
 1

A Product Software
Knowledge Infrastructure for
Situational Capability Maturation:
Vision and Case Studies in
Product Management

Inge van de Weerd, Johan Versendaal and Sjaak
Brinkkemper

Department of Information and Computing Sciences
Utrecht University
Technical Report UU-CS-2006-008
www.cs.uu.nl
ISSN: 0924-3275

 2

A Product Software Knowledge Infrastructure for
Situational Capability Maturation:

Vision and Case Studies in Product Management

Inge van de Weerd, Johan Versendaal and Sjaak Brinkkemper

Department of Information and Computing Sciences
Utrecht University

Utrecht, The Netherlands
{i.vandeweerd, j.versendaal, s.brinkkemper}@cs.uu.nl

http://www.cs.uu.nl

Abstract. Product software companies face the challenge of shipping new re-
leases of their software products in time, within budget, with the right quality,
and for a good price. As we encountered many performance failures in this re-
spect, we started to build a product software knowledge infrastructure, which,
when fully materialized, can help to increase the maturity of a company’s proc-
esses. The infrastructure leverages earlier research on situational method engi-
neering and incorporates the maturity concept. Many product software compa-
nies have identified product management as a major function to deal with
matters of release and requirements management. Therefore the infrastructure
focuses particularly on these processes. In building the infrastructure we per-
formed case studies at two companies. We found that product management
processes change over time, and have become more mature. As such the study
of evolution of product management processes is a promising step in building
the full product software knowledge infrastructure.

Keywords. method engineering, meta-modeling, situational capability maturity,
knowledge infrastructure

1 Situational maturity in product software companies

Product software companies are highly dependent on the maturity of their product
software release processes. Indicators like time-to-market, best features inclusion,
software quality, and development costs determine the success of these companies.
Many examples of development failures can be found in product software literature.
In [6], time-to-completion factors are studied in 37 product software companies. Also
large organizations, like Netscape and Microsoft, come across difficulties in their pro-
duct development process [9].

Product software companies face complex challenges: an existing customer asks
for a bug-fix, and usable features. A sales manager asks for features that convince
buyers; development project managers ask for features that reduce the duration of a
project; the technical architect wants to migrate to a new platform; the support people
ask for technical refactoring of existing code; the company board asks for require-

 3

ments that realize company vision; the finance executive asks for the highest revenue,
versus lowest costs; a prospect asks for additional functionality not available in the
current version of the product; the development team needs consistent bundles of re-
quirements. Condon [8] identifies a similar list of stakeholder wishes and needs. Op-
timal planning, development and shipment of product software are dependent on
many situational factors that relate to many stakeholders.

It is our ultimate aim to develop an integrated knowledge infrastructure that man-
ages the complexity of product software companies. As many product software com-
panies have a separate product management function to cope with the mentioned chal-
lenges, we relate our infrastructure to product management. In this research we focus
on the process area of product management in the knowledge infrastructure. We in-
clude situational method engineering (providing the right method for the right situa-
tion, see for example [12], and the concept of evolving maturity (companies can grow
in maturity with respect to product management).

1.1 Research question and methodology outline

With the described complexity of product management we define the following re-
search question: how can product software companies improve the maturity of their
product management processes using concepts of method engineering and situational
capability maturation?

We address this question by elaborating our vision on situational maturity. Next we
map this onto management, and method engineering. Subsequently we describe inter-
view results of three product software companies and identify their product manage-
ment processes as applicable today and in the past (different point in time). With the
assumption that product software companies have improved their product manage-
ment processes over time, this provides us insight in maturity levels for those particu-
lar processes (in particular details of methods and method fragments being used), thus
contributing to the building of our knowledge infrastructure. We also identify situ-
ational factors that contribute to situational method engineering. We conclude by
identifying directions for increasing maturity in product management using situational
method engineering.

In describing the product management processes we use a meta-modeling tech-
nique successfully used earlier in describing software product implementation proc-
esses. This technique is used to reveal the relations between activities (the process)
and data (the deliverables produced in the process) of the method. This makes it pos-
sible to configure both the process and data perspective of the method. Also, this tech-
nique provides the ability to fragmentize method into method fragments that can eas-
ily be reused.

1.2 Situational maturity vision

The typical evolutionary growth of a product software company goes hand in hand
with the evolution of its internal processes for product development, marketing, sales,

 4

implementation services, and support. Each time a weakness in these processes is
identified, a small improvement is made.

Important constraints in situational capability evolution are:
• Incremental method evolution. The introduction of a complete new development

method, such as RUP or DSDM will never work, due to the longer discontinuity of
work and the learning curve.

• Company condition. Process execution is heavily influenced by the status of the
overall product software company.

• Organizational culture. Most companies have their own languages, operational
style, and technical platform and tools.

Methodical support for product software development requires therefore a situational
approach that takes the maturity of the organization into account: simple methods for
low maturity companies, and more complex methods for companies with a higher ma-
turity. The process maturity needs to be determined by assessing the process execu-
tion and deliverable quality, or by utilizing a normative framework for process im-
provement. The situational context of any process weakness is the starting point for
our research. We aim at providing tailor-made support for process improvements
based on this concept of situational maturity. Step-by-step the processes will evolve
and grow in maturity.

1.3 Related literature

In product software design and development several problems can be recognized: a
chaotic product concept and architectural design process, lack of a comprehensive and
effective development strategy and process, and a weak formal and informal review
of designs, code, and documentation [9].

Several software process improvement approaches exist. CMM is a framework
representing a path of improvements recommended for software organizations that
want to increase their software process capability [24]. The model is divided into five
maturity levels: (1) initial, (2) repeatable, (3) defined, (4) managed, and (5) optimiz-
ing. When a certain maturity level is reached, the related capabilities of that level are
managed. Success of the CMM for the software industry caused the creation of many
likewise CMM models in other fields. Eventually this resulted in the development of
the broader Capability Maturity Model Integration (CMMI) [7]. However, some or-
ganizations find CMMI too heavy and difficult to use [22]. Another software im-
provement model is ISO 9001, the model for quality assurance in design, develop-
ment, production, installation and servicing [15]. It contains 20 clauses that describe
the minimal requirements for setting up a quality management system. Although ISO
9001 focuses mainly on the criteria to have an acceptable level of quality and CMM
focuses on continuous process improvement, the approaches have a lot in common
[24]. A third approach, ISO/IEC TR 15504, also known as SPICE (Software Process
Improvement and Capability dEtermination), is used for software process assessment,
capability determination and process improvement [16].

Method engineering is the engineering discipline to design, construct and adapt
methods, techniques and tools for the development of information systems [4]. Most
research in method engineering is focused on the situation of the project at hand, see

 5

e.g. [26], where a generic process model for situational method engineering is devel-
oped. In our research, however, we will use method engineering on the organizational
and product development process level. To support this, we will use a meta-modeling
technique to model activities and work products in product-data diagrams [29]. This
technique is based ona meta-modeling technique for the purpose of attaching semantic
information to the artifacts and for measuring their quality using this information [28].
In addition to the process of method engineering and a meta-modeling technique to
support this, research has been done to the structuring of method knowledge, cf [14].
This paper shows how ontologies can be used to model the structure of method
knowledge in professional IT organizations using Knowledge Entry Maps that are
based on ER diagrams.

2 An knowledge infrastructure for product software

To support product software companies with their processes, we develop a Product
Software Knowledge Infrastructure (PSKI). With this infrastructure, product software
companies can obtain a custom-made advice that helps them to improve their proc-
esses. A schematic overview of the PSKI is illustrated in Figure 1. We recognize two
main elements in this figure: the PSKI and the product software company.

PSKI

Analysis of need &
situational indicators

Selection of process
alternatives

Embedding of process
advice

Method Base

 - situational factors
 - maturity capabilities
 - assembly rules
 - method fragments

Process advice

Process need

Feedback

Method
administration

Existing methods (books,
articles, online resources)

Experiences
(case studies)

Product
software
company

Fig. 1. Product Software Knowledge Infrastructure

 The PSKI is loaded with experiences (acquired via case studies) and existing
methods in the product software field. The information that is obtained from these
two sources is stored in the method base. The method base stores four types of infor-
mation:
• Situational factors - A situational factor is any factor relevant for product devel-

opment and product services. Examples are company size, branch and the number
of submitted requirements per month, whether or not currently a waterfall-based
method is used for product software development, etc.

 6

• Capability maturities – Several capabilities are identified and labeled with a
(range of) maturity level(s). The capabilities help in assessing a company’s current
maturity level, and will help in identifying ways to a higher maturity. The desired
capability maturity depends on the situational factors of a company and the process
need.

• Method fragments – The methods that are administrated need to be divided into
method fragments, in order to be able to easily reuse them [30]. In section 3.1 a
modeling technique is provided for storing method fragments. Method fragments
are related to situational factors and capability maturities.

• Assembly rules – Derived from the experiences and existing methods, assembly
rules can be identified [5]. On the one hand, the matching process of method frag-
ments originating from different sources is bound by rules. For example, method
fragments originating from a waterfall method are not suitable to be implemented
in a method containing mostly rapid prototyping method fragments. On the other
hand, the internal structure of the method should be consistent. For example, the
‘requirements validation’-method fragment will only be applied in when the asso-
ciated requirements document is produced earlier.

All four information types are related to each other. The situational factors influence
the desired maturity level, for which several capabilities are defined. Both capability
maturities and situational factors affect the method fragment choice. The knowledge
of the relations between these concepts is captured in the assembly rules, see Figure 2.

 Assembly rules

CAPABLITY MATURITY

SITUATIONAL FACTOR

METHOD FRAGMENT

Fig. 2. Relations of the method base concepts

Starting point of the method engineering process is the product software company that
has a need to improve one or more of its processes. The first step is the analysis of the
process need and the situational indicators. This entails an analysis of the current
process in terms of activities and work products. Situational indicators contain infor-
mation about the concerning process and its adjacent processes and general informa-
tion about the company. Through an assessment of the company’s process and situ-
ational factors, current capability maturities are identified.

The second step is the selection of process alternatives. These alternatives are se-
lected from the method base in the form of method fragments. This selection process
is done by selecting method fragments that are linked to the right situational factors
and to the desired new capability maturities, addressing the process need.

The last step is the method is put together and the advice is embedded in the com-
pany. A process advice, which contains a process description, templates and exam-
ples, is sent to the product software company.

Afterwards, feedback from the company is used for a constant growth and im-
provement of the knowledge infrastructure. In section 4.5 we elaborate further on the
PSKI by giving an example application of the infrastructure.

 7

3 Infrastructure operationalization

3.1 Modeling technique

For the method administration, a meta-modeling technique is developed [29]. The
method is based on UML [23]. With this technique we model processes on the left-
hand side and data on the right-hand side.

In Figure 3, an example of a process-data diagram is depicted. The diagram repre-
sents the release planning activity and the release execution activity of the release man-
agement function. Starting point is the sub-activity develop release plan. During this ac-
tivity, data from a DATABASE is used. This DATABASE is created in another activity,
which is not depicted here, namely the requirement management activity. The process
ends with the delivery of a new RELEASE.

Release
execution

Release
planning

Develop release plan
[development team]

Deliver release
[development team]

FUNCTION

RELEASE PLAN

FUNCTIONAL DESIGN

1..*

1

is speficied in

1

RELEASE

RELEASE REQUIREMENT

DATABASE

Write functional design

Implement function

[ok]

[not ok]

[designer]

[development team]

0..*
MARKET REQUIREMENT

1 1..*

Fig. 3. Process-data diagram of a release management process

Some unique adjustments to the standard UML notation in both the activity diagram
side and class diagram side have been made. The most important adjustment concerns
the use of different types of concepts, which are used to indicate whether a concept is
simple or compound. A simple concept does not contain any sub-concepts, whereas a
compound concept is an aggregate of sub-concepts.
We define three different ways to model these concepts:
• A simple concept is a concept that contains no further (sub) concepts. A simple

concept is visualized with a rectangle; see for example the concept MARKET
REQUIREMENT.

• An open concept is an expanded compound concept that consists of a collection of
(sub) concepts. An open concept is visualized with an open shadow. An example
of an open concept is DATABASE.

• A closed concept is an unexpanded compound concept that consists of a collection
of (sub) concepts. A closed concept is visualized with a closed shadow. RELEASE

PLAN is a close concept. In this case it is visualized as closed concept because the
concept has just partly been expanded. The reason is that for RELEASE PLAN no stan-

 8

dard format exists and the content differs from time to time. All we know is that a
number of RELEASE REQUIREMENTS are specified in it.

For other details of the meta-modeling technique, we refer to [29] and [30].

3.2 Product Management and the release process

For product software companies product managers are crucial [8], but their role is
complex. In many companies product managers seem to have all the responsibility
and none of the authority. Moreover, they receive many triggers and suggestions from
the stakeholders to enhance or change their products. Whatever (automated) support
product managers can receive is hence valuable. In this paper we focus on processes
of product management.

In 1996, a research aimed at improving software product management in three
SMEs, recognized that although product management is used in technical industries
since the 19th century, this perspective in the software industry is a new approach
[19].The last decade more and more software companies recognize the importance of
product management. The area of product management and its support by profes-
sional tools is increasingly addressed by scholars. Particularly, [1], [17], [18] and [27]
address the process of release definition from a computational perspective: they de-
fine algorithms to determine the content of a next release. In our research we focus on
the whole process and human activities of the release management process of product
management. Other product management functions can be recognized; examples are
product roadmapping, and portfolio management. As releasing a product version is a
complex process during which much can go wrong we focus particularly on release
management.

3.3 A maturity framework for product management

To be able to provide companies with advice to fix their process need and to ma-
ture their processes, we need to have a maturity model in which method fragments
can be linked with a certain maturity level. Maturity is defined as the extent to which
a specific process is explicitly defined, managed, measured, controlled, and effective;
and maturity level is a well-defined evolutionary plateau toward achieving a mature
software process [24]. We use CMM as an important source for constructing a matur-
ity framework for product management.

Adapting CMM has been done earlier, and with success, see for example the Re-
quirements Capability Maturity Model [3]. Others have tried to generalize the concept
of maturity beyond the software and engineering domain and determine the impact of
maturity on project performance on new product development [9].

Related to CMM, in Table 1 we distinguish maturity levels for product manage-
ment, derived from literature [8] [12]:

 9

Table 1. Maturity levels for product management

 Associated PM maturity level

Continuous improvement lead by external orientation
Continuous process improvement is enabled by external orientation, e.g. innovative ideas
and technologies, customers and partners.

Organization-wide integration and optimization
Detailed measures of the product management process and product quality are collected.
Both the product management processes and products are quantitatively understood and
controlled from an organization wide perspective.

Product (line) orientation
The different product management processes are standardized, documented and inte-
grated into one standard product management process. Only approved, tailored versions of
the organization's standard product management processes are used. The focus is on
product level, controlled sequences of releases of product versions.

Release orientation
Basic product management processes are established to track costs, schedule and func-
tionality. The necessary process discipline is in place to repeat earlier successes on similar
releases.

In
cr

ea
si

ng
 m

at
ur

ity

Ad hoc
Product management processes are characterized as ad hoc. Few processes are defined
and success depends on individual effort.

The release management process starts with the trigger for a new release of a prod-

uct, and ends with its market delivery. We distinguish three main activities in the re-
lease management function: requirements management, release planning and release
execution. Without pretending to be complete, we first identify the capabilities for
this function. These capabilities come from literature,[8], [11] and [12], from the sec-
ond and third author’s years of experience in product management in software indus-
try, from the authors’ personal network in the Netherlands through the Platform of
Product Software companies (www.productsoftware.nl), and from the case studies
discussed in detail in the next section.

In Table 2, we list the capability maturity matrix. Every capability is linked to one
or more maturity levels. We define this as the maturity level range. With each capa-
bility / maturity level combination come method fragment(s). An example is the ca-
pability functional design document construction. The maturity level range covers the
second, third and fourth levels. For the release-oriented level, this capability indicates
that per release a functional design document should be delivered. An associated
method fragment for this capability deals with communication for the determination
of the release with members from the team, and especially the project manager.
Which method fragment will eventually be selected for the company, depends on the
situational factors. On the product level also the product perspective (among others
earlier releases, anticipated release in the future) is covered for this capability. The
accompanying method fragments treat features from earlier releases, as well as road-
mapped release themes. Finally, on the integrated level, other departments and prod-
ucts are involved in constructing the functional design document.

 10

Table 2. Capability maturity matrix for the release management process

PM maturity level

 Capability

A
d

ho
c

R
el

ea
se

 o
ri-

en
te

d

P
ro

du
ct

 o
ri-

en
te

d

O
rg

an
iz

at
io

n
or

ie
nt

ed

E
xt

er
na

l o
ri-

en
te

d

Regulatory acceptance for release x x x x x

Pro-active customer needs determination for release x

Re-active customer needs determination for release x x x x

Competitive product strategy determination x

Trust establishment with customers for release x

Distribution partner determination x x x x x

Scope change management x x x x x

Release promotion determination x x x x x

Sales input for release x x

Product sales kit creation and sales training x x

Service input for release x x

Service department training x x

R&D input for release x x

R&D instruction for release x x

Pricing / price determination x x x x x

Strategic platform, localization and languages determination x x x x x

Functional design document construction x x x x

Release requirements document construction x x x x x

Clear definition of team responsibilities x x x

Prioritization of requirements x x x x x

Collateral documentation x x x x x

Validation of release requirements document x x x x

Validation of functional design document x x x x

Manage structured requirements database x x x x

4 Case studies

4.1 Context

The case studies reported in this section have been carried out in the context of the
Dutch Platform for Product Software (www.productsoftware.nl), an initiative of a
number of product software developers in cooperation with a few research institu-

 11

tions. The purpose of the platform is to exchange knowledge and experiences and to
encourage research in the field of product software in particularly the Netherlands.
We conducted two case studies with the purpose to model the method fragments and
to identify the situational factors and more detailed capability maturities. These re-
sults are used to fill the method base. We also complemented and tested the validity
of the capability maturity matrix in Table 2.

The case studies were carried out at two international product software companies
in The Netherlands. The companies are specialized in developing standard software
and providing consultancy services. As for the first company, we focused on a busi-
ness unit that develops product software for HRM and payroll administration (HRM
Software). The other company focuses on facility management (FacMan Software).
The case studies concentrate on the areas of release and requirements management.

Information has been collected from the following sources:
• Interviews – Explorative 2-hour interviews were conducted with product manag-

ers of the case study companies. A second interview was organized to affirm the
results.

• Document study – Documentation provided by the product managers was used to
get an overview of the product management processes. Examples of these docu-
ments are process descriptions, release planning documents and functional designs.

• Studying the software – Several software programs are used to store require-
ments. The functionality of these software programs was studied with respect to
their role in the concerning product management process.

A second interview session was conducted to cross-reference the obtained results of
the first interview and the documentation. To increase the reliability of the case stud-
ies, we maintained a case study database containing raw data such as interview notes,
case study documentation and process-data diagrams of the researched methods.

The case studies provided us with useful data. First of all, several method frag-
ments could be distilled from the interviews, presentations and documentation. Sec-
ondly, the case studies gave us an indication on the relation of situational factors and
maturing capabilities. Each of the case studies resulted in a snapshot of the release
management process in the past (a few years back), and in the present. This provided
us information on the evolvement of the release management process.

4.2 Situational factor analysis

In this section, we elaborate on the extraction of situational factors from the case stud-
ies. To illustrate this process, we describe the analysis of the situational factors ex-
tracted from the HRM Software case study.

We identified the following situational factors:
- business unit size: 24 employees
- business unit age: 4 years
- new requirements rate: 30-50 per month
- customer amount: 600
- customer base: SMEs, salary processing & accountancy, healthcare

We take two of these factors to describe the consequences they have on the method
assembly process. First of all, the company size (in this case business unit size) influ-

 12

ences the method choice. A business unit of 24 employees is relatively small. Short
communication lines exist between the management and the rest of the employees.
Therefore, less control mechanisms and formal processes are needed to get a good
performance. On the other hand, changing a process in a small company is much eas-
ier than in a large organization. These considerations should be taken into account
during the method fragment assembly process.

The other situational factor we explain in detail is the new requirements rate. With
a requirements rate of 30-50 per month it is important to keep a clear overview.
Therefore all requirements should be documented in a structured way. Also, since not
all requirements are equally important, some mechanism should be in place to make a
choice of which one to implement first. This situational factor leads to the capability
Prioritization of requirements.

4.3 Method analysis

Each case study provided us with snapshots of the release management process. To il-
lustrate details from growth in maturity, we use an example derived from the case
study of HRM Software. In Figure 4, the same process example as in section 3.1 is il-
lustrated, with the difference that the process snapshot is taken a few years later. We
notice that the release planning activity has evolved. The concept of WISHLIST is used
to make a selection of MARKET REQUIREMENTS that should be implemented. Also, a pri-
oritization activity is added to decide which PRODUCT REQUIREMENTS will be in the new
release. The extension is marked by giving the new activity and data a thicker line.

Fig. 4. Product-data diagram of a release planning and execution process

 13

Another difference is the fact that clear roles are assigned to the sub-activities, in-
stead of giving the whole development team the responsibility for one role. The re-
lease execution activity has stayed the same.

Summarizing the results, the release management process of HRM Software in our
first case study company matured in four years from ad hoc to (mostly) the release-
oriented level, and the release management process of FacMan Software in our sec-
ond case study company matured in six years from ad hoc to (partly) the product-
oriented level.

4.4 Capabilities analysis

When we project the difference between the two process snapshots, described in
the section above, to our capability maturity matrix, we can see that the release plan-
ning activity has matured. In the first snapshot prioritization is nowhere in the proc-
ess. Likely, this was done implicitly by the product manager, which implies an ad hoc
maturity. In the second snapshot, the prioritization was done by the entire project
group, in order to find the right set of requirements for every release. In the latter
case, the method fragment prioritize wishes can be linked to the release-oriented ca-
pability prioritization of requirements, as is illustrated in Figure 5.

Capability: Prioritization of requirements

Ad hoc No prioritization

Release
oriented Prioritization per release

Product
oriented Prioritization per product

Organization
oriented

Organization is actively involved in
prioritization

Externally
oriented

Customer and external partners are
actively involved in prioritization

Fig. 5. Capability-method fragment mapping: Prioritization of requirements

Another example is the activity Write functional design. In our capability maturity
matrix we can see that this capability ranges from ad-hoc to organization-oriented ma-
turity. In our case the functional design is now written on release-oriented level. This
implies a level 2 capability which described the production of a release oriented func-
tional design document, as can be seen in Figure 6.

 14

Capability: Write functional design

Ad hoc No functional design

Release
oriented

Per release a functional design is
written

Product
oriented

Functional design is derived from
functional requirements of the prod-
uct (including multiple releases)

Organization
oriented

The organization is actively involved
in functional design

Externally ori-
ented -

Fig. 6. Capability - method fragment mapping: Functional design

4.5 Example application of the infrastructure

To more integrally illustrate the PSKI in operation, we use a fictive example based on
the snapshots of the case study we conducted at HRM Software. This product soft-
ware company notices that the amount of new requirements suggested by customers
has risen explosively the last years. The product manager needs a way to structure the
requirements in order to improve the release management process. He enters this need
into the PSKI by: (a) filling in information about the organization (company size,
business unit size, company age, current standard methods, new requirements rate,
etc.) and (b) describing the current release management process in terms of (sub) ac-
tivities and deliverables. By analyzing situational factors the current maturity level
(for most capabilities) is determined as ad hoc.

The PSKI stores the information and compares it with the existing situation data in
the method base. By comparing the situational indicators and desired maturity of the
company with the situational factors and capability maturities in the method base one
matching method fragment is selected, namely the release-oriented fragment Prioriti-
zation of requirements.

In the next step the new method, containing this selected method fragment, is put
together and embedded into the existing process, analogous with Figure 4. This is pre-
sented to the company in an advice report. This report contains a process description
of the release planning process; a document template for the prioritization activity,
which can be used by the project team members to indicate the requirements that have
their priority; and a filled in prioritization document as example. Also, the reasons for
choosing this method fragment, as well as the origin of the method are explained. Fi-
nally, the advice provides guidelines on the best way of implementing the new
method into the company.

 15

5 Conclusions and further research

Our research question, stated in section 1.1 is: how can product software companies
improve the maturity of their product management processes using concepts of
method engineering and situational capability maturation? We answered this question
by describing our vision on situational capability maturation in product software
companies.

We introduced the Product Software Knowledge Infrastructure PSKI), to enable
product software companies to obtain custom-made advice that helps them to improve
their product development processes. An initial version of the capability maturity ma-
trix for particularly the release management process in product software companies is
developed.

Furthermore, two case studies are carried out to make a first analysis of situational
factors, method fragments and capability maturities. The results of the case studies
helped us to partly fill the method base of the PSKI for the release management proc-
ess. Also, the case studies gave us insight in the dependencies between maturity,
method fragments and capabilities.

We realize that the capability maturity matrix needs further refinement. By per-
forming literature studies and case studies, we will improve and extend the matrix.
Also, matrices for the other product management functions should be developed.

Currently, the PSKI is a concept. In the future, we will make it operational and test
it at product software companies. This is not only done by engineering the PSKI, but
also by filling the method base with situational factors, method fragments and assem-
bly rules that we will derive from general available theories and case studies.

References

[1] Akker, M. van den, Brinkkemper, S., Diepen, G., Versendaal, J.: Flexible Release Plan-
ning Using Integer Linear Programming. In: Proceedings of the 11th International Work-
shop on Requirements Engineering: Foundation for Software Quality (2005)

[2] Batenburg, R., Versendaal, J.: Business Alignment in the CRM Domain: Predicting CRM
Performance. In: Proceedings of the 12th European Conference on Information Systems
(2004)

[3] Beecham, S., Hall, T., Rainer, A.: Defining a Requirements Process Improvement Model.
Software Quality Journal, Vol. 13. Springer Science & Business Media (2005) 247–279

[4] Brinkkemper, S.: Method Engineering: Engineering of Information Systems Development
Methods and Tools. Information and Software Technology, Vol, 38. Elsevier Science Pub-
lishers (1996) 275- 280

[5] Brinkkemper, S., Saeki, M., Harmsen, F.: Meta-Modelling Based Assembly Techniques
for Situational Method Engineering. Information Systems, Vol. 24 (1999) 209-228

[6] Carmel, E.: Time-to-completion factors in packaged software development. Information &
Software Technology, Vol. 37 (1995) 515-520

[7] CMMI Product Team, Software Engineering Institute Capability Maturity Model Integra-
tion (CMMI), Version 1.1, CMU/SEI-2002-TR-012 (2002)

[8] Condon, D.: Software Product Management – Managing Software Development from Idea
to Product to Marketing to Sales. Aspatore Books Boston (2002)

[9] Cusumano, M.: The Business of Software. New Yokk: Free Press (2004)

 16

[10] Dooley, K., Subra, A., Anderson, J.: Maturity and its Impact on New Product Develop-
ment Project Performance. Research in Engineering Design, Vol. 12. Springer-Verlag
London Ltd (2001) 23-29

[11] Dver, A. S.: Software Product Management Essentials, Anclote Press, Tampa, Fla. (2003)
[12] Gorchels, L.: The Product Management Handbook – The Complete Product Management

Resource (2nd edition). NTC Business Books, (2000)
[13] Harmsen, F., Brinkkemper, S., Oei, J. L. H.: Situational Method Engineering for Informa-

tional System Project Approaches. In: Proceedings of the IFIP WG8.1 Working Confer-
ence on Methods and Associated Tools for the IS Life Cycle (1994) 169-194

[14] Helms, R.W., Brinkkemper, S., Oosterum, J. van, Nijs, F. de: Knowledge Entry Maps:
Structuring of Method Knowledge in the IT Industry. In: Kiyoki, Y., Kangasslo, H., Jaak-
kola, H., Henno, J. (eds.): Proceedings of the 15 European Japanese Conference on Infor-
mation Modelling and Knowledge Bases. Amsterdam: IOP Press (2005) 12-25

[15] ISO 9001. Quality systems - Model for Quality Assurance in Design, Development, Pro-
duction, Installation and Servicing, ISO, Geneva, Switzerland (1997)

[16] ISO/IEC-15504. Information Technology - Software Process Assessment. Technical Re-
port - Type 2 (1998)

[17] Jung, H.-W.: Optimizing Value and Cost in Requirements Analysis, IEEE Software, Vol.
15 (1998) 74-78

[18] Karlsson, J., Ryan, K.: A Cost-Value Approach for Prioritising Requirements, IEEE Soft-
ware (1997) 67-74

[19] Kilpi, Tapani, 1997: Product Management Challenge to Software Change Process: Pre-
liminary Results from Three SMEs Experiment, Software Process - Improvement and
Practice, Vol. 3. John Wiley & Sons, Ltd. (1997) 165-175

[20] Kumar K., Welke R.J.: Methodology Engineering: A Proposal for Situation-Specific
Methodology Construction. In: Cotterman, W. W., Seen, J. A. (eds.): Challenges and
Strategies for Research in Systems Development. John Wiley & Sons Ltd (1992)

[21] Natt och Dag, J., Gervasi, V., Brinkkemper, S., Regnell, B.L: A Linguistic Engineering
Approach to Large-Scale Requirements Management, IEEE software, Vol. 22 (2005) 32-
39.

[22] Nawrocki, J.R., Walter, B., Wojciechowski, A.: Comparison of CMM level 2 and eXtreme
programming. In: 7th European Conference on Software Quality. Springer (2002)

[23] OMG: UML 2.0 Superstructure Final Adopted specification, Document reference ptc/04-
10-02 (2003) Available from the Object Management Group website: www.omg.org.

[24] Paulk, M. C.: How ISO 9001 compares with the CMM. In: IEEE Software, Vol. 12.
(1995) 74-83.

[25] Paulk, M.C., B. Curtis, M.B. Chrissis, C.V. Weber. Capability Maturity Model, Version
1.1. IEEE Software, 10, 4 (1993) 18-27

[26] Ralyté, J,, Deneckère, R. and Rolland, C. (2003). Towards a Generic Model for Situational
Method Engineering. In: Lecture Notes in Computer Science, Vol. 2681. Springer-Verlag,
(2003) 95-110

[27] Ruhe, G., Saliu, M. O.: The Science and Practice of Software Release Planning, IEEE
Software (2005)

[28] Saeki M.: Embedding Metrics into Information Systems Development Methods: An Ap-
plication of Method Engineering Technique. Proceedings of the 15th Conference On Ad-
vanced Information Systems Engineering (2003) 374-389

[29] Weerd, I. van de: WEM: A Design Method for CMS-based Web Applications, Technical
report UU-CS-2005-043. Institute of Computing and Information Sciences, Utrecht Uni-
versity, the Netherlands (2005)

[30] Weerd, I. van de, Souer, J., Versendaal, J., Brinkkemper, S.: Situational requirements en-
gineering of web content management implementations. In: Proceedings of the 1st Interna-
tional Workshop on Situational Requirements Engineering Processes (2005) 13-30

