
Convex recoloring of leaf-colored trees

Emgad H. Bachoore

Hans L. Bodlaender

Department of Information and Computing Sciences,
Utrecht University

Technical Report UU-CS-2006-010

www.cs.uu.nl

ISSN: 0924-3275



Convex recoloring of leaf-colored trees?

Emgad H. Bachoore and Hans L. Bodlaender

Institute of Information and Computing Sciences, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

bachoore@cs.uu.nl hansb@cs.uu.nl

Abstract. A coloring of the leaves of a treeT is calledconvex, if it is possible to give each internal
node a color, such that for each color, the set of nodes with that color forms a subtree ofT . Motivated by
a problem from phylogenetic reconstruction, we study the problem, when given a tree with a coloring
of its leaves, to recolor as few as possible leaves to obtain a convex coloring. We present first a linear
time algorithm for verifying whether or not a given leaf colored tree is convex colorable. Then, we give
a number of preprocessing rules for reducing the size of the given tree or splitting it into two or more
subtrees. Finally, we introduce a branching algorithm for solving the problem in4OPT ·n, whereOPT
is the optimal solution for solving the problem, and show that the problem is fixed parameter tractable.

1 Introduction

The problem to obtain a ’likely’ evolutionary tree from biological or linguistic data (the phylogenetic re-
construction problem) gives rise to several interesting combinatorial problems. One of these is the problem
of convex recoloring. The most studied variant of this problem is the following: we are given a treeT with
a coloring of the nodes of the tree. We ask how we can change as few as possible colors of a node, such
that we obtain a coloring where for each color, the nodes with that color form a connected subtree. The
colors represent a value for some characteristic for the items represented by the nodes; from the phyloge-
netic application, one expects that with perfect data, each color class forms a connected subtree. As the
data may contain errors, the input possibly does not have this connectivity property, and we ask how we
can ’correct’ as few as possible colors / values, to get a tree with this connectivity property. This problem
was extensively studied by Snir [5], see also [3]. An approximation algorithm (for a generalized weighted
variant) was obtained by Moran and Snir [4]. A recent improvement was obtained by Bar Yehuda et al. [1].

An interesting variant is when only the values for the leaves of the tree are given. E.g., the leaves
represent species that are presently known, and values for internal nodes (representing possibly hypothetical
extinct species) are not known. This variant leads to the following combinatorial problem: given is a treeT
with a coloring of the leaves ofT . We ask to recolor as few as possible leaves ofT , such that the resulting
coloring has the property that we can assign a color to each leaf ofT and obtain a total coloring ofT where
for each color, the set of nodes with that color form a connected subtree ofT .

This CONVEX RECOLORING OF LEAF-COLORED TREESproblem was first studied by Snir in [5], who
showed that the problem is NP-complete. In this paper, we obtain several further results on the problem.
After some preliminaries in Section 2, we give in Section 3, a linear time algorithm for verifying whether
or not a leaf colored tree is convex colorable. In Section 4, we present a number of safe preprocessing for
reducing the size of the tree to an equivalent smaller one, or splitting the tree into two or more subtrees.
Finally, in Section 5, we use a branching technique to develop an algorithm for the problem to determine,
given a leaf-colored tree, what is the minimum number of leaves that must be recolored to obtain a convex
colorable tree, and this shows that the problem is fixed parameter tractable.

2 Preliminaries

All trees used in this paper are rooted. Whenever we refer to paths, we assume these are simple. To avoid
the ambiguity in the meanings of some terms, we use some of the terminology, introduced in [5].

? This work has been supported by the Netherlands Organization for Scientific Research NWO (project TACO:
’Treewidth And Combinatorial Optimization’).



Convex recoloring of leaf-colored trees 3

If C1 : V1 → X andC2 : V2 → X are functions with disjoint domains (V1 ∩ V2 = ∅), thenC1 + C2 :
V1∪V2 → X is the function with forx ∈ V1: (C1 +C2)(x) = C1(x), andx ∈ V2: (C1 +C2)(x) = C2(x).

A treeor free treeis a graph connectingn nodes withn − 1 edges such that there is exactly one path
between any two given nodes. Arooted treeis defined as a free tree in which a particular node has been
specified as the root. In a rooted tree, each nodev that is not the root has aparent, namely the unique
neighbor ofv that is on the path fromv to the root. The parent ofv is denoted parent(v). If w is the parent
of v, thenv is achild of w. Let for all v, w ∈ V , pvw denote the path inT from v to w. If v is on the path
from w to the root of the tree (v 6= w), thenw is adescendantof v, andv is anancestorof w. A node is a
leaf in a rooted tree, if it has no children.

A total colored tree(or, for short:colored tree) is a pair (T, C) whereT= (V, E) is a tree andC is a
coloring ofT , i.e., a functionV → C from V onto a set of colorsC. A partial colored treeis a pair(T, C)
whereT = (V, E) is a tree, andC is a coloring of some of the nodes ofT , i.e., a functionW → C from a
subset of nodesW ⊆ V onto a set of colorsC. A leaf colored treeis a partial colored tree(T, C) in which
a node has a color, if and only if it is a leaf.

A block in a colored tree is a maximal set of nodes induces a monochromatic subtree, i.e., a maximal
set of nodes of the same color that induce a connected subtree of the tree. Ad-block is a block of colord.
A coloringC is said to beconvex(or, also sometimes called:connected) if the number ofd-blocks equals 1
for every colord ∈ C. In other words, the coloring is convex, if for each colord, the set of nodes with color
d forms a connected subtree. Atotal convex colored treeis a total colored tree whose coloring is convex.

A total coloringC′ of a treeT is anextensionof a partial coloringC of T , if for every nodev with a
color inC, C′(v) = C(v). A partial colored tree(T, C) is convex colorable, if and only if there is a convex
total coloring that extends it. The same definitions apply also for leaf colored trees; i.e., a a leaf colored
tree is convex colorable, if we can transform it to a total convex colored tree without changing the colors
of its leaves.

A colored tree(T = (V, E), C′), partial or total, is viewed as arecoloring of a given colored tree
(T, C), if there is at least one nodev ∈ V , C(v) 6= C′(v). We say that the recoloringC′ of C retainsthe
color of nodev, if C(v) = C′(v), otherwiseC′ overwritesv. For a recoloringC′ of C, XC(C′) (orX (C′))
is the set of nodes overwritten byC′, i.e.,XC (C′) = {v ∈ V |C(v) is defined andC(v) 6= C′(v)}.

Thedegree of a recoloringC′ of C, δC(C′), is the number of nodes overwritten byC′, i.e.,δC(C′) =
|XC(C′)|. A coloringC∗ is anoptimal convex recoloringof C, or in short anoptimal recoloringof C, and
δC(C∗) is denoted byOPT (T, C), if C∗ is a convex coloring ofT for which δC(C∗) = minC{δC(C′)},
where the minimum is taken over all convex recolorings ofC.

For a rooted treeT = (V, E) with rootr, and a nodex, the treeTx is the subtree ofT rooted atx, i.e.,
the subtree ofT induced byx and all descendants ofx. If C is a (partial) coloring ofT , thenCx is the
restriction ofC to Tx.

A recoloringC∗ is anoptimal leaf convex recoloringof C for a leaf colored tree(T, C), or in short an
optimal leaf recoloringof C, if the number of recolored leaves is the minimum over all convex colorable
recolorings ofC. This number is then denoted asOPT (T, C).

A weighted colored treeis a colored tree to whose nodes labels (usually number) are assigned. The
word ”weight” also has a more specific meaning when applied to colored trees, namely, the weight of a
nodev of a colorc in a colored tree(T, C), wc(v), is the cost of using colorc for coloring nodev in (T, C).
Thedegree of a recoloringC′ of C, δC(C′), in a weighted colored tree, is the sum of the weights of the
nodes overwritten byC′, i.e.,δC(C′) =

∑
w(vi), where the sum is taken over all nodesvi whose color is

overwritten in the tree.

Lemma 1. Let (T, C) be a leaf colored tree such that every leaf inT has a different color. ThenC is
convex colorable. Hence,OPT (T, C) = 0.

Lemma 2. Let (T, C) be a leaf colored tree. If there is only one colorc ∈ C that is assigned to more than
one leaf of the tree and each of the other colorsd ∈ C, d 6= c is assigned to one leaf of the tree, then the
leaf colored tree is convex colorable.

Lemma 3. Let m be the number of leaves in a leaf colored tree(T, C) andd be the number of different
colors used for coloring the leaves ofT . OPT (T, C) ≤ m− d.



4 Emgad H. Bachoore and Hans L. Bodlaender

Proof. For each colorc ∈ C, we give each node of colorc, except one of these, a new color. Now, every leaf
in the tree has a different color from the others. Thus, the tree is convex colorable, and we have recolored
m− d leaves. ut
Corollary 1. Let (T, C) be a leaf colored tree withm leaves and letn1, n2, · · · , nl be the numbers
of leaves with colorsc1, c2, · · · , cl, such thatn1 + n2 + · · · + nl = m. The minimum number of
leaves that should be recolored to transform(T, C) to a convex colorable tree is at mostk = m −
max{n1, n2, · · · , nl} − (l − 1).

Proof. Supposenr = max{n1, n2, · · · , nl}. For each colorcs, s 6= r, we give each node of colorcs,
except one of these, a new color. Now, only one color (cr) is given to possibly more than one leaf; each
other color is given to at most one leaf. Thus the tree is convex colorable, and we have recoloredk leaves.

ut
Definition 1. A treeT = (V, E) is a star, if T has the following form: There is one special node (root)r
in T with zero or more children, and every other node in the tree exceptr has at most one child.

Fig. 1. Two trees that are a star

Lemma 4. Let(T1, C1) and(T2, C2) be two leaf colored trees such that the number of leaves inT1 equals
the number of leaves inT2, and for each colorc, the number of nodes with colorc in T1 equals the number
of nodes with colorc in T2, andT1 is a star. ThenOPT (T, C1) ≥ OPT (T2, C2).

Lemma 5. Let (T = (V, E), C) be a total convex colorable tree,vi, vj ∈ V , each ofvi andvj is not a
descendant of the other,color(vi) = color(vj). Then color(parent(vi) = color(parent(vj)).

Lemma 6. Let (Ts, Cs) be a leaf colored subtree of a leaf colored tree(T, C). ThenOPT (Ts, Cs) ≤
OPT (T, C).

Lemma 7. Let (T = (V, E), C) be a colored tree,Pvw be a path between nodesv andw, x be a node on
the pathPvw. If color(v)=color(w) 6= color(x), then the tree(T, C) is not convex colorable.

3 Verifying Convex Colorability

In this section, we show that we can test inO(n) time if a leaf colored tree is convex colorable. We use a
simple characterization of convex colorability in terms of crossing paths, and also show that we can find in
O(n) time a pair of crossing paths for a leaf colored tree that is not convex colorable.

Definition 2. Let p1, p2 be paths in a leaf colored tree(T, C). We callp1 andp2 a pair of crossing paths,
if the following conditions hold.

– The endpoints ofp1 are leaves with the same color.
– The endpoints ofp2 are leaves with the same color.
– The color of the endpoints ofp1 is different from the color of the endpoints ofp2.
– p1 andp2 intersect:V (p1) ∩ V (p2) 6= ∅.



Convex recoloring of leaf-colored trees 5

Theorem 1. Let (T, C) be a leaf colored tree. Letp1 andp2 be crossing paths, withp1 a path between
leavesv1 andv2, andp2 a path between leavesw1 andw2. Then in a convex colorable recoloring of(T, C),
at least one node from{v1, v2, w1, w2} is recolored.

Proof. Let v1, v2, w1, andw2 be the leaves of the crossing pathsp1 andp2 in a leaf colored tree(T, C).
Let x be the first common ancestor of these leaves. If we assign the colorc = C(v1) = C(v2) to the node
x, then eitherw1 or w2 must be recolored, otherwise the set of vertices with the color ofw1 is not convex.
Similarly, when we assign the color of nodesw1 andw2 to x. When we assign a colorc 6∈ {c, d} to x, then
c ’breakes’ the color ofv1 andv2 as well as the color ofw1 andw2, and we have to recolor at least two of
the leaves. ut
Theorem 2. Let (T, C) be a leaf colored tree.(T, C) is convex colorable, if and only if there is no pair of
crossing paths in(T, C).

Proof. If there is a pair of crossing paths, then by Theorem 1, at least one leaf must be recolored, so the
tree is not convex colorable.

If there is no pair of crossing paths, then we can obtain a convex coloring ofT as follows. For each
internal nodex, if x is on a path between two leaves with the same colorc, then colorx with c. If x is on
no such path, we givex a new color, not given to any other nodecx. One can easily verify that this is a
convex coloring. ut
Definition 3. Letv be a node in a leaf colored tree(T, C).

nv(i) =




0 if v has a childw such that all leaves with color
i are a descendant of or equal tow, or there is no
leaf with colori in the subtree rooted atv ,∑

w∈children(v)

nw(i) otherwise.

Lemma 8. nv(i) ≥ 1, if and only if there is a path between two leaves with colori that usesv.

Proof. By the definition ofnv(i), nv(i) = 0, if and only if v has a childw such that all leaves with color
i are a descendant of or equal tow, or there is no leaf with colori in the subtree rooted atv, otherwise
nv(i) ≥ 1. Hence, ifnv(i) = 0, then there is no path between any two leaves with colori that usesv,
otherwisenv(i) ≥ 1.

If nv(i) ≥ 1, then by the definition ofnv(i), nv(i) equals the sum of thenw(i), wherew ∈
children(v). If v has two (or more) childrenw1, w2, with nw1(i) ≥ 1 andnw2(i) ≥ 1, then there is
a descendanty1 of w1 with color i and a descendanty2 of w2 with color i, and the path fromy1 to y2 uses
v. If v has only one childw with nw(i) ≥ 1, then there must be a vertexy with color i that are not a child
of w, and hence also not a child ofv. Also, v has a descendantz with color i, and a path fromy to z uses
v. ut
Lemma 9. Letv1, v2 be two leaves associated with colorsc1, c2 respectively, in a leaf colored tree(T, C)
such thatc1 6= c2. Letw be an internal node inT such thatv1 andv2 belong to the subtree rooted at the
nodew. If nw(c1) ≥ 1 andnw(c2) ≥ 1, then(T, C) is not convex colorable.

Proof. Supposenw(c1) ≥ 1 andnw(c2) ≥ 1. By Lemma 8, there is a path between two leaves with color
c1 that usesw, and a path between two leaves with colorc2 that usesw. These are crossing paths, and
hence, by Theorem 1, at least one leaf must be recolored to obtain a convex colorable tree. ut
Lemma 10. Letx, y be two nodes in a total convex colored tree(T, C). Supposey is a descendant of the
parent ofx, buty is not a descendant ofx. If color(x) = color(y) then for every nodez = ancestor(y),
z 6= ancestor(parent(x)), color(z) = color(x) = color(y).

Lemma 11. Let Sv be the set of the colors of the children of a nodev in a convex colorable tree(T, C).
There is at most one color in the setSv which is repeated for more than one child ofv.



6 Emgad H. Bachoore and Hans L. Bodlaender

Corollary 2. Let v andw be two nodes in a convex colorable tree(T, C), parent(v) = parent(w) = x.
If color(v) = color(w), thencolor(x) = color(v).

Theorem 3. Let (T1 = (V1, E1), C1 : V1 → C1), · · · , (Tk = (Vk, Ek), Ck : Vk → Ck) be color
connected trees rooted at nodesv1, · · · , vk respectively. LetB = (C1 ∩ C2) ∪ · · · ∪ (C1 ∩ Ck) ∪ · · · ∪
(Ck−1∩Ck), and letTx = (Vx, Ex), Vx = V1+· · ·+Vk+{x}, Ex = E1+· · ·+Ek+{x, v1}+· · ·+{x, vk}
as in Figure 2, i.e.,x is the parent of nodesv1, · · · , vk. If |B| = 0, thenTx is colored connected whatever
color we use for coloring the nodex. If |B| = 1, thenTx is colored connected if and only ifcolor(x) =
(C1(v1)∩C2(v2))∪ · · · ∪ (Ck−1(vk−1)∩Ck(vk)) = b ∈ B. If |B| > 1, thenTx is not colored connected
whatever color we use for coloring the nodex.

Proof. If |B| = 0, then there is no common color between the colors of the leaves of the trees rooted at
v1, · · · , vk. Now, if we assign any colorc 6∈ C to x, then the tree rooted atx will not include any pair of
crossing paths. Therefor,Tx is convex colorable, (see Theorem 2).

If |B| = 1, then there is one common color between, at least, two leaves of two different trees of the
trees rooted atv1, · · · , vk. Therefore the tree rooted atx is convex colorable if and only if the color we
assign tox is the same color that is common between the colors of the leaves ofTv1 , · · · , Tvk

and is also
the same common color between the colors ofv1, · · · , vk, (see Lemma 11).

Finally, if |B| > 1, then there are at least two common colors between the leaves of two or more trees
Tv1 , · · · , Tvk

. This means that the treeTx includes at least one pair of crossing paths. Therefor, whatever
color we assign forx the treeTx will not be a convex colorable, (see Theorems 1 and 2). ut

v ............ v

k xTT1T

x

k1vkv1

Fig. 2. Connected colored trees combination

In Figure 3, we give the pseudo-code of the algorithm Is-Convex-Colorable for testing whether a leaf
colored tree(T = (V, E), C : V → C) is convex colorable or not. Lettot(1), · · · , tot(|C|) be the numbers
of leaves of colors1, · · · , |C| ∈ C in (T, C), respectively. In this algorithm, we traverse the nodes of the
tree in postorder. We computenv(i), for each visited nodev, as it is given in Definition 3. In other words,
for each visited leafv ∈ V , we havenv(c) = 1 for the colorc of v, and for all colorsc′ 6= c, we have
nv(c′) = 0. Whereas, for each visited internal nodev ∈ V , nv(i) equals the sum of the valuesnw(i) over
all childrenw of v if none of thesenw(i) equalstot(i), otherwise it is 0.

At each internal nodev, we test whether or not the subtree rooted atv, in T , is convex colorable,
as follows: For each nodev, if there are two colorsi, j, with nv(i) ≥ 1 andnv(j) ≥ 1, then the subtree
rooted atv is not convex colorable and therefore(T, C) is also not convex colorable. Thus,(T, C) is convex
colorable, if and only if there is noi, j ∈ C, i 6= j andnr(i) ≥ 1 andnr(j) ≥ 1, wherer is the root of the
tree.

The pseudo-code given suggest an algorithm that runs inO(nk) time when we have a tree withn nodes
andk colors were used for coloring the leaves. However, if we store at each node only the valuesnv(c)
that are not zero, then at each node that is processed except possibly the last one, we store only one value
(the algorithm stops as soon as we have a node where two valuesnv(c), nv(c′) both are non-zero). In this
way, the algorithm takes linear time.

Theorem 4. Let (T, C) be a leaf colored tree withn nodes. There is an algorithm to test whether(T, C)
is convex colorable or not that usesO(n) time.



Convex recoloring of leaf-colored trees 7

It is also possible to find inO(n) time a pair of crossing paths if the tree is not convex colorable. We
first run Algorithm Is-Convex-Colorable. Suppose it returns no when for nodex, we havenx(i) ≥ 1 and
nx(j) ≥ 1. Then, there are crossing paths with leaves of colorsi andj that intersect at nodex. A simple
search can give us these paths: for each neighbory, look if there is a path fromy to a leaf with colori
avoidingx. If we have two such paths from neighborsy1 andy2, these paths, together withx form a path
between two leaves with colori that usesx. We can do the same for colorj, and we have the desired
crossing paths. Standard techniques make this run in linear time.

Theorem 5. Let (T, C) be a leaf colored tree withn nodes that is not convex colorable. There is an
algorithm that finds inO(n) time a pair of crossing paths.

Algorithm Is-Convex-Colorable (x)

Input: A leaf colored tree(Tx, C : Vx → C), rooted by nodex, Tx =

(V, E), V ← {v1, · · · , vn}, C ← {c1, · · · , ck}, n, k ∈ N− {0}, andtot(1),

· · · , tot(|C|) be the number of leaves in(Tx, C) of colors1, · · · , |C| ∈ C.
Output: “yes” if (Tx, C) is convex colorable, and “no” otherwise.

1 if (isleaf(x)) then nx(i) = 1 such that,i is the color ofx

2 else

3 nx(i)← 0, i← 1, · · · , |Cx|;
4 foreachy ∈ children(x)

5 Is-Convex-Colorable(y);

6 if (ny(i) < tot(i)) then nx(i)← nx(i) + ny(i);

7 if (∃i, j ∈ Cx, i 6= j: nx(i) ≥ 1 andnx(j) ≥ 1) then return “no” , exit;

8 if (x = root) then return “yes”;

Fig. 3. Pseudo-code of the Algorithm Is-Convex-Colorable.

4 Leaf Colored Tree Preprocessing Rules

There are several methods for preprocessing a leaf colored tree before running an algorithm on it for finding
the minimum number of leaves that should be recolored to transform it into an optimal convex colorable
tree. With preprocessing,we hope to decrease the size of the input tree. The algorithm for finding the
minimum number of recolored leaves thus often runs on a smaller instance, and hence can be much faster.
For example, we first preprocess the tree, and then run a slow exact algorithm on the reduced instance. We
consider two types of preprocessing rules in this section. These areReduction Rules (Simplification)and
Splitting Rules (Divide and Conquer). With the reduction rules, we change the given tree into a smaller
’equivalent’ one. Whereas, with the splitting rules, the given tree is split into two or more smaller parts.

Definition 4. A splitting rule R,

R : (T, C)→ (T1, C1), · · · , (Tm, Cm)

is a rule for breaking down a leaf colored tree(T, C) into two or more subtrees
(T1, C1), · · · , (Tm, Cm), m > 1, such that,

1. V (T1) ∪ · · · ∪ V (Tm) = V (T ).
2. V (T1) ∩ · · · ∩ V (Tm) = φ.
3. E(T1) ∩ · · · ∩ E(Tm) = φ.
4. E(T1)∪ · · · ∪E(Tm)∪ {x1, y1}∪ · · · ∪ {xm, ym} = E(T ), where{x1, y1}, · · · , {xm, ym} ∈ E(T ),
{x1, y1}, · · · , {xm, ym} 6∈ E(T1), · · · , E(Tm).



8 Emgad H. Bachoore and Hans L. Bodlaender

We call a tree splitting ruleR safe, if and only if

OPT (T1, C1) + · · ·+ OPT (Tm, Cm) = OPT (T, C).

Definition 5. A reduction rule R,
R : (T, C)→ (T ′, C′)

is a rule for transforming leaf colored trees(T, C) into smaller trees(T ′, C′), namely,|V (T ′)| < |V (T )|
and|E(T ′)| < |E(T )|. We call a tree reduction ruleR safe, if and only if

OPT (T ′, C′) = OPT (T, C).

In the following, we present three preprocessing rules. The first preprocessing rule is a splitting rule
with two special cases, while the second and the third preprocessing rules are reduction rules. Furthermore,
we show how to transform some of the subtrees obtained from splitting or reduction rules to optimal convex
colorable subtrees.

Preprocessing Rule 1: Independent Leaf Colored Subtree (ILCS)

Definition 6. Let Ts be a subtree of a treeT , rooted at nodes. T 	 Ts is the treeT − E(Ts) obtained
by deleting fromT the edges ofTs and the resulting isolated nodes, if they exist, i.e., letζ(T ) = ({v ∈
V (T )| deg(v) ≥ 1}, E(T )). T 	 Ts = ζ(V (T ), (E(T ) \ E(Ts)).

Definition 7. Let (Ts = (Vs, Es), Cs : Vs → Cs) be a leaf colored subtree of a leaf colored tree(T =
(V, E), C) . We call(Ts, Cs) an independent leaf colored subtreeof (T, C) if Tt = T	Ts andCs∩Ct = φ.

ILCS Rule:
let (Ts, Cs) be a leaf colored subtree of a leaf colored tree(T, C);
if (Ts, Cs) is independent
then

let T1 = Ts; let C1 beC restricted toT1;
let T2 = T 	 Ts; let C2 beC restricted toT2;
split (T, C) into (T1, C1) and(T2, C2).

An optimal total convex colorable tree(T, C∗) can be obtained by combining optimal convex colorable
trees(T1, C

∗
1 ) and(T2, C

∗
2 ).

3 4

1 1 2

4 53 41

1 1 2

4 53 411

44

5

1 1 2

4 53 41

1 1 2

4

1

1
* )   (T

2,C 2
* )           

r r r

sss

r

(T,C)

(b)(a) (c)

(T,C*)

(d)

,C

1

4

1

1

1

44

(T1,C 1
)  (T

2,C2
) (T1

Fig. 4. An example for splitting and recoloring a leaf colored tree by using the Independent Leaf Colored Subtree
(ILCS) rule.

Lemma 12. The Independent Leaf Colored Subtree (ILCS) rule is safe.



Convex recoloring of leaf-colored trees 9

Proof. We claim thatOPT (T1, C1) + OPT (T2, C2) = OPT (T, C). Take an optimal convex recoloring
C∗

1 of T1 and an optimal convex recoloringC∗
2 of T2. We can always find such recolorings such that new

colors inC∗
1 are not used inC∗

2 . Thus, no color used inC∗
1 is used inC∗

2 and henceC∗
1 + C∗

2 is convex
colorable forT . Hence,OPT (T1, C1) + OPT (T2, C2) ≤ OPT (T, C).

Suppose we have an optimal convex recoloringC∗ of T . Let C∗
1 be obtained by restrictingC to T1,

and C∗
2 be obtained by restrictingC to T2. Now, OPT (T, C) = δC(C∗) = δC1(C

∗
1 ) + δC2(C

∗
2 ) ≤

OPT (T1, C1) + OPT (T2, C2). ut
In the following two subsections, we describe two special cases of the Independent Leaf Colored Sub-

tree (ILCS) rule. These are: the Leaf Of a Unique Color (LOUC) rule and the Parents Of the Same Leaves
(POSL) rule.

Leaf of a Unique Color (LOUC)

Suppose that the given leaf colored tree has a leaf whose color is different from the colors of other leaves.
Then, this leaf can be considered as an independent leaf colored subtree of the given leaf colored tree.

Definition 8. Let v be a leaf node in a leaf colored tree(T, C). If no leafw 6= v in (T, C) has the same
color asv, then we callv a leaf of a unique color (LOUC).

LOUC Rule:
let x be a leaf of a unique color in a leaf colored tree(T, C) rooted atr;
while (|children(parent(x))| = 1) setparent(x)← x;
let T1 be the subtree ofT rooted at nodex,

T2 be the subtree ofT obtained by removingT1 from T , with rootr,
C1 be obtained by restricting coloringC to T1,
C2 be obtained by restricting coloringC to T2;

split (T, C) into (T1, C1) and(T2, C2);

Note that the tree that is split off is obtained by taking a leaf whose color is not given to any other leaf,
and then following the path from that leaf up to the tree, just before we find a node which has at least two
children.

After we split a leaf colored tree(T, C) into two leaf colored subtrees(T1, C1) and(T2, C2) by using
the LOUC splitting rule, it is easy to transform(T1, C1) to an optimal total convex colorable tree(T1, C

∗
1 ).

We can do that by coloring every node inT1 by the color of the leaf of a unique color. If(T2, C2) can
be transformed to an optimal total convex colorable subtree, then an optimal total convex colorable tree
(T, C∗) can be obtained by combining(T1, C

∗
1 ) with (T2, C

∗
2 ), namely,(T = (V, E), C∗) = ((V (T1) +

V (T2)), (E(T1) + E(T2) + {e|e ∈ E, e 6∈ E1, e 6∈ E2}), (C∗
1 + C∗

2 )).

Lemma 13. The Leaf Of a Unique Color Rule is safe.

Proof. This follows from the fact that the LOUC rule is a special case of the ILCS rule. ut

Parents Of the Same Leaves (POSL) rule

Definition 9. We call two leaf colored trees(T1 = (V, E), C) and(T2 = (W, F ), D) equivalent, if there
is a bijectionf : V → W , such that for allx, y ∈ V : {x, y} ∈ E ⇔ {f(x), f(y)} ∈ F , and for all
v ∈ leaves(V ), C(v) = D(f(v)).

For rooted trees, we require additionally thatf maps the root of the first tree to the root of the second
tree. Clearly, when leaf colored trees are equivalent, the solution to the problem to find an optimal leaf
convex recoloring in one tree can directly be translated to a solution for the other tree.

Definition 10. Letv andw be two non leaves in a leaf colored treeT . We callv andw parents of the same
leavesif they have the same number of children, all their children are leaves, and the color frequencies of
their children are equal, namely, the number of children ofv with the colori equals the number of children
of nodew with the colori, for every colori used for coloring the children ofv andw.



10 Emgad H. Bachoore and Hans L. Bodlaender

2

11 2

3

(T,C) (T1,C1*) (T2,C2*) (T,C*)

2

11 2

r

3

2

1

1

1

3

x

r rr

x

(T2,C2)(T1,C1)

xx

(a) (b) (c) (d)

2

2

21

23

3

2

2

1

2

1 2

3

2

2

2

Fig. 5. An example for splitting and recoloring a leaf colored tree by using the LOUC rule. The trees shown in (b) are
the result of performing the LOUC rule on the tree in (a). The trees shown in (c) are the results of performing recoloring
operations on the trees in (b). The tree shown in (d) is obtained by combining the trees in (c).

POSL Rule:
let (T = (V, E), C) be a leaf colored tree rooted at noder,

v, w ∈ V be twoparents of the same leaves inT ,
Cv, Cw be the sets of the colors of the children ofv andw, respectively,
Ts be a subtree ofT , rooted at the first common parent,s, of v andw,
Tt = T 	 Ts and
Cs andCt be the coloring functions ofTs andTt, respectively;

if each leaf inTs is a child ofv or a child ofw andCs ∩ Ct = φ

then split (T, C) into (Ts, Cs) and(Tt, Ct);

We can use the following easy procedure to transform the subtree rooted at nodes to a convex colorable
tree.

let d ∈ Cs be the color that is assigned to most leaves of the subtreeTs,
amongst other colors inCs;
foreachvi ∈ leaves(Tv)

if (color(vi) 6= d) and (color(vi) = color(vj)), vj ∈ leaves(Tv), vj 6= vi

then color(vi)← d;
foreachwi ∈ leaves(Tw) if color(wi) 6= d then color(wi)← d;

Lemma 14. The Parents Of the Same Leaves rule (POSL) is safe.

Proof. This follows from the fact that the POSL rule is a special case of the ILCS rule. ut

Preprocessing Rule 2: The Unary Path Rule (UP)

Definition 11. Letpab be the path between nodesa andb in a leaf colored tree(T = (V, E), C), such that
|pab| ≥ 3. We call the pathpab a unary path, if for each nodev onpab, v 6∈ {a, b}, |children(v)| = 1.

UP Rule:
let pab = (a, · · · , b) be a unary path in a leaf colored tree(T, C), rooted at
noder such thatb is a descendant ofa;
let T ′ be the tree, obtained by removing all nodes onpab excepta andb

from T , with their incident edges, and adding an edge betweena andb; C′ = C;



Convex recoloring of leaf-colored trees 11

4

2 4

4

4

41

1

4 4 3 4 4

1 2 4

4

4

4

(T,C) (T,C*)

1

4 3 4 43

1 2 4

4 4 3 4 43

1 2

4 4 3 4 4

,C )2 2(T

(d)(b)(a) (c)

(T1
,C ) (T ,C )2 21  

**(T1
,C1 )

Fig. 6. An example for splitting and recoloring a leaf colored tree by using the Parents Of The Same Leaves (POSL)
rule.

1

1

2

2

1

1

2

2

1

r

(d)(c)(a) (b)

(T,C*)(T’,C’*)(T’,C’)    

r

b

aa

(T,C)

b

r

b

a

b

a r

2

2

2

1

1

2

2 1

1

2

2

212

2

1

Fig. 7. An example for reducing and recoloring a leaf colored subtree by using the The Unary Path rule (UP).

In order to transform the given tree(T, C) to an optimal convex colorable tree(T, C∗), we first trans-
form the tree(T ′, C′) to an optimal convex colorable tree(T ′, C′∗). Then, we set the color of each node in
the treeT equals to its corresponding node in the treeT ′. Next, we set the colors of all nodesv ∈ V (pab)
except nodesa andb in (T, C′∗) equal to the color of the nodeb in (T, C′∗), namely,C∗(vi) = C′∗(b) for
eachvi ∈ V (pab), vi 6= a andvi 6= b.

Lemma 15. LetPab be a path in a convex colorable tree(T, C∗), |V (pab| ≥ 3. Letx, z are two nodes on
the pathpab, such thatC∗(x) = C∗(z). If there is a nodey between nodesx andz on the pathpab, then
C∗(y) = C∗(x) = C∗(z).

Lemma 16. The Unary Path (UP) preprocessing rule is safe.

Proof. Let pab be a unary path between nodesa andb in a leaf colored tree(T = (V, E), C) such that
b is a descendant ofa. Let (T ′, C′) be the tree obtained from applying Preprocessing Rule 3 on the tree
(T, C). Suppose we have an optimal convex colored tree(T ′, C′∗) of the leaf colored tree(T ′, C′) with
corresponding total convex coloring(T ′, C′′). If we use the same recoloring of the leaves forT , we obtain a
convex colorable leaf colored tree(T, C∗) (for each leafv in T or T ′: C′∗(v) = C∗(v)). The corresponding
total coloringC′′′ of T can be obtained fromC′′ by setting the color of each internal node on the pathpab

to the color ofb in C′′. Thus, the number of recolored leaves has not changed. Hence,OPT (T ′, C′) ≥
OPT (T, C). Now, suppose we have an optimal convex colorable tree(T, C∗) and we delete the nodes and
their incident edges on the path between nodesa andb, and then add an edge betweena andb, then the
tree we obtain is also convex colorable. Also here, the number of recolored leaves will not change. Thus,
OPT (T ′, C′) ≤ OPT (T, C). ut



12 Emgad H. Bachoore and Hans L. Bodlaender

Preprocessing Rule 3: Leaf Siblings Of the Same Character (LSOSC)

Definition 12. Let Sw be a set of leaves inT with a common parentw. We callSw, a set of leaf siblings
of the same characterif all leavesv ∈ Sw have the same color.

LSOSC Rule:
let Sw = {w1, · · · , wm} be a set of leaf siblings of the same character in
(T, C), m > 1;
let T ′ be a tree obtained from the treeT , such that,V (T ′) = V (T )− Sw,
E(T ′) = E(T )− {{wi, w}|wi ∈ Sw, w is the parent ofwi};
foreachv ∈ leaves(V (T ′), v 6= w,

setC′(v)← C(v);
setweight(v)← 1;

setC′(w)← C(w1));
setweight(w)← |Sw|;

Note that this rule transforms the tree to one with weights. After we have executed the LSOSC rule on
a given tree, we then transform the tree(T ′, C′) to an optimal convex colorable tree(T ′, C′∗). Then, we
add the nodes of the setSw to the tree(T ′, C′∗) with an edge between every nodewi ∈ Sw and the node
w. Next. we can use the following coloring rule for coloring the nodes of the setSw in the tree(T ′, C′∗).
The result is an optimal convex colorable tree(T, C∗) of the tree(T, C).

let D = C′∗ − {C′∗(w)};
if ∃ x ∈ V (T ′), x 6= w andC′∗(x) = C′∗(wi), wi ∈ Sw, 1 ≤ i ≤ m

then for (i = 1 to m) C′∗(wi)← C′∗(w);
else for(i = 1 to m− 1) C′∗(wi)← C′∗(w);

12

w
1

(T,C*)(T,C)

1

3 23

2

2

2

1

(c)

1

3

1 12

23

w

(d)(b)(a)

’

(T’,C’)           (T’,C’*)

1 3 2

2

1

1

3
w

1 1

1

1 2

2

2

2

1

1

1

3 2

2

1

1

3
w

1

Fig. 8. An example for reducing and recoloring a leaf colored tree by using the Leaf Siblings Of the Same Character
(LSOSC) rule. The numbers inside the nodes represent the colors of the nodes and the numbers outside the nodes
represent their weights.

Lemma 17. Let Sw = {w1, · · · , wm}, m > 1 be a set of leaf siblings of the same character in a leaf
colored tree(T = (V, E), C), c1 be the color of the nodes of the setSw and a, b, c, d ∈ V, a, b, c 6∈
Sw, d ∈ Sw, C(a) = C(b) = c2, C(c) = C(d) = c1,



Convex recoloring of leaf-colored trees 13

1. If pab andpcd are two crossing paths in(T, C), then for everywi ∈ Sw, pcwi andpab are crossing
paths in(T, C).

2. If pab andpcd are not crossing paths in(T, C), then for everywi ∈ Sw, pcwi andpab are not crossing
paths in(T, C).

Proof. Let pab = (a, · · · , b), pcd = (c, · · · , w, d), wherew is the parent ofd in the tree(T, C). If pab and
pcd are crossing paths in the tree(T, C) andw is the parent of the set of the nodes of the same character,
Sw, thenw 6∈ V (pab) ∩ V (pcd). This means,V (pab ∩ V (pcwi) = V (pcd) for everywi ∈ Sw. Therefore,
for every1 ≤ i ≤ m, pab andpcwi are crossing paths in(T, C). In the same manner, we can prove that if
pab andpcd are not crossing paths in(T, C), then for everywi ∈ Sw, pcwi andpab are not crossing paths
in (T, C). ut
Corollary 3. Let (T, C∗) be an optimal convex colorable recoloring of a leaf colored tree(T, C), Sw be
a set of leaf siblings of the same character in(T, C). If there is a leafx ∈ Sw, C∗(x) = C(x), then for
every leafv ∈ Sw, C∗(v) = C(v).

Proof. Suppose that we have two leavesx, y ∈ Sw, C∗(x) = C(x) andC∗(y) 6= C(y). Thus, we have
recoloredy in (T, C) to obtain an optimal convex colorable tree(T, C∗). As the recoloring is optimal,
a recoloring that leaves the color ofy intact is not convex, so there must be nodesa, b, c, with C(a) =
C(b) 6= C(y), C(c) = C(y), andpab andpcy are crossing paths. Now, by Lemma 17,pab andpcx are also
crossing paths, henceC∗ is not convex, contradiction. ut
Lemma 18. The Leaf Siblings Of the Same Character (LSOSC) rule is safe.

Proof. Let Sw = {w1, · · · , wm} be a set of leaf siblings of the same character in(T = (V, E), C), m > 1,
w is the parent of these siblings andd be the color of these siblings. Let(T ′, C′) be a tree obtained from
(T, C) as it is described in theLSOSC rule. We can consider two cases for proving this Lemma.
Case 1: In the given tree, there is no leafv ∈ V, v 6∈ Sw andC(v) = d in (T, C), namely, there is no
leaf in (T, C) and not inSw that gets assigned the same color as the leaves in the setSw. In such a case, if
we apply the LSOSC reduction rule on the tree(T, C), then the nodew in the weighted leaf colored tree
(T ′, C′, w) is a leaf of a unique color. Therefore, we need not to recolor this node to transform(T ′, C′, w)
to an optimal convex colorable tree(T ′, C′∗, w) and thus the nodes of the setSw in the tree(T, C∗) since
according to this rule, the color of the nodew is assigned to the nodes of the setSw.
Case 2: In the given tree, there is a leaf,v ∈ V, v 6∈ Sw andC(v) = c(wi) = d in (T, C), namely,
there is a leafv in (T, C), v 6∈ Sw that gets assigned the same color as the leaves in the setSw. From
Lemma 17 and Corollary 3, we know that, ifpvx andpab are two crossing paths in(T, C), then the nodes
of the setSw in the tree(T, C∗), either, all should be recolored or no node of them should be recolored.
Due to theLSOSC rule, the nodes of the setSw are assigned the same color as the nodew in (T, C∗)
after transforming(T ′, C′, w) into a convex colorable tree(T ′, C′∗, w). Moreover, the weight of a leafv
in the tree(T, C, w), w(v), corresponds to the number of leaves that should be recolored in the normal leaf
colored tree. Therefore, the minimum number of recolored leaves in a leaf colored tree(T, C∗) equals the
total weight of recolored leaves of its corresponding(T ′, C∗, w). ut
Corollary 4. Let (T, C) be a leaf colored tree such that,(T, C) does not include any set of siblings of
the same character. Letx1, x2, y1, y2 ∈ leaves(V ). If color(x1) = color(x2), color(y1) = color(y2)
andcolor(x1) 6= color(y1), then we have to recolor at least one leaf node in a leaf colored tree(T, C) to
transform it to an optimal convex colorable tree(T, C∗).

Lemma 19. Let (T ′, C′ : V ← C′) be a leaf colored tree obtained from executing the LSOSC rule on a
leaf colored tree(T, C). In order to transform(T, C) to an optimal convex colorable tree(T, C∗), we have
to recolor at mostk = |leaves(T )| − 1 leaves inT , of a total weightq = t−max(w1, · · · , w|C′|), where
t is the total weight of all leaves of the tree(T ′, C′), wci is the total weight of the leaves of colorci in T ′.

Proof. Let d be the color of the maximum weight in a leaf colored tree(T, C). For every leafv ∈ V if
C(v) = d, thenC ′(v) = C(v). For every leafv ∈ V , if C(v) 6= d, thenC′(v) = x such that,x is a color
that is not assigned to any other leaves ofT . Thus,(T, C′) is a convex colorable for(T, C) and we have
recolored at mostk leaves of a total weightq because at most one color is repeated for more than one leaf
and each of the other leaves has assigned a different color from the others. ut



14 Emgad H. Bachoore and Hans L. Bodlaender

Conclusions

The essential purpose of preprocessing rules is to reduce the size of a problem under study, using relatively
little computation time and without losing optimality. The smaller, and presumably easier, problem is sub-
sequently solved. In this section, we discussed preprocessing rules for the problem of transforming a leaf
colored tree to an optimal convex colorable tree. We introduced two types of rules for doing that, namely,
splitting rules and reduction rules. Under each splitting rule, the given tree is breaking down into two or
more subtrees. The combination of the optimal convex colorable subtrees is an optimal convex colorable
tree of the given tree. In the second type of rules, we exploit a set of rules for stepwise reducing the prob-
lem of finding the convex colorable tree of minimum number of recolored leaves to the same problem on
a smaller leaf colored tree. The smaller tree can be transformed to a convex colorable tree using an exact
or heuristic algorithm, depending on the tree’s size. From the optimal convex colorable tree of the smaller
tree, a convex colorable tree of the original tree is obtained by reversing the reduction steps. The splitting
and reduction rules are guaranteed not to destroy the optimality. For some leaf colored tree instances, it
is sufficient to apply these preprocessing rules with some simple coloring rules to obtain the minimum
number of recolored leaves that should be recolored to transform a leaf colored tree into an optimal convex
colorable tree, for instance, a leaf colored tree with all leaves having different colors or leaf colored tree of
the form star.

The tree or subtrees we obtain from applying these preprocessing rules on the given tree have the
following properties: First, there are at least two leaves in each resulting subtree of the same color. Second,
there is no subtree within each tree obtained from reduction rule or subtrees obtained from splitting rules,
the colors of its leaves are totally different than these of other subtrees. In other words, there is at least one
crossing path in each subtree. Third, the number of branches at each node of the subtrees obtained from the
preprocessing rules is at least two. Fourth, in the resulted subtrees, there is no set of siblings of the same
color.

5 A branching algorithm

In this section, we give an exact algorithm for the CONVEX RECOLORING OFLEAF COLORED TREES

problem. Our algorithm shows that this problem isfixed parameter tractablewhen the number of recolored
leaves is taken as parameter. More details on fixed parameter tractability follow.

The algorithm uses thebranchingtechnique. The main algorithm is a decision algorithm: it is given a
leaf colored tree and an integerk, and it decides ifT can be made convex colorable by giving at mostk
leaves a new color. We start running the algorithm fork = 0, and while the answer is negative, increasek,
and run the algorithm for the new value ofk, until we have found the optimal number of leaves to recolor.
The branching algorithm operates on subinstances that are again a leaf colored tree (T with some leaves
recolored with a new color) and an integerk′: again, in such a subinstance, we decide if this leaf colored
tree can be made convex colorable by recoloringk′ leaves.

Our algorithm basically depends on Theorem 1. It is given in Figures 9 and 10 and operates as follows.
Algorithm MainBranching starts withk = 0, tests if the optimum number of recolored leaves isk, and if
not, increasesk by one and repeats.

Algorithm Branching receives as input a leaf colored tree(Tx, C) and an integerk, and decides if we
can make the tree convex colorable by recoloring at mostk leaves. First, it checks, using the procedure
from Theorem 4, if(Tx, C) is convex colorable. If so, we have found the desired solution. If(Tx, C) is
not convex colorable, andk = 0, we know that this subinstance has no solution. Otherwise, we know by
Theorem 2, that there must be a crossing pair in(Tx, C). We can find such a crossing pair in linear time
(Theorem 5). At least one of the four leaves on these two paths must be recolored (Theorem 1). When
recoloring a leaf, we can assume it receives a new color, not given to any other leaf. Thus, we create four
subinstances: in each, we recolor one of the four leaves in the crossing paths. Thus, there is a solution with
at mostk recolored leaves, if and only if there is a solution with at mostk − 1 recolored leaves in one of
the subinstances. The pseudo-code is given in Figures 9 and 10.

Theorem 6. The minimum number of recolored leavesOPT can be computed in
O(4OPT · n) time.



Convex recoloring of leaf-colored trees 15

Algorithm MainBranching (Tx, C)

1 found = false; k = 0;

2 while (not found)

3 answer = Branching(Tx, C, k);

4 if (answer = false)

5 then k = k + 1

6 elsefound = true; returnanswer;

Fig. 9. Pseudo-code of the Algorithm MainBranching.

Algorithm Branching (Tx, C, k)

Input: A leaf colored tree(Tx, C), rooted by nodex, Tx = (V, E),

V = {v1, · · · , vn}, C = {c1, · · · , ck}, n, k ∈ N− {0}.
Output: A leaf coloringC′ with at mostk recolored leaves that is

convex colorable, or “false” if no such recoloring exists.

1 if (Tx, C) is convex colorablethen returnC

2 else

3 if (k = 0) then return “false”

4 else

5 Find a pair of crossing paths in(Tx, C), p1 andp2;

6 let Y be the leaves onp1 andp2;

7 foreach y ∈ Y

8 DefineC′ as follows:C′(y) = θy; (θy is a new color);

9 for all leavesx 6= y: C′(x) = C(x);

10 br = Branching(Tx, C′, k − 1);

11 if (br 6= “false”) then returnbr; (exit)

Fig. 10.Pseudo-code of the Algorithm Branching.



16 Emgad H. Bachoore and Hans L. Bodlaender

Proof. The branching algorithm will continue precisely to levelOPT . Thekth round of the main loop
of MainBranching will cause in total at most

∑k
j=0 4j < 2 · 4k calls to Branching. So, in total, less than∑OPT

k=0 2 · 4k < 4OPT+1 calls to Branching will be done. Each such call takesO(n) time (see Theorem 4
and Theorem 5). ut

Fixed Parameter Tractable Problems (FPT)

A problem with a parameterk is called fixed parameter tractable (FPT) if it can be solved or decided by
an algorithm within a running timeO(f(k) · poly(n)), for some functionf . For fixedk, this is polynomial
time. For more information on fixed parameter tractability, see [2].

Corollary 5. TheCONVEX RECOLORING OFLEAF COLORED TREESproblem∈ FPT.

Proof. Do the branching algorithm fork levels and see if a solution is found. The running time isO(4k ·n).
ut

References

1. R. Bar-Yehuda, I. Feldman, and D. Rawitz. Improved approximation algorithm for convex recoloring of trees. In
Proceedings Third Workshop on Approximation and Online Algorithms WAOA 2005, 2005.

2. R. G. Downey and M. R. Fellows.Parameterized Complexity. Springer, 1998.
3. S. Moran and S. Snir. Convex recolorings of strings and trees: Definitions, hardness results, and algorithms. In

F. K. H. A. Dehne, A. López-Ortiz, and J.-R. Sack, editors,Proceedings WADS 2005: 9th International Workshop
on Algorithms and Data Structures, pages 218–232. Springer Verlag, Lecture Notes in Computer Science, vol.
3608, 2005.

4. S. Moran and S. Snir. Efficient approximation of convex recolorings. InProceedings APPROX 2005: 8th Interna-
tional Workshop on Approximation Algorithms for Combinatorial Optimization Problems, published with Proceed-
ings RANDOM 2005, pages 192–208. Springer Verlag, Lecture Notes in Computer Science, vol. 3624, 2005.

5. S. Snir.Computational Issues in Phylogenetic Reconstruction: Analytic Maximum Likelihood Solutions, and Convex
Recoloring. PhD thesis, Department of Computer Science, Technion, Haifa, Israel, 2004.


