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Abstract. A coloring of the leaves of a treE is calledconvex if it is possible to give each internal

node a color, such that for each color, the set of nodes with that color forms a sulititddativated by

a problem from phylogenetic reconstruction, we study the problem, when given a tree with a coloring
of its leaves, to recolor as few as possible leaves to obtain a convex coloring. We present first a linear
time algorithm for verifying whether or not a given leaf colored tree is convex colorable. Then, we give

a number of preprocessing rules for reducing the size of the given tree or splitting it into two or more
subtrees. Finally, we introduce a branching algorithm for solving the problef®ff - n, whereO PT

is the optimal solution for solving the problem, and show that the problem is fixed parameter tractable.

1 Introduction

The problem to obtain a 'likely’ evolutionary tree from biological or linguistic data (the phylogenetic re-
construction problem) gives rise to several interesting combinatorial problems. One of these is the problem
of convex recoloring. The most studied variant of this problem is the following: we are given& b
a coloring of the nodes of the tree. We ask how we can change as few as possible colors of a node, such
that we obtain a coloring where for each color, the nodes with that color form a connected subtree. The
colors represent a value for some characteristic for the items represented by the nodes; from the phyloge-
netic application, one expects that with perfect data, each color class forms a connected subtree. As the
data may contain errors, the input possibly does not have this connectivity property, and we ask how we
can 'correct’ as few as possible colors / values, to get a tree with this connectivity property. This problem
was extensively studied by Snir [5], see also [3]. An approximation algorithm (for a generalized weighted
variant) was obtained by Moran and Snir [4]. A recent improvement was obtained by Bar Yehuda et al. [1].

An interesting variant is when only the values for the leaves of the tree are given. E.g., the leaves
represent species that are presently known, and values for internal nodes (representing possibly hypothetical
extinct species) are not known. This variant leads to the following combinatorial problem: given iga tree
with a coloring of the leaves &f. We ask to recolor as few as possible leave® oduch that the resulting
coloring has the property that we can assign a color to each |§a&afl obtain a total coloring af where
for each color, the set of nodes with that color form a connected subtfEe of

This CONVEX RECOLORING OF LEAFCOLORED TREESproblem was first studied by Snir in [5], who
showed that the problem is NP-complete. In this paper, we obtain several further results on the problem.
After some preliminaries in Section 2, we give in Section 3, a linear time algorithm for verifying whether
or not a leaf colored tree is convex colorable. In Section 4, we present a number of safe preprocessing for
reducing the size of the tree to an equivalent smaller one, or splitting the tree into two or more subtrees.
Finally, in Section 5, we use a branching technique to develop an algorithm for the problem to determine,
given a leaf-colored tree, what is the minimum number of leaves that must be recolored to obtain a convex
colorable tree, and this shows that the problem is fixed parameter tractable.

2 Preliminaries

All trees used in this paper are rooted. Whenever we refer to paths, we assume these are simple. To avoid
the ambiguity in the meanings of some terms, we use some of the terminology, introduced in [5].

* This work has been supported by the Netherlands Organization for Scientific Research NWO (project TACO:
"Treewidth And Combinatorial Optimization’).
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If C1: V7, — X andCs : V5 — X are functions with disjoint domaing{ N V, = 0), thenC; + C5 :
ViUV, — X is the function with forz € V;: (C1 4+ C2)(x) = Ci(z), andz € V,: (C1 4+ Cs)(x) = Ca(x).

A treeor free treeis a graph connecting nodes withn — 1 edges such that there is exactly one path
between any two given nodes.rdoted treeis defined as a free tree in which a particular node has been
specified as the root. In a rooted tree, each nodeat is not the root has parent namely the unique
neighbor ofv that is on the path from to the root. The parent af is denoted parent]. If w is the parent
of v, thenv is achild of w. Let for allv, w € V, p,,, denote the path iff" from v to w. If v is on the path
from w to the root of the treen(# w), thenw is adescendantf v, andv is anancestorof w. A node is a
leafin a rooted tree, if it has no children.

A total colored treg(or, for short:colored tre@ is a pair (', C') whereT= (V, E) is a tree and” is a
coloring of T, i.e., a functiorl/ — C from V onto a set of color§. A partial colored treeis a pair(7', C')
whereT = (V, E) is a tree, and’ is a coloring of some of the nodes®f i.e., a functiovV — C from a
subset of node®” C V onto a set of color€. A leaf colored treds a partial colored tre€T’, C) in which
a node has a color, if and only if it is a leaf.

A blockin a colored tree is a maximal set of nodes induces a monochromatic subtree, i.e., a maximal
set of nodes of the same color that induce a connected subtree of the ttddoékis a block of colord.

A coloring C'is said to beconvexor, also sometimes calledonnectelif the number ofi-blocks equals 1
for every colord € C. In other words, the coloring is convex, if for each calpthe set of nodes with color
d forms a connected subtree tétal convex colored treis a total colored tree whose coloring is convex.

A total coloringC’ of a treeT is anextensiorof a partial coloringC of T, if for every nodev with a
colorinC, C'(v) = C(v). A partial colored tre€T’, C') is convex colorablgf and only if there is a convex
total coloring that extends it. The same definitions apply also for leaf colored trees; i.e., a a leaf colored
tree is convex colorable, if we can transform it to a total convex colored tree without changing the colors
of its leaves.

A colored tree(T = (V, E),C"), partial or total, is viewed as @ecoloring of a given colored tree
(T, C), if there is at least one nodec V, C(v) # C'(v). We say that the recoloring’ of C retainsthe
color of nodev, if C(v) = C’(v), otherwiseC’ overwritesv. For a recoloring”’ of C, Xc(C") (or X (C'))
is the set of nodes overwritten I8, i.e.,X¢ (C’) = {v € V|C(v) is defined and’(v) # C’(v)}.

Thedegree of a recoloring” of C, 6= (C"), is the number of nodes overwritten BY, i.e.,6c(C’) =
| Xc(C")]. A coloring C* is anoptimal convex recoloringf C, or in short aroptimal recoloringof C', and
dc(C*) is denoted bY) PT'(T, C), if C* is a convex coloring of” for which§¢(C*) = minc{oc(C’)},
where the minimum is taken over all convex recoloringé€’of

For a rooted tred” = (V, E) with rootr, and a node:, the treeT’, is the subtree of rooted atr, i.e.,
the subtree of”" induced byx and all descendants af If C is a (partial) coloring off’, thenC,, is the
restriction ofC to T,.

A recoloringC* is anoptimal leaf convex recoloringf C for a leaf colored tre€T’, C'), or in short an
optimal leaf recoloringof C, if the number of recolored leaves is the minimum over all convex colorable
recolorings ofC'. This number is then denoted @PT(T, C).

A weighted colored treés a colored tree to whose nodes labels (usually number) are assigned. The
word "weight” also has a more specific meaning when applied to colored trees, namely, the weight of a
nodev of a colorc in a colored tre€T’, C), w.(v), is the cost of using colarfor coloring nodey in (T, C).

The degree of a recoloring”’ of C, 6=(C"), in a weighted colored tree, is the sum of the weights of the
nodes overwritten bg’, i.e.,éc(C’) = >~ w(v;), where the sum is taken over all nodgsvhose color is
overwritten in the tree.

Lemma 1. Let (T, C) be a leaf colored tree such that every leafiihhas a different color. Thef' is
convex colorable. Henc&PT(T, C) = 0.

Lemma 2. Let (T, C) be a leaf colored tree. If there is only one coloe C that is assigned to more than
one leaf of the tree and each of the other coldrs C, d # c is assigned to one leaf of the tree, then the
leaf colored tree is convex colorable.

Lemma 3. Letm be the number of leaves in a leaf colored tf@& C') and d be the number of different
colors used for coloring the leaves6f OPT (T, C) < m — d.
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Proof. For each coloer € C, we give each node of coler except one of these, a new color. Now, every leaf
in the tree has a different color from the others. Thus, the tree is convex colorable, and we have recolored

m — d leaves. a
Corollary 1. Let (T, C) be a leaf colored tree withn leaves and leti, no,--- ,n; be the numbers
of leaves with colors:y,cs, -, ¢, such thatny + ny + -+ + n; = m. The minimum number of

leaves that should be recolored to transfo(ffi, C') to a convex colorable tree is at mokt= m —
max{ni,no, - ,n} — (I —1).

Proof. Supposer, = max{n,ns, -+ ,n;}. For each colors, s # r, we give each node of colat;,
except one of these, a new color. Now, only one cotg) {s given to possibly more than one leaf; each
other color is given to at most one leaf. Thus the tree is convex colorable, and we have rekdéaness.

0

Definition 1. AtreeT = (V, E) is astar, if T' has the following form: There is one special node (root)
in T" with zero or more children, and every other node in the tree excbps at most one child.

Fig. 1. Two trees that are a star

Lemma 4. Let (71, C1) and(T3, C2) be two leaf colored trees such that the number of leav&$ eguals
the number of leaves i}, and for each color, the number of nodes with coleiin T, equals the number
of nodes with color in T3, andTy is a star. TherOPT (T, C4) > OPT (T, Cs).

Lemmab. Let (T = (V, E),C) be a total convex colorable tree;, v; € V, each ofv; andv, is not a
descendant of the othenlor(v;) = color(v;). Then color(parerit;) = color(parentv;)).

Lemma 6. Let (T, C;) be a leaf colored subtree of a leaf colored tré€ C). ThenOPT (Ts,Cs) <
OPT(T,C).

Lemma 7. Let(T = (V, E), C) be a colored treeP,,, be a path between nodesandw, = be a node on
the pathP,,,. If color(v)=color(w) # color(x), then the treé T, C) is not convex colorable.

3 Verifying Convex Colorability

In this section, we show that we can testiiin) time if a leaf colored tree is convex colorable. We use a
simple characterization of convex colorability in terms of crossing paths, and also show that we can find in
O(n) time a pair of crossing paths for a leaf colored tree that is not convex colorable.

Definition 2. Letp;, p» be paths in a leaf colored tred@’, C). We callp; andp- a pair of crossing paths
if the following conditions hold.

— The endpoints gf; are leaves with the same color.

— The endpoints gf, are leaves with the same color.

— The color of the endpoints of is different from the color of the endpointsef
— pp andpy intersect:V (p1) NV (pa) # 0.
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Theorem 1. Let (T, C) be a leaf colored tree. Let; and p, be crossing paths, with; a path between
leavesy; andvs, andps a path between leaves, andws. Thenin a convex colorable recoloring @f, C),
at least one node frorfwy, vo, w1, w2} is recolored.

Proof. Let vy, v2, w1, andwsy be the leaves of the crossing pagisandp, in a leaf colored tre€T’, C).
Let = be the first common ancestor of these leaves. If we assign thecel@r(v1) = C(vs) to the node
z, then eithenwv; or wy must be recolored, otherwise the set of vertices with the colar o not convex.
Similarly, when we assign the color of nodes andws to z. When we assign a coler¢ {c, d} to x, then

¢ 'breakes’ the color of; andvy as well as the color of); andws, and we have to recolor at least two of
the leaves. O

Theorem 2. Let (T, C') be a leaf colored treeT', C') is convex colorable, if and only if there is no pair of
crossing paths ifT, C').

Proof. If there is a pair of crossing paths, then by Theorem 1, at least one leaf must be recolored, so the
tree is not convex colorable.

If there is no pair of crossing paths, then we can obtain a convex colorifigasf follows. For each
internal noder, if z is on a path between two leaves with the same cgltiien colorz with c. If z is on
no such path, we give a new color, not given to any other nodg One can easily verify that this is a
convex coloring. a

Definition 3. Letv be a node in a leaf colored trg&’, C').

0 if v has a childw such that all leaves with color
1 are a descendant of or equal tg or there is no
Ny (i) = leaf with color: in the subtree rooted at,
> nu(i) otherwise.

weEchildren(v)
Lemma 8. n,(7) > 1, if and only if there is a path between two leaves with colthrat uses.

Proof. By the definition ofn,(4), n, (i) = 0, if and only if v has a childw such that all leaves with color
1 are a descendant of or equalwo or there is no leaf with color in the subtree rooted at, otherwise
ny (i) > 1. Hence, ifn, (i) = 0, then there is no path between any two leaves with cotbat uses,
otherwisen, (i) > 1.

If n,(¢) > 1, then by the definition of, (i), n,(i) equals the sum of the, (i), wherew €
children(v). If v has two (or more) childrem,, wa, with n,,, (i) > 1 andn,, (i) > 1, then there is
a descendant; of w; with colori and a descendaps of ws with colori, and the path frony, to y» uses
v. If v has only one childv with n,,(¢) > 1, then there must be a vertgxith color i that are not a child
of w, and hence also not a child of Also, v has a descendantwith colori, and a path frony to z uses
V. O

Lemma 9. Letwvq, vs be two leaves associated with coleis c; respectively, in a leaf colored tré@”, C)
such thate; # co. Letw be an internal node iff” such thatv; andwvs belong to the subtree rooted at the
nodew. If n,(c1) > 1 andn,,(cz) > 1, then(T, C) is not convex colorable.

Proof. Supposer,(c1) > 1 andn,,(c2) > 1. By Lemma 8, there is a path between two leaves with color
c1 that usesw, and a path between two leaves with coterthat usesw. These are crossing paths, and
hence, by Theorem 1, at least one leaf must be recolored to obtain a convex colorable tree. a

Lemma 10. Letz, y be two nodes in a total convex colored t@& C'). Suppose is a descendant of the
parent ofz, buty is not a descendant af If color(z) = color(y) then for every node = ancestor(y),
z # ancestor(parent(x)), color(z) = color(x) = color(y).

Lemma 11. Let S, be the set of the colors of the children of a nadi& a convex colorable tre€T’, C).
There is at most one color in the s&f which is repeated for more than one chilcof
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Corollary 2. Letv andw be two nodes in a convex colorable trég C), parent(v) = parent(w) = x.
If color(v) = color(w), thencolor(z) = color(v).

Theorem 3. Let (17 = (V1,E1),C1 : Vi — C1), -+, (Tx = (Vi, Ex),Cr = Vi — Cx) be color
connected trees rooted at nodes --- , v respectively. LeB = (C; NC)U---U(C1 NC)U--- U
(Cr—1NCy),andletT, = (V,, E,), Ve = Vi+- -+ Vi+{z}, E, = E1+- -+ Ep+{z,v1}+ - -+ {z, vt}
as in Figure 2, i.e.x is the parent of nodes, - - - , v;. If | B| = 0, thenT is colored connected whatever

color we use for coloring the node If |B| = 1, thenT, is colored connected if and onlydblor(x) =
(C1(v1)NCo(v2))U---U(Cr—1(vg—1) N Cxr(vg)) = b € B.If |B| > 1, thenT, is not colored connected
whatever color we use for coloring the node

Proof. If |B| = 0, then there is no common color between the colors of the leaves of the trees rooted at
vy, -+, V. NOw, if we assign any colot ¢ C to z, then the tree rooted atwill not include any pair of
crossing paths. Therefdf, is convex colorable, (see Theorem 2).

If |B| = 1, then there is one common color between, at least, two leaves of two different trees of the
trees rooted aty, - - - ,v;. Therefore the tree rooted atis convex colorable if and only if the color we
assign tar is the same color that is common between the colors of the leavEg of - , T, and is also
the same common color between the colors,0f - - , vx, (see Lemma 11).

Finally, if |[B| > 1, then there are at least two common colors between the leaves of two or more trees
Ty, ,Ty,. This means that the trég, includes at least one pair of crossing paths. Therefor, whatever
color we assign for: the tre€eT’, will not be a convex colorable, (see Theorems 1 and 2). a

Vi T TEEE Vk sannnw Vg

T: Tk Tx

Fig. 2. Connected colored trees combination

In Figure 3, we give the pseudo-code of the algorithm Is-Convex-Colorable for testing whether a leaf
colored tregT' = (V, E),C : V — C) is convex colorable or not. Leébt(1), - - - , tot(|C|) be the numbers
of leaves of colorg,--- ,|C| € Cin (T, C), respectively. In this algorithm, we traverse the nodes of the
tree in postorder. We computg (z), for each visited node, as it is given in Definition 3. In other words,
for each visited leab € V, we haven,(c¢) = 1 for the colorc of v, and for all colorsc’ # ¢, we have
ny(c’) = 0. Whereas, for each visited internal nade V, n,, (i) equals the sum of the values, (i) over
all childrenw of v if none of thesen,, (i) equalstot(:), otherwise it is 0.

At each internal node, we test whether or not the subtree rooted ain 7', is convex colorable,
as follows: For each node if there are two colors, j, with n, (i) > 1 andn,(j) > 1, then the subtree
rooted at is not convex colorable and therefdf® C') is also not convex colorable. Thyg;, C) is convex
colorable, if and only if thereisng j € C, i # j andn,.(i) > 1 andn,.(j) > 1, wherer is the root of the
tree.

The pseudo-code given suggest an algorithm that ru@s:irk) time when we have a tree withnodes
andk colors were used for coloring the leaves. However, if we store at each node only thewalues
that are not zero, then at each node that is processed except possibly the last one, we store only one value
(the algorithm stops as soon as we have a node where two vald€s n, (¢') both are non-zero). In this
way, the algorithm takes linear time.

Theorem 4. Let (T, C) be a leaf colored tree with nodes. There is an algorithm to test whetli&r C)
is convex colorable or not that uségn) time.
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It is also possible to find iD(n) time a pair of crossing paths if the tree is not convex colorable. We
first run Algorithm Is-Convex-Colorable. Suppose it returns no when for noaee haven, (i) > 1 and
n.(j) > 1. Then, there are crossing paths with leaves of calensd; that intersect at node. A simple
search can give us these paths: for each neighplmok if there is a path frony to a leaf with color;
avoidingz. If we have two such paths from neighbggsandy., these paths, together withform a path
between two leaves with colarthat usesz. We can do the same for colgr and we have the desired
crossing paths. Standard techniques make this run in linear time.

Theorem 5. Let (T, C) be a leaf colored tree witlh nodes that is not convex colorable. There is an
algorithm that finds irO(n) time a pair of crossing paths.

Algorithm Is-Convex-Colorable (z)

Input: A leaf colored treeT,,C : V, — C), rooted by node:, T, =
(V,E),V —{v1, - ,vn}, C —{c1, - ,cc},n, k € N— {0}, andtot(1),
.-+, tot(|C]) be the number of leaves {{T%, C) of colorsl, --- ,|C| € C.
Output: “yes” if (T, C') is convex colorable, and “no” otherwise.

if (isleaf(x))thenn.(i) = 1 such that; is the color ofz
else

foreachy € children(x)
Is-Convex-Colorabléy);
if (ny(i) < tot(i)) thenng (i) « nq (i) + ny(3);
if (34,j € Ce, i # j:na(z) > 1andn.(j) > 1) thenreturn “no” , exit;
if (z = root) thenreturn “yes”;

o ~NO O WN R

Fig. 3. Pseudo-code of the Algorithm Is-Convex-Colorable.

4 Leaf Colored Tree Preprocessing Rules

There are several methods for preprocessing a leaf colored tree before running an algorithm on it for finding
the minimum number of leaves that should be recolored to transform it into an optimal convex colorable
tree. With preprocessing,we hope to decrease the size of the input tree. The algorithm for finding the
minimum number of recolored leaves thus often runs on a smaller instance, and hence can be much faster.
For example, we first preprocess the tree, and then run a slow exact algorithm on the reduced instance. We
consider two types of preprocessing rules in this section. Thedeeaatection Rules (Simplificatioapd

Splitting Rules (Divide and ConquenVith the reduction rules, we change the given tree into a smaller
'equivalent’ one. Whereas, with the splitting rules, the given tree is split into two or more smaller parts.

Definition 4. A splitting rule R,

R: (Ta C) - (Tla 01)7 toe 7(Tm; Cm)

is a rule for breaking down a leaf colored tre€7,C) into two or more subtrees
(Tlacl)) e 7(T'rnac7n,)1 m > 11 SUCh that,

) J---u V(Tm) = V(T)

yN---NV(T,,) = ¢.
3. E(Thy)N---NE(Ty) = ¢.

YU UE(Ty)U{z,y1} U U{xm,ym} = E(T), where{z1,y1}, -, {Zm,ym} € E(T),
{$17y1};"' 7{xmaym} ¢ E(Tl);"' ;E(Tm)-
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We call a tree splitting rulgr safe if and only if
OPT(Th,C1)+---+ OPT (T, Cy,) = OPT(T, C).

Definition 5. Areduction rule R,
R:(T,C)— (T',C")

is a rule for transforming leaf colored tre€", C') into smaller treeg7”, C”), namely|V (T")| < |V(T)|
and|E(T")| < |E(T)|. We call a tree reduction rul® safe if and only if

OPT(T',C") = OPT(T,C).

In the following, we present three preprocessing rules. The first preprocessing rule is a splitting rule
with two special cases, while the second and the third preprocessing rules are reduction rules. Furthermore,
we show how to transform some of the subtrees obtained from splitting or reduction rules to optimal convex
colorable subtrees.

Preprocessing Rule 1: Independent Leaf Colored Subtree (ILCS)

Definition 6. Let T, be a subtree of a tre&’, rooted at nodes. T' © T is the treeT — E(T) obtained
by deleting fronil" the edges of; and the resulting isolated nodes, if they exist, i.e.(l&f) = ({v €
V(T)| deg(v) = 1}, E(T)). T © Ty = ((V(T), (E(T) \ E(T5)).

Definition 7. Let (T, = (Vi, Es),Cs : Vi, — Cs) be a leaf colored subtree of a leaf colored trge =
(V, E),C) .We call(Ts, C) anindependent leaf colored subtred (T, C) if T, = ToT, andC;NC; = ¢.

ILCS Rule:
let (Ts, C;) be aleaf colored subtree of a leaf colored t{€eC);
if (T, Cy) is independent
then
let Ty = T,; let C; beC restricted tdl;
letT, =T ©T,; letCy, beC restricted tdly;
Sp|lt (T, C) into (Tl, Cl) and(Tg, CQ)

An optimal total convex colorable tré&, C*) can be obtained by combining optimal convex colorable
trees(Ty, Cy) and (T, C3).

(T1.C9) (TG0 (T.Cp) (TrC5)
@ 0 © @

Fig. 4. An example for splitting and recoloring a leaf colored tree by using the Independent Leaf Colored Subtree
(ILCS) rule.

Lemma 12. The Independent Leaf Colored Subtree (ILCS) rule is safe.
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Proof. We claim thatO PT' (T, C1) + OPT(T»,Cy) = OPT (T, C). Take an optimal convex recoloring
Cy of T and an optimal convex recoloring; of T>. We can always find such recolorings such that new
colors inCY are not used ir’5. Thus, no color used i0'; is used inC3 and hence&} + C5 is convex
colorable forT. Hence OPT (T, C1) + OPT(T2,C2) < OPT(T,C).

Suppose we have an optimal convex recoloiirigof 7. Let C; be obtained by restricting to T3,
and C5 be obtained by restricting to 7». Now, OPT(T,C) = 6c(C*) = 6¢,(CF) + 6, (C5) <
OPT(Th,C1) + OPT (T, C5). O

In the following two subsections, we describe two special cases of the Independent Leaf Colored Sub-
tree (ILCS) rule. These are: the Leaf Of a Unique Color (LOUC) rule and the Parents Of the Same Leaves
(POSL) rule.

Leaf of a Unique Color (LOUC)

Suppose that the given leaf colored tree has a leaf whose color is different from the colors of other leaves.
Then, this leaf can be considered as an independent leaf colored subtree of the given leaf colored tree.

Definition 8. Letw be a leaf node in a leaf colored tré&", C). If no leafw # v in (T, C) has the same
color asv, then we calb a leaf of a unique color (LOUC)

LOUC Rule:
let = be a leaf of a unique color in a leaf colored t(ge C') rooted atr;
while (|children(parent(z))| = 1) setparent(z) — ;
let T} be the subtree df rooted at node,
T, be the subtree df obtained by removind? from 7', with rootr,
C1 be obtained by restricting coloring to 77,
Cs be obtained by restricting coloring to T5;
split (7', C) into (Ty, Cy) and(T5, Cs);

Note that the tree that is split off is obtained by taking a leaf whose color is not given to any other leaf,
and then following the path from that leaf up to the tree, just before we find a node which has at least two
children.

After we split a leaf colored tre€l’, C') into two leaf colored subtredd?, Cy) and (T3, Cs) by using
the LOUC splitting rule, it is easy to transforf#;, C;) to an optimal total convex colorable trég,, C7).

We can do that by coloring every nodeTh by the color of the leaf of a unique color. (f%, C2) can

be transformed to an optimal total convex colorable subtree, then an optimal total convex colorable tree
(T, C*) can be obtained by combinin@i, C7) with (T, C3), namely,(T = (V. E),C*) = (V(T1) +

V(T2)), (E(T1) + E(T2) + {ele € E, e € E, e & Eb}), (C] + C3)).

Lemma 13. The Leaf Of a Unique Color Rule is safe.

Proof. This follows from the fact that the LOUC rule is a special case of the ILCS rule. a

Parents Of the Same Leaves (POSL) rule

Definition 9. We call two leaf colored tree@, = (V, E),C) and (T, = (W, F), D) equivalentif there
is a bijectionf : V' — W, such that for allz,y € V: {z,y} € F < {f(z), f(y)} € F, and for all
v € leaves(V), C(v) = D(f(v)).

For rooted trees, we require additionally thfatnaps the root of the first tree to the root of the second
tree. Clearly, when leaf colored trees are equivalent, the solution to the problem to find an optimal leaf
convex recoloring in one tree can directly be translated to a solution for the other tree.

Definition 10. Letv andw be two non leaves in a leaf colored tréeWe callv andw parents of the same
leavesf they have the same number of children, all their children are leaves, and the color frequencies of
their children are equal, namely, the number of childremw @fith the color: equals the number of children

of nodew with the colori, for every color; used for coloring the children af andw.
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(T.C) (T1,C1) (T2,C2) (Ta,c1x) (T2,C2¥) (T.C*)

@) (b) (© (d)

Fig. 5. An example for splitting and recoloring a leaf colored tree by using the LOUC rule. The trees shown in (b) are
the result of performing the LOUC rule on the tree in (a). The trees shown in (c) are the results of performing recoloring
operations on the trees in (b). The tree shown in (d) is obtained by combining the trees in (c).

POSL Rule:
let (T = (V, E), C) be aleaf colored tree rooted at nagde
v,w € V be twoparents of the same leavesinh
C», Cy be the sets of the colors of the childrenuadindw, respectively,
T, be a subtree df, rooted at the first common parest,of v andw,
T, =ToTsand
C, andC} be the coloring functions df; andT;, respectively;
if each leaf inl is a child ofv or a child ofw andCs N C; = ¢
then split (T, C) into (T, Cs) and(Ty, Cy);

We can use the following easy procedure to transform the subtree rooted attocdeonvex colorable
tree.

let d € Cs be the color that is assigned to most leaves of the subtree
amongst other colors i@;;
foreachv; € leaves(T,)
if (color(v;) # d) and olor(v;) = color(v;)), v; € leaves(T,),v; # v;
then color(v;) « d;
foreachw; € leaves(T,,) if color(w;) # d then color(w;) « d;

Lemma 14. The Parents Of the Same Leaves rule (POSL) is safe.

Proof. This follows from the fact that the POSL rule is a special case of the ILCS rule. a

Preprocessing Rule 2: The Unary Path Rule (UP)

Definition 11. Letp,; be the path between nodesndb in a leaf colored treéT = (V, E), C), such that
|pas| > 3. We call the pathp,;, a unary pathif for each node onpg, v & {a,b}, |children(v)| = 1.

UP Rule:

let pay = (a,--- ,b) be aunary path in a leaf colored trég C'), rooted at
noder such thab is a descendant af;

let 77 be the tree, obtained by removing all nodesgnexcepta andb

from T, with their incident edges, and adding an edge betweamdb; C’ = C;
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s A

(T.C) 1) (T, 1) (T, (T.C*)

@ (b) (© (d)

Fig. 6. An example for splitting and recoloring a leaf colored tree by using the Parents Of The Same Leaves (POSL)
rule.

—_—

(T.C) (T'.C) (T'.C*) (T.C*)
@ (b) (© (d)

Fig. 7. An example for reducing and recoloring a leaf colored subtree by using the The Unary Path rule (UP).

In order to transform the given tré&’, C') to an optimal convex colorable tré&, C*), we first trans-
form the treg'T”, C’) to an optimal convex colorable tré&’, C"*). Then, we set the color of each node in
the treeT” equals to its corresponding node in the ti€eNext, we set the colors of all nodess V (pas)
except nodes andb in (T, C'*) equal to the color of the nodein (T, C™*), namely,C*(v;) = C"™(b) for
eachv; € V(pap), v; # a andv; # b.

Lemma 15. Let Pab be a path in a convex colorable tr¢€, C*), |V (pss| > 3. Letz, z are two nodes on
the pathp,;, such thatC*(x) = C*(z). If there is a nodey between nodes and > on the pattp,;, then
C*(y) = C*(x) = C*(2).

Lemma 16. The Unary Path (UP) preprocessing rule is safe.

Proof. Let p,, be a unary path between nodesandb in a leaf colored tre¢T” = (V, E), C) such that

b is a descendant af. Let (7", C") be the tree obtained from applying Preprocessing Rule 3 on the tree
(T, C). Suppose we have an optimal convex colored {feC"*) of the leaf colored tre€¢T”, C’) with
corresponding total convex colorif@’, C"). If we use the same recoloring of the leavesfowe obtain a
convex colorable leaf colored tré€, C*) (for each leab in T or T": C"*(v) = C*(v)). The corresponding
total coloringC””’” of T' can be obtained fror@”’ by setting the color of each internal node on the path

to the color ofb in C”. Thus, the number of recolored leaves has not changed. HOMRE(T', C') >
OPT(T,C). Now, suppose we have an optimal convex colorable(ffe€*) and we delete the nodes and
their incident edges on the path between nadasdb, and then add an edge betweeandb, then the

tree we obtain is also convex colorable. Also here, the number of recolored leaves will not change. Thus,
OPT(T',C") < OPT(T,C). O
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Preprocessing Rule 3: Leaf Siblings Of the Same Character (LSOSC)

Definition 12. Let S,, be a set of leaves i with a common parenb. We callS,,, a set of leaf siblings
of the same characteif all leavesv € S,, have the same color.

LSOSC Rule:
let Sy, = {w1, - ,wn } be a set of leaf siblings of the same character in
(T,C),m > 1,
let 7' be a tree obtained from the tr&e such thaly (T") = V(T') — S,
E(T") = E(T) — {{w;,w}|w; € Sy, w is the parent ofv, };
foreachv € leaves(V(T"), v # w,
setC’(v) « C(v);
setweight(v) « 1;
setC’(w) « C(wy));
setweight(w) < |Sy;

Note that this rule transforms the tree to one with weights. After we have executed the LSOSC rule on
a given tree, we then transform the ti@, C’) to an optimal convex colorable tré&”, C'*). Then, we
add the nodes of the s8t, to the treg(T”, C'*) with an edge between every node € S,, and the node
w. Next. we can use the following coloring rule for coloring the nodes of th&gseh the tree(T”, C™).
The result is an optimal convex colorable t(@& C*) of the tree(T', C).

let D =C™* — {C™(w)};

if 3z € V(T"), v # wandC™(z) =C™*(w;), w; € Sy, 1 <1 <m
then for (: = 1tom) C™* (w;) — C"™(w);

elsefor(i =1tom — 1) C"™*(w;) — C™*(w);

B B60U
Bl

(T,.C) (T,C) (T,C*) (T.C")

@ (b) © (d)

Fig. 8. An example for reducing and recoloring a leaf colored tree by using the Leaf Siblings Of the Same Character
(LSOSC) rule. The numbers inside the nodes represent the colors of the nodes and the numbers outside the nodes
represent their weights.

Lemma 17. Let S,, = {w1, -+ ,wm}, m > 1 be a set of leaf siblings of the same character in a leaf
colored tree(T = (V, E),C), c¢; be the color of the nodes of the s&t anda,b,c,d € V, a,b,c ¢
Sw, d € Sy, C(a) = C(b) = ca, C(c) = C(d) = ¢,
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1. If po» @andp.q are two crossing paths i, C'), then for everyw; € S, pew;, andp,, are crossing
paths in(T, C).

2. If pap @andp.q are not crossing paths i, C'), then for everyw; € Sy, pew, andp,, are not crossing
paths in(T, C').

Proof. Letpay = (a, -+ ,b),pead = (¢, -+ ,w,d), wherew is the parent off in the tree(T, C). If p,;, and

Ped @re crossing paths in the tré®, C) andw is the parent of the set of the nodes of the same character,
Sw, thenw & V(pay) NV (pea). This meansy (pap NV (pew;) = V (pea) for everyw; € S,,. Therefore,

for everyl < i < m, pa, andp,,,, are crossing paths iff’, C). In the same manner, we can prove that if
Pab @Ndp.4 are not crossing paths (T, C'), then for everyw,; € Sy, pew, @aNdp,, are not crossing paths
in(T,C). O

Corollary 3. Let(T,C*) be an optimal convex colorable recoloring of a leaf colored t{f€eC), S, be
a set of leaf siblings of the same characte(y C). If there is a leafr € S,,, C*(x) = C(x), then for
every leafv € S,,, C*(v) = C(v).

Proof. Suppose that we have two leaves € S,,, C*(z) = C(z) andC*(y) # C(y). Thus, we have
recoloredy in (7', C) to obtain an optimal convex colorable tréE, C*). As the recoloring is optimal,
a recoloring that leaves the color gfintact is not convex, so there must be nodes, ¢, with C(a) =

C(b) # C(y),C(c) = C(y), andp,, andp,, are crossing paths. Now, by Lemma béb andp,.,, are also

crossing paths, heneg* is not convex, contradiction. a
Lemma 18. The Leaf Siblings Of the Same Character (LSOSC) rule is safe.
Proof. LetS,, = {w1,--- ,wn } be a set of leaf siblings of the same charactéflin= (V, E),C), m > 1,

w is the parent of these siblings adde the color of these siblings. LEL”, C’) be a tree obtained from

(T, C) as it is described in theSOSC ruleWe can consider two cases for proving this Lemma.

Case 1 In the given tree, there is no leafe V, v ¢ S,, andC(v) = d in (T, C), namely, there is no
leaf in (T, C) and not inS,, that gets assigned the same color as the leaves in tt$%, st such a case, if

we apply the LSOSC reduction rule on the (@& C'), then the nodev in the weighted leaf colored tree
(T, C",w) is a leaf of a unique color. Therefore, we need not to recolor this node to tran&foral’, w)

to an optimal convex colorable tr¢&”, C’*, w) and thus the nodes of the s&f in the tree(T, C*) since
according to this rule, the color of the nodds assigned to the nodes of the Sgt.

Case 2 In the given tree, there is a leaf,e V, v ¢ S, andC(v) = c(w;) = d in (T, C), namely,
there is a leab in (T,C), v ¢ S, that gets assigned the same color as the leaves in thg,sétrom
Lemma 17 and Corollary 3, we know thatpif,, andp,, are two crossing paths ifY’, C'), then the nodes

of the setS,, in the tree(T, C*), either, all should be recolored or no node of them should be recolored.
Due to theLSOSC rulethe nodes of the sef,, are assigned the same color as the node (T, C*)

after transformind7”, C’, w) into a convex colorable tre@”, C"*, w). Moreover, the weight of a leaf
inthe tree(T", C, w), w(v), corresponds to the number of leaves that should be recolored in the normal leaf
colored tree. Therefore, the minimum number of recolored leaves in a leaf coloré@'{(@€) equals the
total weight of recolored leaves of its correspondifig, C*, w). a

Corollary 4. Let (T, C) be a leaf colored tree such thatl’, C') does not include any set of siblings of
the same character. Lat;, z2,y1,y2 € leaves(V). If color(z1) = color(zz), color(yl) = color(y2)
andcolor(x1) # color(y1), then we have to recolor at least one leaf node in a leaf colored(ffe€”) to
transform it to an optimal convex colorable trég, C*).

Lemma 19. Let (T7,C" : V «— (') be a leaf colored tree obtained from executing the LSOSC rule on a
leaf colored tre€T", C'). In order to transform(T’, C') to an optimal convex colorable tr¢&", C*), we have

to recolor at mosk = |leaves(T')| — 1 leaves inT’, of a total weighty = ¢ — max(wy,--- ,w|c/|), where

t is the total weight of all leaves of the tré€’, C’), w,, is the total weight of the leaves of colarin T”.

Proof. Let d be the color of the maximum weight in a leaf colored t(@eC'). For every leafv € V if

C(v) = d, thenC’(v) = C(v). For every leab € V, if C(v) # d, thenC’(v) = z such thatz is a color

that is not assigned to any other leavegofThus, (T, C’) is a convex colorable fofT", C') and we have
recolored at most leaves of a total weight because at most one color is repeated for more than one leaf
and each of the other leaves has assigned a different color from the others. a
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Conclusions

The essential purpose of preprocessing rules is to reduce the size of a problem under study, using relatively
little computation time and without losing optimality. The smaller, and presumably easier, problem is sub-
sequently solved. In this section, we discussed preprocessing rules for the problem of transforming a leaf
colored tree to an optimal convex colorable tree. We introduced two types of rules for doing that, namely,
splitting rules and reduction rules. Under each splitting rule, the given tree is breaking down into two or
more subtrees. The combination of the optimal convex colorable subtrees is an optimal convex colorable
tree of the given tree. In the second type of rules, we exploit a set of rules for stepwise reducing the prob-
lem of finding the convex colorable tree of minimum number of recolored leaves to the same problem on
a smaller leaf colored tree. The smaller tree can be transformed to a convex colorable tree using an exact
or heuristic algorithm, depending on the tree’s size. From the optimal convex colorable tree of the smaller
tree, a convex colorable tree of the original tree is obtained by reversing the reduction steps. The splitting
and reduction rules are guaranteed not to destroy the optimality. For some leaf colored tree instances, it
is sufficient to apply these preprocessing rules with some simple coloring rules to obtain the minimum
number of recolored leaves that should be recolored to transform a leaf colored tree into an optimal convex
colorable tree, for instance, a leaf colored tree with all leaves having different colors or leaf colored tree of
the form star.

The tree or subtrees we obtain from applying these preprocessing rules on the given tree have the
following properties: First, there are at least two leaves in each resulting subtree of the same color. Second,
there is no subtree within each tree obtained from reduction rule or subtrees obtained from splitting rules,
the colors of its leaves are totally different than these of other subtrees. In other words, there is at least one
crossing path in each subtree. Third, the number of branches at each node of the subtrees obtained from the
preprocessing rules is at least two. Fourth, in the resulted subtrees, there is no set of siblings of the same
color.

5 A branching algorithm

In this section, we give an exact algorithm for the/d/Ex RECOLORING OFLEAF COLORED TREES
problem. Our algorithm shows that this problerfixed parameter tractablehen the number of recolored
leaves is taken as parameter. More details on fixed parameter tractability follow.

The algorithm uses thieranchingtechnique. The main algorithm is a decision algorithm: it is given a
leaf colored tree and an integerand it decides ifl" can be made convex colorable by giving at mbst
leaves a new color. We start running the algorithmifes 0, and while the answer is negative, increase
and run the algorithm for the new value/afuntil we have found the optimal number of leaves to recolor.
The branching algorithm operates on subinstances that are again a leaf colorddwige ome leaves
recolored with a new color) and an intedgé€r again, in such a subinstance, we decide if this leaf colored
tree can be made convex colorable by recolofihigaves.

Our algorithm basically depends on Theorem 1. Itis given in Figures 9 and 10 and operates as follows.
Algorithm MainBranching starts witk = 0, tests if the optimum number of recolored leaves,iand if
not, increases by one and repeats.

Algorithm Branching receives as input a leaf colored {€g, C') and an integek, and decides if we
can make the tree convex colorable by recoloring at midstives. First, it checks, using the procedure
from Theorem 4, if(T,;, C) is convex colorable. If so, we have found the desired solutiofT}f C) is
not convex colorable, ankl = 0, we know that this subinstance has no solution. Otherwise, we know by
Theorem 2, that there must be a crossing paitZip, C'). We can find such a crossing pair in linear time
(Theorem 5). At least one of the four leaves on these two paths must be recolored (Theorem 1). When
recoloring a leaf, we can assume it receives a new color, not given to any other leaf. Thus, we create four
subinstances: in each, we recolor one of the four leaves in the crossing paths. Thus, there is a solution with
at mostk recolored leaves, if and only if there is a solution with at nfost 1 recolored leaves in one of
the subinstances. The pseudo-code is given in Figures 9 and 10.

Theorem 6. The minimum number of recolored leav@®T' can be computed in
O(49FT . n) time.
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Algorithm MainBranching (1%, C)

1 found = false; k =0;
2 while (not found)

3

o 01 b

answer = Branching(Ty, C, k);

if (answer = false)
thenk=k+1

elsefound = true; returnanswer;

Fig. 9. Pseudo-code of the Algorithm MainBranching.

Algorithm Branching (T, C, k)
Input: A leaf colored tre€T, C'), rooted by node:, T, = (V, E),

V={v, -

7Un}7 C:{Ch‘“ ,Ck},TL,]CGN*{O}.

Output: A leaf coloringC"’ with at mostk recolored leaves that is
convex colorable, or “false” if no such recoloring exists.

1
2 else
3
4 else
5
6
7
8
9
10
11

if (T, C) is convex colorabl¢hen returnC
if (k = 0) thenreturn “false”

Find a pair of crossing paths (i, C'), p1 andps;
let Y be the leaves op; andps;
foreachy € Y
DefineC’ as follows:C’(y) = 6,; (6, is a new color);
for all leavest # y: C'(z) = C(x);
br = Branching(., C’, k — 1);
if (br # “false”) then returnbr; (exit)

Fig. 10. Pseudo-code of the Algorithm Branching.

15
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Proof. The branching algorithm will continue precisely to lev@PT. The kth round of the main loop
of MainBranching will cause in total at mogfzo 47 < 2 - 4F calls to Branching. So, in total, less than

OFT 9. 4k < 4OPTH1 calls to Branching will be done. Each such call takis) time (see Theorem 4
and Theorem 5). a

Fixed Parameter Tractable Problems (FPT)

A problem with a parametét is called fixed parameter tractable (FPT) if it can be solved or decided by
an algorithm within a running timé( f (k) - poly(n)), for some functiory. For fixedk, this is polynomial
time. For more information on fixed parameter tractability, see [2].

Corollary 5. TheCoNVEX RECOLORING OFLEAF COLORED TREESprobleme FPT.

Proof. Do the branching algorithm fdr levels and see if a solution is found. The running tim@{g* - n).
O
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