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Abstract. We investigate which switching classes do not contain a bi-
partite graph. Our final aim is a characterization by means of a set of
critically non-bipartite graphs: they do not have a bipartite switch, but
every induced proper subgraph does. In addition to the odd cycles, we list
a number of exceptional cases and prove that these are indeed critically
non-bipartite. Finally, we give a number of structural results towards
proving the fact that we have indeed found them all. The search for
critically non-bipartite graphs was done using software written in C and
Scheme. We report on our experiences in coping with the combinatorial
explosion.
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1 Introduction

For a finite undirected graph G = (V,E) and a set σ ⊆ V , the switch of
G by σ is defined as the graph Gσ = (V,E′), which is obtained from G by
removing all edges between σ and its complement σ and adding as edges
all nonedges between σ and σ. The switching class [G] determined by G
consists of all switches Gσ for subsets σ ⊆ V .

A switching class is an equivalence class of graphs under switching.
The initiators of the theory of switching classes of graphs were Van Lint
and Seidel [12]. They used the model in their investigation of elliptic
geometry. The book on 2-structures by Ehrenfeucht, Harju and Rozen-
berg has a number of chapters on switching classes of graphs and their
generalizations [3]. A book completely devoted to the subject of switch-
ing is the first author’s thesis [4]. Part of the motivation for the general
model treated in the latter two books is that they constitute a way in
which to model the semantics of a certain type of networks of processors.
Switching classes have also been found useful in the fields of psychosoci-
ology, and in the investigation of Ising models in statistical physics. For
more information on applications of switching classes consult the preface
of the dynamic bibliography of signed and gain graphs and allied areas,
compiled by Zaslavsky [13].

A graph G = (V,E) is bipartite if V can be partitioned into two sets
A and V − A, such that all edges in E are between A and V − A. An
equivalent characterization is to say that G is bipartite if it contains no
cycles of odd length. Deciding whether a graph is bipartite is easily done
by visiting each node at most once.

The bipartiteness problem for switching classes is to determine, given
the generator G of the switching class, whether this class contains a bi-
partite graph:

B(G) iff there exists H ∈ [G] such that H is bipartite.

Easy examples are when G is complete bipartite (this includes the
discrete graph), since all graphs in [G] are (complete) bipartite. If G is
K3, then the class contains a non-bipartite graph, K3, but all other graphs
in this switching class are bipartite. A last example here is when G is K5:
then [G] contains no bipartite graphs (since this class contains only K5,
K4 ∪ x and K3 ∪K2). Hage, Harju and Welzl give an algorithm to decide
B in time quadratic in the number of vertices in the graph [7]. In this
paper, we try to characterize the switching classes that do not contain a
bipartite graph by means of a set of forbidden subgraphs. In other words,
we intend to find a minimal set of graphs F such that



B(G) iff for all F ∈ F , F is not an induced subgraph of any H ∈ [G].

Obviously, if F1 ∈ [F2], then at most of one these need be in F . Further-
more, we can restrict F to so-called critically non-bipartite graphs: they
do not have a bipartite switch, but every induced subgraph does.

For the case that the predicate B is ’acyclic’ instead of ’bipartite’, Hage
and Harju showed that besides the infinite family of simple cycles Cn with
n ≥ 7, there are only finitely many of such critically cyclic graphs [6] (a
computer program discovered 905 such graphs, divided into 24 switching
classes). They proved that among the graphs of order at least 10 there
are no more exceptional cases: only simple cycles. Since the computer
program was not proven to be correct, it is possible that critically cyclic
graphs of less than 10 vertices were missed.

By means of a computer program, we have managed to find six excep-
tional critically non-bipartite switching classes, besides the ones generated
by the simple cycles Cn of odd order n ≥ 7. We suspect that these are all
of them, but we have not managed to prove that fact. What we do show in
this paper is that the graphs we found are indeed critically non-bipartite
graphs. In addition, we give a number of results about switching classes
that do contain bipartite graphs in Section 3, and structural properties
of the critically non-bipartite graphs. The first of these properties help
show that a graph has no bipartite switches, the latter restricts us in what
kind of critically non-bipartite we may expect to find in the future. In the
final section, we explain how we tackled the computational problem of
finding the critically non-bipartite graph, especially how to deal with the
combinatorial explosion in such a search. There is quite a bit of program-
ming effort and computer time involved here, and the fact that we have
performed this search (completely up to 12 and partly for 13 vertices)
and report on the outcomes, is one of the contributions of this paper.

2 Preliminaries

For a (finite) set V , let |V | be the cardinality of V . We shall often identify
a subset A ⊆ V with its characteristic function A : V → Z2, where Z2 =
{0, 1} is the cyclic group of order two. We use the convention that for
x ∈ V , A(x) = 1 if and only if x ∈ A. The restriction of a function
f : V → W to a subset A ⊆ V is denoted by f |A. We denote set difference
by A − B. It contains the elements in A which are not in B. If B is a
singleton {b}, then we may write A− b for brevity.

The set E(V ) = {{x, y} | x, y ∈ V, x 6= y} denotes the set of all
unordered pairs of distinct elements of V . We write xy or yx for the



undirected pair {x, y}. The graphs of this paper will be finite, undirected
and simple, i.e., they contain no loops or multiple edges. We use E(G) and
V (G) to denote the set of edges E and the set of vertices V , respectively,
and |V | and |E| are called the order, respectively, size of G. Analogously
to sets, a graph G = (V,E) will be identified with the characteristic
function G : E(V ) → Z2 of its set of edges so that G(xy) = 1 for xy ∈ E,
and G(xy) = 0 for xy /∈ E. Later we shall use both notations, G = (V,E)
and G : E(V ) → Z2, for graphs.

Let G = (V,E) be a graph. A vertex x ∈ V is adjacent to y ∈ V if
xy ∈ E. The degree of x in G is the number of vertices it is adjacent to.
The neighbours of u in G, denoted NG(u), or N(u) if G is clear from the
context, is the set of vertices adjacent to u in G. A vertex which is not
adjacent to any other vertex in a graph is called isolated.

For a graph G = (V,E) and X ⊆ V , let G|X denote the subgraph of G
induced by X. Hence, G|X : E(X) → Z2. For two graphs G and H on V
we define G+H to be the graph such that (G+H)(xy) = G(xy)+H(xy)
for all xy ∈ E(V ). The disjoint union of two graphs G and H, is denoted
G ∪H.

A graph G = (V,E) is bipartite if V can be partitioned into two sets
A and V − A, such that all edges in E are between A and V − A. An
equivalent characterization is to say that G is bipartite if and only if it
contains no cycles of odd length.

Some graphs we will encounter in the sequel are KV , the clique on the
set of vertices V , and KV , the complement of KV which is the discrete
graph on V ; the complete bipartite graph on A and V −A is denoted by
KA,V −A. If the choice of vertices is unimportant we can write Kn, Kn

and Km,n−m for n = |V | and m = |A|.
We continue now with definitions for the switching of graphs.
A selector for G is a subset σ ⊆ V (G), or alternatively a function

σ : V (G) → Z2. We reserve lower case σ for selectors (subsets). A switch
of a graph G by σ is the graph Gσ such that for all xy ∈ E(V ),

Gσ(xy) = σ(x) + G(xy) + σ(y) .

Clearly, this definition of switching is equivalent to the one given at the
beginning of the introduction. The set [G] = {Gσ | σ ⊆ V } is called
the switching class of G. The set of graphs [G] is called a switching class,
because switching is a reflexive, symmetric and transitive operation: com-
position of two selectors amounts to taking the symmetric difference. This
result can be used to prove the following.



Lemma 1.
It holds that Gσ1 = Gσ2 if and only if σ1 = σ2 or σ1 = V (G)− σ2.

A selector σ is constant on X ⊆ V if X ⊆ σ, or X ∩ σ = ∅. The name
arises from the fact that, in these cases, G|X = Gσ|X .

We now give a few (standard) results from the literature that will be
used in this paper, see e.g. Hage [4].

Lemma 2.
The switching class [KV ] equals the set of all complete bipartite graphs
on V .

Proof. Given any complete bipartite graph K{σ,V −σ}, we can obtain it
from KV by switching with respect to σ. Also, every switch of KV can
divide its partition at most in two, so it must be a bipartite graph. It is
obviously complete bipartite, because KV has no edges.

From the observation that computing Gσ amounts to computing G +
Kσ,V (G)−σ we obtain the following result.

Lemma 3.
It holds that G ∈ [H] if and only if G + H ∈ [KV ].

Lemma 4.
Let G = (V,E) be a graph, u ∈ V and A ⊆ V −{u}. There exists a unique
graph H ∈ [G] such that the neighbours of u in H are the vertices in A.

Proof. The vertex u has no adjacent vertices in Gu = GN(u), where N(u)
is the set of neighbours of u in G. Switching Gu with respect to A connects
u to every vertex in A (and no others) yielding H.

To show that H is unique: let H ′ be such that N(u) = A in H ′. Since
H and H ′ are in the same switching class H + H ′ is a complete bipartite
graph (Lemma 3), say GB,V −B. Because u has the same neighbours in
both, u is isolated in GB,V −B. Hence, GB,V −B is a discrete graph and,
consequently, H = H ′.

As a corollary we find that for every vertex x ∈ V (G), there is a
unique graph in [G] where x is isolated.

3 Switching classes that do contain a bipartite graph

The first important thing to realize is that if a switching class contains
a bipartite graph, then all graphs in the switching class are of the form



shown in Figure 1(a): two arbitrarily connected complete bipartite graphs,
with bipartitions (A, V −A) and (σ, V −σ) for some σ ⊆ V . In this picture
A, V −A is the supposed bipartition and σ is any given selector, yielding
at most a four-partition, A∩σ, (V −A)∩σ, A∩ (V −σ) and V − (A∪σ).
In other words the graph is 4-colourable. In the following we shall call an
element of this partition a block.
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Fig. 1. Partitioned into (a) four and (b) three blocks

This property is an instance of a more general one, which says that
if G has chromatic number χ, then every graph in [G] has a chromatic
number between χ/2 and 2χ [4].

If three of the blocks are empty, then the graph is discrete, and its
switching class contains exactly all complete bipartite graphs (of the same
order). If exactly two are empty, then the graph itself is bipartite. Note
that by Lemma 4 we can turn a four-partition into a three-partition by
making the set of neighbours of one of the vertices empty, as in Fig-
ure 1(b).

The following result was already proved in Hage, Harju, Welzl [7]. We
give a proof in a different style, here.

Lemma 5.
If G contains (induced) C2k+1 for k ≥ 3, then every H ∈ [G] contains an
induced odd cycle.

Proof. We prove the result by showing that C2k+1 with k ≥ 3 cannot
be embedded in Figure 1. A a result, any graph that contains C2k+1



induced, cannot be embedded in Figure 1. This implies that it does not
have a bipartite switch and thus that all its switches have an induced odd
cycle.

First, observe that if one of the four blocks has more than two ver-
tices, then the juxtaposed block (the opposite part of the corresponding
complete bipartite graph) must be empty. This is a consequence of the
fact that no vertex in C2k+1 can have degree more than two.

Consider the case for k ≥ 4. Without loss of generality, σ contains
at least k + 1 ≥ 5 vertices. Since two of these must be adjacent, both
A∩ σ and (V −A)∩ σ are non-empty, and one of them has at least three
vertices.

We conclude with the case for k = 3: C7 is not bipartite so at least
three blocks are nonempty. If one block is empty, then at least one of the
blocks has at least three vertices. Because these form an independent set,
the remaining vertices of C7 are K2 plus two isolated vertices, which is
not a complete bipartite graph. If every block is non-empty, then no block
can have more than two vertices. Hence, three blocks have two vertices,
and one has one vertex. But since two of these doubletons are completely
connected, we have an induced cycle C4.

Since omitting any vertex from C2k+1 gives a bipartite graph, we have
the following.

Corollary 1. The graphs C2k+1 are all critically non-bipartite.

Lemma 2 showed that there is a switching class consisting of all com-
plete bipartite graphs. The following result shows that there is only one
switching class containing only bipartite graphs.

Theorem 1.
The switching class [G] contains only bipartite graphs if and only if [G]
consists of the complete bipartite graphs on the domain of G.

Proof. The if-part is clear. Now, let H ∈ [G] be a bipartite graph on A
and V − A; if both sets contain at most one node, then H is complete
bipartite.

Since H is not discrete there is an edge uv in H. If H is not connected
we can switch a node x in another component and get a triangle {u, v, x}.
If H is connected, then let u ∈ A and v ∈ V − A be such that they are
not adjacent in H (they exist because H is not complete bipartite). But
since the graph is connected, u has a neighbour, say x. Clearly, x ∈ V −A
and thus x and v are not adjacent. Again {u, v, x} can be switched into
a triangle.



The above result can also be viewed as an example of characteriz-
ing the switching classes that contain only bipartite graphs by means
of forbidden subgraphs, the forbidden graphs in this case being K3 and
K1 ∪K2.

Corollary 2. If a graph in a switching class avoids both K3 and K1∪K2,
then the switching class contains only bipartite graphs.

A similar result was obtained by Hertz [8] for switching classes that
contain only perfect graphs.

4 The known exceptional cases

In addition to the cycles C2k+1, we have found a small number of critic-
ally non-bipartite switching classes. Representatives of these are given in
Figure 2 (we shall refer to these graphs by (n) where n is the order of the
graph). Thus we have graphs (5) for the K5, (6) for C5 ∪x, (7) for G∪x,
where G is the “antenna graph”, and (8) (which switches to co-C7 ∪ x),
(9) and (11) for the others. The only graph among in the set which is not
part of the set of critically cyclic graphs of [6] is (11).

4

231
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6

7

Fig. 2. The exceptional critically non-bipartite graphs



Lemma 6.
Each of the graphs in Figure 2 is critically non-bipartite.

Proof. We have to prove for each graph that all their switches are non-
bipartite, and if we remove a vertex, then the resulting graph can be
switched to a bipartite graph. The latter follows if for every vertex, we
can find a switch so that all odd cycles go through that single vertex.

The graph K5 switches only to K4 ∪ x and K3 ∪ K2, and omitting
from the latter one of the vertices of the K3 gives the bipartite K2 ∪K2.
We consider next (6), the C5 ∪ x. Omitting any vertex on the C5 which
is part of (6), removes the odd cycle. Switching a single vertex on the C5

yields the net (a K3 with an edge attached to each vertex of the triangle).
The vertex x is one of the vertices of the K3. The other graphs can be
handled similarly, and these cases will be omitted here.

Proving that a graph has no bipartite switches can be done in two
ways: compute all switches and verify that none of them is bipartite, or
show that the graph cannot be embedded in Figure 1(a) (or Figure 1(b)
if it has an isolated vertex). We illustrate the former using (7) as an
example. Since (7) has an isolated node, we use Figure 1(b). Each of the
vertices of the triangle goes into a different part of the partition, so one
of them ends up in the same class as the isolated vertex. There are two
cases: 1 goes with 3 or 1 goes with 4 (5 is exactly the same). In the first
case, 2 has to go with either 4 or 5, but then it must be connected to the
other, which it is not. In the second case, we cannot put 6 anywhere: it
cannot go with 5 since it is not connected to 3, it cannot go with 3 since
it is not connected to 5, and it cannot go with 4, since it is connected to
4.

5 Properties of critically non-bipartite graphs

Some simple but essential properties of critically non-bipartite graphs are
the following.

Lemma 7.
Let G be critically non-bipartite and let v ∈ V (G).

i. If G has an isolated vertex, then the largest induced cycle of G is C3.
ii. There is a selector σ on V − {v} such that (G− v)σ is bipartite.
iii. [G] contains a graph H in which all odd cycles go through v, and there

is at least one such cycle. Furthermore, the same holds for H{v}.



Proof. For the first case, it suffices to observe that C5 ∪ x, and C2k+1 for
k ≥ 3 are already critically non-bipartite. The second case follows from
the definition of critically non-bipartite. The final case follows from the
second case: if (G−v)σ is bipartite, then if we set σ(v) = 0, then (Gσ)−v
is bipartite, so all odd cycles in Gσ go through v. The same holds if we
take σ(v) = 1.

Because every graph can be switched to a graph with an isolated
vertex, the following bound is as tight as possible.

Lemma 8.
Every critically non-bipartite graph has at most one isolated vertex.

Proof. Let G be a critically non-bipartite graph with isolated vertices
I = {v1, . . . , vm} and assume m ≥ 2. First of all, because G has isol-
ated vertices and G is not bipartite, there is at least one induced C3 by
Lemma 7(i), say on U = {u1, u2, u3}.

Let σ be the selector of Lemma 7(ii) such that H = (G − v1)σ is
bipartite. Then σ is not constant on U . Assume without loss of generality
that σ(u1) = 1 and σ(u2) = σ(u3) = 0. Then σ(v2) = . . . = σ(vm) = 0,
because if σ(vi) = 1 for 2 ≤ i ≤ m, then {vi, u2, u3} is a triangle in H.

We extend σ to V (G) by σ(v1) = 0, and we prove that Gσ is bipartite
or H is not bipartite. By Lemma 7(iii) all odd cycles go through v1 in Gσ,
but v2 is on no odd cycle at all. This leads to a contradiction because v2

and v1 are both not selected by σ, which implies that they have exactly
the same neighbours in Gσ.

This leads to the following corollary which restricts us somewhat in
our search for new critically non-bipartite graphs.

Corollary 3. Every critically non-bipartite graph G of order at least six
has at most two components. If G has two components, then one of these
is a single vertex and if G contains an induced cycle, then this cycle is a
C3.

6 Conjectures

Although we have investigated the matter at some length, we have not
been able to prove the following result which we leave as conjecture:

Conjecture 1.
Besides the odd simple cycles C2k+1 for k ≥ 6, there are no critically
non-bipartite graphs of order at least 12.



We leave the reader with some observations that might lead to such a
proof. The main problem we have compared to the situation of [6] is that
do not have the equivalent of Lemma 5.7 of that paper. It basically gives
a normal form for critically cyclic graphs which implies that we have a
subgraph of a limited number of types. The brunt of the work was to
consider these one by one, but it was this lemma that reduced the work
to a finite amount of cases.

What we have observed is that each of the special critically non-
bipartite graphs we found has a switch in which there is a single C3. For
K5 this is K3 ∪K2, for C5 ∪x this is C3 with an edge attached to each of
its vertices (the net in the naming of ISCGI), and the others are given in
Figure 2. Although these are not all connected, most of them are. In the
case of (7), it does have a connected switch with a single induced cycle,
but it is a C5 (of which two adjacent vertices have a edge attached to
them) .

Some conjectures that might be useful towards proving the main con-
jecture:

i. Every critically non-bipartite graph has a switch that has a single odd
cycle which is a C3.

ii. Such a graph is unique (up to isomorphism).
iii. Such a graph is planar.

The program that we used in our search for critically non-bipartite
graphs has been applied fully up to 12 vertices. About one third of the
switching classes on 13 vertices have been considered. Among these we
found quite a few critically non-bipartite graphs, all switchable to the
cycle C13.

7 The software

To determine the critically non-bipartite graphs, we used a program writ-
ten in C++. As the number of vertices n increases, the number of switching
classes increases as n(n−1)(n−2)/2 in the worst case (depending on how well
we can avoid looking at isomorphic switching classes). Given a number n
the program will generate a list of non-bipartite graphs of order n, from
which graphs can be omitted which have certain induced subgraphs (i.e.,
a critically non-bipartite graph on fewer vertices). Thus we obtain the
critically non-bipartite graphs on n vertices. There is a separate program
that can remove from such a list all isomorphic graphs, and if need be,
all graphs that switch to isomorphic graphs. This is an important tool,



because the brute force algorithm is not guaranteed to generate only non-
isomorphic graphs.

This approach is not particularly fast for small numbers of vertices,
because the number of isomorphic graphs is relatively high. We used
here the files from Spence [11] which list representatives for the switching
classes up to isomorphism and up to complementation for up to 10 ver-
tices. This means that up to that number of vertices, we shall (almost)
never generate duplicates. The only expectional cases are those in which
the complement of a graph G has a switch isomorphic to G.

In general, it is impossible to extend beyond ten vertices without doing
a lot of duplicate work. The reason is that starting from 11 vertices, the
sizes of the file in the line of Spence’s are simply too large. However, if
we are investigating a fixed predicate, such as bipartite, and we already
have quite a few graphs that we can forbid, then it may be worthwhile
to compute a list of switching classes on a given number of vertices that
already exclude the known critical non-bipartite graphs. For instance, for
the file on 10 vertices and known critically non-bipartite graphs on at
most 10 vertices, this reduces the number of graphs in the file by a factor
of about sixteen.

The representation of graphs is as simple as possible, by means of
a fixed size adjacency matrix. This makes updating and accessing very
efficient, and given that we only investigate relatively small graphs, size
is not a problem. We chose to represent each edge by an int. Since we
consider only undirected graphs, a boolean would be more suitable, but
it turned out that since many operation in C++ work on integers, an
inordinate amount of computation time goes into coercing booleans to
integers (in some cases as much as seventy percent of execution time).
Additional speed-ups were obtained using a fast graph copying operation,
that works directly on memory using memcpy.

The trustworthiness of our results is enhanced by the existence of a
program written in Scheme with similar, but limited functionality. Com-
putation in Scheme is too slow to perform a brute force search, but it can
verify that the graphs found by the C++ program are indeed critically non-
bipartite. The added trustworthiness is a consequence of the fact that the
two implementations differ markedly in their approach to the problem.

7.1 Improving efficiency

Profiling was used to determine bottlenecks in the program. Thus we
discovered the loss of efficiency due to the encoding undirected edges using
booleans, when these are used with for instance bitwise or arithmetic



operators. Another lesson learned from profiling is that it sometimes pays
not to be too declarative: a surprising fact, was that at some point the test
for bipartiteness was faster than the test whether a graph was a tree or a
forest. The reason, as it turned out, was that the latter were implemented
by counting the number of edges and comparing that with the number of
components, while the former was implemented by means of a low-level,
depth-first search.

A less trivial exercise was to speed up the process of switching. Per-
forming a switch takes time quadratic in the number of vertices in the
switch. In the original set-up, we took a graph G as a basis, and computed
the graphs in the switching class, by performing every possible switch (up
to complementation) to G. In the average case, about a quarter of the
vertices take part in a switch. But there is a better way: starting from
any graph G, there is a sequence of singleton switches that takes one to
each graph in the switching class in turn, without visiting a graph twice
(until you return to G at the end). There are strong connections here
with Gray codes, the Game of Hanoi, and the number of 2-divisors of an
integer. See [5] for more details.

Since the graphs K5 and C5 ∪ x occurred very often and early on in
the lists of forbidden graphs, it paid off to have special functions to de-
termine whether they occurred induced in the switch of a graph. These
implementations exploit the symmetry of these graphs, avoiding unneces-
sary injections, and we do not need to explicitly construct the switches of
K5 or G. Here we use Seidel’s elementary result that a switching classes is
determined uniquely by the parities of the numbers of edges in triangles
that contain one arbitrary but fixed vertex of, in this case, K5. When we
extend graphs vertex by vertex, we can use an incremental version that
only considers injections which involve the last added vertex. This worked
well only for K5 and C5 ∪ x, not for the other graphs.

8 Closing remarks

We have used a computer program to search for critically non-bipartite
switching classes. Besides those generated by the simple odd cycles C2k+1,
k ≥ 3, we found six exceptional ones. We have some preliminary results
toward proving that we have in fact found them all, but a proof still
eludes us. We have applied the same method to other types of graphs,
such as chordal graphs, but in those cases, the number of critical graphs
soon explodes.
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