
Typed Contracts for Functional
Programming

Ralf Hinze

Johan Jeuring

Andres Löh

Department of Information and Computing Sciences, Utrecht University

Technical Report UU-CS-2006-026

www.cs.uu.nl

ISSN: 0924-3275

Typed Contracts for Functional Programming

Ralf Hinze1, Johan Jeuring2, and Andres Löh1

1 Institut für Informatik III, Universität Bonn
Römerstraße 164, 53117 Bonn, Germany
{ralf,loeh}@informatik.uni-bonn.de

2 Institute of Information and Computing Sciences, Utrecht University
P.O.Box 80.089, 3508 TB Utrecht, The Netherlands

johanj@cs.uu.nl

Abstract. A robust software component fulfills a contract: it expects data satisfying a cer-
tain property and promises to return data satisfying another property. The object-oriented
community uses the design-by-contract approach extensively. Proposals for language exten-
sions that add contracts to higher-order functional programming have appeared recently.
In this paper we propose an embedded domain-specific language for typed, higher-order
and first-class contracts, which is both more expressive than previous proposals, and allows
for a more informative blame assignment. We take some first steps towards an algebra of
contracts, and we show how to define a generic contract combinator for arbitrary algebraic
data types. The contract language is implemented as a library in Haskell using the concept
of generalised algebraic data types.

1 Introduction

Are you familiar with the following situation?

You are staring at the computer screen. The run of the program you are developing unex-
pectedly terminated with a Prelude.head: empty list message. A quick grep yields a
total of 102 calls to head in your program. It is all very well that the run wasn’t aborted
with a core dumped notification, but the error message provided isn’t very helpful either:
which of the many calls to head is to blame?

If this sounds familiar to you, then you might be interested in contracts. A contract between
software components is much like a contract in business, with obligations and benefits for both
parties. In our scenario, the components are simply functions: the function head and the function
that calls head . Here is a possible contract between the two parties (from head ’s perspective): if
you pass me a non-empty list, then I shall return its first element. The contract implies obligations
and benefits: the caller is obliged to supply a non-empty list and has the benefit of receiving the
first element without further ado. The restriction on the input is a benefit for head : it need not
deal with the case for the empty list. If it receives a non-empty list, however, head is obliged to
return its first element.

As in business, contracts may be violated. In this case the contract specifies who is to blame:
the one who falls short of its promises. Thus, if head is called with an empty list, then the call site
is to blame. In practical terms, this means that the program execution is aborted with an error
message that points to the location of the caller, just what we needed above.

The underlying design methodology [1], developing programs on the basis of contracts, was
popularised by Bertrand Meyer, the designer of Eiffel [2]. In fact, contracts are an integral part of
Eiffel. Findler and Felleisen [3] later adapted the approach to higher-order functional languages.
Their work has been the major inspiration of the present paper, which extends and revises their
approach.

In particular, we make the following contributions:

– we develop a small embedded domain-specific language for contracts with a handful of basic
combinators and a number of derived ones,

Typed Contracts for Functional Programming 3

– we show how to define a generic contract combinator for algebraic data types,
– we present a novel approach to blame assignment that additionally tracks the cause of contract

violations,
– as a proof of concept we provide a complete implementation of the approach; the implemen-

tation makes use of generalised algebraic data types,
– we take the first steps towards an algebra of contracts.

The rest of the paper is structured as follows. Sec. 2 introduces the basic contract language,
Sec. 3 then shows how blame is assigned in the case of a contract violation. We tackle the imple-
mentation in Sec. 4 and 5 (without and with blame assignment). Sec. 6 provides further examples
and defines several derived contract combinators. The algebra of contracts is studied in Sec. 7.
Finally, Sec. 8 reviews related work and Sec. 9 concludes.

We use Haskell [4] notation throughout the paper. In fact, the source of the paper constitutes
a legal Haskell program that can be executed using the Glasgow Haskell Compiler [5]. For the
proofs it is, however, easier to pretend that we are working in a strict setting. The subtleties of
lazy evaluation are then addressed in Sec. 7. Finally, we deviate from Haskell syntax in that we
typeset ‘x has type τ ’ as x : τ and ‘a is consed to the list as’ as a :: as (as in Standard ML).

2 Contracts

This section introduces the main building blocks of the contract language.
A contract specifies a desired property of an expression. A simple contract is, for instance,

{ i | i > 0 } which restricts the value of an integer expression to the natural numbers. In general,
if x is a variable of type σ and e is a Boolean expression, then { x | e } is a contract of type
Contract σ, a so-called contract comprehension. The variable x is bound by the construct and
scopes over e.

Contracts are first-class citizens: they can be passed to functions or returned as results, and
most importantly they can be given a name.

nat : Contract Int
nat = { i | i > 0 }

As a second example, here is a contract over the list data type that admits only non-empty lists.

nonempty : Contract [α]
nonempty = { x | not (null x) }

The two most extreme contracts are

false, true : Contract α
false = { x | False }
true = { x | True }

The contract false is very demanding, in fact, too demanding as it cannot be satisfied by any
value. By contrast, true is very liberal: it admits every value.

Using contract comprehensions we can define contracts for values of arbitrary types, including
function types. The contract { f | f 0 0 }, for instance, specifies that 0 is a fixed point of a
function-valued expression of type Int → Int . However, sometimes contract comprehensions are
not expressive enough. Since a comprehension is constrained by a Haskell Boolean expression,
we cannot state, for example, that a function maps natural numbers to natural numbers: { f |
∀n : Int .n > 0⇒ f n > 0 }. We consciously restrict the formula to the right of the bar to Haskell
expressions so that checking of contracts remains feasible. As a compensation, we introduce a
new contract combinator that allows us to explicitly specify domain and codomain of a function:
nat _ nat is the desired contract that restricts functions to those that take naturals to naturals.

Unfortunately, the new combinator is still too weak. Often we want to relate the argument to
the result, expressing, for instance, that the result is greater than the argument. To this end we

4 R. Hinze, J. Jeuring and A. Löh

Γ, x : σ ` e : Bool

Γ ` { x | e } : Contract σ

Γ ` e1 : Contract σ1 Γ, x : σ1 ` e2 : Contract σ2

Γ ` (x : e1) _ e2 : Contract (σ1 → σ2)

Γ ` e : Contract σ

Γ ` [e] : Contract [σ]

Γ ` e1 : Contract σ1 Γ, x : σ1 ` e2 : Contract σ2

Γ ` (x : e1) × e2 : Contract (σ1, σ2)

Γ ` e1 : Contract σ Γ ` e2 : Contract σ

Γ ` e1 & e2 : Contract σ

Fig. 1. Typing rules for contract combinators.

generalise e1 _ e2 to the dependent function contract (x :e1) _ e2. The idea is that x , which scopes
over e2, represents the argument to the function. The above constraint is now straightforward to
express: (n : nat) _ { r | n < r }. In general, if x is a variable of type σ1, and e1 and e2 are
contracts of type Contract σ1 and Contract σ2 respectively, then (x :e1) _ e2 is a contract of type
Contract (σ1 → σ2). Note that like { x | e }, the dependent function contract (x : e1) _ e2 is a
binding construct.

Many properties over data types such as the pair or the list data type can be expressed using
contract comprehensions. However, it is also convenient to be able to construct contracts in a
compositional manner. To this end we provide a pair combinator that takes two contracts and
yields a contract on pairs: nat × nat , for instance, constrains pairs to pairs of natural numbers.

We also offer a dependent product contract (x :e1)×e2 with scoping and typing rules similar to
the dependent function contract. As an example, the contract (n : nat)× ({ i | i 6 n }_ true) of
type Contract (Int , Int → α) constrains the domain of the function in the second component using
the value of the first component. While the dependent product contract is a logically compelling
counterpart of the dependent function contract, we expect the former to be less useful in practice.
The reason is simply that properties of pairs that do not contain functions can be easily formulated
using contract comprehensions. As a simple example, consider { (x1, x2) | x1 6 x2 }.

In general, we need a contract combinator for every parametric data type. For the main bulk of
the paper, we confine ourselves to the list data type: the list contract combinator takes a contract
on elements to a contract on lists. For instance, [nat] constrains integer lists to lists of natural
numbers. Like c1 × c2, the list combinator captures only independent properties; it cannot relate
elements of a list. For this purpose, we have to use contract comprehensions—which, on the other
hand, cannot express the contract [nat _ nat].

Finally, contracts may be combined using conjunction: c1 & c2 holds if both c1 and c2 hold.
However, we neither offer disjunction nor negation for reasons to be explained later (Sec. 4). Fig. 1
summarises the contract language.

3 Blame assignment

A contract is attached to an expression using assert :

head ′ : [α]→ α
head ′ = assert (nonempty _ true) (λx → head x)

The attached contract specifies that the predefined function head requires its argument to be non-
empty and that it ensures nothing. In more conventional terms, nonempty is the precondition and
true is the postcondition. Here and in what follows we adopt the convention that the ‘contracted’
version of the identifier x is written x ′.

Attaching a contract to an expression causes the contract to be dynamically monitored at
run-time. If the contract is violated, the evaluation is aborted with an informative error message.
If the contract is fulfilled, then assert acts as the identity. Consequently, assert has type

assert : Contract α→ (α→ α)

Typed Contracts for Functional Programming 5

Contracts range from very specific to very liberal. The contract of head , nonempty _ true,
is very liberal: many functions require a non-empty argument. On the other hand, a contract
may uniquely determine a value. Consider in this respect the function isqrt , which is supposed to
calculate the integer square root.

isqrt : Int → Int
isqrt n = loop 0 3 1

where loop i k s | s 6 n = loop (i + 1) (k + 2) (s + k)
| otherwise = i

It is not immediately obvious that this definition actually meets its specification, so we add a
contract.

isqrt ′ : Int → Int
isqrt ′ = assert ((n : nat) _ { r | r > 0 ∧ r2 6 n < (r + 1)2 }) (λn → isqrt n)

Here the postcondition precisely captures the intended semantics of isqrt .
Now that we got acquainted with the contract language, it is time to see contracts in action.

When a contract comprehension is violated, the error message points to the expression to which
the contract is attached. Let us assume for the purposes of this paper that the expression is
bound to a name which we can then use for error reporting (in the implementation we refer
to the source location instead). As an example, given the definitions five = assert nat 5 and
mfive = assert nat (−5), we get the following results in an interactive session.

Contracts〉 five
5
Contracts〉 mfive
*** contract failed: the expression ‘mfive’ is to blame.

The number −5 is not a natural; consequently the nat contract sounds alarm.
If a dependent function contract is violated, then either the function is applied to the wrong

argument, or the function itself is wrong. In the first case, the precondition sends the alarm, in the
second case the postcondition. Consider the functions inc and dec, which increase, respectively
decrease, a number.

inc, dec : Int → Int
inc = assert (nat _ nat) (λn → n + 1)
dec = assert (nat _ nat) (λn → n − 1)

Here are some example applications of these functions in an interactive session:

Contracts〉 inc 〈1〉5
6
Contracts〉 inc 〈2〉(−5)
*** contract failed: the expression labelled ‘2’ is to blame.
Contracts〉 dec 〈3〉5
4
Contracts〉 dec 〈4〉0
*** contract failed: the expression dec is to blame.

In the session we put labels in front of the function arguments, 〈i〉e, so that we can refer to them
in error messages (again, in the implementation we refer to the source location). The first contract
violation is caused by passing a negative value to inc: its precondition is violated, hence the
argument is to blame. In the last call, dec falls short of its promise to deliver a natural number,
hence dec itself is to blame.

It is important to note that contract checking and detection of violations are tied to program
runs: dec obviously does not satisfy its contract nat _ nat , but this is not detected until dec is

6 R. Hinze, J. Jeuring and A. Löh

applied to 0. In other words, contracts do not give any static guarantees (‘dec takes naturals to
naturals’), they only make dynamic assertions about particular program runs (‘dec always received
and always delivered a natural number during this run’).

This characteristic becomes even more prominent when we consider higher-order functions.

codom : (Int → Int)→ [Int]
codom = assert ((nat _ nat) _ [nat]) (λf → [f 〈5〉n | n ← [1 . . 9]])

The function codom takes a function argument of type Int → Int . We cannot expect that a contract
violation is detected the very moment codom is applied to a function—as we cannot expect that a
contract violation is detected the very moment we attach a contract to λn → n−1 in dec. Rather,
violations are discovered when the function argument f is later applied in the body of codom. In
the extreme case where the parameter does not appear in the body, we never get alarmed, unless,
of course, the result is negative. Consider the following interactive session:

Contracts〉 codom 〈6〉(λx → x − 1)
[0, 1, 2, 3, 4, 5, 6, 7, 8]
Contracts〉 codom 〈7〉(λx → x − 2)
*** contract failed: the expression labelled ‘7’ is to blame.

An error is only detected in the second call, though the first call is also wrong. The error message
points to the correct location: the argument is to blame.

The following example has been adapted from the paper by Blume and McAllester [6].

g : (Int → Int)→ (Int → Int)
g = assert ((nat _ nat) _ true) (λf → λx → f 〈8〉x)

The higher-order function g expects a function satisfying nat _ nat . Again, we cannot expect
that the function contract is checked immediately; rather, it is tested when the function argument
is applied.

Contracts〉 g 〈9〉(λx → x − 1) 〈10〉1
0
Contracts〉 g 〈11〉(λx → x − 1) 〈12〉0
*** contract failed: the expression labelled ‘11’ is to blame.
Contracts〉 g 〈13〉(λx → x) 〈14〉(−7)
*** contract failed: the expression ‘g ’ is to blame (the violation was caused by the expres-
sion(s) labelled ‘8’).

The last call shows that g is blamed for a contract violation even though g ’s postcondition is
true. This is because g must also take care that its argument is called correctly and it obviously
does not take sufficient measurements. The error message additionally points to the location within
g that caused the contract violation. This information is not available in the Findler and Felleisen
approach [3] (see also Sec. 5). Since g returns a function, the cause is not necessarily located in
g ’s body. As a simple example, consider the η-reduced variant of g .

g = assert ((nat _ nat) _ true) (λf → f)

Now the second argument is identified as the cause of the contract violation:

Contracts〉 g 〈15〉(λx → x) 〈16〉(−7)
*** contract failed: the expression ‘g ’ is to blame (the violation was caused by the expres-
sion(s) labelled ‘16’).

4 Implementing contracts

In Sec. 2 we have seen several ways to construct contracts. The syntax we have used for contracts
may seem to suggest that we need an extension of Haskell to implement contracts. However, using

Typed Contracts for Functional Programming 7

concrete syntax Haskell syntax

{ x | p x } Prop (λx → p x)
c1 _ c2 Function c1 (const c2)
(x : c1) _ c2 x Function c1 (λx → c2 x)
c1 × c2 Pair c1 (const c2)
(x : c1) × c2 x Pair c1 (λx → c2 x)
[c] List c
c1 & c2 And c1 c2

Fig. 2. Concrete and abstract syntax of contracts.

Generalised Algebraic Data Types (GADTs) [7, 8, ?], we can model contracts directly in Haskell.
Fig. 2 shows how the concrete syntax translates to Haskell. Note that the binding constructs of
the concrete syntax are realized using functional components (higher-order abstract syntax). If we
translate the typing rules listed in Fig. 1 to the abstract representation of contracts, we obtain
the following GADT.

data Contract : ∗ → ∗ where
Prop : (α→ Bool)→ Contract α
Function : Contract α→ (α→ Contract β)→ Contract (α→ β)
Pair : Contract α→ (α→ Contract β)→ Contract (α, β)
List : Contract α→ Contract [α]
And : Contract α→ Contract α→ Contract α

Given this data type we can define assert by a simple case analysis.

assert : Contract α→ (α→ α)
assert (Prop p) a = if p a then a else error "contract failed"
assert (Function c1 c2) f = (λx ′ → (assert (c2 x ′) · f) x ′) · assert c1

assert (Pair c1 c2) (a1, a2) = (λa ′
1 → (a ′

1, assert (c2 a ′
1) a2)) (assert c1 a1)

assert (List c) as = map (assert c) as
assert (And c1 c2) a = (assert c2 · assert c1) a

The definition makes explicit that only contract comprehensions are checked immediately. In the
remaining cases, the contract is taken apart and its constituents are attached to the corresponding
constituents of the value to be checked. Note that in the Function case the checked argument
x ′ is propagated to the codomain contract c2 (ditto in the Pair case). There is a choice here:
alternatively, we could pass the original, unchecked argument. If we chose this variant, however,
we would sacrifice the idempotence of ‘&’. Furthermore, in a lazy setting the unchecked argument
could provoke a runtime error in the postcondition, consider, for instance, (x : nonempty) _ { y |
y 6 head x }.

A moment’s reflection reveals that the checking of independent properties boils down to an
application of the mapping function for the type in question. In particular, we have

assert (Function c1 (const c2)) f = assert c2 · f · assert c1

assert (Pair c1 (const c2)) (a1, a2) = (assert c1 a1, assert c2 a2)

This immediately suggests how to generalise contracts and contract checking to arbitrary container
types: we map the constituent contracts over the container.

assert (T c1 . . . cn) = mapT (assert c1) . . . (assert cn)

Note that mapping functions can be defined completely generically for arbitrary Haskell 98 data
types [9]. In the next section we will show that we can do without the GADT; then the contract
combinator for an algebraic data type is just its mapping function.

8 R. Hinze, J. Jeuring and A. Löh

It remains to explain the equation for And : the conjunction And c1 c2 is tested by first
checking c1 and then checking c2, that is, conjunction is implemented by functional composition.
This seems odd at first sight: we expect conjunction to be commutative; composition is, however,
not commutative in general. We shall return to this issue in Sec. 7. Also, note that we offer
conjunction but neither disjunction nor negation. To implement disjunction we would need some
kind of exception handling: if the first contract fails, then the second is tried. Exception handling
is, however, not available in Haskell (at least not in the pure, non-IO part). For similar reasons,
we shy away from negation.

Although assert implements the main ideas behind contracts, the fact that it returns an un-
informative error message makes this implementation rather useless for practical purposes. In the
following section we will show how to return the precise location of a contract violation.

Nonetheless, we can use the simple definition of assert to optimise contracted functions. Re-
consider the definition of inc repeated below.

inc = assert (nat _ nat) (λn → n + 1)

Intuitively, inc satisfies its contract, so we can optimize the definition by leaving out the postcon-
dition. Formally, we have to prove that

assert (nat _ nat) (λn → n + 1) = assert (nat _ true) (λn → n + 1)

Note that we must keep the precondition to ensure that inc is called correctly: the equation
assert (nat _ nat) (λn → n + 1) = λn → n + 1 does not hold. Now, unfolding the definition of
assert the equation above rewrites to

assert nat · (λn → n + 1) · assert nat = (λn → n + 1) · assert nat

which can be proved using a simple case analysis.
In general, we say that f satisfies the contract c iff

assert c f = assert c+ f

where c+ is obtained from c by replacing all sub-contracts at positive positions by true:

(·)+ : Contract α→ Contract α
(Prop p)+ = true
(Function c1 c2)+ = Function c−1 (λx → (c2 x)+)
(·)− : Contract α→ Contract α
(Prop p)− = Prop p
(Function c1 c2)− = Function c+

1 (λx → (c2 x)−)

In the remaining cases, (·)+ and (·)− are just propagated to the components. As an example,
λn → n + 1 satisfies nat _ nat , whereas λn → n − 1 does not. The higher-order function g of
Sec. 3 also does not satisfy its contract (nat _ nat) _ nat . As an aside, note that (·)+ and (·)−
are executable Haskell functions. Here, the GADT proves its worth: contracts are data that can
be as easily manipulated as, say, lists.

5 Implementing blame assignment

To correctly assign blame in the case of contract violations, we pass program locations to both
assert and to the contracted functions themselves. For the purposes of this paper, we keep the
type Loc of source locations abstract. We have seen in Sec. 3 that blame assignment involves at
least one location. In the case of function contracts two locations are involved: if the precondition
fails, then the argument is to blame; if the postcondition fails, then the function itself is to blame.
For the former case, we need to get hold of the location of the argument. To this end, we extend
the function by an extra parameter, which is the location of the ‘ordinary’ parameter.

Typed Contracts for Functional Programming 9

infixr _
newtype α _ β = Fun{app : Locs → α→ β}

In fact, we take a slightly more general approach: we allow to pass a data structure of type Locs
containing one or more locations. We shall provide two implementations of Locs, one that realizes
blame assignment in the style of Findler & Felleisen and one that additionally provides information
about the causers of a contract violation. We postpone the details until the end of this section and
remark that Locs records at least the locations of the parties involved in a contract.

The type α _ β is the type of contracted functions: abstractions of this type, Fun (λ s̀ →
λx → e), additionally take locations; applications, app e1 s̀ e2, additionally pass locations. We
abbreviate Fun (λ s̀→ λx → e) by λx _ e if s̀ does not appear free in e (which is the norm for
user-defined functions). Furthermore, app e1 s̀ e2 is written e1 s̀e2. In the actual program source,
the arguments of assert and of the contracted functions are always single locations, written 〈`〉,
which explains the notation used in Sec. 3.

Since contracted functions have a distinguished type, we must adapt the type of the Function
constructor.

Function : Contract α→ (α→ Contract β)→ Contract (α _ β)

Given these prerequisites, we can finally implement contract checking with proper blame as-
signment.

assert : Contract α→ (Locs → α→ α)
assert (Prop p) s̀ a

= if p a then a else error ("contract failed: " ++ blame s̀)
assert (Function c1 c2) s̀f f

= Fun (λ`x → (λx ′ → (assert (c2 x ′) s̀f · app f `x) x ′) · assert c1 (s̀f 3 `x))
assert (Pair c1 c2) s̀ (a1, a2) = (λa ′

1 → (a ′
1, assert (c2 a ′

1) s̀ a2)) (assert c1 s̀ a1)
assert (List c) s̀ as = map (assert c s̀) as
assert (And c1 c2) s̀ a = (assert c2 s̀ · assert c1 s̀) a

The Function case merits careful study. Note that s̀f are the locations involved in f ’s contract
and that `x is the location of its argument (`x has type Locs but it is always a single location of
the form 〈`〉). First, the precondition c1 is checked possibly blaming s̀f or `x. The single location
`x is then passed to f , whose evaluation may involve further checking. Finally, the postcondition
c2 x ′ is checked possibly blaming a location in s̀f . Note that c2 receives the checked argument,
not the unchecked one.

It may seem surprising at first that assert c1 adds s̀f to its file of suspects: can f be blamed
if the precondition fails? If f is a first-order function, then this is impossible. However, if f takes
a function as an argument, then f must take care that this argument is called correctly (see the
discussion about g at the end of Sec. 3). If f does not to ensure this, then f is to blame.

In essence, assert turns a contract of type Contract α into a contracted function of type α _ α.
If we re-phrase assert in terms of this type, we obtain the implementation listed in Fig. 3. Note
that the elements of α _ β form the arrows of a category, the Kleisli category of a comonad, with
λx _ x as the identity and ‘�’ acting as composition. Furthermore, list is the mapping function of
the list functor. The implementation also makes clear that we can do without the GADT provided
assert is the only operation on the data type Contract : the combinators of the contract library can
be implemented directly in terms of prop, fun, pair , list and ‘�’. Then assert is just the identity.

It remains to implement the data type Locs and the associated functions. Let us start with
a simple version that supports blame assignment in the style of Findler & Felleisen. A contract
either involves one or two parties.

data Locs = Pos{pos : Loc} | NegPos{neg : Loc, pos : Loc}

We distinguish between positive and negative locations corresponding to function and argument
locations. Blame is always assigned to the positive location.

10 R. Hinze, J. Jeuring and A. Löh

assert : Contract α → (α _ α)
assert (Prop p) = prop p
assert (Function c1 c2) = fun (assert c1) (assert · c2)
assert (Pair c1 c2) = pair (assert c1) (assert · c2)
assert (List c) = list (assert c)
assert (And c1 c2) = assert c2 � assert c1

prop : (α → Bool) → (α _ α)
prop p = Fun (λ s̀ a → if p a then a else error ("contract failed: " ++ blame s̀))

fun : (α1 _ β1) → (β1 → α2 _ β2) → ((β1 _ α2) _ (α1 _ β2))
fun g h = Fun (λ s̀f f → Fun (λ`x →

(λx ′ → (app (h x ′) s̀f · app f `x) x ′) · app g (s̀f 3 `x)))

pair : (α1 _ β1) → (β1 → α2 _ β2) → ((α1, α2) _ (β1, β2))
pair g h = Fun (λ s̀ (a1, a2) → (λa ′

1 → (a ′
1, app (h a ′

1) s̀ a2)) (app g s̀ a1))

list : (α _ β) → ([α] _ [β])
list g = Fun (λ s̀ → map (app g s̀))

(�) : (β _ γ) → (α _ β) → (α _ γ)
g � h = Fun (λ s̀ → app g s̀ · app h s̀)

Fig. 3. Contract checking with proper blame assignment.

blame : Locs → String
blame s̀ = "the expression " ++ show (pos s̀) ++ " is to blame."

The actual locations in the source are positive.

〈`〉 = Pos `

The magic lies in the implementation of ‘3’, which combines two elements of type Locs.

(3) : Locs → Locs → Locs
Pos ` 3 Pos `′ = NegPos ` `′

NegPos `′ ` 3 = NegPos ` `′

Two single locations are merged into a double location; if the first argument is already a double
location, then the second argument is ignored. Furthermore, positive and negative occurrences are
interchanged in the second case. This is vital for functions of order 2 or higher. Re-consider the
function g of Sec. 3.

g = assert ((nat _ nat) _ true) 〈0〉(λf _ λx _ f 〈2〉x)
... g 〈1〉(λx _ x) 〈3〉(−7) ...

The precondition of g , nat _ nat , and the postcondition of g ’s argument f , nat , are checked using
Pos 03Pos 1 = NegPos 0 1. The precondition of f , however, is checked using NegPos 0 13Pos 2 =
NegPos 1 0. Thus, if f ’s precondition fails, g itself is blamed.

It is apparent that ‘3’ throws away information: location 2, which possibly causes the contract
violation, is ignored. We can provide a more informative error message if we keep track of all the
locations involved. To this end we turn Locs into a pair of stacks, see Fig. 4. Blame is assigned to
the top-most element of the stack of positive locations; the remaining entries if any detail the cause
of the contract violation. The new version of ‘3’ simply concatenates the stacks after swapping
the two stacks of its first argument. Just in case you wonder: the total length of the stacks is equal
to the order of the contracted function plus one. Thus, the stacks seldom contain more than 2 or 3
elements.

6 Examples

In this section we give further examples of the use of contracts. Besides, we shall introduce a
number of derived contract combinators.

Typed Contracts for Functional Programming 11

data Locs = NegPos{neg : [Loc], pos : [Loc]}
blame : Locs → String
blame s̀ = "the expression " ++ show (head (pos s̀)) ++ " is to blame"

++ (case tail (pos s̀) of
[] → "."

s̀′ → " (the violation was caused by the expression(s) " ++
concat (interleave ", " (map show s̀′)) ++ ").")

〈·〉 : Loc → Locs
〈`〉 = NegPos [] [`]

(3) : Locs → Locs → Locs
NegPos ns ps 3 NegPos ns ′ ps ′ = NegPos (ps ++ ns ′) (ns ++ ps ′)

Fig. 4. Extended blame assignment.

6.1 Sorting

An invariant is a property that appears both as a pre- and postcondition. To illustrate the use of
invariants, consider the implementation of insertion sort:

insertion-sort : (Ord α)⇒ [α]→ [α]
insertion-sort = foldr insert []
insert : (Ord α)⇒ α→ [α]→ [α]
insert a [] = [a]
insert a1 (a2 :: as) | a1 6 a2 = a1 :: a2 :: as

| otherwise = a2 :: insert a1 as

The helper function insert takes an element a and an ordered list, and inserts the element at the
right, according to the order, position in the list. In other words, insert a takes an ordered list to
an ordered list.

insert ′ : (Ord α)⇒ α _ [α] _ [α]
insert ′ = assert (true _ ord _ ord) (λa _ λx _ insert a x)

The contract ord for ordered lists is defined as follows:

ord : (Ord α)⇒ Contract [α]
ord = { x | ordered x }
ordered : (Ord α)⇒ [α]→ Bool
ordered [] = True
ordered [a] = True
ordered (a1 :: a2 :: as) = a1 6 a2 ∧ ordered (a2 :: as)

The type ‘ordered list’ can be seen as an abstract data type (it is concrete here, but it could easily
be made abstract), whose invariant is given by ord . Other ADTs such as heaps, search trees etc
can be handled in an analogous manner.

For completeness, here is the contracted version of insertion-sort:

insertion-sort ′ : (Ord α)⇒ [α] _ [α]
insertion-sort ′ = assert (true _ ord) (λx _ insertion-sort x)

Note that we did not specify that the output list is a permutation of the input list. Assuming
a function bag : (Ord α) ⇒ [α] → *α+ that turns a list into a bag, we can fully specify sorting:
(x : true) _ ord & { s | bag x bag s }. Loosely speaking, sorting preserves the ‘baginess’ of the
input list. Formally, g : σ → σ preserves the function f : σ → τ iff f x f (g x) for all x . Again,
we can single out this idiom as a contract combinator.

12 R. Hinze, J. Jeuring and A. Löh

preserves : (Eq β)⇒ (α→ β)→ Contract (α _ α)
preserves f = (x : true) _ { y | f x f y }

Using this combinator the sort contract now reads (true _ ord) & preserves bag . Of course, either
bag or the equality test for bags is an expensive operation (it almost certainly involves sorting), so
we may content ourselves with a weaker property, for instance, that insertion-sort preserves the
length of the input list: (true _ ord) & preserves length.

The example of sorting shows that the programmer or library writer has a choice as to how
precise contracts are. The fact that contracts are first-class citizens renders it possible to abstract
out common idioms. As a final twist on this topic, assume that you already have a trusted sorting
function at hand. Then you could simply specify that your new sorting routine is extensionally
equal to the trusted one. We introduce the is contract combinator for this purpose.

is : (Eq β)⇒ (α→ β)→ Contract (α _ β)
is f = (x : true) _ { y | y f x }
insertion-sort ′′ = assert (is sort) (λx _ insertion-sort x)

6.2 Recursion schemes

The function insertion-sort is defined in terms of foldr , the catamorphism of the list data type.
An intriguing question is whether we can also attach a contract to foldr itself?

foldr : (α→ β → β)→ β → [α]→ β
foldr f e [] = e
foldr f e (a :: as) = f a (foldr f e as)

The application to sorting gives (true _ ord _ ord) _ ord _ true _ ord as a contract, but this
one is, of course, way too specific. The idea suggests itself to abstract from the invariant, that is,
to pass the invariant as an argument.

foldr ′ : Contract β → (α _ β _ β) _ β _ [α] _ β
foldr ′ inv = assert ((true _ inv _ inv) _ inv _ true _ inv)

(λf _ λe _ λx _ foldr (λa → λb → f 〈17〉a 〈18〉b) e x)

Again, the fact that contracts are first-class citizens proves its worth. Higher-order functions that
implement general recursion schemes or control constructs typically take contracts as arguments.

Interestingly, we can optimize foldr ′ as it satisfies its contract:

assert ((true _ inv _ inv) _ inv _ true _ inv) foldr
= assert ((true _ true _ inv) _ inv _ true _ true) foldr

where foldr = λf _ λe _ λx _ foldr (λa → λb → f 〈17〉a 〈18〉b) e x is the contracted version of
foldr . If we unfold the definition of assert , the equation simplifies to

assert inv · foldr f̄ ē = foldr f̂ ē (1)

where f̄ = assert (true _ inv _ inv) f , f̂ = assert (true _ true _ inv) f , and ē = assert inv e.
Equation (1) can be shown either by a simple appeal to foldr ’s fusion law [10] or using parametricity
[11]. In both cases, it remains to prove that

assert inv ē = ē
assert inv (f̄ a as) = f̂ a (assert inv as)

Both parts follow immediately from the idempotence of conjunction: c & c = c or more verbosely
assert c · assert c = assert c, see Sec. 7.

Typed Contracts for Functional Programming 13

false & c = false
c & false = false
true & c = c
c & true = c

c1 & (c2 & c3) = (c1 & c2) & c3

c1 & c2 = c2 & c1 (†)
c & c = c (†)

{ x | p1 } & { x | p2 } = { x | p1 x ∧ p2 x }

true _ true = true
(c1 _ d1) & (c2 _ d2) = (c2 & c1) _ (d1 & d2)

true × true = true
(c1 × d1) & (c2 × d2) = (c1 & c2) × (d1 & d2)

[true] = true
[c1 & c2] = [c1] & [c2]

Fig. 5. Properties of contracts.

7 Properties of contracts

In this section we study the algebra of contracts. The algebraic properties can be used, for instance,
to optimize contracts: we shall see that [c1] & [c2] is the same as [c1 & c2], but the latter contract
is more efficient. The properties are also helpful for showing that a function satisfies its contract:
we have seen that the ‘correctness’ of foldr ′ relies on c & c = c.

Up to now we have pretended to work in a strict language: we did not consider bottom in the
proofs in the previous section. Let us now switch back to Haskell’s non-strict semantics in order
to study the algebra of contracts in a more general setting.

It is easy to show that assert c is less than or equal to assert true:

c 4 true

where ‘4’ denotes the standard information ordering. This property implies, in particular, that
assert c is strict. Note that, for brevity, we abbreviate the law assert c1 4 assert c2 by c1 4 c2

(ditto for equations).
Now, what happens if we apply the same contract twice; is the result the same as applying

it once? In other words, is ‘&’ idempotent? One can show that idempotence holds if ‘&’ is com-
mutative (the other cases go through easily). Since ‘&’ is implemented by function composition,
commutativity is somewhat doubtful and, indeed, it does not hold in general as the following
example shows: let c1 = { x | sum x 0 } and c2 = [false], then

Contracts〉 length (assert (c1 & c2) [−2, 2])
2
Contracts〉 length (assert (c2 & c1) [−2, 2])
*** contract failed: the expression ‘[−2, 2]’ is to blame.
Contracts〉 length (assert ((c1 & c2) & (c1 & c2)) [−2, 2])
*** contract failed: the expression ‘[−2, 2]’ is to blame.

The reason is that [false] is not the same as false in a lazy setting: the first contract returns a lazy
list of contract violations, the second is a contract violation. In a strict setting, commutativity holds
trivially as assert c x ∈ {⊥, x }. The first and the last call demonstrate that idempotence of ‘&’
does not hold for contracts that involve conjunctions, that is, these contracts are not projections.

Fig. 5 summarises the properties of conjunctions. Equations that are marked with a (†) only
hold in a strict setting. The list combinator and the independent variants of ‘_’ and ‘×’ are
implemented in terms of mapping functions. The remaining laws listed in Fig. 5 are immediate
consequences of the well-known functor laws for these maps (bearing in mind that true corresponds
to id and ‘&’ to composition).

14 R. Hinze, J. Jeuring and A. Löh

8 Related work

Contracts are widely used in procedural and object-oriented (first-order) programming languages [2].
The work on higher-order contracts by Findler and Felleisen [12, 3] has been the main inspiration
for this paper. Blume and McAllester [6, ?] describe a sound and complete model for F&F contracts,
which proves that the contract checker discovers all violations, and always assigns blame properly.
They show how by restricting the predicate contracts in the F&F language mixing semantics and
soundness is avoided, and they show how to regain the expressiveness of the original F&F language
by adding general recursive contracts. Furthermore, Findler, Blume, and Felleisen [13] prove many
properties about contracts, for example, that contracts are a special kind of projections (which
have been used to give a meaning to types), and that contracts only modify the behaviour of a
program to assign blame. We have implemented contracts as a library in Haskell, using generalised
algebraic data types, giving a strongly typed approach to contracts. Our approach allows for a
more informative blame assignment. We provide contract constructors for pairs, lists and algebraic
data types and a combinator for conjunction. Conjunctions greatly increase the usability of the
contract language: they allow the programmer to specify independent properties separately. How-
ever, conjunctions also have a disturbing effect on the algebra: in a lazy setting, contracts that
include conjunctions are not necessarily projections.

Stating and verifying properties of software is one of the central themes in computer science.
The properties of interest range from simple properties like ‘this function takes an integer and
returns an integer’ to complex properties that precisely describe the behaviour of a function like
the contract for insertion-sort given in Sec. 6.1. Relatively simple properties like Hindley-Milner
types can be statically checked by a compiler. To statically prove a complex property for a function
it is usually necessary to resort to theorem provers or interactive type-checking tools. Contracts
also allow the specification of complex properties; their checking, however, is relegated to run-time.
The design space is summarised in the table below.

static checking dynamic checking
simple properties static type checking dynamic type checking

complex properties theorem proving contract checking

Contracts look a bit like types, but they are not. Contracts are dynamic instead of static,
and they dynamically change the program. Contracts also differ from dependent types [14]. A
dependent type may depend on a value, and may take a different form depending on a value. A
contract refines a type (besides changing the behaviour as explained above). Dependently typed
programs contain a proof of the fact that the program satisfies the property specified in the type.
A contract is only checked, and might fail.

As a characteristic property, contracts are attached to program points, which suggests that
they cannot capture general algebraic properties such as associativity or distributivity. These
properties typically involve several functions or several calls to the same function, which makes it
hard to attach them to one program point. Furthermore, they do not follow the type structure as
required by contracts. As a borderline example, an algebraic property that can be formulated as
a contract, since it can be written in a type-directed fashion, is idempotence of a function:

f ′ = assert (true _ { y | y f y }) (λx _ f x)

In general, however, algebraic properties differ from properties that can be expressed using con-
tracts. In practice, we expect that contract checking is largely complementary to tools that support
expressing and testing general algebraic properties such as Quickcheck [15]. We may even observe
a synergy: Quickcheck can possibly be a lot more effective in a program that has good contracts.

GHC [5], one of the larger compilers for Haskell, provides assertions for expressions: assert x
returns x only if p evaluates to True. The function assert is a strict function. Chitil et al. [16]
show how to define assert lazily. In contrast to contracts, assertions do not assign blame: if the
precondition of a function is not satisfied, the function is blamed. Furthermore, contracts are type
directed, whereas an assertion roughly corresponds to a contract comprehension.

Typed Contracts for Functional Programming 15

9 Conclusion

We have introduced an embedded domain-specific language for typed, higher-order and first-class
contracts, which is both more expressive than previous proposals, and allows for a more informative
blame assignment. The contract language is implemented as a library in Haskell using the concept
of generalised algebraic data types. We have taken some first steps towards an algebra of contracts,
and we have shown how to define a generic contract combinator for arbitrary algebraic data types.

We left a couple of topics for future work. We intend to take an existing debugger or tracer
for Haskell, and use the available information about source locations to let blaming point to real
source locations, instead of user-supplied locations as supported by the implementation described
in this paper. Furthermore, we want to turn the algebra for contracts into a more or less complete
set of laws for contracts.

Acknowledgements We are grateful to Matthias Blume, Matthias Felleisen, Robby Findler and
the five anonymous referees for valuable suggestions regarding content and presentation. Special
thanks go to Matthias Blume and referee #5 for pointing out infelicities in the previous imple-
mentation of blame assignment.

References

1. Meyer, B.: Applying ‘design by contract’. IEEE Computer 25 (1992) 40–51
2. Meyer, B.: Eiffel: The Language. Prentice Hall (1992)
3. Findler, R.B., Felleisen, M.: Contracts for higher-order functions. ACM SIGPLAN Notices 37 (2002)

48–59
4. Peyton Jones, S.: Haskell 98 Language and Libraries. Cambridge University Press (2003)
5. The GHC Team: The Glorious Glasgow Haskell Compilation System User’s Guide, Version 6.4.1.

(2005) Available from http://www.haskell.org/ghc/.
6. Blume, M., McAllester, D.: A sound (and complete) model of contracts. ACM SIGPLAN Notices 39

(2004) 189–200
7. Xi, H., Chen, C., Chen, G.: Guarded recursive datatype constructors. In: POPL ’03, ACM Press

(2003) 224–235
8. Hinze, R.: Fun with phantom types. In Gibbons, J., de Moor, O., eds.: The Fun of Programming.

Palgrave Macmillan (2003) 245–262 ISBN 1-4039-0772-2 hardback, ISBN 0-333-99285-7 paperback.
9. Hinze, R.: Polytypic values possess polykinded types. Science of Computer Programming 43 (2002)

129–159
10. Hutton, G.: A tutorial on the universality and expressiveness of fold. Journal of Functional Program-

ming 9 (1999) 355–372
11. Wadler, P.: Theorems for free! In: The Fourth International Conference on Functional Program-

ming Languages and Computer Architecture (FPCA’89), London, UK, Addison-Wesley Publishing
Company (1989) 347–359

12. Findler, R.B.: Behavioral software contracts (dissertation). Technical Report TR02-402, Department
of Computer Science, Rice University (2002)

13. Findler, R.B., Blume, M., Felleisen, M.: An investigation of contracts as projections. Technical Report
TR-2004-02, The University of Chicago (2004)

14. Nordström, B., Petersson, K., Smith, J.: Programming in Martin-Löf’s Type Theory. Oxford Univer-
sity Press (1990)

15. Claessen, K., Runciman, C., Chitil, O., Hughes, J., Wallace, M.: Testing and tracing lazy functional
programs using Quickcheck and Hat. In Jeuring, J., Peyton Jones, S., eds.: Advanced Functional
programming. Volume 2638 of Lecture Notes in Computer Science., Springer-Verlag (2003)

16. Chitil, O., McNeill, D., Runciman, C.: Lazy assertions. In Trinder, P., Michaelson, G., Peña, R., eds.:
Implementation of Functional Languages: 15th International Workshop, IFL 2003, Edinburgh, UK,
September 8–11, 2003. Volume 3145 of Lecture Notes in Computer Science., Springer-Verlag (2004)
1–19

