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1 Introduction

The Network of Excellence AIM@SHAPE [1] has taken the initiative to organize a 3D shape retrieval
evaluation event: SHREC - 3D Shape Retrieval Contest [2]. The general objective is to evaluate the
effectiveness of 3D-shape retrieval algorithms.

3D media retrieval is overlooked in most commercial search engines, while at the same time it is
expected to represent a huge amount of traffic and data stored in the Internet. Indeed, “geometry is
poised to become the fourth wave of digital-multimedia communication”, where the first three waves
were sound in the 70’s, images in the 80’s, and video in the 90’s [3]. Recent advances in technology
have made available cost-effective scanning devices that could not even be imagined a decade ago. It
is now possible to acquire 3D data of a physical object in a few seconds and produce a digital model
of its geometry that can be easily shared on the Internet. On the other hand, most PCs connected to the
Internet are nowadays equipped with high-performance 3D graphics hardware, that support rendering,
interaction and processing capabilities from home environments to enterprise scenarios.

Three-dimensional shape retrieval is fundamentally different from two-dimensional shape re-
trieval. Most 2D methods do not generalize directly to 3D. This is due to the different nature of
the content: descriptors used for 2D images are concerned with color, textures, and properties that
capture geometric details of the shapes segmented in the image. While one-dimensional boundaries
of 2D shapes allow a direct parametrization (e.g. by arc length), the boundary of arbitrary 3D ob-
jects cannot be parametrized in a straightforward manner, especially when the shape exhibits complex
topology such as through-holes or handles. Most notably, feature extraction for image retrieval is
intrinsically affected by the so-called sensory gap, the gap between the physical object in a real world
scene and the digital description derived from a recording of that scene. The sensory gap makes the
description of objects an ill-posed problem and casts an intrinsic uncertainty on the descriptions due to
the presence of information which is only accidental in the image or due to occlusion and/or perspec-
tive distortion. On the other hand, the boundary of 3D models is represented explicitly, and therefore
does not need to be segmented from a background. Hence, while the understanding of the content of
a 3D vector graphics remains an arduous problem, the initial conditions are different and potentially
allow for more effective and reliable search results.

TREC, the Text Retrieval Conference [4], is a series of workshops on large scale evaluation of
text retrieval technology organized since 1992, which has had a major impact on the text retrieval
community. Following the successful example of TREC, a number of other competitions have been
organized, for example:
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Participant Affiliation Reference Run file Code
Chaouch et al. INRIA, France [11] 1 C1

2 C2
Daras et al. Thessaloniki, Greece [12] 1 D1
Jayanti et al. Purdue University, Indiana [13] 1 J1

2 J2
3 J3

Laga et al. NAIST, Japan [14] 1 L1
2 L2

Makadia et al. University of Pennsylvania [15] 1 M1
2 M2
3 M3
4 M4

Papadakis et al. Athens, Greece [16] 1 P1
Shilane et al. Princeton University, New Jersey [17] 1 S1

2 S2
3 S3

Zaharia et al. INT, France [18] 1 Z1

Table 1: SHREC2006 participants.

• TRECVID, the TREC Video Retrieval Evaluation [5].

• FRGC, the Face Recognition Grand Challenge [6].

• VOC, the Visual Object Classes challenge [7].

• MIREX, the Music Information Retrieval Evaluation Exchange [8].

• INEX, the Initiative for the Evaluation of XML [9].

• FVC, the Fingerprint Verification Competition [10].

Thirteen candidates registered for SHREC2006, five withdrew after the test collection was made
available. Within 48 hours after the release of the query set, each participant had to submit the retrieval
results of all queries as a ranked list per query. Up to five ranked lists could be submitted. The ranked
lists may be the result of runs of different algorithm, or runs of the same algorithm with different
parameter settings. Table 1 lists the participants and the coding of the run files used in the rest of this
paper.

2 Test collection

The collection to search in consists of all the classified models from the Princeton Shape Benchmark
(PSB) Version 1, both the models from the training set and those from the test set (1814 models).
The files have been renamed and put into a single directory, such that the classification of the objects
cannot be derived from the path and filename. The total collection consists of 1814 models, and has
been distributed via the SHREC website [2] and directly from the PSB website [19].
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Figure 1: The 30 queries of the contest.

3 Queries

Each participant was requested to submit five candidate queries that are not already in the PSB. From
all the submitted candidates, 30 queries were selected, see figure 1. Each query was classified into
one of the classes of the PSB. The relevance assessments is done according to this base classification
on a ternary relevance scale: highly relevant, giving a score of 2, marginally relevant giving score 1,
not relevant giving score 0.

All items in the query class are considered highly relevant. Items in sister classes are con-
sidered marginally relevant. Depending on the shape, sometimes other classes are also considered
(marginally) relevant. For example, query 21 is a short screwdriver. For this query, the screwdrivers
in the PSB are highly relevant, and the ice creams have been labeled marginally relevant. See the
website [2] for the full relevance assessment of all queries. The number of relevant items in the col-
lection ranges from 5 for queries 21 (screwdriver) and 28 (duck), to 104 for query 13 (fighter jet). The
number of marginally relevant items ranges from 0 to 218.
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4 Performance measures

For each query there exists a set of highly relevant items and a set of marginally relevant items.
Therefore, most of the evaluation measures have been split up as well. The evaluation measures
“xxx(highly relevant)” are based on the highly relevant items only, while the evaluation measures
“xxx(relevant)” are based on all relevant items (highly relevant items + marginally relevant items).

The submitted ranked lists are turned into a gain vector by replacing item IDs by their relevance
scores. A highly relevant retrieved item corresponds to relevance score 2, a marginally relevant re-
trieved item corresponds to relevance score 1, and a non-relevant retrieved item corresponds to rele-
vance score 0.

Throughout this document the following abbreviations are used.

• Ds: size of the dataset (1814).

• Ch: number of highly relevant classified items.

• Cm: number of marginally relevant classified items.

• Cr: number of relevant classified items (Cm + Ch).

• Cn: number of non-relevant classified items (Ds− Cr).

• V h: number of visible highly relevant items (i.e., relevant items in the ranked list).

• V m: number of visible marginally relevant items.

• V r: number of visible relevant items (V m + V h).

• V a: number of visible items (length of ranked list).

• V n: number of visible non-relevant items (V a− V r).

The following evaluation measures are used.

• True Positives(highly relevant) = V h.

• True Positives(relevant) = V r.

• False Positives(highly relevant) = V a− V h.

• False Positives(relevant) = V a− V r.

• True Negatives(highly relevant) = Ds + (V h− V a)− Ch.

• True Negatives(relevant) = Ds + V r − V a− Cr.

• False Negatives(highly relevant) = Ch− V h.

• False Negatives(relevant) = Cr − V r.

• First Tier(highly relevant) = (number of visible highly relevant items within the first d1 items
of the ranked list / d1 ) * 100% (if V a < Ch then d1 = V a else d1 = Ch).

• First Tier(relevant) = (number of visible relevant items within the first d1 items of the ranked
list / d1 ) * 100% (if V a < Cr then d1 = V a else d1 = Ch).
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• Second Tier(highly relevant) = (number of visible highly relevant items within the first d2 items
of the ranked list / d2 ) * 100% (if V a < 2 ∗ Ch then d2 = V a else d2 = 2 ∗ Ch).

• Second Tier(relevant) = (number of visible relevant items within the first d2 items of the ranked
list / d2 ) * 100% (if V a < 2 ∗ Cr then d2 = V a else d2 = 2 ∗ Ch).

• Precision(highly relevant) = V h/V a.

• Precision(relevant) = V r/V a.

• Recall(highly relevant) = V h/Ch.

• Recall(relevant) = V r/Cr.

• Average Precision(highly relevant) = average of the Precision(highly relevant) scores after each
highly relevant retrieved item.

• Average Precision(relevant) = average of the Precision(relevant) scores after each relevant re-
trieved item.

• Average dynamic recall (ADR) is defined as

ADR =
1
q

q∑
i=1

ri

where

q =

{
V a if V a < Cr
Cr otherwise

and ri = f/i, with

f =

{
number of visible highly relevant items within the first i items if i ≤ Ch
number of visible relevant items within the first i items otherwise

• The cumulated gain vector CG is defined recursively as [21]:

CG[i] =

{
G[1] if i = 1
CG[i− 1] + G[i] otherwise

• The discounted cumulated gain vector DCG is defined recursively as [21]:

DCG[i] =

{
CG[1] if i = 1
DCG[i− 1] + (G[i]/ log i) otherwise

• The normalized cumulated gain vector NCG is obtained by dividing CG by the ideal cumulated
gain vector ICG [21].

For example, let query q have Ch = 6 and Cm = 5, thus Cr = 5 + 6 = 11. Let the gain vector
be G′ = [2, 2, 1, 2, 2, 1, 0, 1, 0, 1, 2, 0, 0, 0], thus V h = 5, V m = 4, V a = 14, and V n = 5. Applied
to the example, we get the following performance values.

• True Positives(highly relevant) = 5.
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Figure 2: Query 3, a street sign, and the discounted cumulated gain vs. rank [1,100] for all submitted
ranked lists.

• True Positives(relevant) = 9.

• False Positives(highly relevant) = 14− 5 = 9.

• False Positives(relevant) = 14− 9 = 5.

• True Negatives(highly relevant) = 1814 + 5− 14− 6 = 1799.

• True Negatives(relevant) = 1814 + 9− 14− 11 = 1798.

• False Negatives(highly relevant) = 6− 5 = 1.

• False Negatives(relevant) = 11− 9 = 2.

• First Tier(highly relevant) = (4/6) ∗ 100% = 66.667%.

• First Tier(relevant) = (9/11) ∗ 100% = 81.818%.

• Second Tier(highly relevant) = (5/12) ∗ 100% = 41.667%.

• Second Tier(relevant) = (9/14) ∗ 100% = 64.285%.

• Precision(highly relevant) = 5/14 = 0.35714.

• Precision(relevant) = 9/14 = 0.6428.

• Recall(highly relevant) = 5/6 = 0.83333.

• Recall(relevant) = 9/11 = 0.8181.
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Rank Query 1 Query 3 Query 6
1 Z1 L2 M2
2 M2 L1 S3
3 D1 D1 M1
4 M1 S2 D1
5 C2 S3 S1
6 C1 C2 S2
7 J2 S1 Z1
8 J1 C1 J1
9 S3 P1 P1
10 P1 J2 J2
11 S2 M1 M3
12 L1 M2 C2
13 L2 M3 M4
14 S1 J3 C1
15 J3 M4 J3
16 M3 J1 L1
17 M4 Z1 L2

Table 2: Example ranking for individual queries.

• Average Precision(highly relevant) = (1/1 + 2/2 + 3/4 + 4/5 + 5/11)/5 = 0.80090.

• Average Precision(relevant) = (1/1+2/2+3/3+4/4+5/5+6/6+7/8+8/10+9/11)/9 =
0.94368.

• ADR = (1+1+0.667+0.75+0.8+0.667+0.857+0.875+0.777+0.8+0.818)/11 = 0.819.

• CG = [2, 4, 5, 7, 9, 10, 10, 11, 11, 12, 14, 14, 14, 14]

• DCG = [2.0, 4.0, 4.63093, 5.63093, 6.492283, 6.8791356, 6.8791356, 7.212469, 7.212469,
7.5134993, 8.091629, 8.091629, 8.091629, 8.091629].

• ICG = [2, 4, 6, 8, 10, 12, 13, 14, 15, 16, 17].
NCG = [2/2, 4/4, 5/6, 7/8, 9/10, 10/12, 10/13, 11/13, 11/14, 12/15, 14/16, 14/17, 14/17, 14/17].

• IDCG = [2.0, 4.0, 5.2618594, 6.2618594, 7.123213, 7.8969183, 8.253125, 8.586458, 8.901923,
9.202953, 9.492018].
NDCG = [2.0/2.0, 4.0/4,0, 5.2618594/5.2618594, ...., 8.091629/9.492018, 8.091629/9.492018].

In addition to the above performance measures, the average (discounted) cumulated gain versus
percentage recall, evaluated at each relevant item in the ranked list is plotted.

For a whole run over all queries, the following is computed:

• Mean Average Precision(highly relevant/relevant).

• Mean First Tier(highly relevant/relevant).

• Mean Second Tier(highly relevant/relevant).
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Rank Run code MADR value
1 M2 0.5498626
2 M1 0.54084843
3 D1 0.5242406
4 C1 0.50018275
5 P1 0.49523294
6 S3 0.4937149
7 Z1 0.49247277
8 S2 0.48770607
9 C2 0.42156762
10 S1 0.39706558
11 M3 0.39249521
12 M4 0.37667266
13 L1 0.32631385
14 L2 0.30619973
15 J2 0.26785165
16 J3 0.2370221
17 J1 0.23020707

Table 3: Mean average dynamic recall.

• Mean Average Dynamic Recall.

• Mean (Normalized) Cumulated (Discounted) Gain @ x (absolute rank).

5 Results

For each individual submitted query result list, the following performance measures are calculated:
Average Precision, First Tier, Second Tier, Precision, Recall, (all these are evaluated for only highly
relevant items, and all relevant items), Average Dynamic Recall, Cumulated Gain, Normalized Cumu-
lated Gain, Discounted Cumulated Gain, Normalized Discounted Cumulated Gain (all for the first 5,
10, 25, 50, and 100 ranked items), Average (Discounted) Cumulated Gain vs. Recall %, (Discounted)
Cumulated Gain vs. Rank [1,100], and Normalized (Discounted) Cumulated Gain vs. Rank [1,100].

None of the participants used an adaptive method to cut of the ranked list. Either 200 were returned
(Shilane et al.), or 1802 (Jayanti et al.) or all 1814 (the rest). Therefore, the performance measures
precision and recall are meaningless.

We further note that there are often no big differences between the performance measure for only
the highly relevant items and all relevant items. Also between the various versions of cumulative gain
there are no big differences.

Figure2 shows just one example query and its performance graph: query 3 and the graph of the
discounted cumulative gain vs. rank [1,100]. In many other query results, the lines in the graphs are
much closer together.

Of course, each single query says little about the overall performance of a method. Indeed, the
method ranked first in terms of cumulated gain [1,100] for query 1 (Z1), has the last rank for query 3.
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Figure 3: Mean normalized discounted cumulated gain graph over ranks [1,100]. At rank 100 the
order from top to bottom is M2, M1, D1, P1, S3, S2, Z1, C1, C2, S1, M3, M4, L1, L2, J2, J3, J1.

In turn, the method ranked first for query 3 (L2), has the last rank for query 6, see table 2. However,
the individual query performances may give insight into the strong and weak aspects of the methods.

The results per run file average the performance of a single method over all 30 queries, thus
providing an overall impression of the performance of an algorithm. Table 3 gives a listing of all runs,
ranked according their value for the Mean Average Dynamic Recall. This ranking is similar to the
ranking according to their value of the Mean Normalized Discounted Cumulated Gain at rank 100 for
example, in the sense that the head and the tail of the two lists are the same. Figure 3 plots the Mean
Normalized Discounted Cumulated Gain over all ranks [1,100].

An overview of results is presented at a special session of SMI06, Shape Modeling International
2006 [22].

6 Concluding remarks

The contest provides a nice selection of the state of the art in the 3D shape retrieval field. We believe
that the results provide an excellent opportunity to analyze the various algorithms, their strengths, as
well as their weaknesses. Using a common test collection allows a direct comparison of algorithms.
At the same time, a single test collection and (chosen) ground truth only shows part of the whole
picture. Care should be taken not to draw too far reaching conclusions from this single evaluation.

We now used an existing test collection and classification. It would be nice to use other collections
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as well in the future, in order to avoid too specific engineering and over-fitting towards a particular
test set, an effect that is also visible in the 2D shape classification and retrieval domain [23]. For
next year it is our intention to organize a multi-track contest. Possible track themes are partial and
whole matching, polygon soup and watertight model matching, mechanical part matching, molecule
matching, and 3D face matching. Also for the coming years the SHREC results will be presented at
the SMI conference.

Defining multiple tracks, deciding upon the test collection, queries, relevance assessment, and
performance measures is a substantial amount of work. However, it works well if participants have an
active role, as is shown for this edition of SHREC. We thank all the participants!
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Abstract
We describe here two methods for 3D model indexing

and retrieval using 2D/3D shape descriptors based on sil-
houettes or depth-buffer images we used in the SHREC - 3D
Shape Retrieval Contest organized by the Network of Excel-
lence AIM@SHAPE. Considering that the views character-
izing the 3D model don’t have the same value of relevance
in the 3D-shape description, we associate to each view a
relevance index which will be afterward used in the estima-
tion of the degree of similarity between the 3D objects.

1 Introduction
The 3D retrieval methods we propose in the SHREC -

3D Shape Retrieval Contest organized by the Network of
Excellence AIM@SHAPE is presented in [1]. It is based on
the computation of the 2D views of the 3D models. We take
into account the relevance associated to the 2D views in the
shape matching algorithm. Several relevance index models
measuring the amount of significant information associated
to a 2D view are introduced for silhouettes and depth-buffer
images. In this paper, we describe our method and present
its evaluation on the contest collection which consists of the
unclassified and renamed set of models from the Princeton
Shape Benchmark [3]. Our paper [1] contains more details
and discussions on the choice of relevance index methods.

2 Similarity search of 3D models
To respect the diversity of information among various

views, we will associate to each silhouette or depth-buffer
image a relevance value which will be used in the estima-
tion of the degree of similarity between two 3D objects.
This approach can be applied to any type of 2D/3D descrip-
tors. Here, we consider two 2D/3D shape descriptors based
on the Fourier transform of rendered silhouettes and depth-
buffer images of the 3D models, presented in [2]. These
descriptors require pose normalization to provide invariance
under similarity transformations. Thus, there are four major
steps for measuring the similarity between 3D models:

1. Normalize pose of 3D model. The Principal Compo-
nent Analysis (PCA) generates an alignment of a 3D-
mesh model into a canonical coordinate system frame
by translating, rotating, reflecting, and scaling the set
of vertices. We have retained the ”Continuous” PCA
[5, 6] because it appears to be more complete and the
most stable of all the approaches we have studied.

2. Extract feature vectors (2D/3D descriptors).

3. Determine relevance indices of projection images.

4. Compute the dissimilarity between 3D models.

2.1 2D/3D Descriptors

Two 2D/3D shape descriptors of [2] have been retained
in our 3D model retrieval process. They both need a CPA
normalization process.

The first one uses silhouettes. Each 3D model is pro-
jected perpendicularly on the planes of his own canoni-
cal bounding cube, in order to generate three silhouette
images. Each silhouette si = {si(a, b); si(a, b)∈ {0, 1},
a = 0, ..., N −1, b = 0, ..., N −1}, i ∈ {1, 2, 3}, is defined
as an outer contour approximated by K equally-spaced se-
quential points ci = {ci(t); t = 0, ..., K}, i ∈ {1, 2, 3}. The
ci are selected, computing the intersection of the contour
with a set of rays emanating from the image center O and
having a uniform angular distribution. They form the in-
put to the one-dimensional discrete Fourier transform (1D-
DFT). The shape feature vector of a 3D model is formed by
the low frequency part coefficients of the Fourier spectrums,
Fi, of the three contour images.

The second 2D/3D shape descriptor is based on depth-
buffer images. Six depth-buffer images are associated to
the faces of the extended bounding box. The 6 NxN pixels
images vi = {vi(a, b); vi(a, b) ∈ [0, 1], a = 0, ..., N − 1,
b = 0, ..., N − 1}, i ∈ {1, ..., 6}, with N = 2l, are trans-
formed using the two-dimensional discrete Fourier trans-
form (2D-DFT) to represent the feature in the spectral do-



main. Finally, each depth-buffer image v i , i ∈ {1, ..., 6},
is represented by the absolute values of k low-frequency
Fourier coefficients, Fi, and constitute the feature vector of
dimension 6k.

2.2 Relevance index models

The relevance index indicates the density of information
contained in the 2D image and is calculated for each view
characterizing the 3D model. Since the optimal way of mea-
suring the relevant information about 2D-shape is not pre-
scribed, we can consider a variety of different methods to
define relevance index. It depends on the nature of informa-
tion extracted from the 2D-shape such as area, contour, cur-
vature, depth, structure, connectivity, compactness... In this
section, for only one information type, we define one rel-
evance index. However, to capture another relevance over
different aspects and characteristics of a 2D-shape, we can
combine different relevance indices described in what fol-
lows. To compute the relevance indices, we can use several
statistical measures such as average or variance. For the
SHREC - 3D Shape Retrieval Contest, we have chosen one
relevance index model for each type of 2D views, consider-
ing the results presented in [1].

2.2.1 Silhouette relevance index model
The relevance index associated to a silhouette image is
based on the computation of the area of the projected sur-
face of the 3D model on the corresponding face of the
bounding box.

Ra = card{sab|sab = 1, 0 ≤ a, b ≤ N − 1}, (1)

where sab is the pixel value of the image at position (a, b).
We can also retain this relevance value for depth-buffer im-
ages, keeping only depth pixels with positive values.

Figure 1. Limitation of the relevance interpre-
tation (using Ra).

Using the area of the projected surface, the results will give
the smallest relevance values for the images of the second
row of Figure 1, but it is obvious that the corresponding
views are more relevant than on the first row. Then the Ra

is not suitable for measuring the relevance index in some
cases. To moderate the influence of the area, we take the
square root of the relevance defined in Equation (1) as rel-
evance index (see the values of Rsa for the human biped

model in Figure 2):

Rsa =
√

card{sab|sab = 1, 0 ≤ a, b ≤ N − 1} (2)

46.81 31.40 21.79
Figure 2. Three silhouettes images of Human-
biped model and their Rsa (%) relevance val-
ues.

2.2.2 Depth-buffer relevance index model
The relevance index associated to a depth-buffer image is
the sum of the distances between the center of mass of the
3D model and all visible points of the 3D model:

Rg =
1

2w

N−1∑

a=0

N−1∑

b=0

dab, (3)

dab =
√
|a − N/2|2 + |b − N/2|2 + 2w|vab − 1/2|2,

where 2w is the length of the sides of the extended enclosing
bounding box. The values of Rg for the human-biped model
are given in Figure 3.

8.99 8.34 27.61 26.60 14.23 14.23

Figure 3. Rg (%) relevance values for the
depth-buffer images of the human-biped
model.

2.2.3 Normalized relevance indices
Let Ri be the relevance indices associated respectively to
the views 1 ≤ i ≤ Nv. We use the normalized relevance
indices R̄i:

R̄i = Ri/

Nv∑

i=1

Ri. (4)

2.3 Matching two 3D models

To compare two 3D models O1 and O2, we generate the
feature vectors Fi

1 and Fi
2, 1 ≤ i ≤ Nv of the silhouettes

or depth-buffer images. Then, we compute the relevance
indices of the images associated to each object, R̄i

1 and R̄i
2,



1 ≤ i ≤ Nv, where Nv is the number of views. Finally, the
dissimilarity between a pair of 3D models O1 and O2 is:

∆(O1, O2) =
Nv∑

i=1

d(R̄i
1F

i
1, R̄

i
2F

i
2). (5)

We take Nv = 3 silhouettes and Nv = 6 depth-buffer im-
ages of each 3D object. In what follows, ESA and EDBA
denote our enhanced approach based respectively on silhou-
ettes and depth buffer images.

3 Experimental results
The experimental results presented here were obtained

with the following parameters: 256x256 size for the projec-
tion images; 100 (resp. 73) low-frequency Fourier coeffi-
cients for one silhouette (resp. depth-buffer) image; l 1 dis-
tance for shape similarity computation. The runfiles number
1 and 2 were obtained using respectively the EDBA and the
ESA approaches. In figures 4 and 5, the depth-buffer im-
ages of the 30 query models of the SHREC - 3D Shape Re-
trieval Contest and their relevance index values are shown.
The classification and the relevance assessments computed
by the SHREC organizers (cf. table 1) confirm the mea-
sures we have made on the Princeton Shape Benchmark in
[1]: the EDBA is more efficient than the ESA. Our descrip-
tors are better in precision than in recall: in most of the
cases, they return a good proportion of models belonging to
the query’s class in the beginning, but, when there is a great
variety of shapes inside a same class, they are not efficient
to retrieve all the models of the query’s class. Its is why the
mean normalized discounted cumulated gain is often very
good for 5 and 10 and looses its efficiency for 25, 50 and
100, in comparison with the other descriptors. Moreover,
introducing relevance index values in the similarity compu-
tation amplifies the precision vs the recall performance of
our descriptors.

Let us examine now how the EDBA and ESA methods
work on the SHREC queries:

- the queries 2 (computer monitor), 11 (vase), 21 (screw-
driver) and 25 (mailbox) seem to be not significant due to
the poor results given by all the SHREC participants.

- EDBA obtained good results for queries 1 (table single
leg round), 7 (head body part), 9 (sedan car), 10 (sports car),
15 (human biped), 16 (chess piece) and 30 (trex biped). We
notice that in these cases, the queries’classes are relatively
homogeneous in shape and have relevant 2D views.

- ESA obtained poor results for query 26 (fish). When
examining the models present in the fish class, we see that
ESA retrieves with difficulty fishes from which the silhou-
ette postpones the query’s one (more stretched out, presence
of fins, etc...).

In conclusion, EDBA has obtained good retrieval results
in the SHREC classification but is more efficient in preci-
sion than in recall. As it was positioned in second (cf. [1])

EDBA ESA Best value
MFT % 38.1274 32.1507 44.7698
MST % 22.8599 21.0847 27.8649
MADR 0.5001 0.4215 0.5498

MNDCG 5 0.6825 0.5936 0.7015
MNDCG 10 0.6286 0.5490 0.64470
MNDCG 25 0.5469 0.4852 0.5906
MNDCG 50 0.52748 0.47129 0.5831

MNDCG 100 0.5293 0.4615 0.5914

Table 1. The mean first tier (MFT), the mean
second tier (MST), the mean average dynamic
recall (MADR) and the mean normalized dis-
counted cumulated gain (MNDCG) for all the
queries

computing mean NN, FT, ST and DCG on the Princeton
Shape Benchmark w.r.t. the descriptors presented in [4], it
would be interesting to compute these measures for all the
descriptors given by the SHREC participants to see if these
two classifications give similar results.
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Abstract
In this paper a combination of a rotation invariant method
with a method which utilizes rotation normalization is pro-
posed. Both methods used are based on 2D/3D Krawtchouk
moments. The first method is an extension of that which
was originally introduced in [1] and utilizes 2D Krawtchouk
moments while the second method was originally intro-
duced in [2] and utilizes 3D Krawtchouk moments.1

1 Introduction
The huge amount of 3D models available and the increas-
ingly important role of multimedia in many areas such as
medicine, engineering, architecture, graphics design etc,
showed up the need for efficient data access in 3D model
databases. An important question arises, is how to search
efficiently for 3D objects into many freely available 3D
model databases. A query by content approach seems to
be the simpler and more efficient way.

2 Spherical 3D Trace Transform Ap-
proach

Given a 3D object, its volumetric binary function is calcu-
lated fb(x), where x = (x, y, z) and x, y, z ∈ [0, 2N), by
voxelizing the whole object, which is defined as:

fb(x) =

{ 1, when x lies within the 3D model’s volume,

0, otherwise.

In order to achieve translation invariance the 3D object’s
center of mass is calculated and the model is translated so

1This work was supported by the PENED2003 project of the Greek
Secretariat of Research and Technology

as its center of mass coincides with the coordinates system
origin. Afterwards, the maximum distance maxD of the
most distant voxel from the origin is found and the model is
scaled by the factor 1/maxD, hence scaling invariance is
also accomplished.

Then, every eight neighboring voxels are grouped, form-
ing a bigger one and fb(x) is transformed to the integer
volumetric function of the model f(x), which takes val-
ues from 0, none of the eight voxels lying inside the ob-
ject’s volume, to 8, all of them lie inside, and x = (x, y, z),
x, y, z ∈ [0, N). This transformation denotes that more at-
tention is given to the voxels lying inside the object’s vol-
ume, which characterize more reliable the 3D object.

2.1 Decomposition of f(x)

The next step involves the decomposition of f(x) into
planes. Each plane in the 3D space can be fully described
by the spherical coordinates (ρ, θ, φ) of the point on which
the plane is tangential to a sphere originated from the cen-
ter of the coordinate system. Imagine concentric spheres,
simulated by icosahedra whose triangles are subdivided in
many smaller equilateral triangles. The barycenters of these
triangle are considered to be the characteristic (tangential)
points for the planes.

The intersection of each plane with the object’s volume
provides a spline of the object, which can be treated as a 2D
image with dimensions N × N . Consider a 2D functional
F , which is applied to this 2D image, producing a single
value. Let us assume that the result of that functional when
applied to all splines, will be a function whose domain is
the set of the aforementioned points, and its range is the
results of the functional. The mathematical expression of
that transformation can be written as:

F{f(x)} = g(ρ, θ, φ)

Restricting to different values of ρ, g(ρ, θ, φ) can be con-
sidered as a set of functions gρ(θ, φ) whose domain is con-



centric spheres. Now, let T be a functional which can be
applied to a function defined on a sphere, producing a single
value. Then, the result of the T functional to every gρ(θ, φ)
is a vector with length equal to the number of the spherical
functions. The Krawtchouk moments were used as F func-
tionals and the Spherical Fourier Transform as T functional.

2.2 Rotation Invariance Requirements
In order to produce rotation invariant descriptor vectors two
requirements should be met. Imagine that the model is ro-
tated, hence f(x) is rotated, producing f ′(x) = f(Ax),
where A a 3D rotation matrix. The splines that will be de-
rived from f ′(x) will be the same with the ones derived
from f(x), but the characteristic points of the planes will
also be rotated by the same rotation matrix. This transfor-
mation can be translated to a rotation of gρ(θ, φ) by A. This
problem can be settled by using a rotation invariant T func-
tional. Moreover, the planes that are perpendicular to the
axes of rotation, will be rotated around their characteristic
point, resulting to a rotated version of their 2D image. Thus,
the F functionals should also be rotation invariant.

2.3 2D Krawtchouk Moments
Krawtchouk moments [3] is a set of moments formed by us-
ing Krawtchouk polynomials as the basis function set. The
nth order classical Krawtchouk polynomials are defined as:

Kn(x; p, N) =
N∑

κ=0

aκ,n,px
κ ⇒

⇒ Kn(x; p, N) =2 F1(−n,−x;−N ;
1
p
) (1)

where x, n − 0, 1, 2, . . . , N , N > 0, p ∈ (0, 1), 2F1 is the
hypergeometric function defined as:

2F1(a, b; c; z) =
∞∑

κ=0

(a)κ(b)κ

(c)k

zκ

κ!

and (a)κ is the Pochhammer symbol given by:

(a)κ = a(a + 1) . . . (a + κ− 1) =
Γ(a + κ)

Γ(a)

where Γ(.) is the gamma function.
For each f̂(i, j) with spatial dimension N × N , the

Krawtchouk moment invariants can be defined using the
classical geometric moments:

Mkm =
N−1∑
i=0

N−1∑
j=0

ikjmf(i, j)

The standard set of geometric moment invariants, which are
independent of rotation [4] can be written as:

νkm =
N−1∑
i=0

N−1∑
j=0

[icosξ + jsinξ]k[jcosξ − isinξ)]mf(i, j)

where ξ = (1/2)tan−1 2µ11
µ20−µ02

and µ are the central mo-
ments:

µpq =
N−1∑
i=0

N−1∑
j=0

(i−x̄)p(j−ȳ)q f̂t(i, j), p, q = 0, 1, 2, . . .

The value of ξ is limited to −45o ≤ ξ ≤ 45o. In or-
der to obtain the exact angle ξ in the range of 0o to 360o

modifications described in detail in [5] are required.
Following the analysis described in [3], the rotation in-

variant Krawtchouk moments are computed by:

Q̃km = [ρ(k)ρ(m)]−(1/2)
N−1∑
i=0

N−1∑
j=0

ai,k,p1aj,m,p2νij (2)

where the coefficients aκ,n,p can be determined by (1), and

ρ(n) = ρ(n; p, N) = (−1)n

(
1− p

p

)n
n!

(−N)n
(3)

In this paper, parameter p of Krawtchouk polynomials
has been selected to be p = 0.5

2.4 Spherical Fourier Transform
Spherical harmonics [6] are special functions on the
unit sphere, generally denoted by Ylm(η), where l ≥
0, |m| ≤ l and η is the unit vector in R3, η =
[cosφsinθ, sinφsinθ, cosθ]. Using this notation, gρ(θ, φ)
can be rewritten as gρ(η).

These functions form a complete orthonormal set on the
unit sphere:

Ns∑
i=1

Ylm(ηi)Ykj(ηi) = δlkδmj (4)

where Ns is the total number of sampled points on the
unit sphere (in our case the number of the equilateral tri-
angle barycenters of the icosahedron). Hence, each func-
tion gρ(η) can be expanded as an infinite Fourier series of
spherical harmonics:

gρ(ηi) =
∞∑

l=0

l∑
m=−l

αlmYlm(ηi), i = 1, . . . , Ns (5)

where the expansion coefficients αlm are determined by:

αlm =
Ns∑
i=1

gρ(ηi)Ylm(ηi)∆η (6)



where ∆η is the area of each triangle, hence ∆η = 4π
Ns

,
since all the equilateral triangles have the same area and
each icosahedron is assumed to be of unit radius. The over-
all vector length of αlm coefficients with the same l:

A2
l =

∑
m

αlm (7)

is preserved under rotation and this is the reason why the
quantities Al are known as the rotationally invariant shape
descriptors. In the proposed method, for each l the corre-
sponding Al is a spherical functional T .

2.5 Descriptor Extraction
For each F functional, a descriptor vector with length L·Nρ,
where Nρ = 20 and L = 26, is produced. In our experi-
ments the first four Krawtchouk moments (Q̃00, Q̃10, Q̃11,
Q̃20) were used as F functionals and four descriptor vec-
tors were formed (D3DTrace00, D3DTrace10, D3DTrace20

and D3DTrace11, respectively).

3 3D Krawtchouk moments Ap-
proach

In this section the necessary steps followed so as to obtain
descriptor vectors based on the 3D Krawtchouk moments
are given.

3.1 Rotation Estimation
An essential part of the approach contains a novel combina-
tion of the two dominant rotation estimation methods, PCA
and VCA [7], which have been proposed so far in the liter-
ature.

The VCA method achieves more accurate rotation es-
timation results than PCA when the 3D objects are com-
posed of large flat areas. Otherwise, PCA produces bet-
ter results than VCA. The proposed fully automatic ap-
proach tracks wrong rotation estimated objects produced
either from PCA, or from VCA, and selects the most ap-
propriate one.

In this paper for every model, rotation normalization is
estimated using both PCA and VCA. Then, the volume of
the bounding boxes parallel to principal axes are computed
and the method which leads to minimum volume is chosen.

3.2 Extraction Of Krawtchouk Descriptors
In [3], Yap et al. introduced Krawtchouk moments and
Krawtchouk moment invariants for image analysis, 2D ob-
ject recognition and region based feature extraction (2D
case), based on Krawtchouk polynomials. Their work was

extended in 3D case [2] and the discrete Weighted 3D
Krawtchouk moments were defined. A short description of
this extension is presented in the sequel.

As it was mentioned earlier (Section 2), f(x) is the
volumetric representation of the 3D object. Then, the 3D
Krawtchouk moments of order (n+m+l) of f , are defined
as:

Q̄nml =
N−1∑
x=0

N−1∑
y=0

N−1∑
z=0

K̄n(x; px, N − 1)×

×K̄m(y; py, N − 1)K̄l(z; pz, N − 1)×
×f(x, y, z) (8)

where

K̄(x; p,N) = Kn(x; p, N)

√
w(x; p, N)
ρ(n; p,N)

(9)

and

w(x; p, N) =
(

N
x

)
px(1− p)N−x (10)

The 3D Krawtchouk moments can then be used to form
the descriptor vector of every object. Specifically, the de-
scriptor vector is composed of 3D Krawtchouk Moments up
to order s, where s is experimentally selected to be s = 18.

D3DKraw =
[
Q̄nml

]
, n + m + l = 0 . . . s (11)

4 Matching
The first step is the normalization of each descriptor accord-
ing to:

D̃(i) =
1∑T

i=1 |D(i)|
D(i)

where T is the number of descriptors in the descriptor vec-
tor D, D(i) is the i − th element of D, and D̃(i) is i − th
element of the normalized vector D̃.

Then, the well-known L1-norm defined as:

L1(A,B) =

√√√√ T∑
i=1

|D̃A(i)− D̃B(i)|

is used for every normalized descriptor vector D̃3DKraw,
D̃3DTrace00, D̃3DTrace10, D̃3DTrace20, D̃3DTrace11 and
five distances are computed: L3DTrace00, L3DTrace10,
L3DTrace20, L3DTrace11 and L3DKraw, each one for ev-
ery normalized descriptor vector. It has to be mentioned



that due to the ambiguity of axis orientation after the rota-
tion estimation that takes place for the 3D Krawtchouk ap-
proach, the distance is selected to be the minimum for every
possible orientation.

The total distance is computed as follows:

Ltot = a1L3DTrace00 + a2L3DTrace10 + a3L3DTrace20

+a4L3DTrace11 + a5L3DKraw (12)

where a1 = a4 = 0.15, a2 = a3 = 0.25 and a5 = 0.2.
These values were experimentally selected.

5 Results
The proposed method was evaluated in terms of retrieval
accuracy, using the Princeton Shape benchmark (PSB)
database which consists of 1814 3D objects. The perfor-
mance of the proposed method against the other 16 com-
petitive ones which took part in the SHREC contest, was
proved to be among the best. The results published by the
contest organizers have shown that the proposed method
clearly outperforms the other methods if we take into ac-
count the first 10% of the retrieved results and it is among
the first 3-4 methods concerning the overall performance.
Also, it should be clearly stated that the proposed method is
based on a native 3D descriptor extraction algorithm.

Very useful conclusions can be derived by examining
the Mean Normalized Cumulated Gain (MNCG) and the
Mean Normalized Discounted Cumulated Gain (MNDCG)
graphs. Both graphs visualize the performance of the re-
trieval methods as a function of the retrieved results. How-
ever, MNDCG applies a discount factor to devaluate late-
retrieved results and, thus, it is an appropriate user-oriented
evaluation metric for retrieval applications. Our method is
always in the first three positions based on MNDCG and
in the first four based on MNCG. It should be noticed that
our method is ranked first using both MNCG and MNDCG,
considering the first 10% of the retrieved results. That
means that the proposed method first retrieves the more rel-
evant to the query 3D objects.

Specifically, based on MNDCG, the proposed method is
ranked first for 5% and 10% of the retrieved results, second
for 25% and third for 50% and 100%. Based on MNCG,
the proposed method is first at 5%, third at 25% and forth at
50% and 100%. However, by examining the MNCG graph,
methods ranked in the second, third and forth position after
50% of the retrieved results change consecutively.

The proposed method is ranked third with respect to
Mean First and Second Tier measures, if only the highly rel-
evant objects considered as similar. However, if marginally
relevant objects are considered as similar too, it is ranked 6-
th and 7-th respectively, although the differences between

Rank Participant RunNr Mean ADR
1 Makadia et al. 2 0.54986260
2 Makadia et al. 1 0.54084843
3 Daras et al. 1 0.52424060
4 Chaouch et al. 1 0.50018275
5 Pratikakis et al. 1 0.49523294
6 Shilane et al. 3 0.49371490
7 Zaharia et al. 1 0.49247277
8 Shilane et al. 2 0.48770607
9 Chaouch et al. 2 0.42156762
10 Shilane et al. 1 0.39706558
11 Makadia et al. 3 0.39249521
12 Makadia et al. 4 0.37667266
13 Laga et al. 1 0.32631385
14 Laga et al. 2 0.30619973
15 Jayanti et al. 2 0.26785165
16 Jayanti et al. 3 0.23702210
17 Jayanti et al. 1 0.23020707

Table 1: Ranking Results based on Mean Average Dynamic
Recall (ADR) value. The Second and Third column show
the name of the first author and the serial number of the
method respectively

the methods from 3rd to 7th position are close to 0.5%.
The main reason for these results derives from the fact
that marginally relevant objects are usually semantically
and functionally similar rather than geometrically similar,
while the proposed method does take into account only ge-
ometrical information. In addition, the proposed method is
ranked third based on Mean Dynamic Average Recall met-
ric, which measures the overall performance of the retrieval
method. The Mean ADR takes into account both highly and
marginally relevant objects with different weights. The re-
sults based on ADR are presented in Table 1. These results
clearly rank the proposed method among the best in native
3D content-based search.
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Abstract 

This paper presents a 3D model retrieval approach by representing a 3D shape at three distinct levels of 
detail: contour level, silhouette level, and drawing level. This 3D-to-2D representation is supported by a 
3D pose determination algorithm; to compute the similarity between 2D shapes at these levels, a 
combination of two different 2D shape descriptors is used to achieve a better performance. In addition, 
the results from the three levels were combined in for obtaining the final ranked retrieval.  
 
1. Introduction 

In the past decades, a large amount of 3D models have been accumulated in the engineering domain [1, 
2]. Reusing and sharing the knowledge embedded in these models is becoming an important way to 
accelerate the design process, improve product quality, and reduce costs. Generally, the term ‘similar 
models’ is meant for objects that are globally similar, but still have some differences in specific features. 
Therefore, a good search strategy for a 3D retrieval system should not only consider the global but also 
the local shape comparison between 3D models. Meanwhile, efficient query interfaces are also critical for 
engineering applications.  

In our research, we use three orthogonal views (front view, side view and top view) to represent a 3D 
model. The query can be a 2D sketch, legacy drawing or a 3D model [3, 4, 5]. In a benchmark study for 
engineering shapes, which evaluated 13 different shape representation methods, Iyer et al. [6] found that 
the view-based methods showed better retrieval performance. In a similar study Shilane et al. [7] showed 
that light field descriptor (LFD), another view-based approach, achieved the best performance.  

In this study, we apply the Multiple Level of Detail (MLD) method, an extension of the orthogonal 
view-based 3D similarity approach presented in [5], by splitting the information in each view into three 
distinct levels of detail – silhouette, contour and drawing level. Generally, engineering shapes have high 
genus with several internal details and features, such as through and blind holes, which greatly affect the 
perceived similarity, as opposed to the global external shape. Through the SHREC experiments we have 
tried to explore an engineering perspective of shape applied to multimedia databases. 

We evaluated different schemes for combining the similarity obtained from the three levels of detail, 
by combining distances. The proposed approach has many advantages: (1) it requires only three 
orthogonal viewing directions, which is concurrent with engineering view of shape and design; (2) it 
allows users to sketch queries at any level of detail, thus supporting a coarse-to-fine search as well as 
searching with legacy 2D drawings; and (3) it has better retrieval performance (i.e., accuracy and 
efficiency) compared to several shape descriptors and comparable performance to the LFD. 

 
2. Multiple Levels of Detail representation 

The multi-view, multiple level of detail approach described in this paper falls among the view-based 
methods, and was inspired by several factors arising from traditional engineering knowledge and from a 
well-known fact that the human visual perception of a shape is organized from coarse-to-fine details [9, 
10, 11]. Three-view drawings are widely used and have historically played an important role in 
engineering and technology, because a single view such as an isometric or oblique view is not enough to 
reconstruct or manufacture a 3D model which holds rich topologic and geometric information [12]. 
Recently, Guan et al. [13] also proposed generating six orthogonal views using visual hulls for matching 
multimedia objects although other non-orthogonal, single-view approaches have been explored in [14]. 

From an engineering graphics viewpoint, deciding the best view is an important step in obtaining 
multi-view drawings. Generally in order to get the best views, the object must be positioned within an 



imaginary glass box such that the surfaces of major features are either perpendicular or parallel to the 
glass planes. The goal of this step is to create views with a minimum number of hidden lines and to draw 
the view of an object in its most natural position. Multi-view drawings provide the most accurate 
description of three-dimensional objects and structures for engineering and manufacturing requirements 
[15].  Hence, an orthogonal view-based approach to shape representation lends itself to easy 
interpretation, understanding, and interaction for engineering applications. In addition, the proposed 
method enables searching with freehand sketches and 2D engineering drawings as well as 3D models. 

To obtain such 2D orthographic views, the following steps were involved: (1) a pose determination 
method to compute the pose of a 3D model by finding three orthogonal orientations and (2) a drawing-
like view generation method [3]. Along the three orientations, the projected views have a good 
accordance with the three main views concept (i.e., top view, front view and side view) in engineering 
graphics. 

2.1. 3D pose determination 
In [3], Pu and Ramani proposed a method to compute the pose 

of a 3D model by finding the orthogonal orientations with the 
maximum virtual contact area (VCA). VCA is defined as the 
bounding area formed by polygons that have the same distance 
from a predefined point and have the same normal. The key step 
in obtaining the principal axes is to determine the polygons of a 
3D object that have the same normal and lie in the same plane. 
To obtain the direction along which the VCA is the maximum, 
we need to find all polygons that have the same normal direction 

and the same distance to the mass center. The direction that gives the maximum VCA is the first principal 
axis bu of the 3D object orientation. To get the next principal axis bv of an object orientation, we find the 
normal that satisfies two conditions: (a) has maximum area; and (b) is orthogonal to the first principal 
axis. The third axis can then be obtained by performing the cross product between bu and bv. 

A detailed comparison between the pose estimation methods based on VCA and existing pose 
estimation approaches such as Principal Component Analysis (PCA) and EGI/CEGI is available in [3]. In 
Table 1 a few examples from the multimedia and engineering domain are presented to show the generality 
of the proposed method. 

 
2.2. MLD computation 

Table 2 shows an example of the proposed MLD 
representation of a 3D shape. The contour level reflects the 
global shape by which a user can “guess” the true object to 
some extent. The silhouette level conveys additional shape 
details using a few more additions to the contour level view. 
When the detailed shape information is not important, the 
silhouettes are enough to differentiate two similar objects with 
a higher confidence than the contour level. The third level 
contains the complete information, including the visual 
appearance and the occluded structure, using which a user can 
determine its shape precisely. Because of the intricate shape of 
engineering objects, we consider complete details in the third 

level. At the contour level, there are three different views along the principal axes; at the silhouette level, 
there are six different views; and at the full level, we use the three traditional drawing-like views along 
the principal axes to represent the drawing level. Below we will describe the algorithms to generate these 
views. 

Table 1: Examples of pose 
estimation 

  

  

Table 2: MLD based 
Representation 

3D 
Model 

 

Contour 
Level 

 

Silhouette 
Level 

 

Drawing 
Level 

  



2.2.1 Contour level. To obtain the shape at the contour level, the 3D model is projected along the 
intended directions by setting the z-value of each polygon to zero and rendering it in image space. In 
implementation, this operation can be efficiently finished with the help of any classic algorithms such as 
Painter’s Algorithm or the Z-buffer Algorithm. 

2.2.2. Silhouette Level. A silhouette edge 
connects two polygons, one of which faces 
toward the viewer and the other facing away from 
the viewer. When a 3D object is projected onto a 
2D viewing plane, its visual appearance is formed 
by all its silhouette edges. The efficient extraction 
of silhouettes has been widely studied in many 
applications ranging from computer vision to 
non-photorealistic rendering. Earlier hidden line 
removal methods [20] have been used to get the 
silhouette edges.  Recent methods render the 
silhouettes of 3D models in image space include 
[21, 22]. In our application, we propose a method 

by which the silhouettes of a 3D model are efficiently generated in object space instead of image space. 
Figure 1 shows the process of the silhouette generation.  

The first step is culling backward polygons [16]. Our contribution in this step is in improving the 
efficiency of the second step of discarding the inside-edges. The inside-edge has a distinguishing 
property: it is shared by two polygons. With this definition, we can cull the inside-edges completely by 
traversing all the triangles with the help of a look-up table. The look-up table is an m×m matrix, where m 
is the number of remaining vertices after backface culling. The element ),( ji represents the edge formed 
by vertices i and j. First, we can code all vertices from 0 to m - 1 . Then by traversing the 3D model after 
backface culling, we can fill this table according to the connecting relationship of the edges. Finally, the 
inside-edges are determined by checking whether the element at ),( ji  is filled more than twice. In 
practice, to save memory, we can use bits to represent the table. Figure 1 (c) shows the inside-edge culled 
result. The computational complexity of the look-up table method is O(n+m). 

The third step is projecting the result after the inside-edge culling operation along the respective 
orientation. In order to render the silhouette the occluded structure is culled by executing a series of fast 
ray-triangle intersection tests. The final 2D view is obtained by projecting the remaining polygons onto 
the corresponding projection planes.  

 
2.2.3. Drawing level. We perform all the steps from silhouette extraction (Section 2.2.2), except occluded 
edge culling, to obtain the drawing level views, which contain the complete shape information. 
 
2.3. View Similarity  

While pose determination is the process of registering the viewing direction of similar objects, we still 
need a shape descriptor with rotation invariance for registering the 2D geometric shapes no matter how 
they are rotated in object space. After view-generation, the 2D views thus obtained are represented using 
two different shape descriptors – 2.5D Spherical Harmonics and 2D Shape Histogram. Dissimilarity 
between a pair of 2D views is obtained as a linear sum of dissimilarities from these two shape descriptors. 
Given a pair of 3D objects (i.e. two sets of 2D views), the pair of 2D views which provide the best match 
(i.e. with the least dissimilarity) are the principal matching view pair. The other two matching view pairs 
are determined likewise from the remaining views. The total dissimilarity between two 3D models is 
obtained through the summation of dissimilarity between the three sets of matching view pairs.  
2.3.1 2D Shape Histograms (2DSH). To measure the similarity between 3D shapes, Osada et al. [17] 
represented a 3D shape signature named shape distribution that is formed by random points sampled 

 

 
Figure 1: Four steps for silhouette 

generation: (a) an original 3D model; (b) the 
result after backface culling operation; (c) the 
result after inside face culling operation; (d) 
the view without occlusion culling (Drawing 

Level); and (e) the silhouette view of (a). 



uniformly from the shape surface. We used the 2D analog of this method and call it 2D Shape Histogram 
(2D SH). For this method we sampled 500 points from the image and calculated the histogram of all the 
pair-wise distances among those points. For two histograms, i.e., H1 and H2, their similarity W is given 

by: 1
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where h is the number of bins in the histogram. 
2.3.2 2.5D Spherical Harmonics (2.5DSH). As a robust rotation invariant descriptor, spherical 

harmonics representation has been successfully 
applied to 3D shape matching [18]. It arises on the 
sphere in the same way that the Fourier exponential 
function arises on the circle. Funkhouser et al. [1] 
used a 2D analog of the spherical harmonics to 
extract a series of rotation invariant signatures by 
dividing a 2D silhouette shape into multiple circular 
regions. However, this method has two major 
limitations: one angle-to-multiple distances 
characteristic of a spherical function and instability 

caused by shape perturbation. In order to overcome these limitations and thus obtain a set of rotation 
invariant signatures for a 2D drawing, the 2.5D Spherical Harmonics (2.5D SH) representation was 
developed in [11]. First a bounding sphere for a given 2D drawing is calculated and rays are cast in 
different directions from the centroid. The intersection points of the rays with the edges of the drawing 
are represented in a 3-dimensional coordinate system where the z-value is the distance from the centroid.  
By uniquely projecting a 2D view into the 3D space, as shown in Figure 2 (b), a representation of the 2D 
view is generated [11].  

Finally, to obtain the rotation-invariant descriptor, 
we use the fast spherical harmonics transformation 
method [19] in which a spherical function of 
bandwidth B is sampled on the 2B-many Chebyshev 
points and not the B-many Gaussian points. These 
sampled points form a 2B×2B equiangular grid along 
the longitude and latitude of a sphere. 

 
3. Experiments with MLD 
In this study we present results from three promising 
search strategies, each utilizing a different 
combination of search parameters. In the first strategy 
(result file: RUNNR 1) all the three levels of detail 
(Contour, Silhouette and Drawing) were employed in 
a linear sum combination while all the views were 
also given equal weight (0.333). In the second strategy (result file: RUNNR 2), we only used the Contour 
Level (Level 1) with equal weights on all the three views (0.333), since the Contour Level captures 
objects with low genus and is especially suited for retrieving multimedia objects such as humans, 
dinosaurs, etc. In the third strategy (result file: RUNNR 3), we increased the weight on the Front view, 
leading to a view weight combination of (75%, 12.5% and 12.5%) with Level 1. This strategy provides 
high retrieval performance for objects that can be distinguished from other objects in one main view.  
4. Remarks 
From the SHREC experiments we observed that the large number of internal lines generated for 
multimedia objects pose a challenge for the 2.5D Spherical Harmonics method leading to significant 
number of false positives (see Table 3). To gain a deeper understanding, we experimented with the 

   
(a)  (b)  (c) 

Figure 2: An example of 2.5D Spherical 
Harmonics representation: (a) is a 2D 

drawing; and (b), (c), and (d) show the 3D 
representation of the drawing. 

 
Figure 3: Retrieval results for a Chair 

model with Level 1 (Method 1) 



popular image matching algorithm based on Fourier Descriptors and Zernike moments in conjunction 
with our pose estimation method. Significant improvement in retrieval performance was achieved with as 
can be seen from Table 1. The distance function is a sum of the normalized distances obtained from the 
two descriptors. The normalized weights for the Zernike moments and Fourier descriptors were set to 
equal value. Due to space constraints, we only present a subset of our results along with the best 
descriptor (Shilane et al., Method 3) from the SHREC competition for comparison. 
 

Table 3: Comparison of retrieval performance 

Run File Method First tier (highly relevant) 
Second tier 
(highly relevant) 

Mean Average 
Precision 

Jayanti et al. 2 17.28% 12.22% 0.17084 
Jayanti et al. 3 15.95% 11.64% 0.15204 
Jayanti et al. 1 15.06% 11.07% 0.14377 
Shilane et al. 3 40.87% 25.64% 0.53659 
Zernike + Fourier New 24.64% 8.75% 0.24178 
     
 
5. Conclusions 
From the SHREC experiments, we find that the MLD method is not readily suitable for searching in 
multimedia databases. However, this method provides the advantage of searching with freehand sketches 
and 2D drawings as well as 3D models [3D PVT]. Other image-based descriptors like Fourier Descriptors 
and Zernike moments can be used to improve the retrieval performance for multimedia databases.  
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Abstract

In this paper we propose the use of spherical wavelet de-

scriptors for content-based 3D model retrieval. Each model

is represented with its spherical extent function (EXT). We

consider both the latitude-longitude parameterization and

the flat-octahedron-based parameterization. For each case,

spherical wavelet descriptors are extracted and used as a

mean for shape comparison. Experiments are performed

on the Princeton Shape Benchmark.

1 Introduction

A challenging issue in content-based 3D model retrieval

is the description of shapes with suitable numerical repre-

sentations called shape descriptors. In general a shape de-

scriptor should be discriminative, compact, easy to com-

pute, and invariant under similarity transformations [7, 16].

In this paper we present a new content-based 3D model

retrieval method relying on spherical wavelet transform

(SWT) of the shape function. Spherical Wavelets have been

introduced by Schröder et. al. [12] and since, they have

been used to solve many geometry processing problems in-

cluding 3D model compression [4]. Similar to first gener-

ation wavelets, SWT is an effective tool to analyze shape

functions defined on the sphere as they provide a natural

partition of the function spectrum into multiscale and ori-

ented sub-bands. SWT is a natural extension of spherical

harmonics [2] and 3D Zernike moments [9]. It offers better

feature localization and takes all the advantages of wavelets

over Fourier analysis.

Most of 3D shape retrieval techniques proposed in the

literature aim to extract from the 3D model meaningful de-

scriptors based on the geometric and topological character-

istics of the object. Survey papers to the related literature

have been provided by Tangelder et. al [15] and Iyer et.

al [5]. They fall into three broad categories; feature-based

including global and local features, graph-based and view-

based similarity.

View-based techniques compare 3D objects by compar-

ing their 2D projections. The Lightfields [1] are reported

to be the most effective descriptor [13]. View-based tech-

niques are suitable for implementing query interfaces.

Graph-based techniques compare 3D shapes by compar-

ing their graph representation. The Reeb graphes [3], and

skeletons [14] are among the most popular. Other tech-

niques include methods based on the distribution of features

such as shape distributions [10] and local features such as

spin images [6].

Feature-based methods aim to extract compact descrip-

tors from the 3D object. A popular approach is to repre-

sent the shape using functions defined on the unit sphere.

Funkhouser et al.[2] uses spherical harmonics (SH) to ana-

lyze the shape function. They demonstrated later that spher-

ical harmonics can be used to achieve rotation invariance

provided that the shape function is defined on the sphere

[7]. Novotni et. al. [9] uses 3D Zernike moments (ZD) as

a natural extension of SH. Representing 3D shapes as func-

tions on concentric spheres has been extensively used. Our

developed descriptors fall into this category and are a natu-

ral extension of SH and ZD.

The issue of extracting invariant shape features is al-

ways an important problem in content-based 3D model re-

trieval. While translation and scale invariance can be eas-

ily achieved [11, 2, 7], rotation invariance is still a chal-

lenging issue. Methods that require pose normalization are

based on PCA, or continuous PCA [18]. However, PCA-

based alignment is known to misbehave and therefore, it

hampers significantly the retrieval performance [7]. Invari-

ant methods, describe shapes in a transformation invariant

manner by discarding alignment-dependent shape informa-

tion. This include the Spherical harmonics [17] and power

spectrum-based [16, 7] methods. These approaches rely on

the sampling of the shape function in the latitude and lon-

gitude directions, and therefore, the rotation invariance is

affected by the sensitivity of the sampling stage [8].

In this paper we propose the evaluation of spherical ex-

tent function and wavelet descriptors for 3D shape retrieval.

We discuss two parameterization methods: (1) the latitude-



longitude parameterization, and (2) the flat octahedron-

based parameterization (section 2). Then we propose the

spherical wavelet descriptors which can be computed from

the two parameterizations (section 3). Section 4 discusses

the performance evaluation results. Section 5 concludes the

paper and presents some issues for future research.

2 Shape parameterization

The steps commonly used to compare 3D shapes are:

(1) Normalization: the center of mass of the object is

translated to the origin (0, 0, 0), and the object is scaled to fit

within a unit ball. (2) Parameterization: compute a shape

function at discrete locations P = {p1, . . . , pk} sampled

from the parameterization domain. (3) Shape description:

feature vectors are extracted from the parameterization and

used as a mean for shape comparison.

Spherical parameterization is a popular method where a

3D shape is represented with functions on the unit sphere.

For simplicity, we consider the Spherical Extent Function

(EXT) [11], but our approach extends for any spherical

function. Spherical Extent Function f represents the extent

of the shape in the radial directions.

2.1 Latitudelongitude parameterization

This popular parameterization is obtained by casting rays

in different radial directions (θ, φ), where θ and φ corre-

spond to the elevation and azimuth angles. Then the extent

of the shape is measured along each direction. Figure 1a

shows the parameterization of the Stanford Bunny model.

This representation, along with spherical harmonic trans-

forms (SHT), has been previously used to extract efficient

shape descriptors [7, 16]. The main observation, however,

is that the obtained discrete shape function has singularities

near the two poles. Spherical harmonic-based descriptors

extracted from the latitude-longitude parameterization are

also very sensitive to the sampling direction and resolution.

Therefore, the rotation invariance of the power spectrum [7]

is affected [8].

2.2 Flat octahedronbased parameterization

We aim to find a parameterization Φ that samples the

shape uniformly in all directions. To achieve this in prac-

tice, we investigated two approaches originally proposed for

spherical parameterization and geometry image compres-

sion [4]:

1. Geodesic sphere. we sample the shape function by

casting rays from the shape’s center of mass to the ver-

tices of a geodesic sphere. The coarsest (level-0) repre-

sentation of the shape function is obtained using a ba-

sic octahedron of 20 vertices. Finer levels are obtained

3D model

Latitude-longitude paraneterization

(a) Latitude-longitude parameterization of the

Bunny model.

Flat octahedron
   (top view)

Image domain

(1)Image to flat  
   octahedron
   mapping

(2)Flat octahedron
 to sphere mapping

Spherical domain

(b) Flat octahedron parameterization procedure.

Figure 1: Parameterization procedures

by recursive subdivisions. Shape descriptors can be ex-

tracted using the second generation Spherical Wavelets

[12]. In practice, however, this approach achieved very

low performance.

2. Flat octahedron parameterization. Hoppe et. al

[4] maps the sphere onto a rectangular domain us-

ing spherical parameterization of a flattened octahe-

dron domain. As shown in Figure 1b, the left and

right halves of the image domain are mapped respec-

tively to the north and south hemispheres of the unit

sphere. Note that the flattened octahedron unfolds iso-

metrically onto a square image. Hence, image process-

ing tools can be used with simple boundary extension

rules.

The benefits of the flat octahedron-based parameterization

is two fold; (1) the shape is sampled uniformly in all direc-

tions. This eliminates the singularities that appear at each

pole in the latitude-longitude parameterization, and (2) the

discrete shape function is invariant to rotations along the

edges of the spherical triangles. We make use of these prop-

erties to build efficient shape descriptors.

3 Wavelet descriptors

To describe 3D models with efficient numerical repre-

sentation we propose to analyze the shape function using

wavelets tools which are known to be powerful for texture



description. During the off-line database indexation, each

3D model is described with a spherical wavelet-based de-

scriptor computed as follows:

1. Initialization:

(a) Normalize the 3D model for translation, scale,

rotation and axis flip.

(b) Parameterize the normalized 3D model into a ge-

ometry image I (the shape function f ) of size

w × h = 2n+1 × 2n.

(c) A(n) ← I , l ← desired decomposition levels

lmax.

2. Forward transform: repeat until l = 0:

(a) Perform a forward spherical wavelet trans-

form on A(l). We get an approximation

A(l−1), and detail coefficients C(l−1) =
{LH l−1, HLl−1, HH l−1} of size 2n−(lmax−l)×
2n−(lmax−l)−1.

(b) l ← l − 1.

3. Shape description: the approximation A(0) and the

coefficients C(0), . . . , C(n−1) are collected into a fea-

ture vector F .

The same process is also applied on-line to the query

model. The image wavelet transform uses separable filters,

so at each step it produces an approximation image A and

three detail images HL, LH , and HH . In this paper, we

experimented with the Haar wavelets. Other wavelet basis

can be used and a further investigation is required to select

efficient wavelet basis.

A special care should be taken when processing the

boundaries of the geometry images. We use the spherical

extension rules as proposed in [8].

In the final step, we build a shape descriptor by collect-

ing a subset of the wavelet coefficients into a vector F . We

use the first d = 256 coefficients. The dissimilarity be-

tween two 3D models Oi and Oj is the Euclidean distance

between their feature vectors Fi and Fj .

Finally, we experimented with the flat octahedron-

based parameterization, referred as SWCd RUNNR 1,

and the latitude-longitude parameterization, referred as

SWCd RUNNR 2. The implementations of the two meth-

ods differ only in the rules used for boundary extension [8].

Notice that, both the two descriptors require pose normal-

ization.

4 Experimental results

We have implemented the algorithms described in this

paper and evaluated their performance on the Princeton

Table 1: Mean performance measures (DR: Dynamic Re-

call), 1: SWCd RUNNR 1, 2: SWCd RUNNR 1).

Precision 1
st

2
nd DR NCG NDCG

-Tier -Tier @10 @10

1 0.232 24.1% 15.25% 0.32 0.39 0.45

2 0.222 23.12% 16.23% 0.30 0.36 0.42

Shape Benchmark (PSB)[13]. The program requires the

setting of three parameters: (1) the size of the geometry

images w × h = 128 × 64, (2) number of decomposition

levels lmax = 5, and (3) the descriptor length d = 256.

We query the database with 30 polygon soup models and

return for each query a ranked list of 3D models sorted

according to their dissimilarity to the query. Figures 2b

and 2c show some retrieval results using the two descrip-

tors SWCd RUNNR 1 and SWCd RUNNR 2, respectively.

The query models, provided in SHREC - 3D Shape Re-

trieval Context shown in Figure 2a, are not part of the PSB.

The top five shapes of the ranked list of each run are dis-

played.

Table 1 summarizes the average performance of the two

descriptors using different performance measures, com-

puted over the 30 queries. The first result is that the flat-

octahedron parameterization performs slightly better than

the latitude-longitude parameterization on all the perfor-

mance measures. Our lowest performance has been ob-

served on Query17, Query21 and Query28 where the two

algorithms fail to retrieve relevant shapes near the top of the

ranked list. Our algorithms however perform very well on

car and airplane classes.

Finally, the developed descriptors (SWCd RUNNR 1

and SWCd RUNNR 2) rank at the thirteenth (respectively

fourteenth) position (over 17 runs) in the Shape Retrieval

Context (SHREC-3D). This low performance is expectable

since the spherical extent functions on which we apply the

wavelet analysis ignore the interior details of the shape.

5 Conclusion and future work

We proposed in this paper the use of spherical wavelet

analysis for the indexation and retrieval of 3D models. Ex-

perimental results on the Princeton Shape Benchmark using

SHREC queries show that the new descriptors perform well

on some shape classes such as planes, cars and chairs, but

are not efficient on classes of shapes that contain many in-

terior details, and on stick-like shapes.

In future we would like to experiment with other spheri-

cal shape functions to take into account the interior details

of the shapes. We plan also to test different wavelet basis,

and investigate what could be a best basis for different

shape classes.
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Abstract

The ability to perform a Google-like search on a database of
3D models is becoming a growing necessity as the number
of 3D models in circulation is rapidly increasing. One of the
many existing methods dealing with this problem consid-
ers the matching problem as one of visual similarity. This
idea of measuring the distance between two models as the
distance between their corresponding silhouette images per-
forms well on a number of benchmarks, but comes with a
few inherent limitations, the biggest of which is that at the
time of comparison all possible rotational alignments be-
tween two models need to be considered. In this paper we
present an approach based on the silhouette representation
of a model which deals with these issues and reduces the
problem of similarity estimation to that of computing the
Euclidean distance between small feature vectors.

1. Introduction and related work
Laser-scanned objects, CAD models, and even image-based
reconstructions are just a few of the sources contributing
to the rapidly growing number of publicly available 3D
models. Along with these vast resources of 3D collections
comes the need for a fast, large-scale model retrieval and
matching system. Although the availability of 3D informa-
tion has sparked a number of methods which take advan-
tage of the complex geometric information for each model,
one of the consistently best performing methods has been
the retrieval method based only on visual similarity [3, 12].
Surprisingly it is shown model silhouettes provide enough
information for recovery, eliminating the need to process
often complex 3D structural or surface information. One
explanation for this result is that methods based on shape or
geometry often rely on the computation of descriptive, lo-
cal features. This task is made difficult by the fact that local
shape representation may vary widely among objects from
the same class ( one reason may be the level of complexity
used when generating the original model).

Another popular class of methods considers global rep-
resentations of the models ([14, 2, 5, 6]) and in particu-

lar cases the representations of the models analyzed using
the spherical harmonic transform ([14, 7], among others).
We will also use the spherical harmonic representation and
its rotational invariants in a similar manner, as will be ex-
plained in later sections.

The method we present in this paper is motivated by the
visual similarity method of [3]. The basic idea is based on
approximating the light field [9] of a 3D model by captur-
ing silhouettes from a fixed set of positions on the sphere.
While their method proves promising, it has a few inherent
limitations. The spherical positions of the silhouettes are
restricted by the fact that comparisons can only be made for
rotations which map the samples onto themselves. There
is no natural way to perform approximate comparisons,
which is a necessity considering very large databases may
be queried, and there is no flexibility in the rotations that
can be tested. Finally, for any pair of models, a brute force
traversal through all possible rotational alignments must be
made (although a hierarchical approach can help speed up
the comparisons). We will present in this paper a method for
model retrieval which addresses these three concerns. Our
method takes advantage of the fact that the light field rep-
resentation of a 3D model can be considered a function on
the tangent bundle of the sphere (where each tangent plane
represents a different model silhouette). The comparison of
two light fields can then be written as the correlation of two
tangent bundles over the space of 3D rotations. We show
how such a comparison can be written as a correlation in-
tegral, which can be computed as a multiplication in the
Fourier domain. We also present an alternate method which
uses the same representation, but instead utilizes rotational
invariants in the spherical Fourier domain to represent the
light field with one small feature vector. In this case the
similarity between two models is just the Euclidean distance
between two such vectors.

2. Light field representation
The model retrieval method in [3] considers silhouettes
taken at 20 (in practice only 10 are needed) different loca-
tions on the sphere, and there are only 60 rotations which



map these points onto themselves. In order to create a
denser sampling of silhouette positions and to consider
more rotations, the only solution is to recreate the config-
uration of 10 vertices at a different reference orientation.
Repeating this configuration 9 times, a total of 100 silhou-
ettes are generated, and the number of rotations which need
to be traversed before a distance measure is obtained rises to
5,460. We would like to develop a method that is more flex-
ible to the number of silhouettes that can be used, a method
which has natural approximation capabilities for speed con-
siderations, and one that does not require the brute-force
traversal of all possible rotational alignments.

We begin by describing a modified representation of the
light field for a 3D model. Instead of capturing silhouettes
from pre-determined positions, we can specify the locations
given the desired resolution. Given a spherical bandwidth
B such that (2B)2 samples will be uniformly placed on
the sphere, in spherical coordinates (see Figure 1 to see
what this sampling looks like on the sphere). Only the

A B C

Figure 1: On the left (A) is a spherical grid with 256 sam-
ples. The sphere S

2 is sampled uniformly in spherical coor-
dinates, thus creating a square grid. (B) depicts the corre-
sponding regions mapped onto the sphere. The highlighted
samples correspond to the highlighted row in (A). The sam-
ple centers (origins of the tangent planes) are displayed in
(C).

value of B needs to increase until the desired spacing is
achieved. A silhouette will then be generated from each of
these samples, and this collection of silhouettes will be the
model’s light field representation. The silhouette at sphere
point p(θ, φ) is a binary function obtained by orthographi-
cally projecting the 3D model onto the tangent plane at p.
The orientation of the tangent plane is given by the rotation
R = Rz(φ)Ry(θ) (i.e. the tangent plane at the north pole
maps onto the tangent plane at p via the rotation R).

3. Model similarity as correlation
We now present the first method to measure similarity of
two light fields. For the moment, consider the continuous
light field function L(p, v) which gives the binary value of
the point v on the silhouette taken from spherical location
p. If we process the silhouettes to generate smaller features

which may encode some translational or rotational invari-
ants, then our light field representation can be stored as a
vector-valued function on the sphere, given as L(p, x). In
other words, L([0 0 1]T , x) is some feature vector com-
puted for the silhouette obtained from the north pole. For
simplicity we will use the centroid-distance functions and
Zernike moments used in [15, 3]. If we define the similar-
ity of two feature vectors to be their correlation coefficient,
then we can claim the similarity of two 3D models as the
maximum correlation coefficient of their light field repre-
sentations over all possible rotational alignments. In other
words, model similarity is given by the maximum of the
following rotational function:

Gc(R) =
∫

x

∫
p

L1(p, x)L2(RT p, x)dpdx (1)

The key here is in recognizing the underlying spherical
integration as a correlation of two spherical signals. It
has been shown that the correlation integral G(R) =∫

L1(p)L2(RT p)dp can be estimated efficiently as a mul-
tiplication in the spherical Fourier domain. We refer read-
ers to [8, 11] for the details, and for other applications
of the spherical correlation alignment. We will write f̂ l

m

for the spherical Fourier coefficients of degree l and or-
der m, f̂ l for the vector of (2l + 1) coefficients f̂ l =
[f̂ l

l f̂
l
l−1 · · · f̂ l

−l+1f̂
l
−l]

T , and Ĝl
mp for the coefficients of the

Fourier transform defined on the rotation group SO(3).
The spherical correlation theorem states that the Fourier

transform of the spherical correlation function G can be ob-
tained as

Ĝl
mp = L̂1

l

mL̂2
l

p

and so the samples of the correlation function are recov-
ered with G(R) = ISOFT (Ĝ) where ISOFT is the in-
verse SO(3) Fourier transform. Our light-field correlation
can now be written as

Gc(R) =
∫

x

ISOFT (Ĝ)(x)dx (2)

If we let B represent the bandwidth of the spherical func-
tions (meaning only coefficients up to degree B − 1 are
computed), then the inverse SO(3) Fourier transform will
leave us with with 2B samples in each of the three Euler
angles, giving us an accuracy up to ± (

180
2B

)◦ in α and γ and
± (

90
2B

)◦ in β. Here α, β, γ form the traditional ZY Z Euler
angle parameterization of SO(3). To estimate Gc(R) for a
finer sampling using interpolation, we only need to compute
equation (2) assuming the coefficients for degrees above
the bandwidth are equal to zero. To compute the SFT of
a discrete spherical function we can use a fast O(B2log2B)
algorithm developed by Driscoll and Healy [4], A simi-
lar separation-of-variables approach exists for a fast SO(3)
Fourier transform in O(B3log2B) [8].



3.1. Computational considerations
We can take advantage of having structural information to
reduce the computational and storage burden of our light-
field features. Knowing that the silhouette generated at any
point p on the sphere is just a projection of the model onto
the silhouette plane, it is clear that the silhouette generated
from the antipodal point −p will just be a reverse image.
Since the contour-distance features and Zernike moment
features of a silhouette are invariant to rotations, we only
need to generate silhouettes from one hemisphere. This
means that the underlying spherical function of L(p, x) is
has the even property that L(p, x) = L(−p, x). For such
functions, it is known that all spherical Fourier coefficients
of an odd degree are zero. Also, since the spherical function
is real-valued, the coefficient vectors f̂ l exhibit the hermi-
tian property that opposite orders are related by conjuga-
tion. These two facts mean we only need to compute f̂ l

m

for l even and m ≥ 0. Along with the fast correlation theo-
rem, these speedups allow us to find the global maximum of
the rotation function Gc(R) faster than doing a brute-force
evaluation for each sample of the rotation space.

4. Rotational invariants
For some applications such as database model retrieval,
where the goal is to create a ranked list of similar models,
the correlation method may not be fast enough to do pair-
wise comparisons against a database of thousands of mod-
els. In this setting, we can use invariant properties of the
spherical harmonic coefficients (see [7, 10] for other uses of
these invariants) to encode a feature vector which does not
depend on the orientation of the original polygonal model.
Once it is understood how the individual coefficients change
under rotation, it can be easily verified that the vector norm
of the coefficients of a particular degree remains unchanged
under rotations. Intuitively, we would expect a rotation to
manifest itself as a modulation of the Fourier coefficients as
is the case in traditional Fourier analysis. This is, in fact,
the observed effect. As spherical functions are rotated by
elements of the rotation group SO(3), the Fourier coeffi-
cients are “modulated” by the irreducible representations of
SO(3):

f(η) �→ f(RT η) ⇐⇒ f̂ l �→ U l(R)T f̂ l (3)

The U l matrix representations of SO(3) are the spectral
analogue to 3D rotations. The unitarity of these represen-
tations ensures that the rotation of a function does not alter
the distribution of spectral energy among degrees:

||U l(R)f̂ l|| = ||f̂ l||, ∀R ∈ SO(3) (4)

By considering only the magnitudes of the coefficient
vectors, the light-field feature size is further reduced. The

total size is equal to �B
2 	N , where B is the spherical band-

width and N is the size of the individual silhouette features.
For example, consider a model for which we render a very
large number of silhouettes (a bandwidth of B = 17 means
we must render 578 silhouettes in one hemisphere). Assum-
ing we keep 35 Zernike coefficients and 10 contour distance
coefficients for each silhouette (as in [3]), we can repre-
sent the entire light-field with one feature vector with just
(35 + 10) ∗ 8 = 360 elements. The distance between two
models is defined as the Euclidean distance between their
respective feature vectors, and this computation will be very
fast even for an entire database of models.

5. Discussion
Two versions of the correlation method and two versions of
the rotational invariants comparison method were entered in
SHREC, the 3D Shape Retrieval Contest [1, 13]. The four
entries were entered under the name ”Makadia.” The first
run compared models using the correlation method, but only
Zernike features were used. The second run was again the
correlation method, but both Zernike and contour-distance
features were used. The third run compared models with
the faster invariant vector comparison, using only Zernike
features, while the fourth run performed the vector com-
parisons using Zernike and contour-distance features. Of
the 17 main categories of analysis, the correlation meth-
ods finished first in 11. The faster vector-invariant com-
parisons, however, finished in the middle of the pack in all
categories. The obvious tradeoff is in accuracy versus com-
parison times. The time to compare two models using the
vector comparison is less than 0.0001 seconds, while the
time to compare two models using the correlation method
is just less than 0.1 seconds (for a bandwidth of B = 17).
While the current implementation is a naive, preliminary ef-
fort, the difference in times is indicative of the differences
in complexity between correlations and vector comparisons.
Figure 2 shows that the accuracy of the correlation method
may be achieved without performing pairwise correlations
against an entire database. The faster invariant vector com-
parisons can be used to generate a much smaller set of pos-
sible matching objects, and the correlations can be used to
provide an accurate ranking within this pruned set.

5.1. Future work
The algorithms proposed in this document can be extended
in many ways. One way to speed up the model compar-
isons would be to perform the correlations at smaller reso-
lutions. This is a natural approximation obtained by varying
the number of Fourier coefficients used in the correlation.
By reducing the number of coefficients, a faster correlation
estimate will be obtained for a sparser sampling of the rota-
tion space. This property leads to a hierarchical model re-



1 2 3 4 5 6 7
20

40

60

80

100

120

140

160

180

200

220

best N models in correlation method

Figure 2: This plot shows how many models in the ranked
list (obtained with vector comparisons) you need to traverse
before finding 50% of the best N matches in the ranked list
obtained with correlations. The plot shows the median over
all queries. For example, 50% of the best 100 matches from
the correlation method will appear in the first 213 matches
from the ranked list obtained with fast vector comparisons.

covery approach, where in each successive pass the model
database can be pruned with correlation comparisons using
increasing numbers of coefficients. On another note, it may
be beneficial to retain more information beyond a binary sil-
houette image. One could capture a depth map, where each
pixel marks the distance from the model to the silhouette
plane, to help disambiguate between very different objects
which generate similar silhouettes.

6. Conclusion
In this paper we presented two new approaches for compar-
ing 3D models. The first method considers the best possible
correlation alignment between the models’ light field repre-
sentations. The benefit of this approach is in the fast cor-
relation estimation using the Spherical Fourier Transform,
and the flexibility and approximation allowed by varying
the number of coefficients used. The second method uti-
lizes the rotational invariants of the spherical transform to
encode an entire model light field with just one small fea-
ture vector. This allows us to compute model distance with
fast Euclidean distance measurements.

References
[1] AIM@SHAPE. http://give-lab.cs.uu.

nl/shrec/shrec2006/.

[2] M. Ankerst, G. Kastenmüller, H.-P. Kriegel, and
T. Seidl. 3D shape histograms for similarity search and
classification in spatial databases. In R. Güting, D. Pa-
padias, and F. Lochovsky, editors, Advances in Spa-
tial Databases, 6th International Symposium, SSD’99,

volume 1651, pages 207–228, Hong Kong, China,
1999. Springer.

[3] Y.-T. Shen D.-Y. Chen, X.-P. Tian and M. Ouhyoung.
On visual similarity based 3D model retrieval. In Eu-
rographics, 2003.

[4] J.R. Driscoll and D.M. Healy. Computing fourier
transforms and convolutions on the 2-sphere. Ad-
vances in Applied Mathematics, 15:202–250, 1994.

[5] B. K. P. Horn. Extended gaussian images. IEEE,
72:1671–1686, 1984.

[6] M. Kazhdan. Shape Representations and Algorithms
for 3D Model Retrieval. PhD thesis, Princeton Uni-
versity, 2004.

[7] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Ro-
tation invariant spherical harmonic representation of
3D shape descriptors. In Symposium on Geometry
Processing, June 2003.

[8] P. J. Kostelec and D. N. Rockmore. FFTs on the rota-
tion group. In Working Paper Series, Santa Fe Insti-
tute, 2003.

[9] M. Levoy and P. Hanrahan. Light field rendering. In
Proc. of ACM SIGGRAPH, pages 31–42, 1996.

[10] A. Makadia and K. Daniilidis. Direct 3D-rotation es-
timation from spherical images via a generalized shift
theorem. In IEEE Conf. Computer Vision and Pattern
Recognition, Wisconsin, June 16-22, 2003.

[11] A. Makadia and K. Daniilidis. Rotation recovery
from spherical images without correspondences. IEEE
Trans. Pattern Analysis and Machine Intelligence, 28,
2006.

[12] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser.
The princeton shape benchmark. In Shape Modeling
International, Genova, Italy, June 2004.

[13] R. Typke, R. C. Veltkamp, and F. Wiering. Evaluating
retrieval techniques based on partially ordered ground
truth lists. In Proceedings International Conference
on Multimedia & Expo, 2006.

[14] D. V. Vranic and D. Saupe. 3d model retrieval with
spherical harmonics and moments. In Proceedings of
the 23rd DAGM-Symposium on Pattern Recognition,
pages 392–397, London, UK, 2001. Springer-Verlag.

[15] D. S. Zhang and G. Lu. An integrated approach to
shape based image retrieval. In Proc. of 5th Asian
Conference on Computer Vision (ACCV), pages 652–
657, Melbourne, 2002.



 

A Concrete Radialized Spherical Projection Descriptor           
for 3D Shape Retrieval 

Panagiotis Papadakis1, 2, Ioannis Pratikakis1, Stavros Perantonis1 and Theoharis Theoharis2 
 

1Computational Intelligence Laboratory 
Institute of Informatics and Telecommunications 

National Center for Scientific Research “Demokritos” 
GR-153 10 Agia Paraskevi, Athens, Greece 

 
2Computer Graphics group 

Department of Informatics and Telecommunications 
 National and Kapodistrian University of Athens 

GR-15784 Panepistimiopolis, Ilissia, Athens, Greece 
 

Abstract. In this paper, we present a 3D shape retrieval methodology that relies upon a shape representation 
based on the theory of spherical harmonics. To alleviate the problem of rotation invariance, we invoke in a 
parallel fashion, the Continuous Principal Component Analysis along with a novel approach which applies 
PCA on the mesh normals. After translating to the model’s center of mass, the 3D model is decomposed into 
a set of spherical functions with increasing radius, which represent the intersections of the model’s surface 
with rays emanating from the origin and parts closer to the origin than the furthest intersection point at each 
ray. Properties of spherical harmonics are used to achieve scaling invariance and axial flipping invariance. 

 
1. Analysis of shape descriptor extraction steps 
 
The distinct stages followed during the proposed 3D shape descriptor extraction are shown in Fig. 1. 
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Figure 1. The consecutive stages (A)-(F) of the proposed 3D shape matching scheme for retrieval purposes.  
 
In this section, we detail the stages depicted in Figure 1. 
- Stage A: The model is translated to its center of mass m which is computed by using the 
Continuous Principal Component Analysis (CPCA) [1]. Thus m equals to: 
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where S is the total surface area of the model, N is the number of triangles of the model, v is a vertex 
of the model, Si is the surface area of triangle Ti and Ai, Bi and Ci are the vertices of Ti. 
 
- Stage B: We apply two alternative alignment procedures in a parallel fashion. In the first procedure, 
we apply the CPCA, where the covariance matrix of the model’s surface is given in Eq. 2.  
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where C denotes the model’s covariance matrix, f(v) = ( ) ( )T− ⋅ −v m v m  and M is the set of vertices 
of the polygonal model. The produced aligned model is shown in Figure 1.(B).  
In the second alignment procedure, we use the model’s mesh normals as input for the computation of 
the covariance matrix in PCA[2]. Specifically, first we compute the mean normal Nlm : 
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where ni is the normal vector of the triangle i. The mean normal is always the zero vector because we 
treat each triangle twice, first with its normal direction and second with its opposite direction. This is 
done to avoid possible incorrect ordering of the triangle vertices which affects its direction sign. 
Thereafter, the covariance matrix is computed as follows: 
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The produced aligned model is shown in Figure 1.(B). After the completion of Stage B we have two 
alignment variants of the initial model. This implies that the following stages will finally lead to two 
3D shape signatures. 
 
- Stage C: In this stage, we compute the intersections of the triangles of the aligned model with rays 
emanating from the origin and with directions (θj, φk): 
 

j
(2j 1)πθ

4B
+

= , 
2B

 k π 2φk =        (5) 

 
where B is the sampling bandwidth and j, k = 0,1,…,2B-1. Let S2 denote the (θj, φk) sample points on 
unit sphere and center at the origin and Intersi(θj, φk) be the distance from the origin of the i-th 
intersection of the model’s surface with ray (θj, φk) where i=1,2,… . If there is not any intersection at 
ray (θj,φk) then Inters(θj, φk) = -1. The 3D model is represented as a set of N spherical functions 

2
1: [ , ) {0}r r rf S l l +→ ∪  with radius r = 1,2,…,N where fr is denoted as: 
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where 1[ , )r rl l +  are the spherical function’s boundaries given by: 
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where davg is the average distance of the surface from the center of mass and M is the radius of the 
largest sphere. The set of N spherical functions representing the 3D model is shown in Figure 1 (C).  
 
- Stage D: Let mdistj,k = max{Intersi(θj, φk)} be assigned to the spherical function point  fD(θj, φκ). 
Then all fr(θj, φκ) with r < D are assigned values as if they belonged to the model by setting: 
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Practically, if the model is viewed from the (θj,φk) direction then the part of the model along ray 
(θj,φk) closer to the origin than mdistj,k is occluded by the intersection point corresponding to mdistj,k. 
According to the human perception we may assume that the occluded part actually belongs to the 
model. Therefore, taking into account Eq. 6, 8, the functions fr are denoted as: 
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  (9) 

 
These spherical functions lead to a model representation as shown in Figure 1 (D). 

 
- Stage E: A spherical function f(θ, φ) can be expressed as a sum of spherical harmonic functions [3] 
as: 
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where B is the sampling bandwidth, ( , )m

lY θ φ  is  the spherical harmonic of degree l and order m and 
$ ( , )f l m  is the equivalent spherical harmonic coefficient. The $ ( , )f l m  coefficients are computed as in 

the following: 
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where ( )B

ka  are appropriate weights. The spherical harmonics transform (SHT) [3] is applied to each 
of the N spherical functions, producing B2 coefficients. Since the input of the SHT is a real-valued 

function, the symmetry $ $( , ) ( 1) ( , )mf l m f l m= − −  exists between the coefficients. This enables us to 
store only the positive order coefficients, if we use them accordingly at the matching stage (Section 
2). The number of these coefficients is: 

 
/ 2( ( 1))bands bandsN L L⋅ ⋅ + , bandsL B≤ .               (12) 

 



 

Stage F: The obtained coefficients are scaled to have unit L1 norm. By definition, spherical harmonic 
coefficients are exactly proportional to the model’s scale. Thus scaling invariance is obtained by 
scaling the coefficients which is done in constant complexity, because we sample all models with the 
same bandwidth. Axial flipping invariance is achieved by using the following properties: 
 

i. If the model is reflected with respect to the x-axis (yz plane): $ $( , ) ( , )f l m f l m⇒ . 

ii. If the model is reflected with respect to the y-axis (xz plane): $ $( , ) ( 1) ( , )l mf l m f l m+⇒ − . 

iii. If the model is reflected with respect to the z-axis (xy plane): $ $( , ) ( 1) ( , )mf l m f l m⇒ − . 
 
Only the sign of the real and imaginary component of a coefficient may change, so we store the 
absolute values of the imaginary components for any l, m and the absolute values of the real 
components for the case where m or l is odd. If l, m are both even, then the sign of the real component 
does not change and in this case we store the actual values. 
 
2. Similarity measure 
 
 Each spherical harmonic coefficient is a complex number. To compare two shape descriptors, 

the L1 distance is computed. Let $ µ' ' '( , ) Re Im,    ( , ) Re Imf l m j f l m j= + = +  be two coefficients 
corresponding to two different shape descriptors. The L1 distance between them is: 
 

    $ µ' ' ' ' 2 ' 2( , ) ( , ) Re Re (Im Im ) (Re Re ) (Im Im )f l m f l m j− = − + − = − + −                         (13) 

 
To compute the overall difference between two shape descriptors, we compute the above for all 
degrees bandsl L≤ , but only for the positive order coefficients. Using the symmetry between the 
coefficients of positive and negative order, we take: 
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This enables us to only store the positive order coefficients in the shape descriptor, but we multiply 

each µ'( , ) ( , ) ,    0f l m f l m m l− < ≤$  by two, to take into account the negative order coefficients. 

As explained in the previous section the shape descriptor consists of two sums of coefficients. The 
first corresponds to the model aligned with CPCA and the second to the model aligned by applying 
the PCA to the mesh normals. When comparing two shape descriptors, the comparison is done 
between the corresponding sums. Specifically, the CPCA aligned version of the first model is 
compared with the CPCA aligned version of the second, and the same is done for the PCA using 
mesh normals aligned version. The comparison which gives the minimum distance is taken to be the 
similarity measure between the two models. 
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Partial Matching of 3D Shapes with Priority-Driven Search

Philip Shilane Thomas Funkhouser
Princeton University

1 Method

This project represents the results of our ongoing work to efficiently use local shape features and is
more thoroughly described in the article “Partial Matching of 3D Shapes with Priority-Driven Search”
[Funkhouser and Shilane 2006] with the following abstract.

“Priority-driven search is an algorithm for retrieving similar shapes from a large database of 3D objects.
Given a query object and a database of target objects, all represented by sets of local 3D shape features,
the algorithm produces a ranked list of the c best target objects sorted by how well any subset of k features
on the query match features on the target object. To achieve this goal, the system maintains a priority
queue of potential sets of feature correspondences (partial matches) sorted by a cost function accounting
for both feature dissimilarity and the geometric deformation. Only partial matches that can possibly lead to
the best full match are popped off the queue, and thus the system is able to find a provably optimal match
while investigating only a small subset of potential matches. New methods based on feature distinction,
feature correspondences at multiple scales, and feature difference ranking further improve search time
and retrieval performance. In experiments with the Princeton Shape Benchmark, the algorithm provides
significantly better classification rates than previously tested shape matching methods while returning the
best matches in a few seconds per query.“

Please see the paper for further details.

2 Submission

We submitted three retrieval runs to highlight various aspects of our technique. The first is the Global
Harmonic Shape Descriptor (GHSD). This is the Harmonic Shape Descriptor [Funkhouser et al. 2003,
Kazhdan et al. 2003] positioned at the center of mass of each shape and scaled to describe the entire shape.
We included the GHSD in this contest since it is often used for comparison in the literature. Our two main
techniques use local versions of the Harmonic Shape Descriptor in a multi-point matching system.

• Priority-Driven Search with Ranks and Multi-Scale Local features are used for matching with
a cost function that incorporates differences between the ranks of corresponding descriptors, posi-
tions, and normals. The best combination of features was found for each of four descriptor scales
independently and their costs were combined.

• Priority-Driven Search with Ranks, Multi-Scale, and Distinction The previous technique is aug-
mented by selecting a small set of distinctive features for each target in the database. Then, corre-
spondences from the query are only considered against the distinctive subset of features among the
targets. In order to calculate distinction, we needed a classification for the target shapes. We used the
GHSD to map from the target shapes to their closest matches in a classified database. Then, distinc-
tion scores for each feature were calculated based on how well they matched to shapes of the same
class as described in Shilane et al. [2006]. While mapping the unclassified shapes to a classified

1



database is perhaps beyond the scope of this contest, it shows how well multi-point matching can
work when focused on distinctive features.
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Abstract 
 
This paper tackles the issue of 3D mesh indexation by using shape descriptors (SDs) under constraints of geometric 
and topological invariance. A 3D shape descriptor, so-called the Canonical 3D Hough Transform Descriptor 
(C3DHTD) is here described. Intrinsically topologically stable, the C3DHTD is not invariant to geometric 
transformations. Nevertheless, we show mathematically how the C3DHTD can be optimally associated (in terms of 
compactness of representation and computational complexity) with a spatial alignment procedure which leads to a 
geometric invariant behavior. 

 
1. Introduction 

 
The shape of an object is conceptually independent of its spatial position and size. A shape descriptor (SD) should 
therefore satisfy invariance properties with respect to geometric transforms such as isometries and isotropic scaling. 
In addition, since multiple topological representations can be associated with the same 3D mesh object, a SD should 
exhibit a stable behavior with respect to the mesh topology.  
This paper describes the Canonical 3D Hough Transform Descriptor (C3DHTD), introduced in  [1],  [2],  [3]. 
Intrinsically topological invariant, we show how the C3DHTD can be optimally associated with a spatial alignment 
procedure ensuring a geometric invariant behavior, while satisfying the storage and computational complexity 
requirements specific to similarity-based retrieval applications.  
The paper is organized as follows. Section 2 recalls the principle of the 3D Hough transform (3D HT), and points 
out its limitations when applied to 3D mesh similarity retrieval. Section 3 introduces the C3DHTD and shows how 
it overcomes such limitations as soon as a canonically invariant unit sphere partition is considered. Concluding 
remarks are presented in Section 4.  
 

2. The 3D Hough Transform 
 
Extensively used for 2D/3D primitive detection and recognition, the 3D HT provides a generic and highly detailed 
representation that makes it attractive for 3D content description purposes. However, in the case of shape-based 
similarity retrieval applications, it is of crucial importance to consider the specific requirements of geometric 
invariance, storage and computational complexity, and support of appropriate similarity measures.  
Is the 3D HT well-adapted to such strong requirements?  
Before answering this question, let us first briefly recall the 3D HT definition.  
 

2.1. Definition of the 3D HT 
 
The 3D HT is based upon the principle of accumulating points in IR3 within a set of planes. 
Let ⊂E  IR3 a finite set of points, with coordinate specified within a Cartesian coordinate system (O, x, y, z). Let us 
recall that a plane Π ⊂ IR3 is uniquely defined by a triplet  (s, θ, ϕ), where s ≥ 0 denotes the distance from the origin 
of the coordinate system to plane Π, and θ ∈ [0, 2π) and ϕ ∈ [-π/2, π/2) resp. denote the two angles (azimuth and 
elevation) associated with the spherical representation of the plane's unit length normal vector n. 
By uniformly sampling each axis of the parameter space (s, θ, ϕ), we respectively obtain Ns, Nθ et Nϕ  prototype 
elements, regrouped within the following sets:  
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The 3D HT is then defined as an application h : (Ξ × Θ × Ψ)  IR, each point p E∈  giving an additive 
contribution, w jk

p , to each element ),,ˆ( ki
p
jksh ϕθ , where p

jkŝ  is the element in Ξ closest to the distance p
jks  to the 

system’s origin of the plane passing through p and with orientation (θ j ,ϕ k ).  
In the case of polygonal models, E stands for the set of gravity centers of the mesh faces. The choice strategy of the 
weights w jk

p , is extensively discussed in  Section 3.2. 

 
2.2. On the geometric invariance of the 3D HT 

 
The previous considerations are developed under the assumption of a given Cartesian coordinate system. In order to 
ensure an invariant behavior with respect to geometric transforms such as isometries and isotropic scaling, an 
object-depended coordinate system should be first defined. The construction of such a coordinate system is based 
upon principal component analysis (PCA), for determining the object’s principal axes. The object's gravity center is 
selected as the system's origin.  
For achieving the spatial alignment of the 3D objects, most of the methods reported in the literature perform a (x, y, 
z) labeling of the principal axis in ascending or descending order of the eigenvalues λ1,, λ2 and λ3. This 
methodology is unable to take into account the diversity of meshes encountered in practice. Figure 1 shows an 
example of a miss-alignment of two airplanes due to such a crisp labeling of the principal axes. In addition, 
performing just a PCA cannot provide the axis orientation, which results in an ambiguity in the definition of the 
coordinate system.  
 
 

 
1.a. 

 
1.b. 

Figure 1. Miss-alignment resulting from the PCA approach.  The major principal axis corresponds to the vertical 
direction. 

 
 
 
To ensure a complete and non ambiguous representation during the matching stage, the set of 3D HTs 
corresponding to all the possible PCA-based coordinate systems (PCA CS) has to be available. Considering the (x, 
y, z) labeling of the three principal axes, and two possible orientations for each axis, results in 48 possible PCA 
CSs. Consequently, a complete descriptor needs to integrate the corresponding 48 HTs. However, some nice 
properties on the HT coefficients (circular shift, mirror reflections) can be exploited when changing the PCA CS. 
Mathematically, we have established  [2] that 3 HTs, so-called generating configurations (GCs), are sufficient for 
deriving a complete representation. The three GCs are defined as the HTs corresponding to three distinct PCA CSs, 
obtained by letting each axis of inertia successively become the system's z axis, with an arbitrary orientation. 
Let us now consider a given domain D (grey cells in Figure 2.a) on the uniformly sampled unit sphere. When 
changing the PCA CS, D does not fit anymore the resulting unit sphere partition (Figure 2.b).  
 
 
 
 
 



 
 
 
 
 
 
 
 
 

Figure 2. The effect of uniformly sampling the spherical coordinates. 
 
This shows that the uniform sampling of the spherical angle coordinates θ and ϕ, which leads to partitions of the 
unit sphere into "meridians" and "parallels", which are non-equivalent within the three PCA CSs. Consequently, the 
3 GCs represent a minimal generating set ensuring the completeness of the Hough representation. Nevertheless, 
keeping 3 distinct 3D HTs would lead to a prohibitively complex SD, since even for a coarse quantization with 
Ns=10, Nθ=20, and Nϕ=10, the descriptor size will be of 3 x 2000 = 6000 floating point numbers. In addition, since 
the 3 GC are not equivalent, defining symmetric similarity measures would require highly time-consuming 
procedures.  
To conclude, a geometric invariant 3D HT-based descriptor requires a high complexity in terms of descriptor size 
and matching computation time, which is untractable in practice.  
Let us show how it is possible to overcome such drawbacks by abandoning the principle of uniform sampling of the 
unit sphere.  
 

3. The canonical 3D HT descriptor 
 
Our goal is to define partitions, for which the three GCs become equivalent, in the sense that there exists a one-to-
one mapping between them. 
 

3.1. Canonically invariant unit sphere partition 
 
By construction, a partition obtained by projecting the vertices of any regular polyhedron onto the unit sphere is 
invariant to changes between the 48 PCA CSs  
In addition, multiple granularity levels can be obtained for such partitions, by recursively subdividing each of the 
polyhedral faces (Figure 3).   

3.a.    3.b.  
Figure 3. Canonically invariant partition obtained by two levels of subdivision of an octahedron.  

 
Figure 3 illustrates this nice behavior, the partition cells in grey (Figure 3.a) being one-to-one mapped into 
corresponding cells in Figure 3.b, associated with a different PCA CS. Consequently, the 3 GCs can be derived one 
from each other by using appropriate permutations of the HT coefficients. 
Let us note that the construction of other invariant partitions is also possible, but for reasons of simplicity we will 
retain here uniquely the octahedron-based partition.  
In this way, we construct the canonical 3D HTD (C3DHTD), completely specified by an unique 3D HT, and 
associated with a canonical coordinate system arbitrarily selected from the 48 possible PCA CSs.  
We can define now the similarity measure between two C3DHT as follows:   
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Let us demonstrate that the above-defined similarity measure is symmetric. Let { }48
1=iiT  denote the set of the 

mappings between the 3D HTs associated with the 48 PCA CSs changes. Each Ti is expressed as a permutation, 
which is an isometric application. By observing that { } { }48
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Let us observe that applying such a naturally symmetric similarity measure results in a gain factor of 3 in 
computational time with respect to symmetric similarity measure associated with non-canonical 3D HT-based 
representations.  
 

3.2. Implementation issues 
 
The first implementation issue concerns the definition of weights w jk

p , expressing the contribution of each face p to 

the 3D HT, with respect to the orientation given by the spherical angles (θj, ϕk).  
The simplest definition consists of considering w jk

p equal to the relative area Ap of face p, with respect to the total 
mesh area, for each value of j and k. However, the face orientation information is here completely eliminated. 
Coarse quantization of the parameter space (s, θ, ϕ), necessary for obtaining representations of reasonable 
complexities, will lead to an effect of over-accumulation of "parasite" areas that would seriously compromise the 
quality of the representation. Therefore, we have integrated the face orientation information within the weight as 
follows:  
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where n p denotes the unit length normal vector of face p, njk = ( cos( ) cos( )ϕ θk j , cos( ) sin( )ϕ θk j , sin( )ϕ k )t, [ ]T ∈ 0 1,  

is a pre-defined threshold and ⋅ ⋅,  stands for the scalar product of two vectors in ℜ3 .Within this formulation, the 

weight w jk
p  becomes equal to the thresholded projection area of the considered face p on a plane of orientation 

(θj, ϕk). Parameter T controls the influence of the orientation information, which is reinforced when 1→T .  
The second implementation issue is related to the definition of the mesh size Smax. Here, we have adopted a 
statistical approach derived from PCA, and set Smax .= + +15 1 2 3λ λ λ , where λ1,, λ2 and λ3 are the lengths of the 
principal axes. Such an approach provides a more robust measure of scale than classic bounding-box-based 
procedures.  
Finally, let us note that the underlying principle of accumulation holds only if the size of the mesh polygons is well-
adapted to the HT specific granularity, controlled by the step ∆s. The polygonal models are therefore initially 
adapted to ∆s, by recursively subdividing each face of the mesh with at least an edge longer than ∆s (Figure 4).  
 

  

4.a. Initial model.  4.b. Remeshed model. 

Figure 4. Adaptive remeshing of polygonal models.   



The connectivity information is in this case irreversibly degraded, but this is without any consequence, since the 
C3DHTD is completely independent of the mesh topology.  
 

4. Conclusion 
 
This paper presented a 3D Hough transform-based shape descriptor, for shape representation and similarity retrieval 
of 3D polygonal mesh models. The proposed C3DHTD is intrinsically invariant with respect to topological 
representations and provided with a behavior independent of geometric transforms.  
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