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Abstract. This paper introduces a type-preserving XML Schema—Haskell
data binding (or, translation) UUXML, and shows how to customize it
by exploiting the theory of canonical isomorphisms to automatically in-
fer coercions between the machine-generated types and an equivalent,
more natural, user-defined set of types. We show how to implement the
inference mechanism in Generic Haskell.

1 Introduction

An XML data binding is a translation of XML documents into values of some
programming language. This paper discusses a type-preserving XML-Haskell
data binding UUXML that handles documents typed by the W3C XML Schema
standard. Our translation is based on a formal semantics of Schema, and has
been proven sound with respect to the semantics. We also show programs in
Generic Haskell that construct parsers and printers specialized to a particular
Schema type.

Although the translation produces complex datatypes, for generic, or ‘schema-
aware’, applications such as compression, parsing, and unparsing, the transla-
tion is adequate because such programs do not depend explicitly on the details
of any particular type. But for more conventional uses that depend on a par-
ticular schema, the translation is unwieldy and unnatural. To address this, we
introduce a form of data binding customization based on the theory of canonical
isomorphisms.

Datatypes which differ inessentially in their names and structure are called
isomorphic. Between certain isomorphic pairs of types there exists a unique in-
vertible coercion. In this article we describe and implement a program in Generic
Haskell which automatically infers this coercion by normalizing types with re-
spect to an algebraic theory. A simple generalization of this technique also en-
ables us to infer some noninvertible coercions such as projections, injections and
ad hoc coercions between base types.

We explain how this technique has been used to drastically improve the
usability of UUXML, and suggest how it might be applied to improve other
type-safe language embeddings.



1.1 Outline

This paper is an extended version of our paper UUXML: a type-preserving XML
Schema—Haskell data binding [3] presented at the Practical Aspects of Declara-
tive Languages Conference in 2004, and our paper about inferring type isomor-
phisms generically [4] presented at the Mathematics of Program Construction
Conference in 2004.

The remainder of this article is organized as follows. Section 2 introduces
UUXML, a type-preserving XML Schema—Haskell data binding. Section 3 gives a
formal account of the translation implemented by UUXML. Section 4 introduces
generic programming in Generic Haskell, and describes two ‘schema-aware’ XML
applications, parsing and printing, implemented generically. Section 5 introduces
the notion of binding customization, discusses the need for such customization
vis-a-vis UUXML, and shows how to use iso inference to automatically customize
the UUXML data binding. Section 6 talks briefly about the theory of isomor-
phisms, and describes informally the user interface of our inference mechanism.
Section 7 shows how our iso inferencer is implemented in Generic Haskell. Finally,
Section 8 summarizes our results, and discusses related work and possibilities
for future work in this area.

2 An XML Schema—Haskell data binding

XML [45] is the core technology of modern data exchange. An XML document is
essentially a tree-based data structure, often, but not necessarily, structured ac-
cording to a type declaration such as a schema. A number of alternative methods
of processing XML documents are available:

— XML APIs. A conventional API such as SAX or the W3C’s DOM can be
used, together with a programming language such as Java or VBScript, to
access the components of a document after it has been parsed.

— XML programming languages. A specialized programming language
such as XSLT [46], XQuery [52], XDuce [18], CDuce [7], XMA [29, 40],
XStatic [14] etc. can be used to transform XML documents.

— XML data bindings. XML values can be ‘embedded’ in an existing pro-
gramming language (the “target”) by finding a suitable translation between
XML types and types of the programming language [30]. Examples include
JAXB [42] for Java, WASH [44] and HaXml [53] for Haskell, various tools
[33] such as EaseXML [34] for Python and X-Prolog [11] for Prolog.

Using a specialized programming language or a data binding has significant
advantages over the SAX or DOM approach. For example, parsing to an abstract
syntax tree comes for free and can be optimized for a specific schema. Also, it
is easier to implement, test and maintain software in the target language since
application logic does not have to be mixed with calls to the parsing APIs. A
data binding has the further advantages that existing programming language
technology can be leveraged, and that a programmer need not account for XML



idiosyncracies (though this may be a disadvantage for some applications). Using
Haskell as the target offers the advantages of a typed higher-order programming
language with a powerful type system.

In this section we present UUXML, a type-preserving translation of XML
documents into Haskell, and more specifically a translation tailored to permit
writing programs in Generic Haskell. The documents are assumed to conform
to the type system described in the W3C XML Schema [47-49] standard, and
the translation preserves typing in a sense we formalize by a type soundness
theorem. More details of the translation and a proof of the soundness result are
available in a technical report [1].

2.1 From XML Schema to Haskell

XML was introduced with a type formalism called Document Type Declarations
(DTDs). Though XML has achieved widespread popularity, DTDs themselves
have been deemed too restrictive in practice, and this has motivated the devel-
opment of alternative type systems for XML documents. The two most popular
systems are the RELAX NG standard promulgated by OASIS [32], and the
W3C’s own XML Schema Recommendation [47-49]. Both systems include a set
of primitive datatypes such as numbers and dates, a way of combining and nam-
ing them, and ways of specifying context-sensitive constraints on documents.

We focus on XML Schema (or simply “Schema” for short—we use lowercase
“schema” to refer to the actual type definitions themselves). To write Haskell
programs over documents conforming to schemas we require a translation of
schemas to Haskell analogous to the HaXml translation of DTDs to Haskell [53].

We begin this section with a very brief overview of Schema syntax which
highlights some of the differences between Schema and DTDs. Next, we give a
more formal description of the syntax with an informal sketch of its semantics.
With this in hand, we describe a translation of schemas to Haskell datatypes,
and of schema-conforming documents to Haskell values.

Our translation and the syntax used here are based closely on the Schema
formal semantics of Brown et al., called the Model Schema Language (MSL) [9];
that treatment also forms the basis of the W3C’s own, more ambitious formal
semantics [51].) We do not treat all features of Schema, but only the subset
covered by MSL (except wildcards). This portion, however, arguably forms a
representative subset and suffices for many Schema applications.

2.2 An overview of XML Schema

A schema describes a set of type declarations which may not only constrain the
form of, but also affect the processing of, XML documents (values). Typically, an
XML document is supplied along with a schema to a Schema processor, which
parses and type-checks the document according to the declarations. This process
is called walidation and the result is a Schema value.

1 At the time of writing, this is currently a W3C Candidate Recommendation.



Syntax. Schemas are written in XML. For instance, the following declarations
define an element and a compound type for storing bibliographical information.

<element name="doc" type="document"/>
<complexType name="document">
<sequence>
<element ref="author" minOccurs="0" maxOccurs="unbounded"/>
<element ref="title"/>
<element ref="year" minOccurs="0"/>
</sequence>
</complexType>

This declares an element doc whose content is of type document, and a type
document which consists of a sequence of zero or more author elements, followed
by a mandatory title element and then an optional year element. (We omit
the declarations for author, etc.) A document which validates against doc is:

<doc>
<author>James Joyce</author>
<title>Ulysses</title>
<year>1922</year>

</doc> .

While they may have their advantages in large-scale applications, for our
purposes XML and Schema syntax are rather long-winded and irregular. We
use an alternative syntax close to that of MSL [9], which is more orthogonal and
suited to formal manipulation. In our syntax, the declarations above are written:

def doc[ document]; def document = author™, title, year?;

and the example document above is written:

doc[author[ "James Joyce"],title[ "Ulysses"],year["1922"]] .

Differences with DTDs. Schemas are more expressive than DTDs in several
ways. The main differences we treat here are summarized below.

1. Schema defines more primitive types, organized into a subtype hierarchy.

2. Schema allows the declaration of user-defined types, which may be used

multiple times in the contents of elements.

Schema’s notion of mixed content is more general than that of DTDs.

4. Schema includes a notion of “interleaving” like SGML’s & operator. This
allows specifying that a set of elements (or attributes) must appear, but
may appear in any order.

5. Schema has a more general notation for repetitions.

6. Schema includes two notions of subtype derivation.

©w

We will treat these points more fully below, but first let us give a very brief
overview of the Schema type system.



Overview. A document is typed by a (model) group; we also refer to a model
group as a type. An overview of the syntax of groups is given by the grammar g
displayed in Figure 1.

X =
o € empty Seil‘:;lcz Qa attribute name
| 9,9 sequence | e element name
| 0 empty choice |t type name
| glg choice | anyType
| g&g interleaving | anyE.leml
| g{m,n} repetition | anySimpleType o
| mix(g) mixed content | p primitive
| z component name )
ni= maximum
ini m bounded
m ::= (natural) minimum | oo pounaed

Fig. 1. Syntax of model groups.

This grammar is only a rough approximation of the actual syntax of Schema
types. For example, in an actual schema, all attribute names appearing in an
element’s content must precede the subelements.

The sequence and choice forms are familiar from DTDs and regular expres-
sions. Forms @Qa, e and t are variables referencing, respectively, attributes, ele-
ments and types in the schema. We consider the remaining features in turn.

Primitives. Schema defines some familiar primitives types such as string,
boolean and integer, but also more exotic ones (which we do not treat here)
such as date, language and duration. In most programming languages, the syn-
tax of primitive constants such as string and integer literals is distinct, but in
Schema they are rather distinguished by their types. For example, the data "35"
may be validated against either string or integer, producing respectively distinct
Schema values "35" € string and 35 € integer. Thus, validation against a schema
produces an “internal” value which depends on the schema involved.

The primitive types are organized into a hierarchy, via restriction subtyping
(see below), rooted at anySimpleType.

User-defined types. An example of a user-defined type (or “group”), document,
was given above. DTDs allow the definition of new elements and attributes, but
the only mechanism for defining a new type (something which can be referenced
in the content of several elements and/or attributes) is the so-called parameter
entities, which are macros rather than a semantic feature.

Mixed content. Mixed content allows interspersing elements with text. More
precisely, a document d matches mix(g) if unmiz(d) matches g, where unmix(d)



is obtained from d by deleting all character text at the top level. An example
of mixed content is an XHTML paragraph element with emphasized phrases; in
MSL its content would be declared as mix(em*). The opposite of ‘mixed content’
is ‘element-only content.’

DTDs support a similar, but subtly different, notion of mixed content, spec-
ified by a declaration such as:

< !'ELEMENT text ( #PCDATA | em )* > .

This allows em elements to be interspersed with character data when appearing
as the children of text. Groups involving #PCDATA can only appear in two forms,
either by itself, or in a repeated disjunction involving only element names:

( #PCDATA | e1 | eo | --- e, )*.

To see how Schema’s notion of mixed content differs from DTDs’, observe that
a reasonable translation of the DTD content type above is [String :+: [em] ¢ |—
that is, a list, each element of which is either a string or a [em] ¢, the translation of
em. (The subscript G stands for “group”; :+: is the binary cartesian sum.) This
might lead one to think that we can translate a schema type such as mix(g)
similarly as [String :+: [g]¢]. However, this translation would not respect the
semantics of MSL for at least two reasons. First, it is too generous, because it
allows repeated occurrences, yet:

"hello", €[], "world" € mix(e) but "hello", e[|, e[|, "world" ¢ mix(e).

Second, it cannot account for more complex types such as mix(e;, e2). A doc-
ument matching the latter type consists of two elements e; and ey, possibly
interspersed with text, but the elements must occur in the given order. This
might be useful, for example, if one wants to intersperse a program grammar
given as a type

def module = header, imports, fixityDecl*, valueDecl” ;

with comments: mix(module). An analogous model group is not expressible in
the DTD formalism.

Interleaving. Interleaving is rendered in our syntax by the operator &, which
behaves like the operator , but allows values of its arguments to appear in either
order, i.e., & is commutative. This example schema describes email messages.

def email = (subject & from & to) , body ;

Although interleaving does not really increase the expressiveness of Schema over
DTDs, they are a welcome convenience. Interleavings can be expanded to a
choice of sequences, but these rapidly become unwieldy. For example, [a & b] =
a,blbd, abut

[agb&c] = a,(b,cle,b) | b,(a,clc,a) | ¢, (a,blb,a).
(Note that [a & b & c] # [a & [b & ]]!)



Repetition. In DTDs, one can express repetition of elements using the standard
operators for regular patterns: *, ¥ and 7. Schema has a more general notation:
if g is a type, then g{m,n} validates against a sequence of between m and n
occurrences of documents validating against g, where m is a natural and n is
a natural or co. Again, this does not really make Schema more expressive than
DTDs, since we can expand repetitions in terms of sequence and choice, but the
expansions are generally much larger than their unexpanded forms.

Derivation. XML Schema also supports two kinds of derivation (which we
sometimes also call refinement) by which new types can be obtained from old.
The first kind, called extension, is quite similar to the notion of inheritance in
object-oriented languages: a value may be used in any context where a “longer”
value is expected. If extension is multiplicative in character (since it deals with
projections from products), then the second kind of derivation, called restriction,
is additive: it lets a value be used in any context where a less restrictive value is
expected. For example, if one type involves a choice (a sum), then we can form
a restriction-derived type by choosing one alternative or the other.

As an example of extension, we declare a type publication obtained from
document by adding fields at the end:

def publication extends document = journal | publisher; .

A publication is a document followed by either a journal or publisher field.
Extension is slightly complicated by the fact that attributes are extended
‘out of order’. For example, if types ¢; and ¢, are defined:

def t; = Qaq, e1; def iy extends t; = Qasy, e3; (1)

then the content of ¢y is (Qay & Qag), €1, ez not Qay,e1,Qag,es.

To illustrate restriction, we declare a type article obtained from publication
by reducing some of the variability. If an article is always from a journal, we
write:

def article restricts publication = author®, title, year, journal; .

So a value of type article always ends with a journal, never a publisher, and the
year is now mandatory. Note that, when we derive by extension we only mention
the new fields, but when we derive by restriction we must mention all the old
fields which are to be retained.

In both cases, when a type t’ is derived from a type ¢, values of type ¢’ may
be used anywhere a value of type ¢ is called for. For example, the document:

author[ "Patrik Jansson"|, author["Johan Jeuring"],
title[ "Polytypic Unification"], year["1998"], journal["JFP"]

validates not only against article but also against both publication and document.
Every type that is not explicitly declared as an extension of another is treated
implicitly as restricting a distinguished type called anyType, which can be
regarded as the union of all types. Additionally, there is a distinguished type
anyElem which restricts anyType, and from which all elements are derived.



2.3 An overview of the translation

The objective of the translation from Schema to Haskell is to enable a pro-
grammer to write (Generic) Haskell programs on data corresponding to schema-
conforming documents. At minimum, we expect the translation to satisfy a type-
soundness result which ensures that, if a document validates against a particular
schema type, then the translated value is typeable in Haskell by the translated

type.

Theorem 1. Let [—]¢ and [—]{" be respectively the type and value translations
generated by a schema. Then, for all documents d, groups g and mizities u, if d
validates against g in mizity context u, then [d]" = [9]a [ulmiz-

A detailed motivation of our translation scheme appears in section 5.2.
Let us outline the difficulties posed by features of Schema. As a starting
point, consider how we might translate regular patterns into Haskell.

lele =0 [0]c = Void
[91, 92]c = ([91]c: [92]c) [g1 | g2]e = Either [g1]clg2]c
[o"]c = [l91]c] 9 1e = (l9la, [9*Te)

[9?]c = Maybe [g]c

(Here, Void is the empty type; Either is the cartesian sum; and a value of Maybe a
is either an a or the unit.)

This is the sort of translation employed by HaXml [53], and we do indeed fol-
low a similar tack. In contrast, WASH [44] takes a decidedly different approach,
encoding the state automaton corresponding to a regular pattern at the type
level, and makes extensive use of type classes to express the transition relation.

As an example for the reader to refer back to, we present (part of) the
translation of the document type:

data T_document u = T'_document

(Seq Empty (Seq (Rep LE_E_author ZI)
(Seq LE_E_title (Rep LE_E_year (ZS ZZ)))) u) .
Here the leading T_ indicates that this declaration refers to the type document,
rather than an element (or attribute) of the same name, which would be indicated
by a prefix E_ (A_, respectively). We explain the remaining features in turn.

Primitives. Primitives are translated to the corresponding Haskell types, wrapped
by a constructor. For example (the argument u relates to mixed content, dis-
cussed below):

data T_string u = T _string String .

User-defined types. Types are translated along the lines of HaXml, using
products to model sequences and sums to model choices:

data Empty u= Empty

data None u -- no constructors



data Seq gl g2 u = Seq (gl u) (g2 u)
data Or gl g2u= Or! (glu)
| Or2 (g2u).
Suppose G is the set of all Schema groups, and T is the set of Haskell types
of kind x — . The type translation takes each group g € G to a Haskell type
TeT:

le]c = Empty [0]c = None
[91, 92]c = Seq [g1]c [92]c [91192]c = Or [g1]c [g92]c -

The reason for the kindings and the significance of the type parameter u is
explained below. Let us first call attention to the issue which the second half of
this paper addresses.

The Schema operators and constants above satisfy the following equational
laws for monoids.

g, €=g gl =g
€, 9=y Dlg=g
(915 92)> 93 =91, (92, 93) (g1192)1g3 = g11(g2193)

However, their images—Seq, Or, Empty and None—do not; put differently, the
translation “function” [—]¢ is not a homomorphism for this theory. For example,
depending on how we parenthesize g1, g2, g3, we may obtain:

Seq (Seq [g1lc [92]c) [gs]le or  Seq[g1]c (Seq [92]c [9s]c) -

These types are isomorphic, but not equal; so the translation is not well-defined.

Unfortunately, Haskell does not provide any types which do satisfy the laws
above: indeed, Haskell type constructors satisfy no nontrivial equations. A way to
addess this problem is to promote the translation function G — T to a function
from Schema types to sets of Haskell types, G — PT’; this amounts to a binary
relation G — T. Thus, writing S > x for z € S, we revise our translation
fragment above as follows.

[c>Empty  [0]a > None

l91lc 2 T1 [g2le 2 Telgile > T1 [g2]c 2 Te
l91, g2]c > Seq Ty Ty [g11g2]c 2 Or Ty To

Since Seq and Or are associative “up to isomorphism”, we might now seek to
prove a result along the lines of, “if [g]le¢ > T1 and [g]g > T2 then T; and Ts
are isomorphic.” Unfortunately, a detailed proof could not be completed in time
for publication; it will appear in the first author’s dissertation.

However, it must be admitted that, as an abstract specification of a concrete
implementation such as UUXML, this translation is of limited use without the



inference mechanism. For example, given a schema type date such as
day, month, year

the user must assume that date can be translated as?

Seq Day (Seq Month Year)
in one part of the document, but

Seq (Seq Day Month) Year or

Seq Day (Seq Month (Seq Year Empty)) or

Seq Empty (Seq Day (Seq Month Year)) or even

Seq Day (Seq (Seq Empty Empty) (Seq Month Year))
in another part of the document. In fact, the translation need not even be de-
terministic. Clearly some sort of uniformity is lost here.

An alternative is to normalize all sequences after translation, for example
using the list-like form on the second line above. Unfortunately, this solution
is little better. Suppose for example that date were used in the following two
element type declaration contexts

def dateTime[date, time] ;
def timeDate[time, date] ;

where, for concreteness, let us assume time = hours, mins. In the first example
the content would be translated as

Seq Day (Seq Month (Seq Year (Seq Hours (Seq Mins Empty))))
whereas in the second it would be translated as

Seq Hours (Seq Mins (Seq Day (Seq Month (Seq Year Empty)))) .

Mixed content. The reason each group g is translated to a higher type t::ix — %
rather than a ground type is that the argument, which we call the ‘mixity’, in-
dicates whether a document occurs in a mixed or element-only context.? Ac-
cordingly, u is restricted to be either String or (). For example, if [e]¢ > E and
[tle © T, then [e[t]]¢  Elem E T () when e[t] occurs in element-only content,
but [e[t]]¢ > Elem E T String when it occurs in mixed content. The definition of
Elem:

data Elem e g u = Elem u (g ())
stores with each element a value of type u corresponding to the text which
immediately precedes a document item in a mixed context. (The type argument
e is a so-called ‘phantom type’ [20], serving only to distinguish elements with
the same content g but different names.) Any trailing text in a mixed context is
stored in the second argument of the Miz data constructor.

data Mix g u = Miz (g String) String

2 UUXML would translate the names Day, Month and Year differently, but for clarity
we ignore this detail here.
3 We use the convention u for mixity because m is used for repetition bounds minima.



For example, the document
"one", e1f], "two", €3[|, "three" € mix(e;, €3)

is translated as the value

Miz (Seq (Elem "one" Empty) (Elem "two" Empty)) "three"
whose type is

Mix (Seq (Elem E; Empty) (Elem E3 Empty)) u
if Je1]e¢ = {E1} and [es]¢ = {E2} and the contents of e; and e, are always
empty. (Recall that E;, Eo are phantom types, hence do not appear at the value
level.)

Each of the group operators is defined to translate to a type operator which
propagates mixity down to its children, for example:

data Seq gl g2 u = Seq (gl u) (g2 u) .
There are three exceptions to this ‘inheritance’. First, mix(g) ignores the con-
text’s mixity and always passes down a String type. Second, e[g] ignores the
context’s mixity and always passes down a () type, because mixity is not inher-
ited across element boundaries. Finally, primitive content p always ignores its
context’s mixity because it is atomic.

Interleaving. Interleaving is modeled in essentially the same way as sequencing,
except with a different abstract datatype.

data Inter gl g2 u = Inter (gl u) (g2 u)
An unfortunate consequence of this choice of translation is that the ordering of
the document values is lost. For example, suppose a schema describes a confer-
ence schedule where it is known that exactly three speakers of different types
will appear. A part of such a schema may look like:

def schedule[speaker & invitedSpeaker & keynoteSpeaker]; .

A schema processor must know the order in which speakers appeared, but since
the translation does not record the permutation an application cannot recover
the document ordering. More commonly, since attribute groups are modeled
as interleavings of attributes, this means in particular that schema processors
using our translation cannot know the order in which attributes are specified in
an XML document.*

Repetition. Repetitions g{m,n} are modeled using a datatype Rep [¢]a [m,n]5 u
and a set of datatypes modeling bounds:

[[O7OHB:ZZ [[0,m+1]]B:ZS [[O,m]]B
[0, 0] 5 = ZI [m+1,n+1]s =SS [m,n]s

* Although the XML Infoset recommendation [50] (which attempts to provide some
additional notion of semantics for XML documents) essentially states that attributes
are unordered, the XML standard itself [45] does not.



defined by:

data Repgbu= Rep (bgu)

dataZZgu =277

dataZlgu = ZI [gu]

data ZSbgu = ZS (Maybe (g u)) (Rep g b u)

dataSSbgu =S5 (gu) (Repgbu).
The names of datatypes modeling bounds are meant to suggest the familiar
unary encoding of naturals, ‘Z’ for zero and ‘S’ for successor, while ‘I’ stands for
‘infinity’. Some sample translations are:

[e{2,4}]c = {Rep [e]c (SS (SS (ZS (ZS Z2))))}
[e{0,00}[c = {Rep [e]c ZI}
[e{2,00}]c = {Rep [e]c (SS (SS Z1))} .

Derivation. Derivation poses one of the greatest challenges for the translation,
since Haskell has no native notion of subtyping, though type classes are a com-
parable feature. We avoid type classes here, though, because one objective of
our data representation is to support writing schema-aware programs in Generic
Haskell. Such programs operate by recursing over the structure of a type, so
encoding the subtyping relation in a non-structural manner such as via the type
class relation would be counterproductive.

The type anyType behaves as the union of all types, which suggests an
implementation in terms of Haskell datatypes: encode anyType as a datatype
with one constructor for each type that directly restricts it, the direct subtypes,
and one for values that are ‘exactly’ of type anyType.

In the case of our bibliographical example, we have:

data T_anyType u = T _anyType

data LE_T_anyType u = EQ_T_anyType (T_anyType u)

| LE_T _anySimpleType (LE_T_anySimpleType u)

| LE_T _anyElem (LE_T _anyElem u)

| LE_T _document (LE_T _document u) .
The alternatives labeled with LE_ (“Less than or Equal to”) indicate the direct
subtypes while the EQ_ alternative (“EQual to”) is ‘exactly’ anyType. The
document type and its subtypes are translated similarly:

data LE_T document u = EQ_T _document (T_document u)

| LE_T _publication (LE_T _publication u)

data LE_T _publication u = EQ_T _publication (T _publication u)

| LE_T _article (LE_T _article u)

data LE_T _article u = EQ_T _article (T _article u) .

When we use a Schema type in Haskell, we can choose to use either the ‘exact’
version, say T_document, or the version which also includes all its subtypes, say
LE_T _document. Since Schema allows using a subtype of ¢t anywhere ¢ is expected,
we translate all variables as references to an LE_ type. This explains why, for
example, T_document refers to LE_E_author rather than E_author in its body.



What about extension? To handle the ‘out-of-order’ behavior of extension on
attributes we define a function split which splits a type into a (longest) leading
attribute group (e if there is none) and the remainder. For example, if ¢; and t9
are defined as in (1) then split(t;) = (Qay,e;) and, if ¢} is the ‘extended part’ of
to, then split(t}) = (Qag, e3). We then define the translation of # to be:

fst(split(t1)) & fst(split(ty)), (snd(split(ty)) , snd(split(ts))) .

In fact, to accomodate extension, every type is translated this way. Hence
T_document above begins with ‘Seq Empty ...’, since it has no attributes, and
the translation of publication:

data T_publication u = T _publication
(Seq (Inter Empty Empty)
(Seq (Seq (Rep LE_E_author ZI) (Seq LE_E_title (Rep LE_E_year (ZS 727))))
(Or LE_E_journal LE_E_publisher)) u)
begins with ‘Seq (Inter Empty Empty) ...", which is the concatenation of the
attributes of document (namely none) with the attributes of publication (again
none). So attributes are accumulated at the beginning of the type declaration.

In contrast, the translation of article, which derives from publication via re-
striction, corresponds more directly with its declaration as written in the schema.

data T _article u = T _article

(Seq Empty (Seq (Rep LE_E_author ZI)
(Seq LE_E_title (Seq LE_E_year LE_E_journal))) u)
This closer correspondence exists because, unlike with extensions where the user
only specifies the new fields, the body of a restricted type is essentially repeated
as a whole.

3 Formal translation

We now describe the syntax of documents and schemas formally and in a more
complete fashion, and give an informal sketch of the semantics.

Documents A document is a sequence of document items, which may be at-
tributes, elements or primitive textual data.

d:= document di = document item
€  empty sequence ald] attribute

| d,d sequence | eld] element

| di  document item | ¢ text

The operators , and € obey the equational laws for a monoid.

Model groups A document is typed by a (model) group. Figure 1 (Section 2.2)
gives an overview of the operators which can occur in a group.

In fact, groups per se are not actually used in XML Schema; instead, only
certain restrictions of the grammar g are allowed depending on the content sort.



(The sort of some content is whether it belongs to an attribute, element or type.)
For example, elements and interleaving are not allowed to occur in attribute
content, and any attributes occurring in element content must come before all
child elements.

Since the validation rules do not depend on the content sort we prefer to treat
content in this more uniform fashion as it reduces some inessential complexity in
our presentation. This does not entail any loss of “precision”: Haskell programs
employing our translation cannot violate the additional constraints imposed by
content sort restriction because the translator program accepts as input only
well-constrained schemas, and consequently the translated datatypes only have
values which obey those constraints.

The XML semantics of model groups is given by specifying which documents
validate against each group. A formal exposition of the semantics is given by
Brown et al. [9], which we summarize here informally. (We prefer not to reiterate
the formal rules for validation because, as we shall see in section 3.1, they are
easily read off from the rules for our translation of XML documents into Haskell
values.)

€ matches the empty document. g;, g matches a document matching g1,
followed by a document matching go. # matches no document. g; | g2 matches
a document which matches either g; or gs. g{m,n} matches any sequence of
documents, each of which match g, provided the sequence is of length at least
m, a natural number, and at most n, where n is a “topped natural”: it may
denote co. Arithmetic and ordering on naturals is extended to account for oo as
follows: n + 00 = 0o +n = 0o and n < oo is always true while co < n is always
false. We sometimes abbreviate repetitions using the syntax ?, * and T with the
obvious translations.

An attribute a[d] matches a[g] iff d matches g. An element ¢’[d] matches e[g]
iff d matches g and e’ <: e according to the refinement order <:. A document
d matches mix(g) iff d’ matches g, where d’ is obtained from d by deleting
all character data not contained in any child elements. A document matches a
component name z if it matches the content group bound to the name x by the
schema.

g1 & g2 behaves like g1, g2 except that the subdocuments may appear in any
order. A restriction on the syntax of schemas ensures that either: each g; is of
the form e[g] or e[g]{0, 1}; or each g; is of the form a[g] or a[g]{0,1}.

Any document d matches against anyType; similarly, any element e[d] matches
against anyElem.

Atomic datatypes p are given by the grammar:

p ::= boolean | integer | double | string

Only character data can match against an atomic datatype. A document c
matches against p iff it matches against the textual representation of a value
of that datatype. In particular, every ¢ matches against a string. We remain
imprecise about the textual representations of the remaining possibilities since
they closely resemble the syntax for literals in Haskell.



XML Schema actually includes a much larger repertoire of built-in atomic
datatypes and a notion of “facets” which allow implementing further constraints
on values, but we do not treat these here.

3.1 Translating schemas to datatypes

Some semantic functions involved in the translation of a schema to a datatype
are given in Figure 2. The function [—]¢ translates model groups, while [—]p,
[-]x, [-]5 and [—]miz translate primitive names, component names, repetition
bounds and mixities respectively. The free variable X', which refers to the schema
in question, is global to all these rules and described below. Recall that each
group is translated as a type of kind x — *. (Of course, we stipulate that, for all
groups g, [g]c is the smallest set satisfying the rules.)

[91le 2 T1  [g2]le 2 T2

lele > Empty g1, g2]lc > Seq T1 T2
91l 2 T1  [g2]le 2 T2
[[(D]]G > None [[gl |g2ﬂg 50rT; Ty
[9:lc 2 T1 [g2]c 2 T2 lgle>T

g1 & g2]lc > Inter T1 T2 [g{m,n}]c 2 Rep T [m,n]n

[a]e > [a[X(a)]]c [e]e 3 [e[X(e)]le

[a[s]le 2 Attr [a] x [s]x [e[t]le 2 Elem [e]x [¢]x

lgle > T
[mix(g)]e 2 Mix T [tle 2 [t]x
[boolean] p = T_boolean [integer]p = T_integer
[double] p = T_double [string]p = T_string
[elem] e = () [mix]miz = String

Fig. 2. Formal translation of types of a schema .

The Haskell types mentioned in Figure 2 are defined in Section 2.3 with the
following exceptions.



data Attrag u= Atir (g u)

data T _boolean u = T _boolean Bool

data T_integer u = T _integer Integer

data T_double u = T_double Double
To explain the translation of names, we need an abstract model of schemas and
of Haskell modules. For the sake of readability, we prefer to remain a bit informal
on some technical points.

The function [—]x converts a schema name into a Haskell identifier. If we
regard names and identifiers as strings, then this function is the identity except
that it prepends a string indicating the name’s sort: if = is a type name then
[x]x = "T_"z;if an element name, then "E_"z; if an attribute name, then "A_"z.
For clarity, in the sequel, we omit the semantic brackets and simply write = for
[z] x when no ambiguity can arise.

Let G be the set of all model groups. A schema ¥ = (X, f,<%,<%) is a
set of component names X paired with a map f : X — G and two binary
predicates <$ and <’ over X which generate the extension and restriction
relations respectively. The refinement relation <: is defined as the reflexive-
transitive closure of <§ U <%,. We write X(x) for f(x). We assume X is dis-
joint from the primitive names like string but includes the distinguished type
names anyType, anySimpleType and anyElem. Furthermore, we require
that anyType <’ anySimpleType and anyType <% anyElem, and that
the schema is well-formed: for example, every name except anyType is either
an extension or restriction of some other name.

For example, the following schema declarations in a schema X:

def e[g.]; def Qalg,]; deft=g:;
produce bindings:
Y(e) =elge]  2(Qa) =Qalg]  X(t) = gt

We define the function split : G — G x G on model groups so that if (g1, g2) =
split(g) then g1 is the longest prefix of attribute content of g, and gy is the
remainder. For example:

splitfar & as & -+ ap, ,g2) = (a1 & az & -+ an,g2)

If n =0 then g1 =e.

Now let K be the set of all Haskell type terms of kind * — %, and D be the
set of datatype declarations. A datatype d = (C,g) € D is a set of constructor
names C' paired with a partial map g : C — K, and we write d(c) for g(c). (If
d(c) is undefined, then the constructor is a constant.)

A Haskell module H = (T, h) is a set of type names T paired with a map
h:T — D, and we write H(x) for h(x). We assume T is disjoint from standard
Haskell names and the types declared above like Seq, and that, for all d,d’ €
cod(h), dom(d) # dom(d') unless d = d’, i.e., no distinct datatypes in H share
constructor names. Hence, if H(t)(¢) = F then ¢ denotes a function c::Va. F a —
t in module H.



By way of example, a Haskell module H = ({ Ty}, h) where d = ({C1, C2}, 9),
H(Ty) =d, d(Cy) = F and d(C3) is undefined would be realized as:

import Def -- defines Empty, Seq, Or, etc.

dataTyu=C; (Fu)| Cs .
We now give a set of conditions which describe a function [—]s that, given
any schema ¥ = (X, f, <5, <%), produces a well-kinded Haskell module H =
(T, h) = [£]s.

for all names z € X and z,"LE_"x € T

[X]s(anyType)(anyType) is undefined

[X]s(anyElem)(anyElem) is undefined

for all z, [X]s("LE_"x)("EQ_"z) =z

for all 2" s.t. ¢ <5 2’ or x <% &/, [X]s("LE_"2’)("LE_"z) = "LE_"z

for all z,2" s.t. x <% 2’ [X]s(z)(x) 3 [X(2)]a

forall z, 2’ s.t. x <§ ' [X]s(z)(x) 3 [(az & az),s Car» Collg Where (ag, c,) =
split( X (z)) and (ag, ¢ ) = split( X (x"))

NG e

The first condition says that each schema name x produces two type names,
a type [z] x and a type "LE"[z] x; the first (let us call it the ‘equational’ version)
is used to denote values of exactly type x, while the second (let us call it the
‘down-closed’ version) is used to denote values of type x or any of its subtypes.
The next two conditions essentially say that the equational versions of anyType
and anyElem carry no interesting information. Condition 4 says that the down-
closed version of a type has a constructor which injects the equational version.

Condition 5 says that if x is an immediate subtype of z’, then there is a
constructor "LE_"z which injects the down-closed version of x into the down-
closed version of z’. We call such constructors aziomatic subtyping witnesses;
note that each instance of the refinement relation <: is witnessed by a function
which is expressible as either the identity or a composition of such axiomatic
witnesses.

Conditions 6 and 7 express the way subtyping coercions work. Condition
6 says that the equational version of a type [z]x obtained by restriction sim-
ply has a constructor which injects the content of x into [z]x, i.e., just as in
schema specifications, we do not try to factor restrictions to share any parts
of a restricted type with its parent. Condition 7 expresses Schema’s notion of
extension, which reorders the content to bring together attribute content from
the parent and child; in contrast to restriction, some simple factoring is done
here via the split function.

Groups The value translation is given by the inference rules of Figure 3. The
conclusion of each rule has the form d €, g = v, which can be read, “docu-
ment d validates against type g producing Haskell value v” in mixity context
t. (The schema and Haskell module(s) in question are left implicit.) This nota-
tion is a more readable alternative for describing a (group,mixity)-indexed value
translation function [—]{/":

de,g=v = [d}"=v



Empty——
P ye €y € = Empty

deug1:>v1

Choice(1
oiee( )d €uwgi |l go= 0Orl vy

d ir’gr d1; do dl Cu gi = U;
Inter
d €y g1 & g2 = Inter v1 v
d€gu{mn} 2o
Re

Pa €uwg{m,n} = Rep v

dest=v t<t'Zf

Elem
e[d] €clem €[t'] = Elem () (f v)

st
dEmixg=v c=>v

Mix(1) - - -
d,c Eclem Mix(g) = Miz v v

Mix(2)

di €y g1 = 101 da €4 g2 = V2

Seq
di, d2 €y g1, g2 = Seq v1 v2

deu92:>’l}2

Choice(2
oice( )d Euwgi |l go= 0r2 vy

devg=v g=2X(v)

Named €uwz = "EQ_"[z]x ([z]x v)

d Eelem S = U
ald] Eeclem als] = Attr v

Attr

dEye=v e<:e'gf
Refine ;
deye = fo
cXy eld] €Ectem g = Elem () '

c,eld] Emix g = Elem v v’

Fig. 3. Formal translation of values, part I: Documents.



St . .
Judgements of the form ¢ = v are axiomatic, and can be read “character data c

translates to value v”.
The soundness of this translation, shown in Section 3.2, ensures that v ::

T [u]miz, where [g]g 2 T.

Interleaving The interleaving rule uses a proposition of the form d ey dy;ds,

defined in Figure 4, which can be read, “document items in d can be permuted
to yield a pair of documents d; and ds.”

inter 1 inter 4 1"
di ' dydy dz '+ da;dy

Inter—Emptyf Inter-Seq -~
e ee di, dp =", dyydy, dy
Inter-Item(l)f Inter-Item(2) — -
di BT dis e di =" e di

Fig. 4. Formal translation of values, part II: Interleaving.

Repetition The rules for repetition given in Figure 5 employ propositions of the
form d €,4,, {m,n} =2 4, where g is a group and w is a mixity, meaning that d
validates against g{m,n} producing a value v.

€€y g{0,m} =

Rep(0) Rep(1)

€€y {0,0} 2 22 € €9 {0,m+1} = ZS Nothing v

di €Eug=>v ds €4 g{m,n} Z v

Rep(1) _ Rep(2) 1 g 1 2 9 - } 2
€ €gu {0,00} = 21 [] di,dy €gu {m+1,n+1} = 85 vy vy

di €ug=>v1 d2 € g{0O,m} = v2
di, ds €40 {0,m+ 1} =2 ZS (Just v1) v2

Rep(3)

di €ug=v1 do€gu {0,00} = ZI vy
dy ) do Cg,u {0, OO} g zZ1 (Ul : UQ)

Rep(3’)

Fig. 5. Formal translation of values, part III: Repetition.



Refinement The rules in Figure 6 define the witnesses to the refinement relation

<. Ifg<: ¢ et f then f is a coercion which witnesses the fact that we can
upcast a value of type T; a to one of type Ts a, for any type a and where
[9le 2 T1 and [¢']c > Ts.

g<:g’§>ff g <4g' =f

Reﬂexif Trans .
g<g=id g<:g"Sf of
<% <%

L UL L
x <:z' = "LE_"x x<:z' = "LE_"x

Fig. 6. Formal translation of values, part IV: refinement.

3.2 The correctness of the translation

In this section we show that the translation of schemas into Haskell is correct.
The two results are that the translation is sound w.r.t. typing and that each
instance of the subtyping relation is witnessed by a coercion. In this section we
abbreviate the mixity translation function [—[miz by [—]m-

The type soundness property says that if a document validates against a
schema type, then the translation of the document is typeable against the trans-
lation of the schema type. More formally we have:

Proposition 1 (Type soundness). Let [—]¢ and [—]v be respectively the
type and value translations generated by a schema. Then, for all documents d,
groups g and mizities u, d €, g = [d]}" and [d]" = T [ulm for some
T e [gle-

Proof: By structural induction we show that the value translation rules preserve
the type translation. Doing structural induction over the values amounts to
annotating the value translation rules with explicit types. To cut down on the
size of the rules, we write:

l.deyg=v:Ttomeand €, g=vand v T [u], for some T € [¢]a;

2.d €y g{m,n} = v T tomean d €,, g{m,n} = v and v :: T [u],, for
some T € [¢]q; and

3. g<:g’§>ff::Va.T1a—>Tgatomeang<:g’r:>Cfvandf::Va.Tla—>T2a
for some T, € [g]¢ and T2 € [¢]c-

We present the annotated rules below; the proof is by inspection of the rules.

Empt
P ye €y € = Empty :: Empty



di €y g1 = v1 0 Tq do €y go = v 1 Ty

eq
di, dy €y g1, g2 = Seq vy v :: Seq Ty Ty

deygr=uv T
Choice(1) 9 ! !

dey g |92:>O7"1 vy :: Or Ty To

d6u92:>1)212-r2

Choice(2
ofce( )d €uvgi |l go= Or2 vy ::0rTy Ty

d ir’ﬁr dl;dz d; €y gi = V; . T;
d €, g1 & go = Inter vy vy :: Inter T1 Ty

Inter

deyg=v:T g=X(z)
“d €u = "EQ_"[2]x ([z]x v) :: "LE_"[2]x

Nam

d€gnu {m,n} Lo [m,n]s T
Py €uwg{m,n} = Repv ::Rep T [m,n]p

R

d€elem S=0v T

Att
lra[aﬂ Eelem a[s] = Attr v Attr Ja]x T

ref

de,t=v:T;, t<:t/=f:VaTia—Tya

Flem eld] €Eelem €[t'] = Elem () (f v) :: Elem [e]x T2

£
deye=v:T; e<:d=f:VaT,a—Tsa

Refine ;
deye = fuvi:Ty

demixg=v:T ¢Z v String

Mix(1
ix( )d,c €elem Mix(g) = Miz v v’ :: Mix T

¢ v String  e[d] €elom g = Elem () v’ :: Elem [e] x
Mix(2)

celd] Emix g = FElem v v :: Elem [e]x T

Rep(0) s
€€y {0,002 222227

€w €9{0,m}=v:[0,m]p T
€ €9 {0,m + 1} =2 ZS Nothing v :: ZS [0,m]p T
Rep(1’)

Rep(1)

€€gu {0,002 ZI[] 21T
di€yg=v1:T dy€gy g{m,n} =Ly [m,n]s T
diy dy €g {m+1,n+1} = SS vy 02 2SS [myn]p T

Rep(2)

di€vg=v1 T do€,g{0,m}=vy::[0,m]p T

Rep(3) rop
dy, dy €40 {0,m+ 1} = ZS (Just v1) vy :: ZS [0,m]p T




N mdl Cug=m T dy€yy {0,002 ZI vy 2 0,00 T
ep .
di, dy €g0 {0,000} =2 Z1 (v wg) = ZI [0,00] 5 T

Reflex ;
g<:g=id=:Va.Ta—Ta

g<:g’2>ff::Va.T1a—>T2a g’<:g’/r:°>ff/::Va.T2a—>T3a

Trans :
g<:g'Sfofu:VaTia—Tsa
x <%
Res
r< o= "LE_"z ::Va."LE_"z a — "LE_"z’ a
x <%
Ext
e < o "LE_"z ::Va."LE_"z a — "LE_"z’ a

End of proof.

The next proposition says that if a document d appears as the content of
an element and validates against two types ¢; and 2 such that ¢; <: t9, then

there exists a suitable function which coerces the t;-translation [[d]]i}u into a

to-translation [d]{2". (The restriction that d must appear as the content of an
element arises because this is the only place we can apply the subsumption rule.)
For example, in an element content context, if d validates against publication as

v then it validates against document as LE_T _publication v.

Proposition 2 (Existence of coercions). For all elements e of a schema,
if eld] €y e[t1] N e[d] €, e[te] A t1 <: tg then there exists a function f :
Va.[ti]x a — [to]x a satisfying f [d]i" = [d]&".

Proof: Recall that <: is generated as the reflexive-transitive closure of <%
U <%. It is easy to see from the value translation rules for refinement that
this implies the witness f is either the identity or a composition of axiomatic
subtyping witnesses.

If t1 = to, then f = id and we are done. Otherwise, 3t3.(t1 <% t3 V1 <5
t3) A ts <: ta. So by induction there is an f’ :: Va.[ts]x a — [t2]x a, and
f — f/ 1o IlLE_Iltl.

It remains to show that f [d]{+" = [d]:". Observe that, by expanding our
alternate notation, the Elem rule can be rewritten:

- [ =v [t<:t]=f

Ele 7
[e[d]]{/ 1 = Elem () (f v)

Let t' := ty. Taking t := t1, we obtain [e[d]]?"" = Elem () (f [d]}*™) and
again, taking t = to, [e[d]]I"" = Elem () (id [d]22") = Elem () [d]i2™.
t1,u to,u

Therefore, by congruence of equality, f [d]y"" = [d]}
End of proof.



4 Schema-aware applications

4.1 Generic programming in Generic Haskell

This section introduces generic programming in Generic Haskell. We give a brief
introduction to Generic Haskell; more details can be found in [16, 24].

A generic program is a program that works for a large class of datatypes. A
generic program takes a type as argument, and is usually defined by induction
on the type structure. Generic Haskell is an extension of Haskell that supports
generic programming. In this paper we use the most recent version of Generic
Haskell, known as Dependency-style Generic Haskell [25, 24]. Dependencies both
simplify and increase the expressiveness of generic programming.

In order to apply a program to values of different types, each datatype that
appears in a source program is mapped to its structural representation. This
representation is expressed in terms of a limited set of datatypes, called struc-
ture types. A generic program is defined by induction on these structure types.
Whenever a generic program is applied to a user-defined datatype, the Generic
Haskell compiler takes care of the mapping between the user-defined datatype
and its corresponding structural representation. Furthermore, a generic program
may also be directly defined on a user-defined datatype, in which case this def-
inition takes precedence over the definitions generated for the structure type of
the user-defined datatype. A definition of a generic function on a user-defined
datatype is called a default case.

The translation of a datatype to a structure type replaces a choice between
constructors by a sum, denoted by :+: (nested to the right if there are more than
two constructors), and a sequence of arguments of a constructor by a product,
denoted by :*: (nested to the right if there are more than two arguments). A
nullary constructor is replaced by the structure type Unit. The arguments of the
constructors are not translated. We give the structure type for the datatype of
binary trees with integers in the leaves, and strings in the internal nodes.

data Tree = Leaf Int | Node Tree String Tree

type Str (Tree) = Int :+: (Tree :*: (String :*: Tree)) .

Here Str is a meta function that given an argument type generates a new type
name. The structural representation of a datatype only depends on the top level
structure of a datatype. The arguments of the constructors, including recursive
calls to the original datatype, appear in the representation type without modifi-
cation. A type and its structural representation are isomorphic (ignoring unde-
fined values). The isomorphism is witnessed by a so-called embedding-projection
pair: a value of the datatype

data EP (a:: %) (b::x) = EP (a—b) (b—a) .

The Generic Haskell compiler generates the translation of a type to its structural
representation, together with the corresponding embedding projection pair.

From this translation, it follows that it suffices to define a generic function
on sums (:+:), products (:*: and Unit) and on base types such as Int and String.
To be able to inspect constructor names, we will also encode the constructors in
the structure type of a datatype, using the structure type Con defined by



data Con a = Con ConDescr a
where the type ConDescr is used for constructor descriptions. The structure type
for Tree now becomes

type Str (Tree) = Con Int :+: Con (Tree :*: (String :*: Tree)) .
For example, we define a very simple generic function content that extracts the
strings and integers (shown as strings) that appear in a value of a datatype
t. The instance of content on the type Tree returns the following strings when
applied to Node (Leaf 3) "Bla" (Leaf 7): ["3", "Bla", "7"].

The generic function content returns the document’s content for any datatype®:

content{t :: x[} i (content{t[}) = t — [String]
content{Unit}  Unit =]]

content{Int[} int = [show int]

content{String[} ~ str = [str]

content{a :+: b[} (Inl a) = content{al} a
content{a +: b[} (Inr b) = content{b[} b
content{a :x: b} (a :*: b) = content{al} a H content{bl[} b
content{Con c af} (Con a) = content{al} a
There are a couple of things to note about generic function definitions:

— Function content{|t]} is a type-indexed function. The type argument appears
in between special parentheses {, [}. An instance of content is obtained by
applying content a type.

— The constraint content{t[} that appears in the type of function content says
that function content depends on itself. A generic function f depends on a
generic function g if there is an arm in the definition of f, for example that
for f{a :+: b[}, which uses g on a variable in the type argument, for example
g{al}. If a generic function depends on itself it is defined by induction over
the type structure.

— The type of function content is given for a type t of kind x. This does not
mean that content can only be applied to types of kind *; it only gives the
type information for types of kind x. The type of function content on types
with kinds other than * can automatically be derived from this base type.

— Using an accumulating parameter we can obtain a more efficient version of
function content.

4.2 From XML documents to Haskell data

In this section we describe an implementation of the translation outlined in the
previous subsection as a generic parser for XML documents, written in Generic
Haskell. To abstract away from details of XML concrete syntax, rather than parse
strings, we use a universal data representation Doc which presents a document
as a tree (or rather a forest):

type Doc = [Docltem]

data Docltem = DText String | DAttr String Doc | DElem String Doc .

® The (infix) H#- function returns the concatenation of its two input strings.



We use standard techniques [19] to define a set of monadic parsing combinators
operating over Doc. P a is the type of parsers that parse a value of type a.
We omit the definitions here because they are straightfoward generalizations of
string parsers. gParse{t[} denotes a parser which tries to read a document into
a value of type t. The type of generic parsers is:
gParse{|t :: x|} :: (gParse{|t]}, gName{t[}, gInter{t[}, empty{t}) = Pt .
This function depends on several auxiliary values which are defined below. We
now describe its behavior on the various components of Schema.
gParse{String[} = pMized
gParse{Unit} = pElementOnly
The first two cases handle mixities: pMized matches a sequence of DText chunk(s),
while parser pElementOnly always succeeds without consuming input. Note that
no schema type actually translates to Unit or String (by themselves), but these
cases are used indirectly by the other cases.
gParse{|Empty ul} = return Empty
gParse{Seq gl g2 u} = do docl «— gParse{gl ul}
doc2 — gParse{g2 ul}
return (Seq docl doc2)
gParse{None ul} = mzero
gParse{Or gl g2 u}} = fmap Orl gParse{gl ult
<|> fmap Or2 gParse{g2 ul}
Sequences and choices map closely onto the corresponding monad operators.
p <|> g tries parser p on the input first, and if p fails then it tries again with
q, and mzero is the identity element for <|>. fmap is the action of a functor on
a function.
gParse{Rep g b ul} = fmap Rep gParse{b g uf}
gParse{ZZ gul} = return ZZ
gParse{Zl gult = fmap ZI $ many gParse{g ul}
gParse{|ZS gb ul} =do z « option gParse{g ult
y < gParse{b g u[}
return (ZS © (Rep y))
gParse{SS gbu}} =do z «— gParse{g ul}
y « gParse{b g u[t
return (SS x (Rep y))
Repetitions are handled using the familiar combinators many p and option p,
which parse a sequence of documents matching p and an optional p, respectively.
gParse{|T_string ul} = fmap T _string pText
gParse{|T_integer ul} = fmap T _integer pReadable Text
String primitives are handled by a parser pText, which matches a sequence
of DText chunk(s). Function pReadableText parses integers (also doubles and
booleans—here omitted) using the standard Haskell read function, since we de-
fined our alternative schema syntax to use Haskell syntax for the primitives.
gParse{Elem e g u}} = do mizity < gParse{ul}
let p = gParse{g[} pElementOnly
elemt gName{e[} (fmap (Elem mizxity) p)



An element is parsed by first using the mixity parser corresponding to u to read
any preceding mixity content, then by using the parser function elemt to read
in the actual element. elemt s p checks for a document item DFlem s d, where
the parser p is used to (recursively) parse the subdocument d. We always pass
in gParse{g[t pElementOnly for p because mixed content is ‘canceled’ when we
descend down to the children of an element. Parsing of attributes is similar.

This code uses an auxiliary type-indexed function gName{e[} to acquire the
name of an element; it has only one interesting case:

gName{ Con ¢ al} = drop 5 (conName c)

This case makes use of the special Generic Haskell syntax Con ¢ a, which binds
¢ to a record containing syntactic information about a datatype. The right-hand
side just returns the name of the constructor, minus the first five characters (say,
"LE_T_"), thus giving the attribute or element name as a string.
gParse{Mix g u[} = do doc ~ « gParse{g[} pMized

mizity «— pMixed

return (Miz doc mizity)
When descending through a Mix type constructor, we perform the opposite of
the procedure for elements above: we ignore the mixity parser corresponding to
u and substitute pMized instead. pMized is then called again to pick up the
trailing mixity content.

Most of the code handling interleaving is part of another auxiliary function,
gInter{|t]}, where t is in our case always instantiated to a component group. The
function has the following type:

gInter{|t :: x[} :: (gInter{t[}, empty{t}) = Va. PermP (t — a) — PermP a .
Interleaving is handled using these permutation phrase combinators [5]:

(<]I>) ::Vab. PermP (a — b) — P a — PermP b

(<|?>)  :Vab.PermP (a —b)— (a,Pa) — PermPb

mapPerms ::Vab. (a — b) — PermP a — PermP b

permute  ::Va.PermP a — P a

newperm ::Vab. (a—b) — PermP (a — b) .

Briefly, a permutation parser ¢::PermP a reads a sequence of (possibly optional)
documents in any order, returning a semantic value a. Permutation parsers are
created using newperm and chained together using <||> or, if optional, <|?>; for
example, <||> takes a permutation parser returning continuations for a-values
with b-answers, and an ordinary parser returning an a-value, and produces a
permutation parser returning a b-value. mapPerms is the standard map function
for the PermP type. permute q converts a permutation parser ¢ into a normal
parser.

gParse{|Inter gl g2 uf} =

permute $ (gInter{g2 ul} o gInter{gl ul}) (newperm Inter)
To see how the above code works, observe that:
f1 = gInter{gl uf} :: Vu b. PermP (gl u — b) — PermP b
12 = gInter{g2 uf} :: Vu c. PermP (g2 u — ¢) — PermP ¢
hence
f2 o f1 =Vuc. PermP (glu — g2u —c) — PermP c .



Note that if ¢ is instantiated to Inter gl g2 u, then the function type appearing
in the domain becomes the type of the data constructor Inter, so we need only
apply it to newperm Inter to get a permutation parser of the right type.

(f1 o f2) (newperm Inter) ::Vgl g2 u. PermP (Inter gl g2 u)
Many cases of function glnter need not be defined because the syntax of inter-
leavings in Schema is so restricted.

gInter{Con c al} = (<||> fmap Con gParse{al})

gInter{Inter gl g2 uf} = gInter{gl u} o gInter{g2 uf}

o mapPerms (A\f = y — f (Inter x y))
gInter{Rep g (ZS ZZ) ul} = (<|?> (Rep (empty{|(ZS ZZ) g ul})
, fmap Rep gParse{(ZS ZZ) g ul}))

In the Con case, we see that an atomic type (an element or attribute name)
produces a permutation parser transformer of the form (<||> ¢). The Inter case
composes such parsers, so more generally we obtain parser transformers of the
form (<||> @1 <||> ¢2 <||> g3 <||> ...). The Rep case is only ever called when g
is atomic and the bounds are of the form ZS ZZ: this corresponds to a Schema
type like e{0,1}, that is, an optional element (or attribute).® empty{t[} is a
simple auxiliary function which provides a value of the argument type when the
optional value is omitted; its definition can be found in Loh’s dissertation [24].

4.3 From Haskell data to XML documents

We now describe a generic printer for the XML translation types we have in-
troduced. Printing to XML is actually easier than parsing it; as before, rather
than producing strings, we use the Doc type as a more abstract representation
of XML.

The generic function gPrint{|t} accepts a value of type t (which is assumed
to be in the range of the translation) and produces a Doc-transformer, that is,
a function of type Doc — Doc. gPrint{t[} depends on itself and the auxiliary
function gName{t[}, which is described above in Section 4.2.

gPrint{t :: x[} :: (gParse{t}, gName{t[}) = t — Doc — Doc
To produce an actual Doc, one merely applies the result to the empty list. This
formulation follows a familiar idiom in Haskell, which avoids the quadratic com-
plexity of the list concatenation operator.

gPrint{Unit} Unit = id

gPrint{String}} s = (DText s:)

These first two cases handle mixities. In an element-only context, we simply pass
the input document through; otherwise, we cons on a DText chunk.

gPrint{a *: b} (x1 *: 22) = gPrint{al} 1 o gPrint{b]} x2
gPrint{a :+: b} (Inl z1) = gPrint{al} =1

gPrint{a :+: b} (Inr z2) = gPrint{b[ =2

gPrint{Empty} Empty =1id

5 The GH compiler does not accept the syntax glnter{Rep g (ZS ZZ) u[}. We define
this case using gInter{Rep g b u[}, where b is used consistently instead of ZS ZZ,
but the function is only ever called when b = ZS ZZ.



gPrint{Seq gl g2 ul} (Seq z1 x2) = gPrint{gl ul} o gPrint{g2 uf}
gPrint{Inter gl g2 ul} (Inter x1 z2) = gPrint{gl ul} o gPrint{g2 ul}

gPrint{|None[} =1
gPrint{Or gl g2 u} (Or1 z1) = gPrint{gl ul} =1
gPrint{Or gl g2 ul} (Or2 x2) = gPrint{g2 ul} 22

These cases handle the model groups. Sequences and interleavings produce trans-
formers which are just composed, as this corresponds to appending.

gPrint{Elem e g u[} (Elem m z) = gPrint{ul} m o

(DElem gName{e[} (gPrint{g O} = []):)

To handle elements, we first output the mixity value preceding it, then cons on
a DElem block. The recursive call descends into the descendants of the element,
terminating it with an empty list to produce a Doc.

gPrint{{Mix g u[} (Miz = m) = gPrint{g String[} © o (DText m:)
To handle Mix, we first output the XML z, then any trailing text.

gPrint{T string u[} (T_string ) = (DText x:)

gPrint{T _integer ul} (T _integer ) = (DText (show z):)
Values of the primitive types are simply output as strings, using D7Text chunks.
show is a Haskell Prelude function which converts a value of any type to a string.

gPrint{{Rep g b ul} (Rep ) = gPrint{bgul z

gPrint{{ZZ g ul} ZZ =id

gPrint{Zl g ul} (ZI x) = foldr (o) id (map gPrint{g u[} )

gPrint{ZS b g ul} (ZS x rep) = maybe id gPrint{g uf} = o

gPrint{{Rep g b u[} rep

gPrint{|SS b g ul} (SS z rep) = gPrint{g u[} z o gPrint{Rep g b ul} rep
Repetition is mostly self-explanatory. Here we use the Haskell Prelude function
foldr, the familiar list induction operator, and map, the list functor action. maybe
is another standard function, defined by:

maybe 2 b— (a—b)—> Maybea — b

maybe T f Nothing = z

maybe z f (Just a) = f a

5 Improving UUXML

The default translation scheme of a data binding may produce unwieldy, convo-
luted and redundant types and values. Our own Haskell- XML Schema binding
UUXML suffers from this problem.

In this section we use UUXML as a case study of the problem of overwhelm-
ingly complex data representation which tends to accompany type-safe language
embeddings. We outline the proble and explain how the design criteria gave rise
to it. In Section 6, we show how to address the problem using iso inference.
The same technique might be used in other situations, for example, compilers
and similar language processors which are designed to exploit type-safe data
representations.



5.1 The Problem with UUXML

Let us briefly give the reader a sense of the magnitude of the problem.

Consider the following XML schema, which describes a simple bibliographic
record doc including a sequence of authors, a title and an optional publication
date, which is a year followed by a month. It is a variant of the schema introduced
in Section 2.2.

<element name="doc" type="docType"/>
<complexType name="docType">
<sequence>
<element ref="author" minOccurs="0" maxOccurs="unbounded"/>
<element ref="title"/>
<element ref="pubDate" minOccurs="0"/>
</sequence>
<attribute name="key" type="string"/>
</complexType>
<element name="author" type="string"/>
<element name="title" type="string"/>
<complexType name="pubDateType">
<sequence>
<element ref="year"/>
<element ref="month"/>

</sequence>
</complexType>
<element name="pubDate" type="pubDateType"/>
<element name="year" type="int"/>
<element name="month" type="int"/>

An example document which validates against this schema is:

<doc key="homer-odyss">
<author>Homer</author>
<title>The Odyssey</title>
</doc> .

UUXML translates each of the types doc and docType into a pair of types,

data E_doc u = E_doc (Elem LE_E_doc LE_T _docType u)
data LE_E doc u = FQ_FE _doc (E_doc u)
data T_docType u = T_docType (Seq A_key (Seq (Rep LE_E_author ZI)

(Seq LE_E_title (Rep LE_E_pubDate
(25 22)))) u)
data LE_T _docType u = EQ_E _docType (T_docType u)
| LE_T _publicationType (LE_T publicationType u)
and the example document above into the value:

EQ_E_doc (E_doc (Elem () (EQ-T -docType (T -docType (Seq (A-key (Attr
(EQ-T _string (T _string "homer-odyss"))))(Seq (Rep (ZI [EQ_E _author
(E_author (Elem () (EQ_T _string (T _string "Homer"))))])) (Seq (EQ_E _title



(E_title (Elem () (EQ_T_string (T _string "The Odyssey"))))) (Rep
(28 Nothing (Rep 22)))))))))
which has type LE_E_doc ().

The problem is clear: if a user wants to, say, retrieve the content of the author
field, he or she must pattern-match against no less than ten constructors before
reaching "Homer". For larger, more complex documents or document types, the
problem can be even worse.

5.2 Conflicting Issues in UUXML

UUXML’s usability issues are a side effect of its design goals. We discuss these
here in some depth, and close by suggesting why similar issues may plague other
applications which process typed languages.

First, UUXML is type-safe and preserves as much static type information
as possible to eliminate the possibility of constructing invalid documents. In
contrast, Java—XML bindings tend to ignore a great deal of type information,
such as the types of repeated elements (only partly because of the limitations of
Java collections).

Second, UUXML translates (a sublanguage of) XML Schema types rather
than the less expressive DTDs. This entails additional complexity compared
with bindings such as HaXML [53] that merely target DTDs. For example, XML
Schema supports not just one but two distinct notions of subtyping and a more
general treatment of mixed content than DTDs.

Third, the UUXML translation closely follows the Model Schema Language
(MSL) formal semantics [9], even going so far as to replicate that formalism’s
abstract syntax as closely as Haskell’s type syntax allows. This has advantages:
we have been able to prove the soundness of the translation, that is, that valid
documents translate to typeable values, and the translator is relatively easy
to correctly implement and maintain. However, our strict adherence to MSL
has introduced a number of ‘dummy constructors’ and ‘wrappers’ which could
otherwise be eliminated.

Fourth, since Haskell does not directly support subtyping and XML Schema
does, our binding tool emits a pair of Haskell datatypes for each schema type
t: an ‘equational’ variant which represents documents which validate exactly
against t, and a ‘down-closed’ variant, which represents all documents which
validate against all subtypes of t. Our expectation was that a typical Haskell
user would read a document into the down-closed variant, pattern-match against
it to determine which exact/equational type was used, and do the bulk of their
computation using that.

Finally, UUXML was intended, first and foremost, to support the develop-
ment of ‘schema-aware’ XML applications using Generic Haskell. This moniker
describes programs, such as our XML compressor XComprez [2], which oper-
ate on documents of any schema, but not necessarily parametrically. XComprez,
for example, exploits the type information of a schema to improve compression
ratios.



Because Generic Haskell works by traversing the structure of datatypes, we
could not employ methods, such as those in WASH [44], which encode schema
information in non-structural channels such as Haskell’s type class system. Such
information is instead necessarily expressed in the structure of UUXML’s types,
and makes them more complex.

For schema-aware applications this complexity is not such an issue, since
generic functions typically need not pattern-match deeply into a datatype; for
example, the parser gParse{t[} of Section 4.2 is a schema-aware application, and
so does not depend explicitly on the details of a particular DTD. But if we aim to
use UUXML for more conventional applications it can become an overwhelming
problem; for example, a function that needs to extract the bibliographical key
attribute from our Homer example needs to dig past ten constructors!

In closing, we emphasize that many similar issues are likely to arise, not only
with other data bindings and machine-generated programs, but also with any
type-safe representation of a typed object language in a metalanguage such as
Haskell. Preserving the type information necessarily complicates the representa-
tion. If the overall ‘style’ of the object language is to be preserved, as was our
desire in staying close to MSL, then the representation is further complicated.
If subtyping is involved, even more so. If the representation is intended to sup-
port generic programming, then it must express as much information as possible
structurally, which also entails some complexity.

For reasons such as these, one might be tempted to eschew type-safe embed-
dings entirely, but then what is the point of programming in a statically typed
language if not to exploit the type system? Arguably, the complexity problem
arises not from static typing itself, but rather the insistence on using only a single
data representation. In the next section, we show how iso inference drastically
simplifies dealing with multiple data representations.

6 Inferring Isomorphisms

Typed functional languages like Haskell and ML [23,31] typically support the
declaration of user-defined, polymorphic algebraic datatypes. In Haskell, for ex-
ample, we might define a datatype representing dates in a number of ways. The
most straightforward and conventional definition is probably the one given by
Date below,

data Date = Date Int Int Int
but a more conscientious Dutch programmer might prefer Date_NL:

data Date_NL = Date_NL Day Month Year

data Day = Day Int
data Month = Month Int
data Year = Year Int.

An American programmer, on the other hand, might opt for Date_US, which
follows the US date format:
data Date_US = Date_US Month Day Year .



If the programmer has access to an existing library which can compute with
dates given as Int-triples, though, they may prefer Date2,

data Date2 = Date2 (Int, Int,Int) |
for the sake of simplifying data conversion between his application and the li-
brary. In some cases, for example when the datatype declarations are machine-
generated, a programmer might even have to deal with more unusual declarations
such as:

data Date3 = Date3 (Int, (Int, Int))

data Date4 = Date/ ((Int,Int), Int)

data Dateb = Date5 (Int, (Int, (Int, ()))) .

Although these types all represent the same abstract data structure’, they rep-
resent it differently; they are certainly all unequal, firstly because they have
different names, but more fundamentally because they exhibit different surface
structures. Consequently, programs which use two or more of these types to-
gether must be peppered with applications of conversion functions.

Medium-size and large programs typically use many client libraries from dis-
parate sources. In programs of this size, it becomes inevitable that two or more
libraries export distinct datatypes that share the same (or subsume another’s)
semantics. In order for the clients to interoperate, the host program must resolve
these differences by converting between representations.

In our example above, the amount of code required to define such conversion
functions is not so large, but if the declarations are machine-generated, or the
number of representations to be simultaneously supported is large, then the size
of the conversion code can become unmanageable.

6.1 Isomorphisms

The fact that all these types represent the same abstract type is captured by the
relation 2 of isomorphy: types A and B are isomorphic, A = B, iff there exists
an invertible function f : A — B. The witness f is called an isomorphism (or
iso) and serves as our desired conversion function. The identity function is an
iso, as is the composition of two isos; thus, using invertibility, one easily obtains
that isomorphy is an equivalence relation.

Some familiar isos arise from the semantics of base types. For example, mod-
ulo numeric precision issues, the conversion between meters and miles is an
isomorphism between the floating-point type Double and itself; if we preserve
the origin, the conversion between cartesian and polar coordinates is another
example.

Some polymorphic isos arise from the structure of types themselves; for ex-
ample, one says that products are commutative “up to isomorphism,” meaning
that there exists an iso v : Va,b.a X b — b x a. Mac Lane was the first to

7 We will assume all datatypes are strict; otherwise, Haskell’s non-strict semantics
entails that some transformations such as nesting add a new value | which renders
this claim false. In practice, though, only programs which depend essentially on
laziness are sensitive to this issue.



show [26], in the setting of category theory, that a stronger result holds: v is the
only polymorphic function of this type, among a certain class of polymorphic
functions. Moreover, he showed that v can be constructed, entirely by composi-
tion and functor application, from a basis of canonical functions. (A more recent
treatment of this result appears in Mac Lane’s book [27].) Such theorems are
called coherence theorems, and Mac Lane called functions like v canonical.

In other words, canonical functions are special because they are uniquely
determined by their type; since there is exactly one canonical function at certain
types, they serve as a natural form of coercion. Furthermore, since canonicality
is preserved by composition and certain functors, such coercions do not suffer
from the incoherence issues that can plague programming in languages with ad
hoc coercion disciplines.

Pierce [36] gives the following example of incoherence. Suppose there exist
the following implicit coercions:

[Bool < Int] = Ab — if b then 1 else 0
[Int < String] = int2String
[Bool < Double] = Ab — if b then 1.0 else 0.0
[Double < String] = double2String ,

where, for the purpose of this example, we suppose that
int2String 1 = "1" float2String 1.0 ="1.0" .

Now consider the semantics of the term ¢ = putStr True, where putStr s denotes
the I/O action which prints the string s. The term ¢ is typeable because True :
Bool can be coerced to a value of type String; however, the rules provide two
possible coercions:

Int
Ab — if b then 1 elsy W‘QStm'ng

Bool String
Ab — if b then 1.0 else%\ %ble?é’trmg
Double

which, however, also produce two different values for ¢: the upper composition
maps True to an action printing "1", the lower to one printing "1.0".8
Haskell’s system of type classes itself suffers from this problem. A classic
example involves the overloaded functions read and show, which convert any
value from and to their external representations as strings. But consider the
program read (show True); according to the Haskell 98 Report [35] this program

8 After adding the ad hoc coercions described at the end of Section 7.4 to our imple-
mentation, we encountered this very problem and spent half an hour searching for
its cause!



should raise a static error because, without a proper type annotation, its dynamic
semantics is ambiguous: they depend on the type assigned to it, yet any type will
do. For example, read (show True) : Int fails while read (show True) :: Bool does
not. In fact, the example without the type annotation is accepted by the Glasgow
Haskell Compiler and fails, though another implementation (that ignores the
Report’s admonition to raise an error in ambiguous cases) may well evaluate
this term to True.

6.2 Monoidal isos.

A few canonical isos of (Generic) Haskell are summarized by the syntactic theory
below.

a: Unit=a Unit:*:a = a (a*:b) x:c=a*: (b:*:c)

The isomorphisms which witness these identities are the evident ones. The first
two identities in each row express the fact that Unit is a right and left unit for :*:;
the last two say that :*: (resp. :+:) is associative. We call these isos collectively
the monoidal isos.

This list is not exhaustive. For example, binary product and sum are also
commutative up to canonical iso:

a*x:bXb:xa a:+:b=b:+:a
and the distributivity iso is also canonical:
ax:(b:+:c) X (axb)+: (a*c).

There is a subtle but important difference between the monoidal isos and the
other isos mentioned above. Although all are canonical, and so possess unique
polymorphic witnesses determined by the type schemes involved, only in the case
of the monoidal isos does the uniqueness property transfer unconditionally to
the setting of types.

To see this, consider instantiating the product-commutativity iso scheme to
obtain:

Int :*: Int = Int :*: Int .

This identity has two witnesses: one is the intended twist map, but the other is
the identity function.

This distinction is in part attributable to the form of the identities involved;
the monoidal isos are all strongly regular, that is:

1. each variable that occurs on the left-hand side of an identity occurs exactly
once on the right-hand side, and vice versa, and
2. variables occur in the same order on both sides.



The strong regularity condition is adapted from work on generalized multicate-
gories [22,21,15]. It is a sufficient—but not necessary—condition to ensure that
a pair of types determines a unique canonical iso witness.

Thanks to the canonicality and strong regularity properties, given two types
we can determine if a unique iso between them exists, and if so can generate
it automatically. Thus our program infers all the monoidal isos, but not the
commutativity or distributivity isos.

6.3 Datatype isos.

As explained in Section 4.1, in Generic Haskell each datatype declaration induces
a canonical iso between the datatype t and an underlying structure type. For
example, the declaration

data ListInt = Nil | Cons Int ListInt
induces a canonical isomorphism

ListInt = Unit :+: (Int :*: ListInt) .

for each instantiation type A. We call such isos datatype isos; their canonical
status can be seen as arising from the universal property characterizing initial
algebras.

6.4 The reduce/expand paradigm

From a Generic Haskell user’s point of view, iso inference is a simple matter of
applying two generic functions,

reduce{|t]} ::t — Univ

expand{Jt'[} :: Univ — t" .
reduce{|t[} takes a value of any type and converts it to a value of a universal,
normalized representation denoted by the type Univ; expand{|t'[}, its dual, con-
verts such a universal value back to a ‘regular’ value, if possible. The iso which
converts from t to t’ is thus expressed as:

expand{t'[} o reduce{t[} .
If t = t/, then expand{t'[} and reduce{t[} are mutual inverses. If t and t’ are
merely isomorphic, then expansion may fail at run-time; it succeeds if the two
types are canonically isomorphic, t = t’, according to the monoidal and datatype
iso theories.

As an example, consider the expression

(expand{(Bool, Bool :+: (Int :+: String))[} o

reduce{(Bool, ((), (Bool :+: Int) :+: String))[})
(True, ((), Inl (Inr 7))) ,

which evaluates to

(True, Inr (Inl 7)) .
Function reduce{t[} picks a type in each isomorphism class which serves as a
normal form, and uses the canonical witness to convert values of t to that form.
Normalized values are represented in a special way in the abstract type Univ; a



typical user need not understand the internals of Univ unless ezpand{t'[} fails. If

t and t’ are ‘essentially’ the same yet structurally different then this automatic

conversion can save the user a substantial amount of typing, time and effort.
Our functions also infer two coercions which are not invertible:

ax:b<a a<a:i+b.

The canonical witnesses here are the first projection of a product and the left
injection of a sum. Thanks to these reductions, the expression

(expand{|Either Bool Int[} o reduce{(Bool, Int)[}) (True,4)
evaluates to Left True; note that it cannot evaluate to Right 4 because such a
reduction would involve projecting a suffix and injecting into the right whereas
we infer only prefix projections and left injections. Of course, we would prefer our
theory to include the dual pair of coercions as well, but doing so would break the
property that each pair of types determines a unique canonical witness. Despite
this limitation, we will see in Section 6.6 how these coercions, when used with a
cleverly laid out datatype, can be used to simulate single inheritance.

Now let us look at some examples which fail.

1. The conversion
expand{|(Bool, Int)[} o reduce{(Int, Bool)[}
fails because our theory does not model commutativity of :*:.
2. The conversion
expand{Booll} o reduce{Int]}
fails because the types are neither isomorphic nor coercible.
3. The conversion
expand{|Bool[} o reduce{Either () ()}
fails because we chose to represent certain base types like Bool as “abstract”:
they are not destructured when reducing.

Currently, because our implementation depends on the “universal” type Univ,
failure occurs at run-time and a message helpful for pinpointing the error’s source
is printed. In section 8, we discuss some possible future work which may provide
static error detection.

6.5 Exploiting Isomorphisms

Datatypes produced by UUXML are unquestionably complicated. Let us con-

sider instead what our ideal translation target might look like. Here is an obvious,

very conventional, Haskell-style translation image of doc using records types:
module Doc where

data Doc = Doc {key :: String,

authors :: [String],

title :: String,

pubDate :: Maybe PubDate }
data PubDate = PubDate{ year :: Integer,

month :: Integer}

Observe in particular that:



the target types Doc and PubDate have conventional, Haskellish names which
do not look machine-generated;

the fields are typed by conventional Haskell datatypes like String, lists and
Maybe;

— the attribute key is treated just like other elements; and

intermediate ‘wrapper’ elements like title and year have been elided and do
not generate new types;

— the positional information encoded in wrappers is available in the field pro-
jection names;

— the field name authors has been changed from the element name author,
which is natural since authors projects a list whereas each author tag wraps
a single author.

Achieving an analogous result in Java with a data binding like JAXB would
require annotating (editing) the source schema directly, or writing a ‘binding
customization file’ which is substantially longer than the two datatype declara-
tions above. Both methods also require learning another XML vocabulary and
some details of the translation process, and the latter uses XPath syntax to in-
dicate the parts which require customization—a maintenance hazard since the
schema structure may change.

With our iso inference system, provided that the document is known to be
exactly of type doc and not a proper subtype, all that is required is the above
Haskell declaration plus the following modest incantation.

expand{Docl} o reduce{E_doc[}

This expression denotes a function of type E_.doc — Doc which converts the
unwieldy UUXML representation of doc into the idealized form above.

For example, the code in Figure 7 is a complete Generic Haskell program that
reads in a doc-conforming document from standard input, deletes all authors
named “De Sade”, and writes the result to standard output.

module Censor where

import UUXML -- our framework

import XDoc -- automatically translated XML Schema
import Doc -- the custom declarations Doc & PubDate

main = interact work

work = toF _doc o censor o toDoc

censor d = d{ authors = filter (# "De Sade") (authors d)}
toE_doc = unparse{lE_doc[} o expand{E_doc[} o reduce{Docl}
toDoc = expand{|Docl} o reduce{|E_doc[} o parse{|E_doc]}

Fig. 7. An example XML application.



6.6 The Role of Coercions
Recall that our system infers two non-invertible coercions:
ax:b<a a<a:+b.

Of course, this is only half the story we would like to hear! Though we could
easily implement the dual pair of coercions, we cannot implement them both
together except in an ad hoc fashion (and hence refrain from doing so). This
limitation exists partly because, in reducing to a universal type, we have thrown
away the type information. But, even if we knew the types involved, it is not
clear, for example, whether a — a :+: a should be witnessed by the left or the
right injection.

Fortunately, even this ‘biased’ form of subtyping proves quite useful. In par-
ticular, XML Schema’s so-called ‘extension’ subtyping exactly matches the form
of the first projection coercion, as it only allows documents validating against
a type t to be used in contexts of type s if s matches a prefix of t: so t is an
extension of s.

Schema’s other form of subtyping, called ‘restriction’, allows documents val-
idating against type t to be used in contexts of type s if every document val-
idating against t also validates against s: so t is a restriction of s. This can
only happen if s, regarded as a grammar, can be reformulated as a disjunction
of productions, one of which is t, so it appears our left injection coercion can
capture part of this subtyping relation as well.

Actually, due to a combination of circumstances, the situation is better than
might be expected. First, subtyping in Schema is manifest or nominal, rather
than purely structural: consequently, restriction only holds between types as-
signed a name in the schema. Second, our translation models subtyping by gener-
ating a Haskell datatype declaration for the down-closure of each named schema
type. For example, the ‘colored point’ example familiar from the object-oriented
literature would be expressed thus:

data Point = Point ...

data CPoint = CPoint ...

data LE_Point = EQ_Point Point

| LE_CPoint LE_CPoint
data LE_CPoint = EQ_CPoint CPoint
|
Third, we have arranged our translator so that the FEQ_... constructors always
appear in the leftmost summand. This means that the injection from the ‘equa-
tional’ variant of a translated type to its down-closed variant is always the left-
most injection, and consequently picked out by our expansion mechanism.

EQ_Point :: Point — LE_Point

EQ_CPoint :: CPoint — LE_CPoint
Since Haskell is, in itself, not well equipped for dealing with subtyping, when
reading an XML document we would rather have the coercion the other way
around, that is, we should like to read an LE_Point into a Point, but of course



this is unsafe. However, when writing a value to a document these coercions save
us some work inserting constructors.

Of course, since, unlike Schema, itself, our coercion mechanism is structural,
we can employ this capability in other ways. For instance, when writing a value
to a document, we can use the fact that Nothing is the leftmost injection into
the Maybe a type to omit optional elements.

7 Generic Isomorphisms

In this section, we describe how to automatically generate isomorphisms between
pairs of datatypes.

We address the problem in four parts, treating first the product and sum
isos in isolation, then showing how to merge those implementations. Finally, we
describe a simple modification of the resulting program which implements the
non-invertible coercions.

In each case, we build the requisite morphism by reducing a value v ::t to a
value of a universal datatype u = reduce{t[} v::Univ. The type Univ plays the role
of a normal form from which we can then expand to a value expand{t'[} u::t" of
the desired type, where t < t’ canonically, or t 2 t’ for the isos. Function reduce
is similar to function content defined in Section 4.1, except that it returns a
single value instead of a list, and the returned value contains information about
its type, instead of being a string.

7.1 Handling Products

We define the functions reduce{|t}} and expand{|t} which infer the isomorphisms
expressing associativity and identities of binary products:

a: Unit = a Unit :x:a = a (a*:b)x:c™ax*: (b:*:c).

We assume a set of base types, which may include integers, booleans, strings
and so on. For brevity’s sake, we mention only integers in our code.

data UBase = Ulnt Int | UBool Bool | UString String | - - -
The following two functions merely serve to convert back and forth between the
larger world and our little universe of base types.

reducebase{|t :: *[} :: t — UBase
reducebase{Int]} i = Ulnt i
expandbase{Jt :: [} :: UBase — t

expandbasedInt[} (Ulnt i) = i
Now, as Schemers well know, if we ignore the types and remove all occurrences
of Unit, a right-associated tuple is simply a cons-list, hence our representation,
Univ is defined as:

type Univ = [UBase] .
Our implementation of reduce{t[} depends on an auxiliary function red{|t}, which
accepts a value of t along with an accumulating argument of type Univ; it returns



the normal form of the t-value with respect to the laws above. The role of
reduce{t]} is just to prime red{t} with an empty list.

red{t :: x[} i (red{t[}) = t — Univ — Univ
red{Int} = (reducebase{|Int[} i:)
red{Unit} Unit = id

red{a :*: b} (a :*: b) = red{al} a o red{b[} b
reduce{Jt :: x[} i (red{t}) =t — Univ
reduce{t} = red{t} z []

Here is an example of reduce{t[} in action:

reduce{|((Int, (Int, Int)), [ ((2,(3,4)),()) = [Ulnt 2, Ulnt 3, Ulnt 4] .
Function ezpand{t[} takes a value of the universal data type, and returns a value
of type t. It depends on the generic function len{t[}, which computes the length
of a product, that is, the number of components of a tuple:

len{t:: %} = (len{t}) = Int

len{Int}f =1

len{Unit[} =0

len{la :x: b[} = len{a]} + len{b]} .
Observe that the nullary product, Unit, is assigned length zero.

Now we can write expand{|t}; like reduce{t[}, it is defined in terms of a
helper function exp{t[}, this time in a dual fashion with the ‘unparsed’ remainder
appearing as an output.

exp{lt :: x} i (exp{tf}) = Univ — (t, Univ)
exp{Int} (u: us) = (expandbasedInt]} u, us)
exp{Int]} [] = error "exp"

exp{Unit}} us = (Unit, us)

exp{la :*: b} us =1let (u,us’) = exp{al} us
(v, us") = exp{b]} us’
in (u:*: v, us”)

expand{t:: [}  : (exp{t}) = Univ -t
expand {t} u = ca(se ﬁv)p{]tﬁ u of

(v,_) — error "expand"
In the last case of function ezp, we compute the lengths of each factor of the
product to determine how many values to project there—remember that a need
not be a base type. This information tells us how to split the list between recur-
sive calls.
Here is an example of ezpand{t[} in action:
expand{((Int, (Int,Int)), )} [Ulnt 2, Ulnt 3, UInt 4] = ((2,(3,4)), () -

7.2 Handling Sums
We now turn to the treatment of associativity for sums:

(a+:b)+:c™a+: (b ).



As we will be handling sums alone in this section, we redefine the universal
type as a right-associated sum of values:

data Univ = UInl UBase | UInr Univ .
Note that this datatype Univ can also be represented by®:

data Univ = Uln Integer UBase .
We prefer the latter representation as it simplifies some definitions. We also add
a second integer field:

data Univ = Uln Integer Integer UBase .
If w= Uln r a b then we call a the arity of u—it remembers the “width” of
the sum value we reduced; we call r the rank of u—it denotes a zero-indexed
position within the arity, the choice which was made. We guarantee, then, that
1<r<a.

Declarations UBase, reducebase{t]} and expandbase{t]} are as before.

This time around function reduce{t[} represents values by right-associating
sums. The examples below show some sample inputs and how they are reduced:

i o Int — Uln 01 (Ulnt 1)
Inl i nt i+ Int — Uln 02 (Ulnt 1)
Inr i wnt i+ Int — Uln 12 (Ulnt 1)
Inl (Inl 4) :: (Int :+: Int) :+: Int — UIn 0 3 (Ulnt i)
Inl (Inr i) == (Int :+: Int) +: Int — Uln 1 3 (Ulnt ©)
Inr i 2 (Int o+ Int) :+: Int — Uln 2 3 (Ulnt 1)

Function reduce{t} depends on the generic value arity{t[}, which counts the
number of choices in a sum.
arity{t = x[} :: (arity{t]}) = Integer
arity{Int} =1
arity{la :+: b} = arity{al} + arity{b[}
Now we can define reduce{t[}:
reduce{]t :: [} = (arity{t[}, reduce{t[}) = t — Univ
reduce{|Int]} i UIn 0 1 (reducebase{Int[} i)
reduce{la :+: bl} (Inl ) = Uln r (a + arity{b[}) u
where Uln r a u = reduce{al} x
reduceda :+: b[} (Inr z) = Uln (r + arity{al}) (arity{all + a) u
where Uln r a u = reduce{b[} = .
This treats base types as unary sums, and computes the rank of a value by
examining the arities of each summand, effectively flattening the sum.
The function expand{t[} is defined as follows:
expand{t :: x[} i (arity{t[}, expand{t}) = Univ — t
expand{Int} (UIn 01 u) = expandbasedInt]} u
expand{a +: b[} (Uln r a u)
| a =aa+ ab A r<aa=Inl (expand{al} (Uln r (a — ab) u))
| @ = aa+ ab = Inr (ezpand{bl} (Uln (r — aa) (a — aa) u))
| otherwise = error "expand"
where (aa, ab) = (arity{al}, arity{b[}) .

9 The type Integer is unbounded, while Int is a “machine integer”.



The logic in the last case checks that the universal value ‘fits’ in the sum type
a :+: b, and injects it into the appropriate summand by comparing the value’s
rank with the arity of a, being sure to adjust the rank and arity on recursive
calls.

7.3 Sums and Products Together

It may seem that a difficulty in handling sums and products simultaneously
arises in designing the type Univ, as a naive amalgamation of the sum Univ (call
it UnivS) and the product Univ (call it UnivP) permits multiple representations of
values identified by the canonical isomorphism relation. However, since the rules
of our isomorphism theory do not interact—in particular, we do not account
for any sort of distributivity—, a simpler solution exists: we can nest our two
representations and add the top layer as a new base type. For example, we can
use UnivP in place of UBase in UnivS and add a new constructor to UBase to
encapsulate sums.

data UnivS = Uln Integer Integer UnivP

data UnivP = UNil | UCons UBase UnivP

data UBase = Ulnt Int | USum UnivS
We omit the details, as the changes to our code examples are straightforward.

7.4 Handling Coercions

The reader may already have noticed that our expansion functions impose some
unnecessary limitations. In particular:

— when we expand to a product, we require that the length of our universal
value equals the number computed by len{t[}, and

— when we expand to a sum, we require that the arity of our universal value
equals the number computed by arity{t[}.

If we lift these restrictions, replacing equality by inequality, we can project a
prefix of a universal value onto a tuple of smaller length, and inject a universal
value into a choice of larger arity. The modified definitions are shown below for
products:
expand{t}} u = case exp{t[} u of
(v,) = v
and for sums:
expand{a +: b[} (Uln r a u)
| a < aa+ab A r<aa=Inl (expand{al} (Uln r (a — ab) u))
|« < aa+ ab = Inr (ezpand{b[} (UIn (r — aa) (a — aa) u))
| otherwise = error "expand"
where (aa, ab) = (arity{al}, arity{b[}) .
These changes implement our canonical coercions, the first projection of a prod-
uct and left injection of a sum:

ax*x:b<a a<a:+b.



Ad hoc coercions can be handled using our approach as well. Many con-
ventional languages define a subtyping relation between primitive types. For
example, in XML Schema int (bounded integers) is a subtype of integer (un-
bounded integers) which is a subtype of decimal (reals representable by decimal
numerals) [49]. We can easily model this by (adding some more base types and)
modifying the functions which convert base types.

expandbase{Decimal[} (UDecimal z) = z

expandbase{Decimall} (Ulnteger x) = integer2dec x

(
expandbase{Decimall} (UlInt x) = int2dec x
expandbase{Integer} (Ulnteger x) =z
expandbase{Integer[} (Ulnt x) = int2integer x

expandbasedIntf} (Ulnt z) =z
Such primitive coercions are easy to handle, but without due care are likely to
break the coherence properties of inference, so that the inferred coercion depends
on operational details of the inference algorithm.

7.5 Conclusion

Let us summarize the main points of this case study.

We demonstrated first by example that UUXML-translated datatypes are
overwhelmingly complex and redundant. To address complaints that this prob-
lem stems merely from a bad choice of representation, we enumerated some of
UUXML’s design criteria, and explained why they necessitate that representa-
tion. We also suggested why other translations and type-safe embeddings might
suffer from the same problem. Finally, we described how to exploit our iso in-
ference mechanism to address this problem, and how coercion inference can also
be used to simplify the treatment of object language features such as subtyping
and optional values which the metalanguage does not inherently support.

8 Conclusions

This paper describes:

— a simple and powerful mechanism for automatically inferring a well-behaved
class of isomorphisms.

— UUXML, an XML Schema-Haskell data binding. XML Schema has sev-
eral features not available natively in Haskell, including mixed content, two
forms of subtyping and a generalized form of repetition. Nevertheless, we
have shown that these features can be accomodated by Haskell’s datatype
mechanism alone. The existence of a simple formal semantics for Schema
such as MSL’s was a great help to both the design and implementation of
our work, and essential for the proof of type soundness.

— how the automatic inference of isomorphisms solves some usability problems
stemming from the complexity of UUXML.



Our inference mechanism leverages the power of an existing tool, Generic Haskell,
and makes some use of the established theory of type isomorphisms. UUXML
uses Generic Haskell in its generic parser.

We believe that both the general idea of exploiting isomorphisms and our
implementation technique have application beyond UUXML. For example, when
libraries written by distinct developers are used in the same application, they
often include different representations of what amounts to the same datatype.
When passing data from one library to the other the data must be converted to
conform to each library’s internal conventions. Our technique could be used to
simplify this conversion task; to make this sort of application practical, though,
iso inference should probably be integrated with type inference, and the class
of isos inferred should be enlarged. We discuss such possibilities for future work
below.

8.1 Related & Future Work

Isomorphisms and coherence. In computer science, the use of type isomor-
phisms seem to have been popularized first by Rittri who demonstrated their
value in software retrieval tasks, such as searching a software library for functions
matching a query type [38]. Since then the area has ballooned; good places to
start on the theory of type isomorphisms is Di Cosmo’s book [12] and the paper
by Bruce et al. [10]. More recent work has focused on linear type isomorphisms [6,
41,39, 28].

In category theory, Mac Lane initiated the study of coherence in a seminal
paper [26]; his book [27] treats the case for monoidal categories. Beylin and Dyb-
jer’s use [8] of Mac Lane’s coherence theorem influenced our technique here. The
strong regularity condition is sufficient for ensuring that an algebraic theory is
cartesian; cartesian monads have been used by Leinster [22, 21] and Hermida [15]
to formalize the notion of generalized multicategory, which generalizes a usual
category by imposing an algebraic theory on the objects, and letting the domain
of an arrow be a term of that theory.

Schema matching. In areas like database management and electronic com-
merce, the plethora of data representation standards—formally, ‘schemas™—used
to transmit and store data can hinder reuse and data exchange. To deal with
this growing problem, ‘schema matching’, the problem of how to construct a
mapping between elements of two schemas, has become an active research area.
Because the size, complexity and number of schemas is only increasing, finding
ways to accurately and efficiently automate this task has become more and more
important; see Rahm and Bernstein [37] for a survey of approaches.

Erwig [13] has suggested a technique for automatic schema matching similar
to ours in the sense that it exploits ‘information-preserving and -approximating’
functions between DTDs. Although that approach can automatically infer some
more sophisticated transformations than ours (such as one related to the sum-
product distributivity iso), it is based on a home-grown semantics for XML



DTDs, not W3C Schemas, and does not guarantee that the transformations are
canonical, thus requiring some interaction (with a user or external data source)
to select a mapping appropriate to the task at hand.

We believe that our approach, which exploits not only the syntax but seman-
tics of types, could provide new insights into schema matching. In particular, the
notion of canonical (iso)morphism could help clarify when a mapping’s semantics
is forced entirely by structural considerations, and when additional information
(linguistic, descriptive, etc.) is provably required to disambiguate a mapping.

Implicit coercions. Thatte introduced a declaration construct for introducing
user-defined, implicit conversions between types [43], using, like us, an equational
theory on types. Thatte also presents a principal type inference algorithm for
his language, which requires that the equational theory is unitary, that is, every
unifiable pair of types has a unique most general unifier. To ensure theories
be unitary, Thatte demands they be finite and acyclic, and uses a syntactic
condition related to, but different from, strong regularity to ensure finiteness.
In Thatte’s system, coherence seems to hold if and only if the user-supplied
conversions are true inverses.

The relationship between Thatte’s system and ours requires further inves-
tigation. In some ways Thatte’s system is more liberal, allowing for example
distributive theories. On the other hand, the unitariness requirement rules out
associative theories, which are infinitary. The acyclicity condition also rules out
commutative theories, which are not strongly regular, but also the currying iso,
which is. Another difference between Thatte’s system and ours is that his catches
errors at compile-time, while the implementation we presented here does so at
run-time. A final difference is that, although the finite acyclicity condition is
decidable, the requirement that conversions be invertible is not; consequently,
users may introduce declarations which break the coherence property (produce
ambiguous programs). In our system, any user-defined conversions are obtained
structurally, as datatype isos from datatype declarations, which cannot fail to
be canonical; hence it is not possible to break coherence.

Inference failure. Because our implementation depends on the “universal”
type Univ, failure occurs dynamically and a message helpful for pinpointing the
error’s source is printed. This situation is unsatisfactory, though, since every
invocation of the ezpand{-[} and reduce{-[} functions together mentions the types
involved; in principle, we could detect failures statically, thus increasing program
reliability.

Such early detection could also enable new optimizations. For example, if
the types involved are not only isomorphic but equal, then the conversion is the
identity and a compiler could omit it altogether. But even if the types are only
isomorphic, the reduction might not unreasonably be done at compile-time, as
our isos are all known to be terminating; this just amounts to adjusting the data
representation ‘at one end’ or the other to match exactly.



We have investigated, but not tested, an approach for static failure detection
based on an extension of Generic Haskell’s type-indezed datatypes [17]. The idea
is to introduce a type-indexed datatype NF{t]} which denotes the normal form
of type t w.r.t. to the iso theory, and then reformulate our functions so that they
are assigned types:

reduce{|t]} ::t — NF{t]}

expand {Jt} :: NF{t}} — t .
For example, considering only products, the type NF{t}} could be defined as
follows.

type NF{t} = Norm{]t]} Unit

data Norm{{Unit}} t = NUnit t

data Norm{Ja :*: b]} t = NProd (a :*: (b :*: t))

data Norm{[Int} t = NBase (Int :*:t)

This would give the GH compiler enough information to reject bad conversions
at compile-time.

Unfortunately, the semantics of GH’s type-indexed datatypes is too “gener-
ative” for this approach to work. The problem is apparent if we try to compile
the expression:

expand{Int} o reduced(Int,())[} .
GH flags this as a type error, because it treats NF{Int]} and NF{(Int,())]} as
distinct (unequal), though structurally identical, datatypes.

A possible solution to this issue may be a recently considered GH extension
called type-indexed types (as opposed to type-indexed datatypes). If NF{t]} is
implemented as a type-indexed type, then, like Haskell’s type synonyms, struc-
turally identical instances like the ones above will actually be forced to be equal,
and the expression above should compile. However, type-indexed types—as cur-
rently envisioned—also share the limitations of Haskell’s type synonyms w.r.t.
recursion; a type-indexed type like NF{List Int]} is likely to cause the compiler
to loop as it tries to expand recursive occurrences while traversing the datatype
body. Nevertheless, of the several approaches we have considered to address-
ing the problem of static error detection, type-indexed types seems the most
promising.
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