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Abstract

The representation of independence relations generally builds upon the well-known semi-graphoid ax-
ioms of independence. Recently, a representation has been proposed that captures a set of dominant
statements of an independence relation from which any other statement can be generated by means of the
axioms; the cardinality of this set is taken to indicate the complexity of the relation. Building upon the
idea of dominance, we introduce the concept of stability to provide for a more compact representation
of independence. We give an associated algorithm for establishing such a representation. We show that,
with our concept of stability, many independence relations are found to be of lower complexity than with
existing representations.

1 Introduction

The concept of independence plays a key role in probabilistic systems, since effective use of knowledge
about independences allows these systems to deal with the computational complexity of their problem-
solving tasks. An independence relation on the set of variables of such a system is a complete description
of the independences among the variables concerned. It thus captures all independences conditional on any
possible available evidence and therefore specifies all independences that could possibly arise. In view of a
specific problem-solving process, at any time during reasoning, only some of the independences from the
relation apply. These are the independences that pertain to the current context of available evidence.
The concept of independence has been a subject of extensive studies. Pearl and his co-researchers were
among the first to formalise properties of independence in an axiomatic system and to develop a logic
for independence [4, 5]. Their semi-graphoid axioms provide for computing new independence statements
from a basic set of statements and allow for verifying whether a new statement logically follows from a
given set of independence statements.
The representation of independence relations generally builds upon the semi-graphoid axioms of indepen-
dence. The basic idea is to capture a number of statements from a relation explicitly and let the other
statements be defined implicitly by the axioms. Recently, Studený [7] proposed a new representation based
upon this idea, that captures the so-called dominant statements of a relation. He further introduced a con-
cept of complexity for independence relations that is defined as the least cardinality of a generating set of
statements.
In this paper we further elaborate on the idea of capturing an independence relation by its dominant state-
ments. We introduce the concept of stability of independence and say that two sets of variables are stably
independent if they are independent in the current context of available evidence and remain to be so as the
context grows. We then show that by exploiting the concept of stability, a substantial reduction in size of
the set of dominant statements for a given relation can be achieved.
The paper is organised as follows. In Section 2, we briefly review the semi-graphoid axioms of indepen-
dence. In Section 3, we introduce our concept of stability. In Section 4, we address the representation of an
independence relation by means of sets of dominant statements. We present an algorithm for establishing
such a set based upon our concept of stability in Section 5. We address the complexity of independence
relations in Section 6. The paper ends with our concluding observations in Section 7.
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2 Independence Revisited

We consider a finite index set N = {1, . . . , n}, n ≥ 1, where each index denotes a statistical variable.
The set of ordered triplets 〈A,B|C〉 of pairwise disjoint subsets of N , where A and B are non-empty, is
denoted by T (N). The symmetric image of a triplet u = 〈A,B|C〉 is the triplet 〈B,A|C〉; it is denoted by
sym(u). For simplicity of notation we will often write AB to denote the union A∪B. We will also use the
notation I〈A,B|C〉 to indicate 〈A,B|C〉 ∈ I. A triplet 〈A,B|C〉 will be taken to denote that A and B are
independent given C.
We review the four basic axioms of independence [4].

Definition 2.1 A ternary relation I on N is a semi-graphoid independence relation, or semi-graphoid for
short, if it satisfies the following four axioms:
A1: I〈X,Y |Z〉 → I〈Y,X|Z〉;

A2: I〈X,Y W |Z〉 → I〈X,Y |Z〉 ∧ I〈X,W |Z〉;

A3: I〈X,Y W |Z〉 → I〈X,Y |WZ〉;

A4: I〈X,Y |Z〉 ∧ I〈X,W |Y Z〉 → I〈X,Y W |Z〉;
for all sets of variables X , Y , Z, W ⊂ N .

For a semi-graphoid independence relation I these axioms with each other convey the idea that learning
irrelevant information does not alter the independences among the variables discerned. The four axioms
are termed the symmetry (A1), decomposition (A2), weak union (A3), and the contraction axiom (A4),
respectively. The axioms have been proven logically independent [4]. The term semi-graphoid refers to the
representation of independence relations in graphical structures [3, 4]. The axioms are therefore sometimes
referred to as the semi-graphoid axioms.

Definition 2.2 Let I be a ternary relation on N . Then, sem(I) is the closure of I under the semi-graphoid
axioms, that is,

sem(I) =
⋂

I ⊂M ⊂ T (N)
M is a semi-graphoid

M.

For a given set I of triplets, sem(I) thus is the set of all triplets in T (N) that can be derived by application
of the semi-graphoid axioms to the elements of I. Note that for any I ⊂ T (N), sem(I) is a semi-graphoid
independence relation. Also sem(I) = I iff I is a semi-graphoid.
In [6] Studený defined a concept of dominance for triplets.

Definition 2.3 Let 〈T,U |W 〉, 〈X,Y |Z〉 ∈ T (N). We say that 〈X,Y |Z〉 dominates 〈T,U |W 〉, denoted
〈T,U |W 〉 ≺ 〈X,Y |Z〉, if T ⊂ X , U ⊂ Y , and Z ⊂ W ⊂ XY Z. Let I be a ternary relation on N . A
triplet in I that is not dominated by any other triplet in I is termed maximally dominant in I.

We have from the definition that u ≺ v iff u can be derived from v by application of the symmetry,
decomposition, and weak union axioms, or equivalently, if u ∈ sem({v}). This observation generalises to
the following lemma.

Lemma 2.4 Let I ⊂ T (N) be a semi-graphoid independence relation on N . Let D ⊂ I be the set of all
triplets that are maximally dominant in I. Then, sem(D) = I.

Proof. Let v ∈ I. Then there exists a u ∈ D, such that v ≺ u, and we thus have v ∈ sem({u}) ⊂ sem(D),
from which we conclude I ⊂ sem(D). Since D ⊂ I, we further have sem(D) ⊂ sem(I) = I. 2
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3 Stable and Unstable Independence

An independence relation can be viewed as a static description of the independences among the variables
concerned, unrelated to any specific reasoning process. At any time during reasoning, however, only some
of the triplets from the relation apply to the current situation that is described by the set of variables for
which information is available. As inference progresses, learning new information causes the set of relevant
triplets to change dynamically. Some of the independences, however, will remain to hold. We say that these
independences are stable.

Definition 3.1 Let I ⊂ T (N) be a semi-graphoid independence relation on N . Then,
• a triplet I〈X,Y |Z〉 is called stable in I if I〈X,Y |Z ′〉 for all sets Z ′ with Z ⊂ Z ′; if XY Z = N ,

then I〈X,Y |Z〉 is called trivially stable;

• a triplet I〈X,Y |Z〉 is called unstable in I if it is not stable in I.
The set of all triplets that are stable in I is called the stable part of I, and will be denoted by SI; the set of
all unstable triplets is called the unstable part of I, denoted UI .

We use the notation SI〈A,B|C〉 to denote 〈A,B|C〉 ∈ SI .
The stable part of an independence relation has a highly regular structure. In this section, we state various
properties of stable independence that we will exploit in the sequel. We begin by observing that the stable
part of a semi-graphoid independence relation adheres to the four semi-graphoid axioms.

Lemma 3.2 Let I ⊂ T (N) be a semi-graphoid independence relation on N and let SI be its stable part.
Then, SI satisfies the axioms
S1: SI〈X,Y |Z〉 → SI〈Y,X|Z〉;

S2: SI〈X,Y W |Z〉 → SI〈X,Y |Z〉 ∧ SI〈X,W |Z〉;

S3: SI〈X,Y W |Z〉 → SI〈X,Y |WZ〉;

S4: SI〈X,Y |Z〉 ∧ SI〈X,W |Y Z〉 → SI〈X,Y W |Z〉;
for all sets of variables X , Y , Z, W ⊂ N .

The proof of the lemma is a straightforward application of Definition 3.1 and is therefore omitted.
From the previous lemma, we have that the stable part of a semi-graphoid independence relation is a
semi-graphoid independence relation by itself. As a consequence, there exist semi-graphoid independence
relations of which the unstable part is empty; such relations are termed ascending [2].
In addition to the properties reviewed so far, the stable part of an independence relation satisfies the property
of strong union stated in the following lemma [4]. The lemma follows directly from the definition of stable
independence.

Lemma 3.3 Let I ⊂ T (N) be a semi-graphoid independence relation on N and let SI be its stable part.
Then, SI satisfies the axiom
S5: SI〈X,Y |Z〉 → SI〈X,Y |ZW 〉
for all sets of variables X , Y , Z, W ⊂ N .

We note that the weak union axiom is implied for stable independence by the strong union and the decom-
position axioms. The strong union axiom for stable independence now implies the following property.

Lemma 3.4 Let I ⊂ T (N) be a semi-graphoid independence relation on N and let SI be its stable part.
Then,

SI〈X,Y |Z〉 ∧ SI〈X,W |Z〉 → SI〈X,Y W |Z〉

for all sets of variables X,Y, Z,W ⊂ N .

Proof. We assume that SI〈X,Y |Z〉 and SI〈X,W |Z〉 for some sets of variables X,Y, Z,W ⊂ N . From
SI〈X,W |Z〉, we find that SI〈X,W |Y Z〉 by the strong union property for stable independence. From
SI〈X,Y |Z〉 and SI〈X,W |Y Z〉 we conclude SI〈X,Y W |Z〉 by the contraction property. 2

3



From the property stated in the previous lemma, we have that the decomposition axiom actually is a bi-
implication for stable independence. The property from Lemma 3.4 is therefore sometimes referred to as
the composition property for stable independence [4]. In the sequel we refer to the five axioms S1–S5 as
the stable semi-graphoid axioms.
Analogous to the definitions of semi-graphoid closure and dominance we now define the stable semi-
graphoid closure and the concept of stable dominance.

Definition 3.5 Let I be a ternary relation on N . Then, stab(I) is the closure of I under the stable semi-
graphoid axioms, that is,

stab(I) =
⋂

I ⊂M ⊂ T (N)
M is a stable semi-graphoid

M.

From the definition we have that stab(I) = I iff I is a stable semi-graphoid independence relation.

Definition 3.6 Let 〈T,U |W 〉, 〈X,Y |Z〉 ∈ T (N). We say that 〈X,Y |Z〉 s-dominates 〈T,U |W 〉, denoted
〈T,U |W 〉 ≺≺ 〈X,Y |Z〉, if T ⊂ X , U ⊂ Y , and Z ⊂ W . Let I be a ternary relation on N . A triplet that
is not s-dominated by any other triplet in I is termed maximally s-dominant in I.

We have from the definition that u ≺≺ v iff u can be derived from v by application of the symmetry,
decomposition and strong union axioms. Note that we define the concept of s-dominance for arbitrary
triplets; it is not restricted to stable semi-graphoids. In the remainder of this paper we shall refer to ordinary
dominance, as defined in Definition 2.3, by the term o-dominance. From their definitions it is immediate
that o-dominance implies s-dominance.

Lemma 3.7 For all u, v ∈ T (N), if u ≺ v, then u ≺≺ v.

The reverse property does not hold. Consider for instance 〈X,W |Y Z〉 ≺≺ 〈X,W |Y 〉. The concept of s-
dominance now is related to the stable semi-graphoid closure in the same way as o-dominance is related to
the semi-graphoid closure.

Lemma 3.8 Let I ⊂ T (N) be a stable semi-graphoid independence relation on N . Let D ⊂ I be the set
of all triplets that are maximally s-dominant in I. Then, stab(D) = I.

The proof is analogous to that of Lemma 2.4.

4 Representation of Independence

In his work on complexity of representation Studený [7] exploits the concept of o-dominance to construct
a representation of an independence relation that is more efficient than a list of the relation’s triplets. His
representation is based on the idea of Lemma 2.4 that an independence relation I is uniquely determined by
its setD of o-dominant triplets. TypicallyD contains fewer triplets than I. In this paper we further elaborate
on this idea of representing an independence relation by its dominant triplets and allow s-dominant triplets
to represent part of I. We shall show that this leads to an even smaller number of triplets to represent I.
In order to construct dominant triplets from a given set of triplets we introduce two operators. The ?-
operator for constructing a (potentially) new o-dominant triplet for the semi-graphoid closure of two inde-
pendence statements u and v was defined by Studený.

Definition 4.1 Let u = 〈A,B|C〉, v = 〈I, J |K〉 ∈ T (N). If C\IJK = ∅, K\ABC = ∅, A ∩ I 6= ∅,
and (J\C) ∪ (B ∩ IJK) 6= ∅, then u ? v is defined as

u ? v = 〈A ∩ I, (J\C) ∪ (B ∩ IJK)|C ∪ (A ∩K)〉.

Otherwise, u ? v is undefined.
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Figure 1: Comparison of the ?- and ¦-operators.

The ?-operator for constructing new triplets has some interesting properties. A semi-graphoid independence
relation is closed under the ?-operator: since for u, v ∈ I, the ?-operator basically applies the contraction
axiom to two triplets that are o-dominated by u and v, we have u ? v ∈ I. The ?-operator further defines
the set of all o-dominant triplets for an independence relation.

Lemma 4.2 Let D ⊂ T (N) be a set of triplets that satisfies the following two properties:
• ∀u∈D : sym(u) ∈ D;

• ∀u,v∈D : if u ? v is defined, then ∃w∈D : u ? v ≺ w.
Then, the set I = {u ∈ T (N) | ∃v∈D : u ≺ v} is a semi-graphoid independence relation on N .

For a proof of the lemma we refer the reader to [7]. A crucial step in the proof is the observation that the
contraction axiom preserves o-dominance: if 〈X,Y |Z〉 ≺ u and 〈X,W |Y Z〉 ≺ v, then 〈X,WY |Z〉 ≺
u?v. Apart from u and v, therefore, u?v is the only potentially o-dominant statement for sem({u, v}). This
property does not hold for s-dominance: 〈X,Y |Z〉 ≺≺ u and 〈X,W |Y Z〉 ≺≺ v do not imply 〈X,WY |Z〉 ≺
≺ u?v. To obtain a similar property as Lemma 4.2 for s-dominance that can be used in determining the set
of all maximally s-dominant triplets, we introduce a new operator. This operator constructs a (potentially)
new s-dominant triplet from two given triplets.

Definition 4.3 Let u = 〈A,B|C〉, v = 〈I, J |K〉 ∈ T (N). If A ∩ I 6= ∅ and (J\C) ∪ (B\J) 6= ∅, then
u ¦ v is defined as

u ¦ v = 〈A ∩ I, (J\C) ∪ (B\J)|C ∪ (K\B)〉.

Otherwise, u ¦ v is undefined.

The ?- and ¦-operators are depicted schematically in Figure 1; the ?-operator is represented on the left, and
the ¦-operator on the right. In these diagrams the first argument 〈A,B|C〉 of the operator is represented by
columns, and the second argument 〈I, J |K〉 by rows. The set D represents N\ABC, and L = N\IJK.
Each square in the figure represents an intersection of specific sets from the two arguments. For instance,
the square at the intersection of column B and row K represents the variables of N that in the first operator
argument are allocated to the set B and in the second argument to the set K. All the variables of N are allo-
cated to one of the sixteen squares. The results of applying the different operators to the two arguments are
depicted by the three different print patterns that are assigned to the squares. The two sets of conditionally
independent variables — i.e. the first two sets in the triplets of u ? v and u ¦ v — are denoted by a vertical
and a horizontal pattern, respectively, while the conditioning variables are represent by the solid black.
Note that, compared to the ?-operator, the ¦-operator does not require C\IJK = ∅, nor K\ABC = ∅.
If C\IJK = ∅ and K\ABC = ∅, however, we have u ? v ≺≺ u ¦ v.
We note that the result of the ¦-operator is only meaningful when it is applied to triplets from the stable
part of an independence relation. When applied to ordinary triplets, the ¦-operator constructs a new triplet
for which we cannot decide if it is in the relation. We now show that the stable part is closed under the
operation.

Lemma 4.4 Let I be a stable semi-graphoid independence relation on N . If u, v ∈ I, then u ¦ v ∈ I.
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Proof. Let u = 〈A,B|C〉, v = 〈I, J |K〉 ∈ I. Furthermore, let X = A ∩ I , Y = B\J , Z = C ∪ (K\B)
and W = J\C. With these definitions, we find that 〈X,Y |Z〉 ≺≺ 〈A,B|C〉 and 〈X,W |Y Z〉 ≺≺ 〈I, J |K〉.
The triplets 〈X,Y |Z〉 and 〈X,W |Y Z〉 are therefore in I. The contraction axiom now gives 〈X,WY |Z〉 =
u ¦ v ∈ I. 2

With the ¦-operator we can now define the set of all s-dominant triplets for the stable part of an indepen-
dence relation.

Lemma 4.5 Let D ⊂ T (N) be a set of triplets that satisfies the following two properties:
• ∀u∈D : sym(u) ∈ D;

• ∀u,v∈D : if u ¦ v is defined, then ∃w∈D : u ¦ v ≺≺ w.
Then, the set G = {u ∈ T (N) | ∃v∈D : u ≺≺ v} is a stable semi-graphoid independence relation on N .

Proof. From its definition it is immediate that G is closed under application of the symmetry, decomposition
and strong union axioms. It remains to be shown that G is closed under application of the contraction axiom.
Suppose that for some sets of variables W , X , Y , and Z, we have u = 〈X,Y |Z〉, v = 〈X,W |Y Z〉 ∈ G. By
definition there exist a triplet 〈A,B|C〉 ∈ D that s-dominates u and a triplet 〈I, J |K〉 ∈ D that s-dominates
v. For these s-dominant triplets we have

X ⊂ A, Y ⊂ B,C ⊂ Z, (1)

X ⊂ I,W ⊂ J,K ⊂ Y Z. (2)

We thus have that X ⊂ A∩I . Since X 6= ∅ by definition, we have A∩I 6= ∅. Since W and Z are disjoint,
moreover, (1) and (2) imply W ⊂ J\C. Since Y ⊂ B, we further have Y ∩ C = ∅. With (1) we find that
Y ⊂ (B\J) ∪ (B ∩ J) ⊂ (B\J) ∪ (J\C) 6= ∅. We conclude that 〈A,B|C〉 ¦ 〈I, J |K〉 exists. Therefore,
there exists a w ∈ D that s-dominates this ¦-product. From (1) and (2) we now further find that

K\B ⊂ Y Z\B ⊂ BZ\B = Z\B ⊂ Z.

With C ⊂ Z we find C ∪ (K\B) ⊂ Z. So,

〈X,WY |Z〉 ≺≺ 〈A,B|C〉 ¦ 〈I, J |K〉 ≺≺ w.

We conclude that 〈X,WY |Z〉 ∈ G and hence that G is closed under application of the contraction axiom.
2

5 Closure Algorithm

Based upon his concept of o-dominance and Lemma 4.2, Studený [7] defined an algorithm for constructing
a compact representation of the semi-graphoid closure of a given set of independence statements. It is
based on the idea of repeated application of the ?-operator and removal of non-o-dominant triplets. By
building upon the ?-operator the algorithm has no need to generate the entire closure before selecting the
o-dominant triplets that serve to characterise the independence relation. Our algorithm extends on this idea
by exploiting the more compact representation for the stable part of the independence relation.

5.1 Procedure

The algorithm starts with a set MS of stable triplets and a set MU of triplets for which stability has not
been established. After each iteration, MS contains potentially s-dominant triplets of the closure and MU

contains potentially o-dominant triplets. The triplets between iterations are potentially dominant, in the
sense that they have not yet been shown to be dominated by other triplets in the closure.
In each iteration the following steps are performed:

1a: For all u ∈MU , if sym(u) /∈MU , then add sym(u) to MU .

1b: For all u ∈MS , if sym(u) /∈MS , then add sym(u) to MS .

6



2a: For all u, v ∈MU , if u ? v is defined and u ? v /∈MU , then add u ? v to MU .

2b: For all u, v ∈MS , if u ¦ v is defined and u ¦ v /∈MS , then add u ¦ v to MS .

3a: For all u = 〈A,B|C〉 ∈ MU , v = 〈I, J |K〉 ∈ MS , if K\ABC = ∅, then add 〈A,B|C〉 ?
〈I ′, J ′|K ′〉 to MU for all triplets 〈I ′, J ′|K ′〉 ≺≺ 〈I, J |K〉 with C\I ′J ′K ′ = ∅ and K ′\ABC = ∅.

3b: For all u = 〈A,B|C〉 ∈ MS , v = 〈I, J |K〉 ∈ MU , if C\IJK = ∅, then add 〈A′, B′|C ′〉 ?
〈I, J |K〉 to MU for all triplets 〈A′, B′|C ′〉 ≺≺ 〈A,B|C〉 with C ′\IJK = ∅ and K\A′B′C ′ = ∅.

4: Check MS for new implicit s-dominant triplets.

5a: For all u ∈MU , if there exists a v ∈MU ∪MS that o-dominates u, then remove u from MU .

5b: For all u ∈MU ∪MS , if there exists a v ∈MS that s-dominates u, then remove u fromMU ∪MS .

The procedure is halted when both MU and MS remain constant between two iterations.

5.2 Elaboration on Step 3

In the closure algorithm of Studený the ?-operator is applied to any pair of potentially o-dominant triplets
u and v ∈ M, where M between iterations is known to include all o-dominant triplets identified so far.
In our algorithm, not all such o-dominant triplets are explicitly represented in MU ∪MS : an o-dominant
triplet that is s-dominated by a triplet inMS , is effectively removed fromMU . Step 3 of our algorithm now
serves to construct new potentially o-dominant triplets by applying the ?-operator to one o-dominant triplet
from MU that is not s-dominated and another o-dominant triplet that is s-dominated by a triplet in MS .
Note that the s-dominated triplet is not included in MU and therefore needs to be explicitly reconstructed.
We further note that it is not necessary to apply the ?-operator to any pair of s-dominated triplets, since the
result will always be s-dominated by the result of applying the ¦-operator on their s-dominating triplets;
this situation is already fully covered by Step 2b of our algorithm.
Step 3a
We consider Step 3a, with u = 〈A,B|C〉 ∈ MU and v = 〈I, J |K〉 ∈ MS . From the previous observa-
tions, we have that all o-dominant triplets v′ = 〈I ′, J ′|K ′〉 ≺≺ 〈I, J |K〉 must be reconstructed. For these
triplets u ? v′ must be calculated and, if defined, the result must be added to MU . We show that this can be
done efficiently.
From the definitions of s-dominance and the ?-operator, we have that all triplets 〈I ′, J ′|K ′〉 satisfying

I ′ ⊂ I, J ′ ⊂ J,K ′ ⊃ K, and (3)

C\I ′J ′K ′ = ∅ = K ′\ABC. (4)

must be constructed.
If C\IJK 6= ∅, then K ′ has to be a superset of K0 = K ∪ (C\IJK). Note that K0 is the smallest (with
respect to set inclusion ordering) superset of K for which 〈I, J |K0〉 ≺≺ 〈I, J |K〉, C\IJK0 = ∅, and
K0\ABC = ∅. If C\IJK = ∅, then K0 = K. For ease of notation, we now define

〈X,Y |Z〉 := 〈A,B|C〉 ? 〈I, J |K0〉 (5)

We address three conditions for I ′, J ′ and K ′ in (3) separately:
• Consider I ′ ⊂ I . Since C\I ′JK0 must be empty, reduction of I to I ′ is achieved by removing variables
from I\C. Referring again to Figure 1, we have that removing a variable r ∈ I ∩ A from I amounts to
moving r from I ∩A to L ∩A. So,

〈A,B|C〉 ? 〈I\{r}, J |K0〉 = 〈X\{r}, Y |Z〉,

which gives an extra triplet to add to MU . Removing a variable r ∈ I ∩ B from I also results in an extra
triplet for MU :

〈A,B|C〉 ? 〈I\{r}, J |K0〉 = 〈X,Y \{r}|Z〉.

Finally, removing a variable r ∈ I ∩D does not result in an extra triplet for MU :

〈A,B|C〉 ? 〈I\{r}, J |K0〉 = 〈X,Y |Z〉.
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• Consider J ′ ⊂ J . Analogous to the situation above we have that C\IJ ′K0 must be empty. Reducing J
to J ′ therefore is achieved by removing variables from J\C. Removing a variable r ∈ J\C again gives an
extra triplet for MU :

〈A,B|C〉 ? 〈I, J\{r}|K0〉 = 〈X,Y \{r}|Z〉.

• Finally, we consider K ′ ⊃ K0. K ′ has to satisfy both conditions C\IJK ′ = ∅ and K ′\ABC = ∅. This
implies that K can be extended from K0 to K ′ only if a variable r is added from L\C. Adding a variable
from L ∩A is achieved by moving it from L ∩A to K ∩A. This gives an extra triplet to add to MU :

〈A,B|C〉 ? 〈I, J |K ∪ {r}〉 = 〈X,Y |Z ∪ {r}〉.

If we add a variable from r ∈ L ∩B, then this gives an extra triplet for MU :

〈A,B|C〉 ? 〈I, J |K ∪ {r}〉 = 〈X,Y ∪ {r}|Z〉.

Extending K to K ′ by adding a variable r ∈ L ∩ D is not permitted, since then K ′\ABC is no longer
empty. It is also possible to extend K0 by moving a variable from I or from J to K. The resulting triplet
would not be o-dominant, however, since it would be o-dominated by 〈I, J |K0〉). This means that it is not
necessary to consider these triplets.
The three cases above for I ′, J ′, and K ′ allow an exact enumeration of all o-dominant triplets v′ that are
s-dominated by 〈I, J |K0〉, and thus also of all new potentially o-dominant triplets u ? v′.
Step 3b
Under the conditions of Step 3b, all o-dominant triplets that are s-dominated by 〈A,B|C〉 can be recon-
structed in the same way as in Step 3a. First take C0 = C ∪ (K ∩D), to get K\ABC0 = ∅. If 〈X,Y |Z〉
is now defined as 〈A,B|C0〉 ? 〈I, J |K〉, then the o-dominant triplets are constructed by:
• Reducing A to A′: moving r ∈ A ∩ I to D ∩ I gives

〈A\{r}, B|C0〉 ∗ 〈I, J |K〉 = 〈X\{r}, Y |Z〉.

Removing a variable r ∈ A∩J or r ∈ A∩L does not alter 〈X,Y |Z〉. Removing r ∈ A∩K is not allowed,
since it leads to K\A′BC 6= ∅,
• Reducing B to B′: moving r ∈ B ∩ I to D ∩ I gives

〈A,B\{r}|C0〉 ∗ 〈I, J |K〉 = 〈X,Y \{r}|Z〉.

Removing r ∈ B ∩ J or B ∩ L has no effect for the ?-operator. Removing r ∈ B ∩K is not allowed.
• Extending C0: adding r to C0, by moving it from D ∩ I to C ∩ I gives

〈A,B|C ∪ {r}〉 ∗ 〈I, J |K〉 = 〈X,Y |Z ∪ {r}〉.

Adding r ∈ D ∩ J gives

〈A,B|C ∪ {r}〉 ∗ 〈I, J |K〉 = 〈X,Y \{r}|Z ∪ {r}〉,

but this triplet is o-dominated by 〈X,Y |Z〉, so it can be omitted. Finally, adding r ∈ D ∩ KL is not
permitted. Again in Step 3b it is not necessary to consider extending C by moving variables from AB,
since this leads to o-dominated triplets.
Also the full set of all o-dominant triplets 〈A′, B′|C ′〉 can be enumerated quite efficiently.
Finally, note that in Step 3a we do not add new o-dominant triplets to MU , for 〈A,B|C〉 ∈ MU ,
〈I, J |K〉 ∈ MS , and C\IJK = ∅, K\ABC 6= ∅. Since s-dominance allows a search for o-dominant
triplets only in K ′ ⊃ K, it is not possible to find a K ′, that would make K ′\ABC = ∅. A similar remark
applies to Step 3b and the situation when C\IJK 6= ∅, K\ABC = ∅.

8



5.3 Elaboration on Step 4

During the loop in the Algorithm of Section 5.1 it can happen that the combination of a number of s-
dominant triplets in MS can lead to a triplet becoming s-dominant without it being explicitly accounted
for in the set MS . Consider, as an example, the case where N is the union of the disjoint singleton sets A,
B, C, D, E, and F and we have the following three stable independence statements in MS :

SI〈A,B|CD〉,SI〈A,B|E〉,SI〈A,B|CF 〉. (6)

The second statement implies SI〈A,B|CE〉, and this together with the other two stable independence
statement implies SI〈A,B|C〉, so the three statements in (6) can be replaced with

SI〈A,B|C〉,SI〈A,B|E〉.

This check can be formalised as follows: Assume that 〈A,B|C〉 ∈ MS and C 6= ∅. Let {d} be a singleton
subset of C and C ′ := C\{d}. Now 〈A,B|C ′〉 ∈ SI is satisfied iff

∀e∈N\ABC′∃w∈MS : 〈A,B|C ′ ∪ {e}〉 ≺≺ w.

The complexity of this check is polynomial in card(N).

5.4 Finiteness of the algorithm

The algorithm does indeed construct a representation of the semi-graphoid closure by means of o-dominant
and s-dominant triplets. This is proven in the next theorem.

Theorem 5.1 Suppose that M is a given set of independence statements, that can be divided into a given
set MS of stable independence statements and a set MU of ordinary independence statements. The pro-
cedure above stops after finitely many iterations and it ends with MS a set of s-dominant triplets and MU

a set of o-dominant triplets that together dominate the semi-graphoid closure of M, that is,

sem(M) = IU ∪ IS

where

IU = {u ∈ T (N)|∃v∈MU : u ≺ v},
IS = {u ∈ T (N)|∃v∈MS : u ≺≺ v}.

Proof. The proof follows the lines of [7]. For every iteration i, i ≥ 0, we let MS
i and MU

i denote the sets
MS and MU at iteration i, respectively. We also define

IS
i = {u ∈ T (N) | ∃v∈MS

i
: u ≺≺ v},

IU
i = {u ∈ T (N) | ∃v∈MU

i
: u ≺ v},

Ii = IS
i ∪ IU

i .

It is trivial that M⊂ Ii ⊂ Ii+1 for i ≥ 0. Since T (N) is finite, IU
i ⊂ IU

i+1, and IS
i ⊂ IS

i+1, we have that,
for some i ≥ 0, IU

i = IU
i+1 and IS

i = IS
i+1. Since IS

i and IU
i are uniquely determined by MS

i and MU
i ,

and vice versa, we conclude that MS
j = MS

j+1 and MU
j = MU

j+1 for some j ≥ 1. IS
j ∪M

U
j satisfies the

conditions for D of Lemma 4.2, so

{u ∈ T (N) | ∃v∈IS
j
∪MU

j
: u ≺ v} = IS

j ∪ IU
j

is a semi-graphoid that contains M. By Definition 2.2 we then get sem(M) ⊂ IS
j ∪ IU

j . By Lemma 6
from [7] and Lemma 4.4 it can proven by induction on j that IS

j ∪ IU
j ⊂ sem(M). 2

9



5.5 Complexity of the algorithm

Our closure algorithm is more efficient than the original algorithm presented by Studený [7] in several
aspects. First, our representation of independence is more compact. Consider, as an example, the situation
where N is the union of the disjoint singleton sets of variables A, B, C, D, and E. Then, the single stable
independence statement SI〈A,B|∅〉 is equivalent to the following ordinary independence statements

I〈A,B|∅〉 ∧ I〈A,B|C〉 ∧ I〈A,B|D〉 ∧ . . .
I〈A,B|E〉 ∧ I〈A,B|CD〉 ∧ I〈A,B|CE〉 ∧ . . .
I〈A,B|DE〉 ∧ I〈A,B|CDE〉.

(7)

Note that none of these statements is o-dominated. As a result of the more compact representation of
independence our algorithm uses less data storage than Studený’s algorithm. In the best case the reduction
of data storage is O(2card(N)). We return to the complexity of representation in Section 6.
The reduction in data storage for our algorithm leads to a proportional reduction in the number of compu-
tation steps to be performed, since for any pair of triplets u, v ∈ MS only u ¦ v needs to be established
instead of u′ ? v′ for all o-dominant u′ ≺≺ u and v′ ≺≺ v. In the best case this leads to a reduction of
O(2card(N)) computation steps.
Also, when a pair of triplets u ∈ MS , v ∈ MU , are processed (Step 3), the number of computations is
reduced, when compared to the original algorithm:

• u′ ? v or v ? u′ for u′ ≺≺ u can be derived directly from u ? v and v ? u;

• the check if u′ ? v or v ? u′ are well defined is not necessary, since it is automatic in the “loop” over
u′;

• the case where u′ ? v or u ? v′ is o-dominated can be detected beforehand.
In the general case the computational savings can be less than described for the best case. The reduction
achieved depends on the presence of stable independence statements in the set MS when the procedure
is started. Consider an independence statement u ∈ MU that is in fact stable. All statements that can
be derived from u by applying the strong union axiom are then included in MU . The stable statements
can in essence be identified as such by checking for the presence of all the possible triplets u′ ≺≺ u in
MU and MS . When performed straightforwardly, this check may require O(2(card(N))) time or storage,
and therefore it is not included in the current version of our algorithm. The design of a more efficient
identification of stable independences in MU is the topic of current research. The environment lattices
used in ATMSs [1] may well provide a means to this end.

6 Complexity of semi-graphoids

The algorithm presented in the previous section results in a representation of a semi-graphoid independence
relation by a set of s-dominant triplets and a set of o-dominant triplets. We argued, by means of an example,
that the two sets of triplets allow a much more compact representation of an independence relation than a set
of o-dominant triplets. We now substantiate this observation by introducing a new definition of complexity
for semi-graphoid independence relations.
Studený defines the complexity of a semi-graphoid independence relation I as

comsem(I) := (8)

min{card(D) | D ⊂ T (N), sem(D) = I}.

For a stable semi-graphoid independence relation, we now define a new concept of complexity.

Definition 6.1 Let I ⊂ T (N) be a stable semi-graphoid independence relation, then the complexity of I
with respect to the stab closure operation is defined as

comstab(I) :=

min{card(D) | D ⊂ T (N), stab(D) = I}.
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We now present our new definition of complexity for semi-graphoid independence relations.

Definition 6.2 Let I ⊂ T (N) be a semi-graphoid independence relation, then the strong complexity
comstrong of I is defined as

comstrong(I) :=

min{card(C) + card(D) | sem(C) ∪ stab(D) = I}.

The concept of strong complexity exploits the more compact representation of the stable part of a semi-
graphoid independence relation. It yields the same complexity value as Studený’s concept of complexity,
however, for independence relations that do not include a non-trivial stable part.

Lemma 6.3 For any semi-graphoid independence relation I ⊂ T (N) we have comstrong(I) ≤ comsem(I).
If I contains only trivially stable independence statements, then comstrong(I) = comsem(I)

Proof. Let I ⊂ T (N) be a semi-graphoid. Let C ⊂ T (N) be a set that attains the minimum for comsem(I).
Since sem(C) = I = sem(C) ∪ stab(∅), we have comstrong(I) ≤ card(C) + 0 = comsem(A).
If I does not include a non-trivial stable part, then for any C ⊂ T (N) it is impossible to find a non-empty
D, such that I = sem(C) ∪ stab(D). The equality comstrong(I) = comsem(I) then follows immediately
from the definitions of the two concepts of complexity. 2

7 Conclusion

We introduced the concept of stability for semi-graphoid independence relations. Building upon this con-
cept we defined an ordering on independence statements that allows for a representation of the indepen-
dence relation by means of dominant independence statements. We showed that this representation is more
compact than existing representations. We further described an algorithm for determining the set of dom-
inant independence statements. In the near future we plan to develop improvements of our algorithm. In
addition we foresee to investigate structural properties of Bayesian networks that derive from the stable
part of the independence relation to be represented.
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