
Using Closed Sets of Rules for the

Entailment of Literals

Martin Caminada

Department of Information and Computing Sciences, Utrecht University

Technical Report UU-CS-2006-027

www.cs.uu.nl

ISSN: 0924-3275

Using Closed Sets of Rules for the Entailment of Literals

Martin W.A. Caminada

June 13, 2006

Abstract

Entailment that is based on the application of simple production rules, of the form
c← a1, . . . , an (n ≥ 0) is weaker than the propositional entailment that would be yielded
by translating these rules into material implications. In this paper, we show that rule-
based entailment coincides with the propositional entailment of literals, when the set of
rules is closed under transposition, transitivity and antecedent cleanup.

1 Introduction

In the early days of logic programming, rules were often seen as some kind of computationally
friendly material implications. It is a well-known fact that, without weak and strong negation,
the set of atoms entailed by a set of rules coincides with the set of atoms entailed by the
associated set of material implications.

Definition 1. We say that W is an implication based set of formulas iff each formula
in W is either a literal or a material implication of the form c ⊂ a1 ∧ . . . ∧ an (n ≥ 1)
where c, a1, . . . , an are literals. If W is implication based, then we define Imps2Rules(W) as
{c← a1, . . . , an | c ⊂ a1 ∧ . . . ∧ an ∈ W} ∪ {c←| c ∈ W}.

Definition 2. We say that W is a negation-free implication based set of formulas iff each
formula in W is either an atomic proposition or a material implication of the form c ⊂
a1 ∧ . . . ∧ an where c, a1, . . . , an are atomic propositions.

If r is a rule of the form c← a1, . . . , an (n ≥ 0) then we define head(r) as c and body(r)
as {a1, . . . , an}. If S is a set of rules, we write Cl(S) as the smallest set of literals that satisfies
∀r ∈ S : (body(r) ⊆ Cl(S) ⊃ head(r) ∈ Cl(S).

Proposition 1. Let W be a negation-free implication based set of formulas. Let b be an
atomic proposition. It holds that W � b iff b ∈ Cl(Imps2Rules(W)).

When strong negation is added, this one-to-one correspondence no longer holds. The kind
of entailment as specified by a logic program with strong negation differs greatly from the
classical propositional entailment that would be yielded when the rules were interpreted as
material implications.

Example 1 (transposition needed). Let W = {a; ¬a ⊂ ¬b}. Here W � b but b 6∈
Cl(Imps2Rules(W)).

Example 2 (antecedent cleaning on transitivity needed). Let W = {b ⊂ a; ¬a ⊂ b}.
Here W � ¬a but ¬a 6∈ Cl(Imps2Rules(W)).

1

Example 3 (transposition on transitivity needed). Let W = {c ⊂ a ∧ b; d ⊂ c ∧
a; b; ¬d}. Here, W � ¬a but ¬a 6∈ Cl(Imps2Rules(W)).

As rules with strong negation cannot be regarded as simply modelling the propositional
entailment of the associated material implications, some alternative view is needed. One
possibility would be to regard the rules as domain dependent derivation rules. Thus, a rule
is no longer seen as something at the object level (like a material implication) but as a meta-
level principle of entailment (like for instance modus ponens). With every rule corresponding
to a domain dependent derivation rule, a logic program in fact boils down to a particular,
domain dependent, form of logical entailment.

In the rest of this report, we specify three closure operators on a set of rules that collectively
restore the one to one correspondence between rule based derivation and the propositional
entailment of literals.

2 Rule Based Derivation as Propositional Entailment

Definition 3 (transposition, transitivity, antecendent cleaning).
Let s1 and s2 be rules. We say that s2 is a transpositive version of s1 iff:

s1 = c← a1, . . . , an and
s2 = ¬ai ← a1, . . . , ai−1,¬c, ai+1, . . . , an for some 1 ≤ i ≤ n.

Let s1, s2 and s3 be strict rules. We say that s3 is a transitive version of s1 and s2 iff:
s1 = c← a1, . . . , an,
s2 = ai ← b1, . . . , bm for some 1 ≤ i ≤ n, and
s3 = c← a1, . . . , ai−1, b1, . . . , bm, ai+1, . . . , an.

Let s1 and s2 be strict rules. We say that s2 is an antecedent cleaned version of s1 iff:

s1 = ¬ai ← a1, . . . , ai, . . . , an and
s2 = ¬ai ← a1, . . . , ai−1, ai+1, . . . , an.

The intuition behind transposition can be illustrated by translating a rule c← a1, . . . , an
to a material implication c ⊂ a1 ∧ · · · ∧ an. This implication is rewritten as a dis-
junction c ∨ ¬(a1 ∧ . . . ∧ an), which in its turn can be written as a disjunction
c ∨ ¬a1 ∨ · · · ∨ ¬an. In this disjunction, different disjuncts can be put in front.
Putting for instance ai in front yields ¬ai ∨ ¬a1 ∨ · · · ∨ ¬ai−1 ∨ c ∨ ¬ai+1 ∨ · · · ∨ ¬an,
which is again equivalent to ¬ai ∨ ¬(a1 ∧ . . . ∧ ai−1 ∧ ¬c ∧ ai+1 ∧ . . . ∧ an), and
¬ai ⊂ a1 ∧ . . . ∧ ai−1 ∧ ¬c ∧ ai+1 ∧ . . . ∧ an. This can then be translated to the rule
¬ai ← a1, . . . , ai−1,¬c, ai+1, . . . , an. Notice that, when n = 1, transposition coincides with
classical contraposition. Transitivity, as used in Definition 3, basically boils down to the
substitution of a literal in the body of a rule with the body of another rule that has this literal
as its head. The meaning of antecedent cleaning is also straightforward. Translate a rule
¬ai ← a1, . . . , ai . . . , anto a material implication ¬ai ⊂ a1 ∧ · · · ∧ ai ∧ · · · ∧ an, which is then
equivalent to the disjunction ¬ai ∨ ¬a1 ∨ · · · ∨ ¬ai ∨ · · · ∨ ¬an. In this formula, the double
occurrence of ¬ai can be eliminated, yielding ¬ai ∨ ¬a1 ∨ · · · ∨ ¬ai−1 ∨ ¬ai+1 ∨ · · · ∨ an,
which is equivalent to ¬ai ⊂ a1 ∧ · · · ∧ ai−1 ∧ ai+1 ∧ · · · ∧ an. This is then translated to the
rule ¬a1 ← a1, . . . , ai−1, ai+1, . . . , an.

Definition 4 (closed). Let S be a set of rules. Then,

2

(i) S is closed under transposition iff for each rule s1 in S, a rule s2 is in S if s2 is a
transpositive version of s1.

(ii) S is closed under transitivity iff for each rule s1 and s2 in S, a rule s3 is in S if r3 is
a transitive version of s1 and s2.

(iii) S is closed under antecedent cleaning iff for each rule s1 in S, a rule s2 is in S if s2 is
an antecedent cleaned version of s1.

Definition 5 (PW). Let W be an implication-based set of rules. We define PW as the
smallest set that includes Imps2Rules(W) and is closed under transposition, transitivity and
antecedent cleaning.

In the rest of this section it will be proved that a literal follows from W iff it is in
Cl(PW). As the proof of our main theorem is based on resolution theory, we first state a
few preliminaries. Recall that any arbitrary set of propositional formulas can be converted to
disjunctive normal form (notation: DNF (φ)), which in its turn can be represented as a set of
clauses.

Definition 6.

• A clause is a set of literals. The empty clause is denoted as �.

• Let C1 and C2 be clauses, such that for some literal l: l ∈ C1 and ¬l ∈ C2. Then
(C1 −{l})∪ (C2 −{¬l}) is called the resolvent of C1 and C2 on l. The fact that C3 is
a resolvent of C1 and C2 on l is denoted as C1, C2 l C3.

• A resolution-tree RT from a set of clauses {C1, . . . , Cn} to a clause C is a binary tree
of clauses such that:

1. the root of RT is C

2. each leaf of RT is a clause from {C1, . . . , Cn}

3. each non-leaf node is a resolvent of its children.

In the following theorem and beyond, we write Lits2Clauses(L) as an abbreviation for
{{l} | l ∈ L}. We also use ¬L as an abbreviation for {¬l | l ∈ L}.

Theorem 1 ([3]). Let {C1, . . . , Cn} be a set of clauses and φ be a formula. It holds that
C1, . . . , Cn � φ iff there exists a resolution-tree from {C1, . . . , Cn} ∪DNF (¬φ) to �.

Lemma 1. Let {C1, . . . , Cn} be a set of clauses and let L be a set of literals. Let RT be a
resolution-tree from {C1, . . . , Cn}∪Lits2Clauses(L) to �. There also exists a resolution-tree
RT ′ from {C1, . . . , Cn} ∪ Lits2Clauses(L) to � in which for every resolution-step of C ′ and
C ′′ on l ∈ L it holds that either C ′ = l or C ′′ = l.

Sketch of Proof. The idea is that by substituting one of the inputs of a resolution-step
by the literal that is actually used by this resolution step, one obtains a resolvent which is
a subset of the original resolvent (this means that we can prune a part of the remaining
resolution-tree but still get the empty clause as root). The idea is to keep doing this until
one obtains a resolution-tree that satisfies the lemma.

3

An example of the application of Lemma 1 would be the following. Let C =
{{a}, {¬c}, {¬a, c}} and L = {c}. There exists a resolution-tree RT in which {¬a, c} is
resolved with {¬c} to {¬a} and {¬a} is resolved with {a} to �. Lemma 1 then tells that
there also exists a resolution-tree RT ′ in which for every resolution step on c it holds that
C ′ = c or C ′′ = c. In this case RT ′ simply resolves {¬c} and {c} to �.

Theorem 2. Let {C1, . . . , Cn} be a consistent set of clauses and L be a minimal and consistent
set of literals such that {C1, . . . , Cn} ∪ Lits2Clauses(L) � ⊥. There exists a resolution-tree
from {C1, . . . , Cn} to ¬L.

Proof. The fact that {C1, . . . , Cn} ∪ Lits2Clauses(L) � ⊥ means that there exists a
resolution-tree RT from {C1, . . . , Cn}∪Lits2Clauses(L) to �. Then, according to Lemma 1,
there exists a resolution-tree RT ′ from {C1, . . . , Cn} ∪ Lits2Clauses(L) to � in which every
resolution-step on l ∈ L involves at least one element of L. The fact that L is a minimal set
such that {C1, . . . , Cn} ∪ Lits2Clauses(L) � ⊥ means that each li ∈ L must occur as a leaf
in RT ′.

Now, for an arbitrary l ∈ L do the following. Convert the resolution-tree RT ′ to a
resolution-tree RT ′′ by cutting out all occurrences of resolution on l. In figure 1, we it is
shown how this is done in the case where resolution on l is the last step as well as in the case
where it is not the last step.

C

C

C

m

CmU

{l}

{−l}

CC

becomesbecomes

C {l}h

C
Cm

k

Ch k

i

j

i

Figure 1: Removing L from a resolution tree.

Furthermore, ¬l is added to every clause on the path from Cm to the root of the resolution-
tree. The idea is that one keeps carrying out this procedure until all resolution-steps on l are
dealt with. The resulting resolution-tree RT ′′ goes from {C1, . . . , Cn}∪Lits2Clauses(L−{l})
to {l}. Repeat this procedure for every l ∈ L. The final result will be a resolution tree RT ′′′

from {C1, . . . , Cn} to ¬L.

We now introduce two operators to typecast a rule or set of rules into a clause or set of
clauses.

Definition 7. Let r be a rule of the form c ← a1, . . . , an. We define Rule2Clause(r) as
{c,¬a1, . . . ,¬an}. Let S be a set of rules. We define Rules2Clauses(S) as {Rule2Clause(r) |
r ∈ S}.

Theorem 3. Let RT be a resolution-tree from C1, . . . , Cn to C0 (with C0 6= �) and let
S be a set of rules, closed under transposition, transitivity and antecedent cleaning with
{C1, . . . , Cn} ⊆ Rules2Clauses(S). Then, for every clause C in RT there exists a rule
r ∈ S such that Rule2Clause(r) = C.

Proof. We prove this by induction on the depth of subtree RT ′ of RT .

4

basis Let the depth of RT ′ be one. Then the only clause in RT ′ is an element of {C1, . . . , Cn}.
As {C1, . . . , Cn} ⊆ Rules2Clauses(S), it follows that for every clause C in RT there
exists a rule r ∈ S such that Rule2Clause(r) = C.

step Suppose for every RT ′ that is a subtree of RT with a depth of at most n, it holds that
every clause C in RT ′, there exists a rule r ∈ S such that Rule2Clause(r) = C. We will
now prove that also for every resolution tree RT ′′ with a depth of n + 1, it holds that
for every clause C in RT ′′, there exists a rule r ∈ S such that Rule2Clause(r) = C.
Let C be a clause in RT ′′. If C is not the root of RT ′′ then we can immediately apply
the induction hypothesis, and have that there indeed exists a rule r ∈ S such that
Rule2Clause(r) = C. In the remainder of this proof, we will treat the case that C

is the root of RT ′′. As RT ′′ has a depth of at least 2, C is the resolvent of two other
clauses (children), say C1 and C2, which are themselves the roots of resolution trees RT1

and RT2. Now, the trees RT1 and RT2 each have a depth of at most n so the induction
hypothesis tells us that there exists a rule r1 ∈ S such that Rule2Clause(r1) = C1

and there exists a rule r2 ∈ S such that Rule2Clause(r2) = C2. As S is closed under
antecedent-cleaning, there also exist two rules r ′1 and r′2 of which the negation of their
head heads is not in their respective bodies (they are antecedent cleaned). Let us
assume that C1 and C2 are resolved to C by resolution on some literal q. Then, the fact
that S is closed under transposition means that S contains two rules r ′′

1 and r′′2 of the
form t1 ← t2, . . . , tn, q and q ← s1, . . . , sm. As S is closed under transitivity, this also
means that S contains a rule t1 ← t2, . . . , tn, s1, . . . , sm. It is this rule (r′′′) for which
Rule2Clause(r′′′) = C.

Theorem 4. Let S be a set of rules that is closed under transposition, transitivity and
antecedent-cleanup, and let L be a consistent set of literals such that Rules2Clauses(S) ∪
Lits2Clauses(L) 6� ⊥. Let p be a literal. It holds that Rules2Clauses(S) ∪
Lits2Clauses(L) � p iff S contains a rule p← l1, . . . , ln with l1, . . . , ln ∈ L.

Proof.
“=⇒”: Suppose Rules2Clauses(S) ∪ Lits2Clauses(L) � p. Then, it also holds that
Rules2Clauses(S) ∪ Lits2Clauses(L) ∪ {{¬p}} � ⊥. Let L′ = {l1, . . . , ln} be a minimal
subset of L such that Rules2Clauses(S)∪Lits2Clauses(L′)∪{{¬p}} � ⊥. Then, L′∪{¬p}
is also a minimal set of literals such that Rules2Clauses(S)∪ Lits2Clauses(L ′ ∪ {¬p}) � ⊥
(this is because Rules2Clauses(S)∪Lits2Clauses(L) 6� ⊥, so ¬p is actually needed to entail
⊥). Then, according to theorem 2, there exists a resolution-tree RT from Rules2Clauses(S)
to ¬(L′ ∪ {¬p}) = {¬l1, . . . ,¬ln, p}. Theorem 3 then tells us that there exists a rule r ∈ S

such that Rule2Clause(r) = {¬l1, . . . ,¬ln, p}. As S is closed under antecedent cleaning and
transposition, this also means that there exists a rule in S of the form p← l1, . . . , ln.
“⇐=”: Suppose S contains a rule p ← l1, . . . , ln with l1, . . . , ln ∈ L. Then,
Rules2Clauses(S) ∪ Lits2Clauses(L) � p (this follows from the correctness of resolu-
tion).

Theorem 5. LetW be an implication based set of formulas and let l1, . . . , ln, k be literals such
that W ∪{l1, . . . , ln} is consistent. It holds that W ∪{l1, . . . , ln} � k iff k ∈ Cl(PW ∪ {l1 ←
, . . . , ln ←}).

5

Proof.
“=⇒”:
Suppose that W ∪ {l1, . . . , ln} � k. From the fact that W ∪ {l1, . . . , ln} is consistent it
follows that Rules2Clauses(PW) ∪ Lits2Clauses({l1, . . . , ln}) 6� ⊥. From the fact that
W ∪ {l1, . . . , ln} � k it follows that Rules2Clauses(PW) ∪ Lits2Clauses({l1, . . . , ln}) � k.
From Theorem 4 it then follows that PW contains a rule k← l1, . . . , li (0 ≤ i ≤ n). Therefore,
it holds that k ∈ Cl(PW ∪ {l1 ←, . . . , ln ←}).
“⇐=”:
Suppose that k ∈ Cl(PW ∪ {l1 ←, . . . , ln ←}). Then, as for every rule c← a1, . . . , am in PW
it holds that W � c ⊂ a1, . . . , am, it also holds that W ∪ {l1, . . . , ln} � k.

3 Discussion

When ELP rules are seen as a domain dependent specification of entailment rules, the question
then becomes under which conditions this entailment satisfies any reasonable conditions. The
current approach seems to be to require no conditions at all on the specific entailment as
specified by the ELP in question. However, this allows one to specify quite weird forms of
entailment, and it should not come as a surprise that the results can then be quite unusual
as well, especially when applied in a broader context. Examples of this are provided in [1]
and [2]. The question of what restrictions have to be specified on an ELP in order to obtain
a specific property of the outcome is a relevant topic that deserves further study.

References

[1] M. Caminada and L. Amgoud. An axiomatic account of formal argumentation. In Pro-
ceedings of the AAAI-2005, pages 608–613, 2005.

[2] M.W.A. Caminada. Well-founded semantics for semi-normal extended logic programs.
In Proceedings of the 11th International Workshop of Nonmonotonic Reasoning, special
session on answer set programming, 2006.

[3] C.-L. Chang and R.C.-T Lee. Symbolic Logic and Mechanical Theorem Proving. Academic
Press, Boston, 1973.

6

