. As long as the weave is up to date with
respect to the textual source code, the outline is
accurate. In the present version, the weave is
updated every time the source code is saved to
file. The updating of the weave is done using an

14

"outliner" parser. As with the highlighter, the
outline parser is handwritten and rule-based.
The outline parser is different from the high-
lighter in that it is not incremental – it reparses
the entire document whenever the user saves,
and also keeps track of the sections (signature,
rules, strategies), to be able to tell constructor
and rule declarations apart. After the outline
parser has been run, its result is the new weave.
In the present version, the weave is not identical
to the AST, it only provides a rough outline of
the source code. This is a clear candidate for
future improvement. Whenever the weave is
changed, it will inform all registered listeners
about the change and request their update. The
outline view is a client to the weave, and will
therefore refresh itself upon save.

3.2.3 Code Completion

Code completion is an interactive aid which
shows possible textual completions for a given
prefix inside a given class of strings. In Strat-
ego, we have one class for strategies and rules,
and one for constructors. Figure 3.1 shows the
code completer in action.

The two classes are populated from the
weave. At the present time, they are only local
to a Stratego source code file: when completing
a strategy name, only strategy declarations oc-
curring inside the same file will be suggested.
This is another candidate for future improve-
ment, and requires extending the weave.

3.3 Discussion

Constructing language-aware editors is an old
craft, covered in detail by (1). In constructing
the current version, we have employed tested
and tried techniques by building the editor into
a commercially supported, freely available soft-
ware tool framework called Eclipse. Implemen-
tation was done entirely by one person in the
course of just under two full weeks. The code
size is about 4000 lines of Java code.

Experience from the implementation work,
we can conclude that construction and main-
tenance of the code weave is by far the tricki-
est part of the editor, and that this area needs
a lot more work. The major problems for fu-
ture improvement here are all related to pars-
ing. Functionality such as improved code com-
pletion, refactoring, incremental compilation,

source code searches and similar, is something
we want to write as Stratego programs, and in-
voke from inside the editor.

By looking at existing environments with
these capabilities, we can see that for such inter-
active features to be practical, they must work
in the presence of both (slightly) syntactically
and (highly) semantically invalid source files.
This is unfortunate, because it breaks squarely
with the requirements placed by software en-
gineering tools written in Stratego/XT, where a
minimal requirement is that the program parses
cleanly. Coming to grips with this will require
some engineering ingenuity.

For the syntax highlighter, we also want it to
behave sensibly in the presence of embedded
concrete syntax. Apart from embedded conrete
syntax (Stratego-in-Stratego in particular), the
syntax highlighter works sufficiently well for
everyday use.

3.4 Conclusion

We have presented Spoofax, an editor for Strat-
ego. It provides syntax highlighting, an out-
liner and code completion. The two latter fea-
tures are made possible by the presence of a
code weave, which is in essence is a struc-
tural model of the source code text, kept up to
date. The experience gained from the weave
is that once constructed, retrieving and pre-
senting the information, be it outlines, struc-
tural searches, code completion is surprisingly
straightforward. The conclusion is therefore
that future focus should be spent on the code
weave, and how it can be shared between Strat-
ego tools.

References

[1] T. Reps and T. Teitelbaum. The synthesizer
generator. In SDE 1: Proceedings of the first
ACM SIGSOFT/SIGPLAN software engineer-
ing symposium on Practical software develop-
ment environments, pages 42–48, New York,
NY, USA, 1984. ACM Press.

15

Chapter 4

ESDF: A Proposal for a More Flexible
SDF Handling

Akim Demaille
Thomas Largillier
Nicolas Pouillard

Abstract

By the means on its annotations, SDF seems
to be extensible: the user is tempted to
tailor its grammar syntax by adding new
annotation kinds. Unfortunately the stan-
dard SDF crunching tools from Strate-
go/XT do not support the extension of SDF,
and the user has to develop the whole set
of tools for her home grown extension(s).
We present the ESDF tool set that pro-
vides “weak” genericity with respect to the
grammar grammar: support for arbitrary
SDF annotations. We would like to con-
tribute it to Stratego/XT since its compo-
nents subsume their stock peers. Finally,
we present a set of four extensions we find
useful.

4.1 Introduction

SDF (3) is modular, and extensible thanks to
its support for annotations. The combination
of these two features makes SDF a unique
place where additional grammar features can
be added, immediately taking advantage of
all the other SDF features. Examples of em-
beddable data include pretty-print directives,
extended AST generation directives, attribute
rules, disambiguation tags, in addition to the
“official” support for simple disambiguation
filters, AST constructors, etc. With such self-
contained ESDF files, mixing grammar mod-
ules is straightforward, and the user can focus

on its extensions without having to bother with
different concepts of modules.

Nevertheless aggregating several unrelated
aspects of a grammar within a single file vio-
lates the principle of separation of concerns: a
given facet of a grammar is surrounded with
unrelated, distracting, material.

This contradiction is actually very compa-
rable to a well-known object oriented design
issue: given a family of related classes and
a group of functions to implement on them,
what is the best design? Classical Object Ori-
ented Programming (OOP) recommends to im-
plement the functions as methods. This eases
the addition of new objects, but makes the addi-
tion of functions tedious: each class (read class
implementation file) must be edited. The De-
sign Pattern (DP) approach advocates the intro-
duction of Visitors (objects that implement the
functions) and the extension of the classes to
cooperate with any kind of Visitor. The imple-
mentation of new functions is straightforward
— implement new Visitors —, but the addition
of new classes requires the edition of all the
existing visitors. In fact there is not one right
solution, both axis to read the matrix “classes ×
features” has its advantages: if the classes are
stable and in fixed number, use Visitors (DP);
conversely, if the functions are stable and in
fixed number, sticks to methods1 (OOP).

The same tension exists when working with
grammars. If your grammar modules (classes)
are versatile and numerous, then encapsula-
tion (OOP) is more productive than separa-
tion of concerns: the grammar-centric vision is

1Actually this tension is at the origin of the inception
of Aspect Oriented Programming (AOP), but it is unclear
what the parallel would be in the context of SDF.

16

best suited. Conversely, stable grammars with
well established features call for separation of
concerns (DP): one feature should be isolated
from unrelated issues (visitors), and the feature-
centric approach is more suitable.

Because we work with several unstable gram-
mar modules, because simple composition of
modules eases our tasks, we wrote the ESDF set
of tools to convert from the all-in-one paradigm
to the separation-of-concern approach. ESDF
should be enriched with reverse conversions,
eventually providing the user with an easy
means to zip and unzip grammar and grammar
annotations.

We would like to contribute ESDF to Strate-
go/XT, since there is quite some code duplica-
tion between ESDF filters and their SDF peers,
which they subsume. In the following, the com-
ponents of ESDF are presented, and then a set
of local SDF extensions we depend upon.

4.2 ESDF: An SDF Chain Ro-
bust to New Annotations

ESDF is a set of simple tools that provide generic
support to SDF annotations.

4.2.1 Packing Modules: pack-esdf

The regular pack-sdf tool takes a grammar
module as argument, gathers all its dependen-
cies and produces a single big self-contained
grammar file. If modularity was considered as
syntactic sugar, then pack-sdf is its desugaring
pass: none of the tools downstream need to sup-
port modularity. Unfortunately pack-sdf does
not support annotation plug-ins: this is what
pack-esdf addresses. It supports an additional
option to be given the actual SDF grammar to
use.

4.2.2 Filtering Annotations Out:
sdf-strip

This simple tool strips (or preserves) selected
annotations from a grammar. Of course, as
pack-esdf, it needs to be given the SDF gram-
mar used (unless it is the stock grammar).

4.2.3 Parsing Extended Grammars:
parse-esdf

One would like to handle ESDF grammars
seamlessly, like regular SDF grammars. There-
fore it is the SDF parser that needs to be
extended, or rather, extensible. Even the
two aforementioned tools (pack-esdf and
sdf-strip) need to parse ESDF grammars, and
therefore demand a separated parser to avoid
code duplication.

This tool is parse-esdf, an extension of
parse-sdf. Based on the same ideas used to im-
plement (foreign) concrete syntax within Strat-
ego, parse-esdf looks for a foo.meta file for
each foo.sdf file. This meta file describes the
actual SDF grammar used.

This one tool factored several of the tools we
had, since they all addressed the particular ex-
tension we were working on (BoxedSDF, Det-
Gen etc.).

4.3 The lrde-syntax bundle

In addition to the general framework to extend
SDF, we propose a set of specific extensions de-
signed to support the grammar-centric vision.

4.3.1 Pretty-Printing: boxedsdf

Embedding the GPP pretty-printing tables in
the grammar eases the maintenance, and pro-
vides a more comfortable environment to edit
these tables: one can use names instead of num-
bers etc. See Fig. 4.1.

4.3.2 Disambiguation Tags:
sdf-detgen

It is convenient, in particular to write disam-
biguation test cases or to check by human the
result of a disambiguation pass, to enrich an
ambiguous grammar with special comments to
specify the correct alternative. For instance, in
C++ namespace A {} is ambiguous: its actual
nature depends whether the namespace name A
was met for the first time (is “original”) or not.
Therefore parsing the following:

namespace A {}
namespace A {}

17

%% 7.3.1 [namespace.def]
"namespace" Identifier "{" NamespaceBody "}" → OriginalNamespace
Definition

{pp (V[H[KW["namespace"] Identifier]
V is=2[KW["{"]

NamespaceBody]
KW["}"]])}

In BoxedSDF, one can use symbol names to denote nonterminals (e.g., Identifier and NamespaceBody in
the first rule) or labels, instead of _1 as with GPP.

Figure 4.1: BoxedSDF sample

The following piece of C++ grammar extensions introduces special comments that can be used to disam-
biguate explicitly the “first occurrence of namespace name” issue.

"namespace" "/*<org>*/" Identifier "/*</org>*/" "{" NamespaceBody "}"
→ OriginalNamespaceDefinition

"/*<ns>*/" Identifier "/*</ns>*/" → OriginalNamespaceName

"/*<org>*/" | "/*</org>*/" → LAYOUT {reject}
"/*<ns>*/" | "/*</ns>*/" → LAYOUT {reject}

These rules were generated by detgen from the following annotated SDF rules. The first rules disambiguate
the type names, and the last reject the parsing of the disambiguating tags as comments.

%% 7.3.1 [namespace.def]
Identifier → OriginalNamespaceName {dettag("ns")}
"namespace" Identifier "{" NamespaceBody "}"

→ OriginalNamespaceDefinition {dettag("org", 1)}
"namespace" OriginalNamespaceName "{" NamespaceBody "}"

→ ExtensionNamespaceDefinition

Figure 4.2: Disambiguation annotations.

results in the following disambiguated text,
printed with disambiguation comments (org
stands for original, and ns for namespace):

namespace /*<org>*/A/*</org>*/ {}
namespace /*<ns>*/A/*</ns>*/ {}

The generation of such comments and the rules
that recognize them is straightforward. The
most adequate place to specify these comments
is the grammar, as additional dettag annota-
tions (Fig. 4.2).

4.3.3 AG: sdf-attribute

A more ambitious extension of SDF consists
in supporting AGs. Two companion papers
present this topic in depth: (author?) (1) de-
tail the evaluation mechanisms, and (author?)

(2) demonstrate how AGs can be used to disam-
biguate C and C++. A simple sample follows.

e1:Exp "+" e2:Exp → Exp
{attributes(eval:
root.value := <add> (e1.value,

e2.value))}

4.3.4 Flexible AST generation:
sdf-astgen

Thecons annotations relieves the SDF user from
having to implement an abstract syntax gram-
mar: it is extracted from the concrete gram-
mar. As long as the concrete syntax is “natural”,
the resulting ASTs are lightweight and pleasant
to process. But if the grammar is entangled
with Yacc idiosyncrasies, or disambiguates “by
hand” instead of relying on precedence and as-

18

e:Expr "+" t:Term -> Expr { ast(BinOp(Plus, e, t)) }
t:Term -> Expr { ast(t) }
t:Term "*" f:Fact -> Term { ast(BinOp(Mult, t, f)) }
f:Fact -> Term { ast(f) }
n:NUM -> Fact { ast(Int(n)) }
"(" e:Expr ")" -> Fact { ast(e) }

Constructors such as Infix, Mult . . . are freely choosen by the user.

Figure 4.3: More flexible AST generation: the ast annotation

sociativity directives, then the ASTs look like
PTs... Some advocate the de-Yaccification of
the grammar, but when this is not possible or
desirable, one would like a more powerful cons
annotation.
sdf-astgen allows the user to specify her ab-

stract syntax, using an extended cons anno-
tation: ast (Fig. 4.3). This enables the ex-
change of ASTs between closely related, but
different, grammars. For instance we plan to
use sdf-astgen to bridge the gap between our
(standard) C++ASTs, and CodeBoost’s tailored
ASTs.

4.4 Conclusion

We emphasized that self-contained grammar
modules can be the most productive paradigm
depending on the actual constraints of the
project at hand. Because regular Stratego/XT
tools do not support SDF annotation variations,
we propose to replace them with the ESDF set of
tools that support genericity with respect to an-
notation kinds. We also submitted four such ex-
tensions that are useful in our framework. Inter-
esting extensions to this work include the sup-
port of more ambitious changes in the grammar
of the grammars, and the exploration of means
to provide easy composition of several differ-
ent aspects of grammar modules while keeping
concerns separated.

References

[1] A. Borghi, V. David, A. Demaille, and
O. Gournet. Implementing attributes in sdf,
May 2005. Comm. to Stratego Users Day
2005.

[2] V. David, A. Demaille, R. Durlin, and
O. Gournet. C/C++ disambiguation using

attribute grammars, May 2005. Communi-
cation to Stratego Users Day 2005.

[3] E. Visser. A family of syntax definition for-
malisms. In M. G. J. van den Brand et al., edi-
tors, ASF+SDF’95. A Workshop on Generating
Tools from Algebraic Specifications, pages 89–
126. Technical Report P9504, Programming
Research Group, University of Amsterdam,
May 1995.

19

	C/C++ Disambiguation Using Attribute Grammars
	Introduction
	The Transformers Project
	C++
	Semantics Driven Disambiguation

	Disambiguating with ags
	Ambiguous synthesis
	Template instances

	Discussion
	Results
	Others solutions
	Further works

	Conclusion

	Implementing Attributes in SDF
	Introduction
	Current implementation
	Syntax
	Evaluator Generation
	Evaluation

	Discussion
	Related Work
	Further Work

	Conclusion

	Spoofax: An Editor for Stratego
	Introduction
	Requirements for an Editor
	The Weave

	The Spoofax Editor
	Syntax Highlighting
	Outliner
	Code Completion

	Discussion
	Conclusion

	ESDF: A Proposal for a More Flexible SDF Handling
	Introduction
	esdf: An sdf Chain Robust to New Annotations
	Packing Modules: pack-esdf
	Filtering Annotations Out: sdf-strip
	Parsing Extended Grammars: parse-esdf

	The lrde-syntax bundle
	Pretty-Printing: boxedsdf
	Disambiguation Tags: sdf-detgen
	ag: sdf-attribute
	Flexible ast generation: sdf-astgen

	Conclusion

