
Stable Independence in Perfect Maps

Peter R. de Waal

Linda C. van der Gaag

institute of information and computing sciences, utrecht university

technical report UU-CS-2005-057

www.cs.uu.nl



Stable Independence in Perfect Maps

Peter R. de Waal and Linda C. van der Gaag
Institute of Information and Computing Sciences, Utrecht University

P.O. Box 80089, 3508 TB Utrecht, the Netherlands
{waal,linda}@cs.uu.nl

Abstract

With the aid of the concept of stable independence we can construct, in an efficient way, a compact
representation of a semi-graphoid independence relation. We show that this representation provides a
new necessary condition for the existence of a directed perfect map for the relation. The test for this
condition is based to a large extent on the transitivity property of a special form of d-separation. The
complexity of the test is linear in the size of the representation. The test, moreover, brings the additional
benefit that it can be used to guide the early stages of network construction.

1 Introduction

Probabilistic models for use in decision-support systems are typically built on the semi-graphoids axioms
of independence. These axioms in fact are exploited explicitly in probabilistic graphical models, where
independence is captured by topological properties, such as separation of vertices in an undirected graph
or d-separation in a directed graph. Algorithms have been constructed for these graphical models that
render probabilistic inference feasible by making use of the represented independences [2, 4]. A graphical
representation with directed graphs has the advantage that it allows an intuitive interpretation by domain
experts in terms of influences between the variables. It is not a straightforward exercise, however, to build
a graphical model, either from data or from expert interviews.
Ideally a probabilistic model is represented as a graphical model in a one-to-one way, that is, independence
in the one representation implies independence in the other representation. The probabilistic model then
is said to be isomorphic with the graphical model, and vice versa. Pearl and Paz [3] established a set of
sufficient and necessary conditions under which a probabilistic model is isomorphic with an undirected
graph. The requirements on the probabilistic model for it to be undirected graph isomorphic are quite
strong. More specifically, undirected graphs do not allow for the representation of induced dependencies:
if a specific independence has been established to hold given some evidence, then this independence must
remain valid, no matter which further evidence is obtained. In this paper we shall not consider representa-
tions of independence with undirected graphs, but focus on directed representations. Pearl [4] gave a set of
necessary conditions for isomorphism of an independence relation with a directed graph. To the best of our
knowledge there is no known set of sufficient conditions.
An independence relation can be fully represented by an enumeration of its statements. If the relation is
isomorphic with a graphical model, then this graphical model constitutes another representation which
typically is much more compact than an enumeration of its statements. Studený introduced an alternative,
generally applicable representation by means of a partial order on the independence relation [5]. All state-
ments in the relation can be derived from the dominant statements in this order, and the set of dominant
statements thus fully captures the relation. In [7] we extended this idea by introducing an additional partial
order on a subset of the independence relation. This order exploits the property that some independence
statements are stable, in the sense that they exclude further induced dependences. The two partial orders
combined allow for a compact representation of any independence relation in general.
In this paper we compare graphical representations and representations with dominant statements and study
how they are related. We show that dominance of independence statements translates to properties of a
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graphical model. We further show that stable independence can be translated into a special form of d-
separation, which has stronger properties than ordinary d-separation. These properties lead to the formula-
tion of a new necessary condition for an independence relation to be isomorphic with a directed graphical
model. This new condition is not implied by Pearl’s set of conditions. Moreover, the complexity of the test
for this condition is linear in the size of the representation with dominant statements.
The paper is organised as follows. In Section 2 we briefly review the representation of a semi-graphoid
independence relation by its set of dominant statements. In Section 3 we introduce the concept of strong
d-separation in directed graphs, and in Section 4 we derive some interesting properties for it. In Section 5
we address the relation between strong d-separation in a graphical model and the representation of a semi-
graphoid independence relation by dominant statements. In Section 6 we discuss the implications of our
results with respect to network construction. In Section 7 we wrap up with conclusions and recommenda-
tions.

2 Stability revisited

We consider a finite index set V = {1, . . . , v}, v ≥ 1, where each index denotes a statistical variable. The
set of ordered triplets 〈X,Y |Z〉, X,Y 6= ∅, of pairwise disjoint subsets of V is denoted by T (V ). For
simplicity of notation we will often write XY to denote the union X ∪Y and even Xy to denote the union
X ∪ {y}, for X , Y ⊂ V , y ∈ V . We shall use the notation I〈X,Y |Z〉 to indicate 〈X,Y |Z〉 ∈ I, for any
ternary relation I ⊂ T (V ).
A ternary relation I ⊂ T (V ) is a semi-graphoid independence relation, or semi-graphoid for short, if it
satisfies the following four axioms:

A1: I〈X,Y |Z〉 → I〈Y,X|Z〉;

A2: I〈X,Y W |Z〉 → I〈X,Y |Z〉 ∧ I〈X,W |Z〉;

A3: I〈X,Y W |Z〉 → I〈X,Y |WZ〉;

A4: I〈X,Y |Z〉 ∧ I〈X,W |Y Z〉 → I〈X,Y W |Z〉;

for all sets of variables X , Y , Z, W ⊂ V . A statement I〈X,Y |Z〉 then is taken to mean that X and Y

are independent given Z in I. The four axioms are termed the symmetry (A1), decomposition (A2), weak
union (A3), and contraction axiom (A4), respectively. Together they are referred to as the semi-graphoid
axioms. The semi-graphoid axioms are logically independent and they are satisfied by any ternary relation
I that is defined by probabilistic conditional independence [1, 4].
Given a set of independence statements a complete independence relation can be constructed by iteratively
applying the semi-graphoid axioms. Now, consider a set of independence statements that have been estab-
lished from expert interviews and/or data analysis. To build a graphical model for the independence relation
that is defined by these statements, the following steps must be taken:

1. Determine the entire independence relation, i.e. the set of independence statements that includes the
given set and is closed under the semi-graphoid axioms.

2. Find a graphical model that captures the relation that was obtained in Step 1 as closely as possible.

The ideal graphical representation would be one in which the topology of the graph provides for the def-
inition of a ternary relation on its vertices, that is equivalent to the independence relation. Such a graph is
called isomorphic with the relation. In practice, unfortunately, such a graphical representation often does
not exist. We shall discuss isomorphism in more detail in Section 3.
The first step in the procedure outlined above amounts to computing the so-called semi-graphoid closure
of a set of independence statements, which is defined as follows.

Definition 2.1 (Semi-graphoid closure) Let I ⊂ T (V ) be a ternary relation on V . Then, sem(I) is the
closure of I under the semi-graphoid axioms, that is,

sem(I) =
⋂

I ⊆M ⊆ T (V )
M is a semi-graphoid

M.
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Studený defined a concept of dominance for triplets [5], that allows a representation of sem(I) that is more
compact than enumeration of its members.

Definition 2.2 (O-dominance) Let 〈T,U |W 〉, 〈X,Y |Z〉∈ T (V ). We say that 〈X,Y |Z〉 o-dominates
〈T,U |W 〉, denoted 〈T,U |W 〉 ≺ 〈X,Y |Z〉, if T ⊆ X , U ⊆ Y , and Z ⊆ W ⊆ XYZ . Now, let I ⊂ T (V )
be a ternary relation on V . A triplet in I that is not o-dominated by any other triplet in I is termed
maximally o-dominant in I.

From the conditions of o-dominance we observe that a statement u ∈ T (V ) is o-dominated by a statement
w ∈ T (V ), if u can be derived from w by applying the decomposition and weak union axioms.
Studený showed that the semi-graphoid closure of a given set of independence statements I can be repre-
sented by the set DI of maximally o-dominant triplets:

sem(I) = {u | ∃w∈DI : u ≺ w}

Moreover, this set of maximally o-dominant triplets can be computed much more efficiently than exhaustive
application of the semi-graphoid axioms on the given set I [5].
In a semi-graphoid independence relation in general we can often distinguish statements for which induced
dependences are possible and statements for which they are not. In [7] we introduced the concept of stable
independence to capture this difference: an independence statement is stable if it does not allow any further
induced dependences.

Definition 2.3 (Stability) Let I ⊂ T (V ) be a semi-graphoid independence relation on V . Then,
• an independence statement I〈X,Y |Z〉 is stable in I if I〈X,Y |Z ′〉 for all sets Z ′ with Z ⊂ Z ′; if

XYZ = V , then I〈X,Y |Z〉 is called trivially stable;

• an independence statement I〈X,Y |Z〉 is called unstable in I if it is not stable in I.
The set of all triplets that are stable in I is called the stable part of I, and will be denoted by SI; the set of
all unstable triplets is called the unstable part of I, denoted UI .

For simplicity of notation we shall often write SI〈A,B|C〉 as a shorthand for 〈A,B|C〉 ∈ SI . We showed
that the stable part of an independence relation satisfies the semi-graphoid axioms and hence, is a semi-
graphoid independence relation itself. In addition it satisfies the composition/decomposition axiom (A2S)
and the strong union axiom (A5):

A2S: SI〈X,Y W |Z〉 ↔ SI〈X,Y |Z〉 ∧ SI〈X,W |Z〉;

A5: SI〈X,Y |Z〉 → SI〈X,Y |ZW 〉;

for all sets of variables X , Y , Z, W ⊂ V . The composition/decomposition axiom (A2S) is actually the
bi-implication of decomposition (A2) for stable independence statements.
Analogous to the concepts of semi-graphoid closure and o-dominance we defined the stable semi-graphoid
closure and stable dominance.

Definition 2.4 (Stable closure) Let I ⊂ T (V ) be a ternary relation on V . Then, stab(I) is the closure of
I under the stable semi-graphoid axioms, that is,

stab(I) =
⋂

I ⊆M ⊆ T (V )
M is a stable semi-graphoid

M.

Definition 2.5 (S-dominance) Let 〈T,U |W 〉, 〈X,Y |Z〉 ∈ T (V ). We say that 〈X,Y |Z〉 s-dominates
〈T,U |W 〉, denoted 〈T,U |W 〉 ≺≺ 〈X,Y |Z〉, if T ⊆ X , U ⊆ Y , and Z ⊆ W . Now, let I ⊂ T (V ) be
a ternary relation on V . A triplet that is not s-dominated by any other triplet in I is termed maximally
s-dominant in I.
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From the conditions of s-dominance it is readily seen that a statement u is s-dominated by a statement w if
u can be derived from w by applying the decomposition and strong union axioms. The stable semi-graphoid
closure of a given set of independence statements I can now be represented by the set DS

I of maximally
s-dominant triplets:

stab(I) = {u | ∃w∈DS

I

: u ≺≺ w}

In [7] we gave an efficient algorithm to establish DS
I .

The representation of sem(I) by o-dominant triplets and that of stab(I) by s-dominant triplets can be
combined. We assume that I is partitioned into a set IS of stable independence statements and a set
IU of independence statements for which stability has not been established. The set of all independence
statements that can be generated from I by the semi-graphoid axioms can now be represented by a set DS

I

of maximally s-dominant triplets and a set DU
I of maximally o-dominant triplets, such that

sem(I) = sem
(

IU ∪ stab
(

IS
)

)

=

=
{

u
∣

∣

(

∃v∈DU

I

: u ≺ v
)

∨
(

∃v∈DS

I

: u ≺≺ v
)}

We presented an algorithm for the computation of DU
I and DS

I in [7]. We further showed that the repre-
sentation of an independence relation by DU

I and DS
I is more compact than the representation that uses

maximally o-dominant triplets only.

3 Directed acyclic graphs and strong d-separation

In this section we discuss the relationship between directed acyclic graphs and the representation of sta-
bility. More specifically we shall formulate a notion of separation that provides a graphical equivalent of
stable independence. Before introducing this new notion we first review the standard concepts of blocking
and d-separation in directed graphs.
We consider a directed acyclic graph (DAG) G = (V,A), with V the set of variables and A the set of arcs.
Let Z be a subset of V . We say that a chain s is blocked by Z in G, if s contains three consecutive variables
V1, V2, and V3 for which one of the following conditions holds:

• s has arcs V1 ← V2 and V2 → V3, and V2 ∈ Z;

• s has arcs V1 → V2 and V2 → V3, and V2 ∈ Z;

• s has arcs V1 → V2 and V2 ← V3, and σ∗(V2) ∩ Z = ∅, where σ∗(V2) includes V2 and all its
descendants.

While the concept of blocking is defined for a single chain, the d-separation criterion applies to the set of
all chains in G. Let X,Y, Z ⊂ V , X,Y 6= ∅, be mutually disjoint sets of variables. The set Z now is said
to d-separate the sets X and Y , denoted 〈X,Y |Z〉dG, if for every chain s between any variable from X and
any variable from Y , we have that s is blocked by Z in G.
Based on the d-separation criterion the notion of an independence model is defined: the graphical indepen-
dence model MG of a DAG G is the set of statements 〈X,Y |Z〉 such that 〈X,Y |Z〉 ∈ MG if and only if
〈X,Y |Z〉dG, for all mutually disjoint sets of variables X , Y , Z ⊂ V , X,Y 6= ∅.
The various statements of a graphical independence model are captured by the topology of the graph. For a
semi-graphoid independence relation in general the independence statements are captured by a set of gen-
erating statements from which the entire relation can be constructed by application of the semi-graphoid
axioms. While every graphical independence model satisfies the semi-graphoid axioms, the reverse prop-
erty does not hold, that is, not every semi-graphoid independence relation can be fully represented by a
graphical model. We now say that a semi-graphoid independence relation I is DAG-isomorphic, if there
exists an acyclic digraph G, such that

I〈X,Y |Z〉 ⇔ 〈X,Y |Z〉dG,

for any disjoint X , Y , Z ⊂ V with X , Y 6= ∅. Such a graph G then is called a directed perfect map (or
directed P-map for short) of I. There exists a set of necessary conditions for a semi-graphoid independence
relation to be DAG-isomorphic. We shall discuss these conditions in more detail in Section 5.
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We now distinguish between two ways of blocking a chain, which are related to the graphical representa-
tions of unstable and stable independence.

Definition 3.1 (Blocking by presence of information) Let G = (V,A) be an acyclic digraph. Let s be a
chain in G and let Z ⊂ V . Then, s is blocked by Z in G by presence of information if s contains three
consecutive variables V1, V2, V3, for which one of the following conditions holds:

• s has arcs V1 ← V2 and V2 → V3, and V2 ∈ Z;

• s has arcs V1 → V2 and V2 → V3, and V2 ∈ Z.

The chain s is blocked by absence of information if s is blocked by Z in G and s is not blocked by Z in G

by presence of information.

Building on the two different ways of blocking a chain, we distinguish between strong and weak d-
separation.

Definition 3.2 (Strong d-separation) Let G = (V,A) be an acyclic digraph, and let X , Y , Z ⊂ V ,
X,Y 6= ∅, be mutually disjoint sets of variables. The set Z is said to strongly d-separate X and Y in
G, denoted 〈X,Y |Z〉Sd

G , if every chain between any variable from X and any variable from Y is blocked
in G by Z by presence of information. The set Z is said to weakly d-separate X and Y in G, denoted
〈X,Y |Z〉Wd

G , if Z d-separates X and Y without strongly d-separating them.

From the above definition it is readily seen that strong d-separation implies ordinary d-separation, and that
ordinary d-separation implies either strong or weak d-separation. It is also immediate that if two sets of
variables X and Y are strongly d-separated by some set Z, then X and Y will remain d-separated if Z is
replaced by any superset Z ′ ⊃ Z. Strong d-separation therefore matches the strong union axiom.
We conclude this section with the definition of a graphical strong independence model.

Definition 3.3 (Graphical strong independence model) The graphical strong independence model M S
G

of an acyclic digraph G is the set of statements 〈X,Y |Z〉 such that 〈X,Y |Z〉 ∈ MS
G if and only if

〈X,Y |Z〉Sd

G , for all mutually disjoint sets of variables X , Y , Z ⊂ V , X,Y 6= ∅.

From Definition 3.3 it is clear that if a semi-graphoid independence relation I is DAG-isomorphic with a
given graph G, then the stable part of I is equal to the strong independence model M S

G of G.

4 Properties of strong d-separation

In this section we shall investigate the graphical properties of the concept of strong d-separation. We shall
establish, more specifically, that strong d-separation in directed graphs satisfies the properties of sepa-
ration in undirected graphs. Although this is an interesting result in itself, the importance of the strong
d-separation properties lies in their translation into properties for the dominant triplets of the strong inde-
pendence model of a digraph, as will be discussed in Section 5.
The first property of interest relates the concept of strong d-separation to ordinary graph-theoretical sepa-
ration. From this property we have that strong d-separation in a directed graph behaves like separation in
an undirected graph.

Lemma 4.1 (Separation) Let G = (V,A) be an acyclic digraph. If for some mutually disjoint sets X , Y ,
Z ⊂ V , with X,Y 6= ∅, the sets X and Y are strongly d-separated by Z, then Z also separates X and
Y , in the sense that every chain between any variable in X and any variable in Y includes at least one
variable from Z.

Proof. It is clear that a chain between X and Y can only be blocked by Z in G by presence of information,
if it has at least one variable in Z. 2

The second property of strong d-separation is transitivity.
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Theorem 4.2 (Transitivity) Let G = (V,A) be an acyclic digraph. Strong d-separation in G satisfies the
transitivity property, that is, if for three mutually disjoint sets X , Y , Z ⊂ V , X,Y 6= ∅, X and Y are
strongly d-separated by Z, then any variable γ 6∈ XYZ is also strongly d-separated by Z, from either X

or Y or both.

Proof. We prove the contrapositive form of the transitivity property, that is,

∃γ 6∈XYZ

[

¬〈γ, Y |Z〉Sd

G ∧ ¬〈X, γ|Z〉Sd

G

]

→ ¬〈X,Y |Z〉Sd

G

Assume that for some γ 6∈ XYZ we have ¬〈X, γ|Z〉Sd

G and ¬〈γ, Y |Z〉Sd

G . From the definition of strong d-
separation we can conclude that there exists a chain between X and γ that is not blocked by Z by presence
of information. This chain is either not blocked by Z, or it is blocked by Z by absence of information. A
similar chain must exist between γ and Y . By concatenating these two chains we have a chain from X to
Y , that is not blocked by Z by presence of information. We conclude that X and Y cannot be strongly
separated by Z. 2

As an alternative to the contrapositive proof above Theorem 4.2 also allows a direct proof, which is much
more elaborate. We briefly review it here, as it provides insight into the structure of a graphical strong
independence model. The proof refers to Figure 1. Without loss of generality we assume that the digraph
G is connected. The nodes in the figure represents disjoint subsets of V . An edge between two subsets
indicates that in the original digraph there exists a chain between these two subsets that has no variables
that are not included in the union of these two subsets. From Figure 1 we read, for instance, that there exists
a chain in G from C to X that has no variables from V \CX , and that any chain between C and Y must
have at least one variable from V \CY .
Now assume 〈X,Y |Z〉Sd

G , and let γ ∈ V \XYZ . The separation property of strong d-separation
(Lemma 4.1) implies that the sets A and B in Figure 1 are empty. For the remaining possible locations
for γ we can thus distinguish between three cases:

a. There exists a chain between γ and X , that has no vertices in Z, i.e. γ is in C or in E;

b. There exists a chain between γ and Y , that has no vertices in Z, i.e. γ is in D or in G;

c. All chains between γ and XY must pass through Z, i.e. γ is in F .

For the three cases above the following properties are satisfied:

a. 〈γ, Y |Z〉Sd

G ;

b. 〈X, γ|Z〉Sd

G ;

c. 〈γ, Y |Z〉Sd

G or 〈X, γ|Z〉Sd

G or both.

The proof for case a proceeds as follows. Let s be a chain between γ and Y . If γ ∈ E, then s must include
at least one variable from X . We conclude that s must be blocked by Z by presence of information, since
〈X,Y |Z〉Sd

G . If γ ∈ C, then there must exist a chain t between γ and X . Concatenating s and t gives a
new chain s′ between X and Y which must be blocked by Z by presence of information. Since t does not
include any variable from Z, s must be blocked by Z by presence of information. The proof for case b
proceeds in a similar manner. For case c we need to distinguish between three subcases:

c1 There exists a chain between γ and X that is not blocked by Z in G by presence of information.

c2 There exists a chain between γ and Y that is not blocked by Z in G by presence of information.

c3 All chains between γ and XY are blocked by Z in G by presence of information.

We first prove that cases c1 and c2 are mutually exclusive. To this end we assume the contrary, i.e. that
there exist two chains, namely sX between γ and X and sY between γ and Y that are both not blocked by
Z in G by presence of information. By concatenating sX and sY , we find a chain between X and Y that is
not blocked by Z by presence of information, which contradicts the assumption 〈X,Y |Z〉Sd

G .
Now assume that the conditions of case c1 hold. Since c1 excludes c2, it implies that all chains between
γ and Y are blocked by Z by presence of information, i.e. 〈γ, Y |Z〉Sd

G . If the conditions of c2 hold, then
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Figure 1: Visualisation of the separation and transitivity properties

we get in an analogous manner 〈X, γ|Z〉Sd

G . If the conditions of c3 hold, then we find both 〈γ, Y |Z〉Sd

G and
〈X, γ|Z〉Sd

G . This concludes the direct proof.
The usefulness of the direct proof of Theorem 4.2 will become apparent after Proposition 4.4, when we
combine the transitivity property with the following property of composition for strong d-separation.

Lemma 4.3 (Composition) Let G = (V,A) be an acyclic digraph. Strong d-separation in G satisfies the
composition property, that is, for every three mutually disjoint sets X,Y, Z ⊂ V , X,Y 6= ∅, we have that

〈X,Y |Z〉Sd

G ∧ 〈X,W |Z〉Sd

G ⇒ 〈X,Y W |Z〉Sd

G

Proof. The composition property follows directly from the definition of strong d-separation. 2

The transitivity property and the composition property can be combined into the following proposition.

Proposition 4.4 Let G = (V,A) be an acyclic digraph. Strong d-separation in G satisfies the property
that for every three mutually disjoint sets X,Y, Z ⊂ V , with X,Y 6= ∅, we have that

〈X,Y |Z〉Sd

G ⇒ 〈X,Y γ|Z〉Sd

G ∨ 〈Xγ, Y |Z〉Sd

G ,

for each γ ∈ V \XYZ .

Proof. The proof is immediate from the combination of Theorem 4.2 and Lemma 4.3. 2

In Section 5 the property from Proposition 4.4 will be translated into a test for the existence of a directed
P-map for a semi-graphoid independence relation. Referring again to Figure 1 Proposition 4.4 implies that
if X and Y are strongly d-separated in G by Z, then X can be extended to X ′ = XCE , and Y can be
extended to Y ′ = YDG without destroying their strongly d-separation by Z. The proposition further states
that all the variables from F can be added to X , to Y , or to both. These variables in F cannot all be added
to the same sets though, as this is determined by the directions of the arcs in the chains that connect the
variables in F via Z to X or Y .
We conclude this section by showing that strong d-separation satisfies the intersection property.

Theorem 4.5 (Intersection) Let G = (V,A) be an acyclic digraph. Strong d-separation satisfies the in-
tersection property, i.e. for any mutually disjoint sets X , Y , W , Z ⊂ V with X , Y , W 6= ∅, we have

〈X,Y |ZW 〉Sd

G ∧ 〈X,W |ZY 〉Sd

G ⇒ 〈X,Y W |Z〉Sd

G .

Proof. Let s be a chain between X and Y W . We assume that s is the ordered sequence of variables
s = (x1, . . . , xj , z1, . . . , zk, γ1, . . . , γl), for some j, l ≥ 1, k ≥ 0, with x1, . . . , xj ∈ X , z1, . . . , zk ∈
Z, and γ1, . . . , γl ∈ Y W . We assume, without loss of generality, that γ1 ∈ Y . The subchain s′ =
(x1, . . . , xj , z1, . . . , zk, γ1) is a chain between X and Y . Since X and Y are strongly d-separated by ZW ,
and s′ does not include any variables from W , this chain s′ is blocked by Z in G by presence of informa-
tion. We conclude that s also is blocked by Z in G by presence of information, and hence 〈X,Y W |Z〉Sd

G .
2
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5 Maximally dominant triplets in perfect maps

Having studied the properties of strong d-separation in the previous section we now address the relation
between strong d-separation and maximally dominant triplets. The main result for a representation with o-
dominant triplets states that if a semi-graphoid independence relation is DAG-isomorphic, it must include
at least one o-dominant statement that involves all the variables in V .
We start by showing that a DAG-isomorphic independence relation contains at least one so-called saturated
independence statement.

Definition 5.1 (Saturated independence statement) An independence statement 〈X,Y |Z〉 over the vari-
able set V is called saturated if XYZ = V .

Lemma 5.2 Let I be a DAG-isomorphic independence relation. Then, there exists an independence state-
ment in I that is saturated.

Proof. The proof is along the lines of [6, Theorem 1]. Let G = (V,A) be a directed P-map of the indepen-
dence relation I. Since G is a DAG, there exists a partial order¢ on V , such that, for each pair v1, v2 ∈ V ,
if there is an arc from v1 to v2, then v1 ¢ v2. Let x be a maximal element of this partial order. Since x

has no descendants in G, we have that 〈x, V \(x ∪ π(x)) |π(x)〉dG, where π(x) denotes the set of parents
of x in G. Since G is a directed P-map of I, we have that I〈x, V \(x ∪ π(x)) |π(x)〉. This independence
statement is saturated. 2

The following proposition now states that, if an independence relation includes a saturated independence
statement, it must also include a saturated o-dominant statement.

Proposition 5.3 Let I be a DAG-isomorphic independence relation. Then, there exists a maximally o-
dominant independence statement in I that is saturated.

Proof. Let G = (V,A) be a directed P-map of the independence relation I. According to Lemma 5.2 there
exists a saturated independence statement 〈A,B|C〉 in I. Since 〈A,B|C〉 ∈ I, there must be a maximally
o-dominant triplet 〈X,Y |Z〉 in DI that o-dominates 〈A,B|C〉 [5, Lemma 5]. By definition of o-dominance
we then have that

A ⊆ X ⇒ A ⊆ XYZ ,

B ⊆ Y ⇒ B ⊆ XYZ ,

Z ⊆ C ⊆ XYZ .

From 〈A,B|C〉 being saturated we further have that ABC = V . We thus find that V = ABC ⊆ XYZ ⊆
V , and hence XYZ = V . 2

We would like to note that a DAG-isomorphic independence relation I may very well contain maximally o-
dominant triplets that are not saturated. From the above proposition we just have that at least one maximally
o-dominant triplet must be saturated.
We recall from Section 2 that any independence relation I can be represented by a combination of s-
dominant and o-dominant triplets. We now show that if I is DAG-isomorphic, then all its maximally
s-dominant triplets must be saturated. Before proving this property in Theorem 5.5 we first show that if
I is DAG-isomorphic, then the stable part SI of I inherits the transitivity and composition properties of
strong d-separation that we established in the previous section.

Lemma 5.4 Let I be a DAG-isomorphic independence relation, and SI its stable part. Then for any three
mutually disjoint sets X , Y , Z ⊂ V with X , Y 6= ∅, we have that

SI〈X,Y |Z〉 ⇒ SI〈γ, Y |Z〉 ∨ SI〈X, γ|Z〉,

and

SI〈X,Y |Z〉 ⇒ SI〈Xγ, Y |Z〉 ∨ SI〈X,Y γ|Z〉,

for each γ ∈ V \XYZ .
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Proof. Let G = (V,A) be a directed P-map of the independence relation I, then

SI〈X,Y |Z〉 ⇔ 〈X,Y |Z〉Sd

G .

The statement is now immediate from Theorem 4.2 and Proposition 4.4. 2

Next we translate the transitivity and composition properties of SI into properties of the s-dominant state-
ments of SI .

Theorem 5.5 Let I be a DAG-isomorphic independence relation. Then each maximally s-dominant triplet
from SI is saturated.

Proof. From Lemma 5.2 we know that there exists a saturated independence statement 〈X,Y |Z〉 in I. From
XYZ = V it follows that this statement is (trivially) stable, which implies that SI 6= ∅. Since SI 6= ∅,
there exist maximally s-dominant triplets for SI [7, Lemma 3.8]. Now let 〈A,B|C〉 be a maximally s-
dominant triplet of SI and assume that it is not saturated. Then there exists a γ ∈ V \ABC. According
to Lemma 5.4 we have that either 〈Aγ,B|C〉 ∈ SI or 〈A,Bγ|C〉 ∈ SI . Since both 〈Aγ,B|C〉 and
〈A,Bγ|C〉 strictly s-dominate 〈A,B|C〉, this contradicts 〈A,B|C〉 being maximally s-dominant in SI .
We conclude that the assumption ABC 6= V must be false, and that 〈A,B|C〉 must be saturated. 2

Theorem 5.5 in essence states that a necessary condition for an independence relation I to be DAG-
isomorphic, is that its maximally s-dominant triplets must be trivial. This condition is necessary but not
sufficient. As an example we consider the independence relation

I =
{

〈a, b|cd〉, 〈c, d|ab〉
}

.

with V = {a, b, c, d}. The two statements in I are maximally s-dominant and saturated, but the relation
does not have a directed P-map.
Pearl presented the following set of necessary conditions for DAG-isomorphism of an independence rela-
tion [4, Section 3.3.3]:

C1: I〈X,Y |Z〉 ⇒ I〈Y,X|Z〉;

C2: I〈X,Y W |Z〉 ⇔ I〈X,Y |Z〉 ∧ I〈X,W |Z〉;

C3: I〈X,Y |ZW 〉 ∧ I〈X,W |ZY 〉 ⇒ I〈X,Y W |Z〉;

C4: I〈X,Y W |Z〉 ⇒ I〈X,Y |WZ〉;

C5: I〈X,Y |Z〉 ∧ I〈X,W |Y Z〉 ⇒ I〈X,Y W |Z〉;

C6: I〈X,Y |Z〉 ∧ I〈X,Y |Zγ〉 ⇒ I〈X, γ|Z〉 ∨ I〈γ, Y |Z〉;

C7: I〈α, β|γδ〉 ∧ I〈γ, δ|αβ〉 ⇒ I〈α, β|γ〉 ∨ I〈α, β|δ〉;

for all X , Y , W , Z ⊂ V , and α, β, γ, δ ∈ V .
The conditions are termed the symmetry (C1), composition/decomposition (C2), intersection (C3), weak
union (C4), contraction (C5), weak transitivity (C6), and chordality (C7) conditions. These conditions are
satisfied by d-separation in DAG’s, and hence are necessary for an independence relation to be DAG-
isomorphic. Note that the conditions include the semi-graphoid axioms A1–A4.
The transitivity property of Lemma 5.4 is an extra condition additional to the list C1–C7. It thus allows to
detect a larger class of independence relations that are not DAG-isomorphic. Transitivity is not implied by
Pearl’s conditions and it is a stronger condition than weak transitivity. The transitivity property needs to be
checked only on the stable part of a relation, whereas the conditions C1–C7 must be checked on the entire
independence relation.
Testing the necessary conditions for DAG-isomorphism of a semi-graphoid independence relation means
checking whether all its statements satisfy the conditions C1–C7 as well as the transitivity condition stated
in Lemma 5.4. In fact, only the conditions that are not the semi-graphoid axioms need to be tested, since the
semi-graphoid axioms are by definition satisfied by the independence relation. The test of the remaining
conditions can be performed on any representation of the relation, regardless of whether it is represented
by complete enumeration of its statements, or by its set of maximally o-dominant and/or s-dominant state-
ments. The complexity of these tests is in the order of the cube of the size of the representation. The
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importance of Proposition 5.3 and Theorem 5.5 lies in the fact that they provide an extra test of which the
complexity is only linear in the size of the representation with dominant triplets. In a representation with
maximally o-dominant triplets we need to check if there exists at least one saturated maximally o-dominant
triplet. This can be done by a simple inspection of each element of this set. In a representation with maxi-
mally o-dominant and maximally s-dominant triplets we can also check if all maximally s-dominant triplets
are saturated. This is also done by inspection of each element of this set.

6 Application to network construction

In this section we briefly discuss the practical application of strong d-separation to network construction.
When building a probabilistic network, the network is preferred to be a directed P-map of the indepen-
dence relation that we want to represent. During the construction phase of the network we try to determine
the influences between variables, which determines the topological properties of the graph. This construc-
tion can be done either automatically through data analysis, or manually from expert interviews. In both
manners of construction it is possible to detect strong conditional independence statements. A conditional
independence statement can, for instance, be tested by asking a question along the lines of “do you think
that knowing Y is relevant to determining the value of X if you know the value of Z?”. Testing for a strong
conditional independence statement would require us to ask as a second question: “and does Y remain
irrelevant no matter what further observations we might obtain?”. If we want to obtain a directed P-map
for our independence relation, then a positive answer to the latter question would imply that X and Y

are strongly d-separated by Z. The transitivity property of strong d-separation then leads to a list of extra
questions that can be asked: “Do you think that also W is irrelevant to determining the value of X or Y if
you know the value of Z?”. A negative answer to such a question leads to the conclusion that there exists
no directed P-map for the independence relation. A positive answer can provide an indication where in the
graph the variable W should be located (cf. Figure 1).
The same line of reasoning can be followed to design a series of tests that can be performed during auto-
mated model construction.

7 Conclusion

In this paper we introduced the concept of strong d-separation in directed graphs, and we demonstrated
its relation to the concept of strong stability in semi-graphoid independence relations. We derived a set
of properties for strong d-separation. These properties defined necessary conditions for a semi-graphoid
independence relation to be DAG-isomorphic. These properties can be implemented as a test procedure in
model construction. We also showed that the combined properties lead to a test that can be performed on a
representation of a semi-graphoid independence relation by dominant triplets. The complexity of this test
is linear in the size of the representation of the relation.
Strong d-separation is a translation of stable independence onto a directed P-map. We plan to investigate
if more properties of the topology of the graph can be derived that are due to stability. We also foresee to
study the influence of these properties on the computational aspects of inference. A possible direction may
be that they lead to special properties of the chordal graph, which may have an impact on clustering in the
junction tree algorithm [2].

8 Acknowledgement

This research was (partly) supported by the Netherlands Organisation for Scientific Research (NWO). We
would like to thank the anonymous reviewer who provided helpful suggestions with respect to the proof of
Theorem 4.2.

10



References

[1] A.P. Dawid (1979). Conditional independence in statistical theory. J.R. Statist. Soc, B, 41 (no. 1): pp.
1–31.

[2] S.L. Lauritzen and D.J. Spiegelhalter (1988). Local computations with probabilities on graphical struc-
tures and their application to expert systems. J.R. Statist. Soc, B, 50 (no. 2): pp. 154–227.

[3] J. Pearl and A. Paz (1985). GRAPHOIDS: A graph-based logic for reasoning about relevance relations.
In: Advances in Artificial Intelligence 2, (B. Du Boulay, D. Hogg, and L. Steels (eds.), North-Holland.

[4] J. Pearl (1988). Probabilistic Reasoning in Intelligent Systems. Networks of Plausible Inference, Mor-
gan Kaufmann, Palo Alto.
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