Heuristics for type error discovery and
recovery (revised)

Jurriaan Hage

Bastiaan Heeren

institute of information and computing sciences, utrecht university

technical report UU-CS-2006-007

WWW.cS.uu.nl

Abstract

Type error messages that are reported for incorrect functional programs can be difficult to understand.
The reason for this is that most type inference algorithms proceed in a mechanical, syntax-directed way,
and are unaware of inference techniques used by experts to explain type inconsistencies. We formulate type
inference as a constraint problem, and analyze the collected constraints to improve the error messages
(and, as a result, programming efficiency). A special data structure, the type graph, is used to detect global
properties of a program, and furthermore enables us to uniformly describe a large collection of heuristics
which embed expert knowledge in explaining type errors. Some of these also suggest corrections to the
programmer. Our work has been fully implemented and is used in practical situations, showing that it
scales up well.

Keywords: type inferencing, type graph, constraints, heuristics, error messages, error recovery

1. Introduction

Type inference algorithms for Hindley-Milner type systems typically proceed in a syntax-directed way.
The main disadvantage of such a rigid and local approach is that the type error messages that are reported
not always reflect the actual problem.

The need for precise type error messages is most apparent when teaching a course on functional pro-
gramming to students. Over the last years we have developedath&dmework to support flexible and
customizable type inference. This framework has been used to build the Helium compiler [5], which imple-
ments almost the entire Haskell 98 standard, and which is especially designed for learning the programming
language. This compiler, and thus the type graph and heuristics that drive its type inference process, have
been used with good results in an educational setting since 2002. It is freely available for download [5].

We follow a constraint-based approach: a set of constraints is collected by traversing the abstract syntax
tree of a program, which is then passed to a constraint solver. This approach gives us the usual benefit of
decoupling specification and computing a solution, which tends to simplify both. Because many program
analyses share the same kinds of constraints, it also allows us to reuse our solvers.

A remaining issue is that the order in which the solver considers the constraints strongly influences at
which point an inconsistency is detected. In existing compilers (which tend to solve constraints as they
go), this has the disadvantage that a bias exists for finding errors towards the end of a program. Although
our Top framework provides various ways of ordering type constraints (see [2]), in this paper we discuss
a constraint solver that uses type graphs, a data structure that allows a global analysis of the types in a
program. Moreover, type graphs naturally support heuristics, which embed expert knowledge in explaining
type errors. The resulting type graph solver is less sensitive to the order of the constraints.

A major advantage of type graphs is that it is relatively easy to define heuristics for guiding the construc-
tion of error messages. Some of these heuristics correspond closely to earlier proposals for improving error
messages, such as determining the most likely source of a type error by counting pieces of evidence [11].
In addition, we have defined a number of our own heuristics. For example, there are heuristics which can
discover commonly made mistakes (like confusing string and character literals, or confusing agdition
and appendi), and a sophisticated heuristic which considers function applications in detail to discover
incorrectly ordered, missing or superfluous arguments.

Many of these heuristics are tried in parallel, and a voting mechanism decides which constraints will be
blamed for the inconsistency. These constraints are then removed from the type graph, and each of them
results in a type error message reported back to the programmer. The use of type graphs thus leads naturally
to reporting multiple, possibly independent type error messages.

The contributions we make in this paper are as follows: we have integrated a large collection of heuristics
into a comprehensive and extensible framework. Although some of these are known from the literature, this
is the first time, to our knowledge, that they have been integrated into a full working system. In addition,
we have defined a number of new heuristics based on our experiences as teachers of Haskell. Our work
has been fully implemented into the Helium compiler which shows that it scales to a full programming
language. Helium has been used in three full courses of functional programming at Universiteit Utrecht
comprising several hundreds of students.

This paper is organized as follows. In the next section we set the scene and introduce the constraints
we will use. Then we introduce type graphs in Section 3, after which we consider each heuristic in turn in
Section 4. In Section 5 we consider related work and the validation and implementation of our work. The
appendix includes a sample trace of the compiler.

2. Constraints

Our type language has monomorphic typesand type schemds). Type schemes are used to capture
polymorphic types such at.a — a, i.e., the type of the identity function. The monomorphic types are
type variables«;, v2, . . .), type constants (the primitive types liket, but also type constructors, like
for function types), or the application of a type to another. For example, the type of functions from integers
to booleans is writtefi((—) Int) Bool). Type application is left-associative, and we omit parentheses where

allowed. We often write the function constructor infix, resultingirt — Bool. We assume the types are
well-kinded: types likelnt Bool and— Int do not occur.

The Hindley-Milner type system is based on performing unification of types. These can be readily
expressed using equality constraints on types= 7». Although equality constraints suffice for dealing
with polymorphism, there are good reasons to have special constraints for modeling it. For the expression

let f v y =if z then 0 else z
in (f True False,f 2 3)

we generate a set of constrailtg for the definition off, which, for example, tells us thatshould be of
type Bool, because of its use in the condition, but also thahould be of typdnt, because the types of
the two branches of the conditional should be equal. The lack of constraintsetis us thatf is in fact
polymorphic iny: an argument of any type will do.

A simple way to handle this is to duplicate the set of constraifjtsind to solve these separately for
each use of: the soundness of this method is a consequence of the semantics of the let, which is that each
use of f may be replaced by a copy of its definition. This, however, has consequences for the type error
messages: the s€¥; is inconsistent, which means that the inconsistency is duplicated as well. And even if
CYy is consistent, then we have just doubled the amount of work.

This led Damas and Milner to come up with algorith which essentially first computes the type of
f (generalizing it appropriately to a type scheme), and only then continues with the body, giving each use
of f its own instance [1]. Because of the decoupling of the generation of constraints from the solving of
constraints, we need a special kind of implicit instance constraint which essentially administers the fact
that the uses of in the body of the let should be instances of the type which will, at some point, be found
for f. To make this work, we insist that the constraint€inare solved before constraints arising from the
body are considered: firgt; will be made consistent, resulting in a (polymorphic) type forThis type
will be propagated into the constraints generated for the body of the let, which allows us to transform the
implicit instance constraints into equality constraints, after which we can make these consistent as well.
Due to space restrictions, we refer the reader to [3] for more details of this process.

3. Type graphs

For constructing high quality type error messages, it is crucial to have as much information as possible
available. Type graphs store information about each unification, and in our implementation the constraints
themselves additionally keep track of a lot of information, e.g., location information that refers back to
the location in the source code from which the constraint arose. Type graphs prevent the introduction of
bias, because a set of equality constraints can be solved 'at once’. This is possible because type graphs
can represent inconsistent sets of constraints. This gives us strictly more information in comparison to
more traditional approaches, that compute types on the fly: after unification of two types, the fact that this
unification has taken place and which types were unified is lost.

The type graphs presented in this paper resemble the path graphs that were proposed by Port [9], and
which can be used to find the cause of non-unifiability for a set of equations. However, we follow a more
effective approach in dealing with derived equalities (i.e., equalities obtained by decomposing terms, and by
taking the transitive closure). Besides, we have a special interest in type inference and type error messages,
and formulate special-purpose heuristics. McAdam has also used graphs to represent type information [7].
In his case parts of the graph are duplicated to handle let-constructs, which implies a lot of duplication of
effort, and, worse, it can give rise to duplication of errors if the duplicated parts themselves are inconsistent.
We avoid this complication by first handling the definitions of a let (which gives us the complete types of
those definitions), before continuing with the let body. This implies that in case of a mismatch between the
definition and the use of an identifier, the blame is always on the latter.

B (vi1)

i A (v10

Figure 1. An inconsistent type graph

Constructing a type graph

A type graph for a given set of constraints is constructed by considering each constraint in the set in turn.
We use the following constraint set as example.

#0 #1 #2 #3
{v1 = Fugvg, v1 = Fuavs, v2 = A, v3 = B}

Annotations like#0 . . . are used for reference purpose only.

We use the constraint; = F vy vg to illustrate how the type graph is constructed: term graphs are
constructed for both the left-hand side type and right-hand side type of the equality constraint. The term
graph for a type variable, like;, is a single vertex: this vertex is shared by all occurrences of this type
variable in the constraint set. The term graph for a type constantFlikg also a single vertex, which we
annotate with the constant. For each occurrence of this constant in the constraint set, we introduce a new
vertex. In case of a composite typ(vg) vo), we first construct term graphs for the two subteriis;y
andwvgy. Then, we introduce a new vertex for the composite type, and we add directed ehitfbsdged
to indicate the parent-child relation between the vertices. These edges are labeléf wittv) for the
left and the right subterm respectively. See Figure 1 in which a term graph for thé&'type is given to
the left (and, similarly, one foF' v, v3). Note the use of the labét0 to show which constraints gives rise
to a given edge.

Here, vertices labeled witfi@) correspond to type application in composite types. An edge is inser-
ted between the two vertices that are the roots of the term graphs just constructed. We call such an edge
aninitial edge since it represents type equality imposed directly by a single type constraint. Additional
information that is supplied with a constraint is stored with the edgguivalence groupsare the con-
nected components of a type graph when we do not take the child edges into account. The vertices of an
equivalence group are supposed to correspond to the same type.

The insertion of an initial edge in the previous step may cause two equivalence groups to be merged.
For all pairs of composite types that are in the same equivalence group, we have to propagate equality to
the children. In Figure Iy5 andvg are connected via amplied (dashed) edge, because the former is a left
child of vy, the latter is a left child of;, which reside in the same equivalence group. Insertion of implied
equality edges may cause other equivalence groups to be merged. This, again, may result in the insertion
of other implied edges, and so on. Note that for reasons of efficiency in dealing with the large clique-like
subgraphs of implied edges, our actual implementation uses a special encoding [3].

3.1. Analyzing the type graph

Equality paths and error paths

The type graph of Figure 1 has four equivalence groups, including one that consists of all the shaded
vertices. This group contains both type consta#itand B, which indicates that the constraint set is
inconsistent.

An equality pathbetween two constants is a path consisting of initial and implied edges, that witnesses
the supposed equality. We want to put the blame only on equality constraints from which the type graph
was constructed. Each initial edge corresponds directly to such an equality constraint, but for implied edges
we have to trace why such an edge was inserted in the type graph. For this reason, we expand equality paths
to paths that contain only initial constraints. Expanding a path entails replacing its implied edges by the
equality paths between the two parent vertices that were responsible for adding the implied edge in the first
place. Repeatedly replacing implied edges yields a path without implied edges.

To denote an expanded equality path, we use the annotaipﬁsandDowrﬁ‘s), wheres is either? (left
child) orr (right child). The annotatioklp corresponds to moving upwards in the term graph by following
a child edge in the opposite direction, wher&mswvn corresponds to moving downwards (from parent to
child). EachUp annotation in an equality path should havB@vn annotation at a later point (otherwise
this implies the existence of an infinite path, see later in this section), which we make explicit by assigning
unigueUp-Downpair numbers, written as subscript. These emphasize the stack-like behadvpiDmiwn
pairs, and serve no other purpose.

Consider Figure 1 again, and in particular the error paftom the type constam (1) to the type con-
stantB (v11) (via the type variabley). Expanding the implied edge betweenandu, yields a path that
contains the implied edge betwe@ns) and@ (vs), Expansion of this implied edge gives the path between
@ (») and@ (*+), which consists of two initial edges. Hence, we get the péth Up”, Up\”, #1, %0, Downi”, Dowr{"]
after expanding the path of initial and implied edges betw&é&n°) andv,. Similarly, we expand the path
betweenv, and B (“11), The expanded error pathis now:

[#2,upl”,upl”, #1,#0, Down” Dowr{”,
UpS”, #0, #1, Down,” #3].

Both #0 and#1 appear twice inr. Note that by followinngg') from vy, we can arrive at either, or vs.
In generalUp annotations do not uniquely determine a target vertex. This ambiguity can be circumvented
straightforwardly by including a target vertex in eddp annotation.

Note that we may ignore all error paths that are implied by a smaller error path: removing a constraint on
the smaller path removes both error paths at the same time. Similarly, we avoid analyzing detour equality
paths: such a path contains two consecutive implied edges from the same clique, i.e., a subgraph in which
all vertices are connected to each other.

Infinite types and paths

There is a another category of error paths, which are closely relateddoc¢hes checkound in unification
algorithms. Such a path starts and ends in the same vertamd may contain any number of equality
edges (both initial and implied), and at least one edge from parent to child, without a matching edge in the
opposite direction. Such a path, iafinite path, is a proof that represents an infinite type (such types are
forbidden in Haskell).

Consider the following set of type constraints (see Figure 3 for the type graph).

#0 #1 #2
{vg = Guv,v9 = Gug,v1 = Gug}

From the first two constraints{0 and#1) we conclude that; andwv, should be the same type, but the
third constraint ££2) contradicts this conclusion. Startingin, we follow edge#2 and arrive at, by

taking the right-child edge of the application vertex. The implied equality edge brings us back to our
starting pointy;. After expansion of this implied edge, we get the following error path

m = [#2, Dowr(?), Up{” | #1, #0, Down{”]

The one child edge followed downwards with no matching upward child edge is annotatesbwith

Infinite paths can be found by analyzing the parent-child dependencies between the equivalence groups
of a type graph: map all vertices belonging to the same equivalence group to a single vertex, while retaining
the adjacencies of the child edges. In the example, we obtain a vertex that represents te,greups }
which has a loop, because of the child edge fraymo v,. The existence of this cycle implies that an
infinite path is present in the type graph.

G (vs) Qo) | #0_(y) #1 [g @)
) (r) %)
@ (vs) #2 ST

Figure 2. A type graph with an infinite path

A type graph as a substitution

To make a type graph consistent, we first determine all (expanded) error paths, and then remove at least one
initial edge from each path. When we remove an initial edge from the type graph, all implied edges that
rely on this initial edge disappear. Type graphs naturally support multiple type error messages in a single
compilation and may resolve any number of independent error paths. However, since the number of error
paths is potentially huge, we imposed a fixed limit on the amount of error paths it considers. This avoids
long compile times, and we do not think a programmer is really interested in obtaining more than a dozen
type error messages.

A consistent type graph represents a substitution. Given a veitean equivalence group, the type
(or type variable) associated withcan be determined as follows.

e If E has exactly one type constant and no application vertices, then this type constant is the type we
assign ta.

e If E has no type constants, but there is at least one application vertex, then the type associated with
v IS a composite type. Choose one left child of one of the application verticEs(say vy) and
one right child (say;). Now, assign ta the application of the type associated withto the type
associated withr, . The absence of infinite paths ensures that this process terminates.

¢ If E has no type constants and there is no application vert# then a type variable is chosen to
represent all vertices df.

We revisit the example of Figure 1 which has a single error path:

7= [#2,Up]”,upl”, #1, #0, Down” Down|”,
Up”), #0, #1, Down” | #3).

We can choose to remove any of the four constraints tinmake the type graph consistent, each choice
leading to a substitution obtained from the remaining type graph. For example, if we réfotieen the
resulting substitution maps to F' A B, vy to A, andvs to B. If we choose to removét3 instead, then
the substitution maps,, vo andwvs to A, andv; to F' A A.

Every constraint that is removed results in a single error message to be reported to the user (the part on
heuristics will show some typical examples). The content of the message is determined by which constraint
we choose to remove.

4. Heuristics

In principle, all the constraints that are on an error path are candidates for removal. However, some con-
straints are better candidates for removal than others. To select the “best” candidate for removal, we
consult a number of type graph heuristics. These heuristics are mostly based on common techniques used

by experts to explain type errors. In addition to selecting what is reported, heuristics can specialize er-

ror messages, for instance by including hints and probable fixes. For each initial edge removed from the

type graph, we create one type error message using the constraint information stored with that edge. The
approach naturally leads to multiple, independent type error messages being reported.

Many of our heuristics are considered in parallel, so we need some facility to coordinate the interaction
between them. The Helium compiler uses a voting mechanism based on weights attached to the heurist-
ics, and the “confidence” that a heuristic has in its choice. Some heuristics can override all others (for
example, the user-defined specialized type rules [4]), while a collection of others, the tie-breakers, are only
considered if none of the other heuristics came up with a suggestion.

A final consideration is how to present the errors to a user, taking into consideration the limitations
imposed by the used output format. In this paper we restrict ourselves to simple textual error messages.

4.1. General heuristics

The heuristics in this section are not restricted to type inference, but they can be used for other constraint
satisfaction problems as well.

Participation ratio heuristic

Ouir first heuristic applies some common sense reasoning: if a constraint is involved in more than one error
path, then it is a better candidate for removal than a constraint appearing in just one error path. The set
of candidates is thus reduced to the constraints that occur most often in the error paths. This heuristic is
driven by a ratior (typically at least 95%): only constraints that occuripercent of the error paths are
retained as candidates.

Note that this heuristic also helps to decrease the number of reported error messages, as multiple error
paths disappear by removing a single constraint. However, it does not guarantee that the compiler returns
the minimum number of error messages.

The participation-ratio heuristic implements the approach suggested by Johnson and Walz [11]: if we
have three pieces of evidence that a value should havdny,mnd only one for typ&ool, then we should
focus on the latter. By itself, this heuristic usually does not reduce the set of candidates to a singleton.

First come, first blamed heuristic

The next heuristic we present is used as a final tie-breaker since it always reduces the number of candidates
to one. This is an important task: without such a selection criteria, it would be unclear (even worse:
arbitrary) what is reported. We propose a tie-breaker heuristic which considers the position of a constraint
in the constraint list.

In [2] we address how to flatten an abstract syntax tree decorated with constraints into a constraint list
L. Although the order of the constraints is irrelevant while constructing the type graph, we store it in the
constraint information, and use it for this particular heuristic: for each error path, we take the constraint
which completes the path —i.e., which contetgstin L. This results in a list of constraints that complete
an error path, and out of these constraints we pick the one thatfoatie L.

4.2. Language dependent heuristics

The second class of heuristics involves those that are driven by domain knowledge. Although the in-
stances we give depend to some extent on the language under consideration, it is likely that other program-
ming languages allow similarly styled heuristics.

Trust factor heuristic

The trust factor heuristic computes a trust factor for each constraint, which reflects the level of trust we
have in the validity of a constraint. Obviously, we prefer to report constraints with a low trust factor. We
discuss five cases that we found to be useful.

(1) Some constraints are introdugei forma they trivially hold. An example is the constraint express-
ing that the type of a let-expression equals the type of its body. Reporting such a constraint as incorrect
would be highly inappropriate. Thus, we make this constraint highly trusted. The following definition is
ill-typed because the type signature declaredstatares does not match with the type of the body of the
let-expression.

squares :: Int
squares =let f 1 =i x4
in map f [1..10]

Dropping the constraint that the type of the let-expression equals the type of the body would remove the
type inconsistency. However, the high trust factor of this constraint prevents us from doing so. In this case,
we select a different constraint, and report, for instance, the incompatibility between the typeiafs

and its right-hand side.

(2) The type of a function imported from the standard Prelude, that comes with the compiler, should not
be questioned. Ordinarily such a function can onlyubedincorrectly.

(3) Although not mandatory, type annotations provided by a programmer can guide the type inference
process. In particular, they can play an important role in the reporting of error messages. These type
annotations reflect the types expected by a programmer, and are a significant clue where the actual types
of a program differ from his perception. We can decide to trust the types that are provided by a user. In
this way, we can mimic a type inference algorithm that pushes a type signature into its definition. Practice
shows, however, that one should not rely too much on type information supplied by a novice programmer:
these annotations are frequently in error themselves.

(4) A final consideration for the trust factor of a constraint is in which part of the program the error is
reported. Not only types of expressions are constrained, but errors can also occur in patterns, declarations,
and so on. Hence, patterns and declarations can be reported as the source of a type conflict. Whenever
possible, we report an error for an expression. In the definition@fement, the pattern(_: z) (z must
be a list) contradicts with the expression- 1 (z must be of typént).

increment (_:z) =z +1

We prefer to report the expression, and not the pattern. If a type signature supports the assumption that
must be of typdnt, then the pattern can still be reported as being erroneous.

Avoid folklore constraints heuristic

Some of the constraints restrict the type of a subterm (e.g., the condition of a conditional expression must
be of typeBool), whereas others constrain the type of the complete expression at hand (e.g., the type of
a pair is a tuple type). These two classes of constraints correspond very neatly to the unifications that are
performed by algorithm and algorithmM [6] respectively. We refer to constraints corresponding to

M asfolklore constraints. Often, we can choose between two constraints — one which is folklore, and one
which is not. In the following definition, the condition should be of typev!, but is of typeString.

test :: Bool — String
test b = if "b" then "yes!" else "no!"

Algorithm W detects the inconsistency at the conditional, when the type inferréty'foiis unified with

Bool. As a consequence it mentions the entire conditional and complains that the type of the condition
is String instead ofBool. Algorithm M, on the other hand, pushes down the expected B# to the

literal "b" , which leads a similar error report, but now only the liteéta] will be mentioned. The former

gives more context information, and is thus easier to understand for novice programmers. For this reason
we prefer not to blame folklore constraints for an inconsistency.

Avoid application constraints heuristic

This heuristic is surprising in the sense that we only found out that we needed it after using our compiler,
and discovering that some programs gave counterintuitive error messages. Consider the following fragment

if plus 1 2 then ... else ...

in which plus has typelnt — Int — Int.

The application heuristic (a program correcting heuristic discussed in Section 4.3) finds that the argu-
ments toplus indeed fit the type of the function. However, the result of the application does not match
the expectedBool for the condition. In this situation, algorithin’ would put the blame on the context,
while M would blame the use gflus. There is (unfortunately) another possibility: the application itself
is blamed. However, given that the arguments do fit, it is quite unlikely that the application as a whole is at
fault, and such an error message becomes unnatural. The task of this heuristic is to remove these constraints
from the candidate set. There is a similar heuristic for negations, which is necessary in Haskell, because
negation is part of the language and not just another function. It is important to realize that this heuristic
may only be applied after the application heuristic to be described later on.

Unifier heuristic

At this point, the reader may have the impression that heuristics always put the blame on a single location.
If we have only two locations that contradict, however, then preferring one over another introduces a bias.
Our last heuristic illustrates that we can also design heuristics to restore balance and symmetry in error
messages, by reporting multiple program locations with contradicting types. This technique is comparable
to the approach suggested by Yang [12].

The design of our type rules (Chapter 6 of [3]) accommodates such a heuristic: at several locations, a
fresh type variable is introduced to unify two or more types, e.g., the types of the elements in a list. We call
such a type variable anifier. In our heuristic, we use unifiers in the following way: we remove the edges
from and to a unifier type variable. Then, we try to determine the types of the program fragments that were
equated via this unifier. With these types we create a specialized error message.

For example, all the elements of a list should be of the same type, which is not the ¢&sadfinition.

fay=[z,yid,"\n"]

In the absence of a type signature forwe choose to ignore the elementsndy in the error message,
because their types are unconstrained. We reportihathich has a function type, cannot appear in the
same list as the strin@n" . By considering hovy is applied in the program, we could obtain information
about the types af andy. In our system, however, we never let the type of a function depend on the way
it is used.

In the example above, the type of the context is also a determining factor. Our last example shows that
even if we want to put blame on one of the cases, we can still use the other cases for justification.

The following definition contains a type error.

mazOfList :: [Int] — Int

mazOfList [] = error "empty list"
mazOfList [z] =z

mazOfList (z,zs) = z ‘maz‘ mazOfList xs

A considerable amount of evidence supports the assumption that the gattesiin mazOfList’s third
function binding is in error: the first two bindings both have a list as their first argument, and the explicit
type expresses that the first argumentafz OfList should be of typé/nt]. In a special hint we enumerate

the locations (1,14), (2,11), (3,11), that support this assumption. Each location consists of a line number,
followed by the position on that line.

4.3. Program correcting heuristics

A different direction in error reporting is trying to discover what a user was trying to express, and how
the program could be corrected accordingly. Given a number of possible edit actions, we can start searching
for the closest well-typed program. An advantage of this approach is that we can report locations with more
confidence. Additionally, we can equip our error messages with hints how the program might be corrected.
However, this approach has a disadvantage too: suggesting program fixes is potentially harmful since there
is no guarantee that the proposed correction is the semantically intended one (although we can guarantee
that the correction will result in a well-typed program). Furthermore, it is not immediately clear when to
stop searching for a correction, nor how we could present a complicated correction to a programmer.

One approach to automatically correcting ill-typed programs is based on a theory of type isomorph-
isms [8]. Two types are considered isomorphic if they are equivalent under (un)currying and permutation
of arguments. Such an isomorphism is witnessed by two morphisms: expressions that transform a function
of one type to a function of the other type, in both directions. For each ill-typed application, we search for
an isomorphism between the type of the function and the type expected by the arguments and the context
of that function. We illustrate this idea with a simple example.

The definition ofsquareList is not well-typed, although we supply a list teap, and a function that
works on the elements of this list.

square :: Int — Int
square 1 =1 % i

squareList :: Int — [Int]
squareList n = map ([1..n], square)

To correct the applicatiomap ([1..n], square), we search for an adapted versionedp which expects
its arguments paired and in reversed order. Consider the following two morphisms between the real type
of map (on the left), and its expected type (on the right).

H1
(a—b) —fa] = [b] — ([a],a — b) — [0]

M2

wherepy = Af (zs,9) — f g xs andus = A\f g zs — f (s, g). In this case, the type variablesand b
are bothint. Note that applying:; to map corrects the type error, and by partial evaluationpfve can
obtain the corrected expressiotup square [1..n].

A second possibility is to change the structure of an abstract syntax tree by inserting or removing paren-
theses. Beginning Haskell programmers have a hard time understanding the exact priority and associativity
rules for operators and applications. As a result, every now and then, a pair of parentheses is missing,
which often results in a type error. This led us to search for slightly modified well-typed abstract syntax
trees. The following definition is not type correct.

isZero :: Int — Bool
isZero 1 = not 1 ==

In this definition,not of type Bool — Bool is applied toi, which is (probably) of typdnt, because of

the declared type. By looking at the constituentsiof i == 0, we learn thatot (i == 0) is the only
well-typed arrangement. Hence, we can suggest the programmer to insert parentheses at these locations.
Note that the type signature supports this rearrangement, which increases the confidence that this is the
correction we want.

Clearly, a combination of the two methods just described allow us to suggest complex sequences of edit

operations. However, the more complicated our suggestions become, the less likely it is that it makes sense
to the programmer.

10

configuration 1 :
function (a —b) — [a] - [b]
arguments + context . — (Int — Int) — [Int]

configuration 2 :
function (a—b) — [a]
arguments + context (Int — Int) —

- [b]
o — [Int]

Figure 3. Two configurations for column-wise unification

The application heuristic

Function applications are often involved in type inconsistencies. Hence, we introduce a special heuristic to
improve error messages involving applications. It is advantageous tcalighe arguments of a function
available when analyzing such a type inconsistency. Although mapping n-ary applications to a number
of binary ones simplifies type inference, it does not correspond to the way most programmers view their
programs.

The heuristic behaves as follows. First, we try to determine the type of the function. We can do this
by inspecting the type graph after having removed the constraint created for the application. In some
cases, we can determine the maximum number of arguments that a function can consume. However, if the
function is polymorphic in its result, then it can receive infinitely many arguments (since a type variable
can always be instantiated to a function type). For instance, every constant has zero arguments, the function
map :: (a — b) — [a] — [b] has two, and the functiofvldr :: (a — b — b) — b — [a] — b a possibly
infinite number.

If the number of arguments passed to a function exceeds the maximum, then we can report that too
many arguments are given — without considering the types of the arguments. In the special case that the
maximum number of arguments is zero, we report thiatnot a function

To conclude the opposite, namely that not enough arguments have been supplied, we do not only need
the type of the function, but also the type that the context of the application is expecting. An example
follows.

The following definition is ill-typed:map should be given more arguments (arshould be removed
from the left-hand side).

doubleList :: [Int] — [Int]
doubleList xs = map (*2)

At most two arguments can be givenrwap only one is supplied. The type signature fiwubleList
provides an expected type for the result of the application, whi¢ini§. Note that the firsf/nt] from

the type signature belongs to the left-hand side patteriVe may report that not enough arguments are
supplied tamap but we can do even better. If we are able to determine the types inferred for the arguments
(this is not always the case), then we can determine at which position we have to insert an argument, or
which argument should be removed. We achieve this by unificationhwitds First, we have to establish

the type ofmags only argument(*2) has typelnt — Int. Because we are one argument short, we insert
one hole ¢) to indicate a forgotten argument. (Similarly, for each superfluous argument, we would insert
one hole in the function type.) This gives us the two configurations depicted in Figure 4.

Configuration 1 does not work out, since column-wise unification fails. The second configuration, on
the other hand, gives us the substituti®r- [a := Int,b := Int]. This informs us that our functiommap
requires a second argument, and that this argument should be &ftiypp= [Int] (see also Appendix A).

The final technique we discuss attempts to blame one argument of a function application in particular,
because there is reason to believe that the other arguments are all right. If such an argument exists, then we
put extra emphasis on this argument in the reported error message.

The expressiofi—1) is of type Int, and can thus not be used as the first argument«gf.

11

decrementList :: [Int] — [Int]
decrementList zs = map (—1) zs

The following error message therefore focuses on the first argumemnimf

(2,25): Type error in application

expression : map (—1) zs
function : map

type t (a—b) = [a] = [b]
1st argument : -1

type © Int

does not match: a— b

The tuple heuristic

Many of the considerations for the application heuristic also apply to tuples. As a result, this heuristic
can suggest that elements of a tuple should be permuted, or that some component(s) should be inserted or
removed.

The siblings heuristic

Novice students often have problems distinguishing between specific functions, e.g., concatenate two lists
(+) and insert an item at the front of a ligst We call such functionsiblings If we encounter an error in an
application in which the function that is applied has a sibling, then we can try to replace it by its sibling to
see if this solves the problem (naturally only at the type level). This can be done quite easily and efficiently
on type graphs by a local modification of the type graph. The main benefit is that the error message may
include a hint suggesting to replace the function with its sibling. (Helium allows programmers to add new
pairs of siblings, which the compiler then takes into account [4].)

A similar kind of confusion that students have is that they mix floating points numbers with integers (in
Helium we distinguish the two), and characters with strings. This gives rise to a heuristic that may replace
a string literal'c" with a character literdt’ if that resolves the inconsistency.

5. Related work, validation, implementation

There is quite a large body of work on improving type error messages for polymorphic, higher-order
functional programming languages such as Haskell, cf. [11, 9, 7, 8, 12, 13]. The drawback of these papers
is that they have not led to full scale implementations, although in many cases they do suggest one.

In recent years, there is a trend towards implementation. One of these systems is Chameleon [10] which
is an interactive system for type-debugging Haskell. The viewpoint here is that no static type inference
process will come up with a good message in every possible situation. For this reason, they prefer to
support an interactive dialogue to find the source of the error. A disadvantage of such a system is that
is not very easy to use by novice programmers, and more time consuming as well. An advantage is that
the process itself may give the programmer insight into the process of type inferencing, helping him to
avoid repeating the mistake. As far as we know, Chameleon has not been used on groups of (non-expert)
programmers.

Ideally, a compiler provides a combination of feedback and interaction: if the provided heuristics are
reasonably sure that they have located the source of error, then a type error message may suffice, otherwise
an interactive session can be used to examine the situation in detail.

The Helium compiler which includes all the heuristics we have discussed (and more), has been used
for a number of years to teach students to program in Haskell. Reactions in the first year were very prom-
ising (some of these students had used Hugs before and indicated that the quality of error messages was
much improved). Since then we have improved the compiler in many ways, adding new language features
and new heuristics. Unfortunately, the students who currently do the course have never encountered any
other system for programming in Haskell and thus cannot compare their experiences. For completeness

12

we have included a sample trace of the execution of the Helium compiler in Appendix A (with highly
verbose output concerning the type inference process). It shows in detail what the effect is of applying
the various heuristics. The Helium compiler itself is available for download to anyone interested in further
experimentation [5].

The existence of implementations immediately raises another issue: by means of this implementation
it should be possible to establish whether the implemented methods really help. Indeed, the 'quality’ of a
type error message is not likely to get a precise definition any time soon, which means that the usability
of these systems can only be verified empirically. However, to perform such experiments is a problem in
itself and beyond the scope of this paper.

A final issue we would like to address is that of efficiency of the compiler. We have introduced a
special kind of solver that partitions the program into a number of relatively independent chunks (in a first
approximation every top level definition is a chunk), applies a fast greedy solver to each, and only when it
finds a type error in one of the chunks, does it apply the slower but more sophisticated type graph solver to
this erroneous chunk (babt to the foregoing chunks). This means that the type graph solver is only used
when a type error is in fact encountered, and only on a small part of the program. Additionally, there is a
maximum to the number of error paths that the type graph solver will consider in a single compile.

Still, constructing and inspecting a type graph involves additional overhead, which slows down the
inference process. In a practical setting (teaching Haskell to students), we have experienced that the extra
time spent on type inference does not hinder programming productivity. Besides, accurate error messages
reduce the time programmers have to spend correcting their mistakes.

6. Conclusion and future work

We have discussed heuristics for the discovery of and the recovery from type errors in Haskell. Know-
ledge of our problem domain allows us to define special purpose heuristics that can suggest how to change
parts of the source program so that they become type correct. Although there is no guarantee that the hints
always reflect what the programmer intended, we do think that they help in many cases. Moreover, we have
shown that it is possible to integrate various heuristics known from the literature with our own resulting in
a full scale, practical system that can be easily extended with new heuristics as the need arises.

We are currently proceeding along several lines: the first is doing a quantitative analysis of the effect of
hints on program productivity (based on programming sessions logged by the compiler). A second project
continues the work on rearranging abstract syntax trees so that they become type correct. Finally, the use
of generics in Java and the subsequent unintelligible type error messages offer a fresh new challenge to our
library.

References

[1] L. Damas and R. Milner. Principal type schemes for functional programBrimeiples of Program-
ming Languages (POPL '82pages 207-212, 1982.

[2] J. Hage and B. Heeren. Ordering type constraints: A structured approach. Technical Report UU-CS-
2005-016, Institute of Information and Computing Science, Universiteit Utrecht, Netherlands, April
2005.

[3] B. Heeren. Top Quality Type Error Messages$hD thesis, Universiteit Utrecht, The Netherlands,
2005. http://www.cs.uu.nl/people/bastiaan/phdthesis .

[4] B. Heeren, J. Hage, and S. D. Swierstra. Scripting the type inference proc&sghtim ACM Sigplan
International Conference on Functional Programmimpgges 3 — 13, New York, 2003. ACM Press.

[5] B. Heeren, D. Leijen, and A. van IJzendoorn. Helium, for learning Haskel, A@M Sigplan
2003 Haskell Workshgmages 62 — 71, New York, 2003. ACM Preshttp://www.cs.uu.
ni/helium

13

[6] O. Lee and K. Yi. Proofs about a folklore let-polymorphic type inference algorith@M Transanc-
tions on Programming Languages and Syste20¢4):707—723, July 1998.

[7] B. J. McAdam. Generalising techniques for type debugging. In P. Trinder, G. Michaelson, and H-
W. Loidl, editors, Trends in Functional Programmingolume 1, pages 50-59, Bristol, UK, 2000.
Intellect.

[8] B. J. McAdam. How to repair type errors automatically. In Kevin Hammond and Sharon Curtis,
editors,Trends in Functional Programmingolume 3, pages 87-98, Bristol, UK, 2002. Intellect.

[9] G. S. Port. A simple approach to finding the cause of non-unifiability. In Robert A. Kowalski and
Kenneth A. Bowen, editordroceedings of the Fifth International Conference and Symposium on
Logic Programmingpages 651-665, Seatle, 1988. The MIT Press.

[10] P. J. Stuckey, M. Sulzmann, and J. Wazny. Interactive type debugging in Haskeflaskell'03:
Proceedings of the ACM SIGPLAN Workshop on Hasgalijes 72—83, New York, 2003. ACM Press.

[11] J. A. Walz and G. F. Johnson. A maximum flow approach to anomaly isolation in unification-based
incremental type inference. Donference Record of the 13th Annual ACM Symposium on Principles
of Programming Languagepages 44-57, St. Petersburg, FL, January 1986.

[12] J. Yang. Explaining type errors by finding the sources of type conflicts. In P. Trinder, G. Michael-
son, and H-W. Loidl, editorslrends in Functional Programmingolume 1, pages 58—66. Intellect,
Bristol, UK, 2000.

[13] J. Yang, G. Michaelson, and P. Trinder. Explaining polymorphic typ€ee Computer Journal
45(4):436-452, 2002.

A A sample trace of the compiler

Before we give a sample trace, we first consider a small part of the code of the compiler: the part that
governs which heuristics are present and how they will be applied.

Note that we have taken the liberty to remove a few heuristics that are either experimental, or which
have to do with overloading and Haskell's class system, or which are not for normal usage. The names of
the heuristics generally correspond to headings in the paper.

rate = 0.95

listOfHeuristics siblings path =
[forbiddenFilter
, highParticipation rate path
]+
[Heuristic (Voting
[siblingFunctions siblings
, stblingLiterals
, applicationHeuristic
, tupleHeuristic
, foHasTooManyArguments
, variableFunction
, unifier Vertex))
]+
[avoidApplicationConstraints
, avoidNegationConstraints
, avoid TrustedConstraints
, avoidFolklore Constraints
, firstComeFirstBlamed

14

]

Note first that this piece of code gives a very compact and comprehensive view on what heuristics are
available. We explain the code in a bit more detail below.

The functionlistOfHeuristics uses a (partially user specified) list of siblings [4] to generate the list of
available heuristics for this compilation. Heuristic at the front of the list have a higher priority than one
towards the back: they are executed first.

Each heuristic is either a filtering heuristic or a voting heuristic. dhgd Trusted Constraints is an ex-
ample of the former: it filters out all the constraints from the candidate set that have a high trust value, thus
making sure that these are never reported. Note that the forbidden filter removes those constraints of the sort
described under (1) of the trust factor heuristic, the other three cases are garidifrusted Constraints.

A voting heuristic is built out of a number of subsidiary heuristics, each of which looks to see whether it
can suggest a likely constraint as responsible for the type inconsistency. Each voting heuristic also returns
a value that gives a measure of trust this heuristic has in its suggestion. Based on these measures the
combined voting heuristic will decide which constraint to select, if any.

Most of these heuristics are connected directly with heuristics discussed in the paper. There are two
special cases that may need some more explanatiotable Function has largely the same functionality
as theapplicationHeuristic, but the latter is only triggered on applications (a function followed by at least
one argument). InsteadgriableFunction is triggered on identifiers that have a function type, but that do
not have arguments at all. It may for instance suggest to insert certain arguments to make the program
type correct. The heuristifh Has TooManyArguments tries to discover whether the type inconsistency
can be explained by a discrepancy between the number of formal arguments, and the expected number of
arguments derived from the function’s explicit type signature.

The function that applies the list of heuristics starts with a set of constraints that lie on an error path.

It considers the heuristics st OfHeuristics in sequence. A filtering heuristic may remove any number

of candidates from the set. If a constraint is selected by a voting heuristic, all other constraints will be
removed from the set of candidates leaving only the selected constraint. The implementation guarantees
that the filtering heuristics never make the set of candidates empty.

The heurstics in the final block, starting withvoid A pplication Constraints are low priority heuristics
that are used as tie-breakers.

We are now ready to give a sample run of our compiler on the program

doubleList :: [Int] — [Int]
doubleList xs = map (*2)

The result of runningielium — d DoubleList.hs (the—d flag is responsible for the very verbose output
which shows what is happening under the hood of the type inference process) is:

Compiling DoubleList.hs
(2,12): Warning: Variable "xs" is not used

Constraints
vO == v2 -> vl : {function bindings, #0}
MakeConsistent
v0 := Skolemize([], [Int] -> [Int]) :
{explicitly typed binding, #1}
v3 == v2 : {pattern of function binding, #2}

v5 = Inst(forall a b . (a -> b) -> [a] -> [b]) :
{variable, #3}
v9 := Inst(Int -> Int -> Int) : {variable, #4}

Int == v10 : {literal, #5}

v9 == v8 -> v10 -> v7 : {infix application, #6}
v8 -> v7 == v6 : {left section, #7}

v5 == v6 -> v4 : {application, #8}

v4 == vl : {right-hand side, #9}

(11 constraints, 0 errors, 0 checks)

CombinationSolver:
GreedySolver: found 1 errors
Switching to second solver

15

Error path found with constraints:
(#1, #0, #9, #8, #3)

After filtering out the forbidden constraints:
("1 "H9" 43" 48"}

cnr edge ratio info

#1* (0-22) 100% {explicitly typed binding}
#9* (1-4) 100% {right-hand side}

#3* (5-37) 100% {variable}

#8* (5-59) 100% {application}

Participation ratio [ratio=0.95] (filter)
{"#1","#9""#3","#8"}
Highest phase number (filter)
{"#1","#9","#3","#8"}
Voting with 7 heuristics
- Sibling functions (selector)
- Sibling literals (selector)
- Application heuristics (selector)
not enough arguments are given.
Two were expected, one was given.
Selected #8, {"(5-59)"} with priority 4.
- Tuple heuristics (selector)
- Function binding heuristics (selector)
- Variable function (selector)
- Unification vertex (selector)

*** Selected with priority 4:
constraint #8 / edge {"(5-59)"}

Avoid application constraints (filter)
48"

Avoid negation edge (filter)
48"}

Avoid trusted constraints (filter)
48"

Avoid folklore constraints (filter)
(48"}

First come, first blamed (filter)
48"}

*** The selected constraint: #8 ***

(2,17): Type error in application

expression :map (* 2)
term : map
type (@ ->b) ->[a -> [
does not match : (Int -> Int) -> [Int]
probable fix : insert a second argument

Compilation failed with 1 error

The first thing to notice is the effect of using a combined solver: first a greedy solver is tried. This results
in the discovery of a type inconsistency, after which the same set of constraints is submitted to the type
graph solver. It builds the type graph, discovers the error path, sets the candidate set equal to the constraints
on the error path, after which it applies the heuristics.

In the example#0 is the only forbidden constraint, and therefore it is removed from the candidate set.

Then the partipication ratio filter leaves only those constraints that occur in a large enough percentage of
error paths (usually we take this value equal or very close to 100%). In this case, all constraints participate
in every error path, so all are kept.

Subsequently, the voting process is initiated, in which seven heuristics are used. Only the application
heuristic of Section 4.2 leads to a constraint being selegt&dyhich labels the edge from nodeto 59
in the type graph. The reason is that it could determine that not enough arguments were gixgn to
Because a single constraint could be selected, the other candidates are removed from the candidate set. The
subsequent filtering heuristics are considered, but they do not change the candidate set. Finally, an error
message is displayed that indeed reflects the factthatexpects a second argument. This fact is stressed
by the 'probable fix’ appended at the end of the message.

16

