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Abstract

Qualitative probabilistic networks were designed to overcome, to at least some extent, the quantifi-
cation problem known to probabilistic networks. Qualitative networks abstract from the numerical
probabilities of their quantitative counterparts by using signs to summarise the probabilistic in-
fluences between their variables. One of the major drawbacks of these qualitative abstractions,
however, is the coarse level of representation detail that does not provide for indicating strengths
of influences. As a result, the trade-offs modelled in a network often remain unresolved upon in-
ference. We present an enhanced formalism of qualitative probabilistic networks to provide for a
finer level of representation detail. An enhanced qualitative probabilistic network differs from a
basic qualitative network in that it distinguishes between strong and weak influences. Now, if a
strong influence is combined, upon inference, with a conflicting weak influence, the sign of the
net influence may be readily determined. Enhanced qualitative networks are purely qualitative in
nature, as basic qualitative networks are, yet allow for resolving more trade-offs upon inference.

1 Introduction

The formalism ofprobabilistic networksintroduced in the 1980s [20], is an intuitively appealing for-
malism for capturing knowledge of complex problem domains along with the uncertainties involved.
Associated with the formalism are powerful algorithms for reasoning with uncertainty in a mathe-
matically correct way; these algorithms allow for causal reasoning, diagnostic reasoning as well as
case-specific reasoning. Applications of probabilistic networks can be found in areas such as (medi-
cal) diagnosis and prognosis, planning, monitoring, vision, and information retrieval (see, for example,
[1, 2, 3, 4, 15, 25]).

A probabilistic network basically is a concise representation of a joint probability distribution on
a set of statistical variables. It consists of an acyclic directed graph encoding the relevant variables
from a domain of application along with their probabilistic interrelationships. Associated with each
variable is a set of conditional probability distributions describing the relationship of the variable
with its predecessors in the graph. The first task in constructing a probabilistic network is to iden-
tify the important domain variables, their values, and their interdependencies. This knowledge is then
modelled in a directed graph, referred to as the network’s qualitative part. The final task is to obtain
the probabilities that constitute the network’s quantitative part. As (conditional) probabilities are re-
quired for each variable in the graph, their numbers can be quite large, even for small applications.
While the construction of the qualitative part of a probabilistic network is generally considered fea-
sible, its quantification is a far harder task. Probabilistic information available from literature or data
is often insufficient or unusable, and domain experts have to be relied upon to assess the required
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probabilities [12]. Unfortunately, experts are often uncomfortable with having to provide probabili-
ties. Moreover, the problems of bias encountered when directly eliciting probabilities from experts are
widely known [14]. The usually large number of probabilities required for a probabilistic network, as
a consequence, tends to pose a major obstacle to their application [12, 13].

To mitigate the quantification bottleneck to at least some extent,qualitative probabilistic networks
have been introduced [26]. Qualitative networks in essence are qualitative abstractions of probabilistic
networks. Like a probabilistic network, a qualitative network encodes variables and the probabilistic
relationships between them in a directed graph. However, while the relationships between the repre-
sented variables are quantified by conditional probabilities in a probabilistic network, these relation-
ships are summarised in its qualitative abstraction by qualitative signs capturing stochastic dominance.
For reasoning with a qualitative probabilistic network, an efficient algorithm is available, based on the
idea of propagating and combining these signs [9].

Qualitative probabilistic networks, by their nature, have a coarse level of representation detail.
Influential relationships between variables can be modelled as positive, negative, zero or ambiguous,
but no indication of their strengths can be provided as in a quantified network. One of the major
drawbacks of this coarse level of representation detail is the ease with which the ambiguous ‘?’-sign
arises upon inference. Ambiguous signs typically arise from trade-offs. A qualitative network models
a trade-off if two nodes in the network’s digraph are connected by multiple parallel reasoning chains
with conflicting signs. In the absence of a notion of strength of influences, qualitative networks do
not provide for resolving such trade-offs. Inference with a qualitative network for a real-life domain
of application, as a consequence, often introduces ambiguous signs. Moreover, once an ambiguous
sign has been generated, it will spread throughout major parts of the network. Although not incorrect,
ambiguous signs provide no information whatsoever about the influence of one variable on another
and are therefore not very useful in practice.

Ambiguous results from inference can be averted by enhancing the formalism of qualitative prob-
abilistic networks to provide for a finer level of representation detail. Roughly speaking, the finer the
level of detail, the more trade-offs can be resolved during inference. The finer levels of detail, how-
ever, typically come at the price of a higher computational complexity of inference. The problem of
trade-off resolution for qualitative networks has been addressed by various researchers. S. Parsons has
introduced, for example, the concept of categorical influence, which is either an influence that serves
to increase a probability to 1, or an influence that decreases a probability to 0, and thus serves to re-
solve any trade-off in which it is involved [19]. Parsons has also studied the use of the less well-defined
order-of-magnitude reasoning [19]. C.-L. Liu and M.P. Wellman have designed two methods for re-
solving trade-offs based upon the idea of reverting to numerical probabilities whenever necessary [17].
While only some trade-offs can be resolved by the use of categorical influences, the methods of Liu
and Wellman provide for resolving any trade-off, but require a fully quantified probabilistic network.

To provide for trade-off resolution without resorting to numerical probabilities, we have designed
an intuitively appealing formalism ofenhanced qualitative networks. An enhanced qualitative prob-
abilistic network differs from a basic qualitative network in that it introduces a notion of relative
strength by distinguishing between strong and weak influences. If a trade-off is modelled in an en-
hanced network and the positive influence, for example, is known to be stronger than the conflicting
negative one, we may upon inference conclude the net influence to be positive. Trade-off resolution
during inference thus builds upon the idea that strong influences dominate over conflicting weak influ-
ences. To provide for inference with an enhanced network, we have generalised the sign-propagation
algorithm for basic qualitative networks to deal with strong and weak influences. This generalisation
is rather straightforward and derives from the observation that the properties upon which the basic
sign-propagation algorithm is based are also provided for in an enhanced network. The new infer-
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ence algorithm takes into account that the effect of one variable on another diminishes as variables
are further apart in the network’s graph; it also takes into account that a variable may affect another
variable along multiple pathways with differing strengths. To maintain the correct strengths of indi-
rect influences, the algorithm has to do some bookkeeping, as a result of which it is intuitively less
appealing than the inference algorithm for basic qualitative networks. The distinction between strong
and weak influences in an enhanced network, however, is very intuitive and domain experts should
have no problems providing and interpreting the associated signs.

The paper is organised as follows. In Section 2, we provide some preliminaries from the fields of
probabilistic networks and qualitative networks to introduce our notational conventions. In Section 3,
we present our new formalism of enhanced qualitative probabilistic networks. In Section 4, we detail
various properties of enhanced networks, on which we build two alternative sign-propagation algo-
rithms. Section 5 provides an example of inference with an enhanced qualitative probabilistic network
and discusses some complexity issues concerning the different propagation algorithms. Related work
is reviewed in Section 6. The paper is rounded off with our conclusions and directions for future
research in Section 7.

2 Preliminaries

Before introducing qualitative probabilistic networks, we briefly review their quantitative counter-
parts.

2.1 Probabilistic networks

A probabilistic network basically is a concise representation of a joint probability distribution on a
set of statistical variables [20]. A probabilistic networkB = (G,Pr) encodes, in an acyclic directed
graphG = (V (G), A(G)), the relevant variables from a domain of application along with their prob-
abilistic interrelationships. Each nodeA ∈ V (G) represents a statistical variable that can take one of
a finite set of values. We assume a total order ‘>’ on the values of a variable. Variables will be indi-
cated by capital letters from the beginning of the alphabet. We will restrict ourselves to binary-valued
variables, where we writea to denoteA = true andā to denoteA = false, with a > ā. As there is a
one-to-one correspondence between variables and nodes, we will use the terms ‘node’ and ‘variable’
interchangeably.

The probabilistic relationships between the represented variables are captured by the digraph’s set
of arcsA(G). Informally speaking, we take an arcA→ B in G to represent an influential relationship
between the variablesA andB, designatingB as the effect of causeA. Given an arcA → B, node
A is called a (immediate) predecessor of nodeB and nodeB is called a successor of nodeA. We
write π(A) to denote the set of all predecessors of nodeA in G, andπ∗(A) to denote the set of its
ancestors; similarly,σ(A) is used to denote the set of all successors of nodeA andσ∗(A) to denote
its descendants. Two variablesA andB are said to be connected by a (simple) trail inG iff they are
connected by a (simple) path in the underlying undirected graph ofG. Absence of an arc between two
variables in the digraph of a probabilistic network means that the variables do not influence each other
directly and, hence, are (conditionally) independent. More formally, probabilistic independence can be
read from the digraph by means of the d-separation criterion, which builds on the concept of blocking.
We say that a trail between two variables isblockedby the available evidence if it includes either an
observed variable with at least one outgoing arc, or an unobserved variable with two incoming arcs
and no observed descendants. A trail that is not blocked is calledactive. Two variables are now said
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Pr(a) = 0.70

Pr(t | a) = 0.01
Pr(t | ā) = 0.35 Pr(f | a) = 0.50

Pr(f | ā) = 0.45

Pr(d | tf) = 0.95
Pr(d | t̄f) = 0.15

Pr(d | tf̄ ) = 0.80
Pr(d | t̄f̄ ) = 0.01

Pr(h | d) = 0.60
Pr(h | d̄) = 0.05

Figure 1: TheAntibioticsnetwork.

to bed-separatedif all trails between them are blocked. If two variables are d-separated then they are
considered conditionally independent given the available evidence [20].

Associated with each variableA ∈ V (G) in the network’s digraphG is a set of conditional
probability distributionsPr(A | π(A)) that describe the strengths of the various dependences between
A and its (immediate) predecessors. These (conditional) probabilities with each other provide all
information necessary for uniquely defining a joint probability distribution on the network’s variables:
the probabilistic networkB = (G,Pr) defines the distributionPr onV (G) with

Pr(V (G)) =
∏

A∈V (G)

Pr(A | π(A))

that respects the independences portrayed by the digraphG. Since a probabilistic network thus cap-
tures a unique joint probability distribution, it provides for computing any prior or posterior probability
over its variables. To this end, various algorithms are available [16, 20].

We introduce a small probabilistic network that will serve as our running example throughout the
paper.

Example 2.1 We consider the probabilistic network shown in Fig. 1. The network represents a frag-
ment of fictitious medical knowledge pertaining to the effects of administering antibiotics on a patient.
NodeA represents whether or not a patient has been taking antibiotics. NodeT models whether or
not the patient is suffering from typhoid fever, nodeD represents the presence or absence of diarrhoea
in the patient, and nodeH represents whether or not the patient is dehydrated. NodeF , to conclude,
describes whether or not the composition of the bacterial flora in the patient’s intestines has changed.
Typhoid fever and a change in bacterial flora are modelled as the possible causes of diarrhoea. Diar-
rhoea, in turn, can cause dehydration. Antibiotics can cure typhoid fever by killing the bacteria that
cause the infection. As a result, the probability of a patient contracting diarrhoea decreases. However,
antibiotics can also change the composition of the intestinal bacterial flora, thereby increasing the risk
of diarrhoea.�

2.2 Qualitative probabilistic networks

Qualitative probabilistic networksbear a strong resemblance to their quantitative counterparts. A
qualitative probabilistic networkQ = (G,∆) also comprises an acyclic digraphG = (V (G), A(G))
modelling variables and the probabilistic relationships between them. Moreover, the set of arcsA(G)
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of this digraph again models probabilistic independence. Instead of conditional probability distribu-
tions, however, a qualitative probabilistic network associates with its digraph a set∆ of qualitative
influences and qualitative synergies.

A qualitative influencebetween two variables expresses how the values of one variable influence
the probabilities of the values of the other variable; the direction of the shift in probabilities is indicated
by the sign of the influence. Apositive qualitative influenceof a variableA on a variableB, for
example, expresses that observing a higher value forA makes a higher value forB more likely,
regardless of any other influences onB [26].

Definition 2.2 Let G = (V (G), A(G)) be an acyclic digraph and letPr be a joint probability dis-
tribution onV (G) that respects the independences inG. LetA,B be variables inG with A → B ∈
A(G). Then, variableA positively influencesvariableB along arcA→ B, writtenS+(A,B), iff

Pr(b | ax)− Pr(b | āx) ≥ 0

for any combination of valuesx for the setπ(B) \ {A} of predecessors ofB other thanA.

A negative qualitative influence, denoted byS−, and azero qualitative influence, denoted byS0, are
defined analogously, replacing≥ in the above formula by≤ and=, respectively. If the influence of
variableA on variableB is not monotonic or if it is unknown, we say that it isambiguous, denoted
S?(A,B).

With each arc in the digraph of a qualitative probabilistic network, a qualitative influence is as-
sociated. Variables, however, not only influence each other directly along arcs, they can also exert
indirect influences on one another. The definition of qualitative influence trivially extends to indirect
influences, that is, influences along active trails. We denote an indirect influence of signδ along an
active trailt from variableA to variableB by Ŝδ(A,B, t). From here on, the termtrail will be used to
refer to either a simple trail, basically consisting of aconcatenationof arcs, or to a subgraph contain-
ing all simple trails between two variables. The latter type of trail is said to consist of acomposition
of simple trails. The set of all variables on a trailt will be denotedV (t).

The set of influences of a qualitative probabilistic network exhibits various convenient properties
that constitute the basis for an efficient algorithm for qualitative probabilistic inference [26]. The prop-
erty of symmetryguarantees that, if a network includes the influenceSδ(A,B), then it also includes
Sδ(B,A) with the same signδ ∈ {+,−, 0, ?}. The property oftransitivity asserts that qualitative
influences along an active trail without head-to-head nodes, that is, without nodes with two incoming
arcs on the trail, combine into an indirect influence whose sign is determined by the⊗-operator from
Table 1. The property ofcompositionasserts that multiple qualitative influences between two vari-
ables along parallel active trails combine into a composite influence whose sign is determined by the
⊕-operator. From Table 1, we observe that combining non-ambiguous qualitative influences with the
⊕-operator can yield an ambiguous result. Such an ambiguity, in fact, results whenever influences with
opposite signs are combined. We say that thetrade-off that is reflected by the conflicting influences
cannot beresolved. Note that, in contrast with the⊕-operator, the⊗-operator cannot introduce ambi-
guities upon combining signs. The operators in Table 1 adhere to the standard algebraic properties of
commutativity, associativity, and distributivity of⊗ over⊕.

In addition to influences, a qualitative probabilistic network includes synergies that model the
interactions between triples of variables. Anadditive synergy, for example, captures the joint influence
of two variables on a common successor [26]. A positive additive synergy of two variablesA andB
on a variableC, more specifically, expresses that the joint influence ofA andB on C is greater than
their separate influences.
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Table 1: The⊗- and⊕-operators.

⊗ + − 0 ? ⊕ + − 0 ?
+ + − 0 ? + + ? + ?
− − + 0 ? − ? − − ?
0 0 0 0 0 0 + − 0 ?
? ? ? 0 ? ? ? ? ? ?

Definition 2.3 Let G = (V (G), A(G)) be an acyclic digraph and letPr be a joint probability
distribution onV (G) that respects the independences inG. Let A,B,C be variables inG with
A→ C,B → C ∈ A(G). Then, variablesA andB exhibit apositive additive synergyonC iff

Pr(c | abx) + Pr(c | āb̄x)− Pr(c | ab̄x)− Pr(c | ābx) ≥ 0

for any combination of valuesx for the setπ(C) \ {A,B} of predecessors ofC other thanA andB.

Positive, zero, andambiguous additive synergiesare defined analogously.
If two variablesA andB have a common successorC, then observation of a value for variable

C serves to activate the trailA → C ← B. The observation thus induces a dependence betweenA
andB. This dependence can be represented by a qualitative influence ofA on B, or vice versa. Such
an induced influence is commonly known as anintercausal influence. The sign of the intercausal in-
fluence is captured by the sign of theproduct synergyassociated with the variables involved and the
observation. A product synergy thus expresses how the value of one variable influences the probabil-
ities of the values of another variable in view of a given value for a third variable [10]. A negative
product synergy ofA andB on C with valuec, for example, expresses that, givenc, a high value for
A renders a high value forB less likely.

Definition 2.4 Let G = (V (G), A(G)) be an acyclic digraph and letPr be a joint probability
distribution onV (G) that respects the independences inG. Let A,B,C be variables inG with
A → C,B → C ∈ A(G). Then, variablesA and B exhibit anegative product synergyon vari-
ableC with valuec, denotedX−({A,B}, c), iff

Pr(c | abx)·Pr(c | āb̄x)− Pr(c | ab̄x)·Pr(c | ābx) ≤ 0

for any combination of valuesx for the setπ(C) \ {A,B} of predecessors ofC other thanA andB.

Positive, zero, andambiguous product synergiesagain are defined analogously.
With each triple of variables{A,B,C} ∈ V (G) with A → C, B → C ∈ A(G), an additive

synergy and two product synergies are associated. Note that a product synergy is defined for every
possible value ofC. These qualitative synergies are again trivially extended to trails and also exhibit
symmetry, transitivity and composition properties. For details, we refer the reader to [21, 26].

Example 2.5 We consider the qualitative abstraction of theAntibioticsnetwork from Fig. 1. From the
conditional probabilities specified for the variableT , we have that

Pr(t | a)− Pr(t | ā) = 0.01 − 0.35 = −0.34 ≤ 0
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Figure 2: The qualitativeAntibioticsnetwork.

and therefore thatS−(A,T ). We similarly find thatS+(A,F ) andS+(D,H). From the conditional
probabilities specified for the variableD, we have that

Pr(d | tf)− Pr(d | t̄f) = 0.95 − 0.15 = 0.80 ≥ 0, and

Pr(d | tf̄ )− Pr(d | t̄f̄ ) = 0.80 − 0.01 = 0.79 ≥ 0

and therefore thatS+(T,D). We similarly find thatS+(F,D). The variablesT andF exert a positive
additive synergy on variableD since

Pr(d | tf) + Pr(d | t̄f̄ ) − Pr(d | t̄f)− Pr(d | tf̄ ) =
= 0.95 + 0.01 − 0.15 − 0.80 = 0.01 ≥ 0

Either value forD, in addition, induces a negative intercausal influence between the variablesT and
F . For example, we have that

Pr(d̄ | tf) · Pr(d̄ | t̄f̄ ) − Pr(d̄ | t̄f) · Pr(d̄ | tf̄ ) =
= 0.05 · 0.99 − 0.85 · 0.20 = −0.12 ≤ 0

The resulting qualitative probabilistic network is depicted in Fig. 2. The figure shows the signs of the
qualitative influences along the arcs; the additive synergy is indicated over the curve over nodeD, and
the negative product synergies are displayed over the dotted edge.�

We would like to note that, although in the previous example we have computed the qualitative
probabilistic relationships between the variables from the probabilities of the original quantified net-
work, in real-life applications these relationships are elicited directly from domain experts.

For reasoning with a qualitative probabilistic network, an efficient algorithm is available from
M.J. Druzdzel and M. Henrion [9]; this algorithm, termed thesign-propagation algorithm, is sum-
marised in pseudocode in Fig. 3. The basic idea of the algorithm is to trace the effect of observing a
variable’s value on the probabilities of the values of all other variables in the network by message-
passing between neighbouring nodes. In essence, the algorithm computes the sign of the net influence
along all active trails between the newly observed variable and the other variables in the network,
building upon the properties of symmetry, transitivity and composition of influences. For each vari-
able, it summarises the net influence in anode-signthat indicates the direction of the shift in the
variable’s probability distribution that is occasioned by the new observation.

The sign-propagation algorithm takes for its input a qualitative probabilistic networkQ, a setOb-
servedof previously observed variables, the variableO for which an observation has become available,
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procedure PropagateObservation(Q, O, sign, Observed):

for each Vi ∈ V (G)
do sign[Vi]← ‘0’;
PropagateSign(∅,O,O, sign).

procedure PropagateSign(trail , from, to, messagesign):

sign[to]← sign[to] ⊕ messagesign;
trail ← trail ∪{ to };
for each active neighbour Vi of to
do linksign← sign of (induced) influence between to and Vi;

messagesign← sign[to] ⊗ linksign;
if Vi /∈ trail and sign[Vi] 6= sign[Vi] ⊕ messagesign
then PropagateSign(trail , to, Vi, messagesign).

Figure 3: The sign-propagation algorithm for qualitative probabilistic inference.

and the signsignof the new observation, that is, either a ‘+’ for the valuetrue or a ‘−’ for the value
false. Prior to the propagation of the new observation, for all variablesVi the node-signsign[Vi] is
set to ‘0’. For the newly observed variableO the appropriate sign is now entered into the network.
The observed variable updates its node-sign to the sign-sum of its original sign and the entered sign. It
thereupon notifies all its active neighbours that its sign has changed, by passing to each of them a mes-
sage containing an appropriate sign. This sign is the sign-product of the variable’s current node-sign
and the signlinksign of the influence associated with the arc or induced intercausal link it traverses.
Each message further records its origin in the variabletrail ; this information is used to prevent mes-
sages being passed on to nodes that have already been visited on the same trail. Upon receiving a
message, a variableto updates its node-sign to the sign-sum of its current node-signsign[to] and the
signmessagesignfrom the message it has just received. The variable then sends a copy of the message
to all its neighbours that need to reconsider their node-signs. In doing so, the variable changes the sign
in each copy to the appropriate sign and adds itself totrail as the origin of the copy. Note that as this
process is repeated throughout the network, the trails along which messages have been passed are
recorded. Also note that as messages travel simple trails only, it is sufficient to just record the nodes
on these trails.

During sign-propagation, variables are only visited if they need a change of node-sign. A node-
sign can change at most twice, once from ‘0’ to ‘+’, ‘−’ or ‘?’, and then only from ‘+’ or ‘−’ to ‘ ?’.
From this observation we have that no variable is ever visited more than twice upon inference. The
algorithm is therefore guaranteed to halt. For a proof of the algorithm’s correctness we refer the reader
to [9].

We illustrate the sign-propagation algorithm by means of our running example.

Example 2.6 We consider once again the qualitativeAntibioticsnetwork from Fig. 2. Suppose that a
patient is taking antibiotics. This observation is entered into the network by updating the node-sign
of the variableA to ‘+’. VariableA thereupon propagates a message, with sign+⊗ − = −, towards
T . VariableT updates its node-sign to ‘−’ and sends a message with sign−⊗+ = − to D. Variable
D updates its sign to ‘−’ and sends a message with sign− ⊗ + = − to H. VariableH updates its
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node-sign to ‘−’; it sends no messages as it has no neighbours that need to update their sign. Variable
D does not pass on a sign toF , since the trail fromT via D to F is not active.

Variable A also sends a message, with sign+ ⊗ + = +, to F . VariableF updates its node-
sign accordingly and passes a message with sign+ ⊗ + = + to D. VariableD thus receives the
additional sign ‘+’. This sign is combined with the previously updated node-sign ‘−’, which results
in the ambiguous node-sign−⊕+ = ? for D. Note that the ambiguous sign arises from the trade-off
represented for variableD. D now sends a message with sign? ⊗ + = ? to H, which updates its
sign to? ⊕− = ?. Note that, had the network contained additional variables beyond the variablesD
and/orH, then these variables would have all ended up with the node-sign ‘?’ after inference.�

3 The enhanced formalism

Qualitative probabilistic networks capture the knowledge from a problem domain at a coarse level of
representation detail. Qualitative influences between variables, for example, are captured by simple
signs without any indication of their strengths. As a consequence, any trade-off encountered during
inference will remain unresolved. In this section, we present a new formalism for qualitative proba-
bilistic networks with a finer level of representation detail that will allow for resolving trade-offs to
at least some extent. In this new formalism, we enhance qualitative probabilistic networks by asso-
ciating an indication of relative strength with their influences. Now, if upon encountering a trade-off
during inference, the positive influence is known to be stronger than the conflicting negative one, for
example, we may conclude the combined influence to be positive, thereby effectively resolving the
trade-off.

In anenhanced qualitative probabilistic network, we distinguish between strong and weak influ-
ences. Intuitively, a strong influence of a variableA on a variableB is an influence that is stronger
than any weak influence in the network, that is, the property

|Pr(b | ax)− Pr(b | āx)| ≥ |Pr(d | cy)− Pr(d | c̄y)|
holds for all variablesC andD with a weak influence between them, for any combination of values
x andy for the setsX andY of relevant predecessors. The basic idea now is to partition the set of
all positive influences into two disjoint sets in such a way that any influence from the one subset is
stronger than any influence from the other subset. To this end, we introduce acut-off valueα that
serves to partition the set of qualitative influences into a set of influences that capture an absolute
difference in probabilities larger thanα and a set of influences that model an absolute difference
smaller thanα. An influence from the former subset will be termed astrong influence; an influence
from the latter subset will be termed aweakinfluence.

Definition 3.1 Let G = (V (G), A(G)) be an acyclic digraph and letPr be a joint probability dis-
tribution onV (G) that respects the independences inG. LetA,B be variables inG with A → B ∈
A(G). Letα ∈ [0, 1] be a cut-off value. The influence of variableA on variableB along arcA→ B
is strongly positive, denotedS++(A,B), iff it is positive and

|Pr(b | ax)− Pr(b | āx)| ≥ α

for any combination of valuesx for the setπ(B) \ {A} of predecessors ofB other thanA. The
influence of variableA on variableB along the arc isweakly positive, denotedS+(A,B), iff it is
positive and

|Pr(b | ax)− Pr(b | āx)| ≤ α

for any combination of valuesx.
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If, for an influence of a variableA on a variableB, we havePr(b | ax)−Pr(b | āx)=α for all x,
then we take the influence to be strongly positive.Strongly negative qualitative influences, denoted
S−−, andweakly negative qualitative influences, denotedS−, are defined analogously;zero qualita-
tive influencesandambiguous qualitative influencesare defined as for basic qualitative probabilistic
networks. A product synergy is defined to bestrongly negativeif it induces a strongly negative inter-
causal influence.Weakly negative, Strongly positive, andweakly positive product synergiesare defined
analogously;zero product synergiesandambiguous product synergiesagain are defined as for basic
qualitative networks. For additive synergies, the distinction between weak and strong is slightly more
complicated. Since additive synergies are not used during sign-propagation and therefore do not con-
tribute to the resolution of trade-offs, we will not consider them any further in this paper.

Upon abstracting a quantified probabilistic network to an enhanced qualitative probabilistic net-
work, the cut-off valueα needs to be chosen explicitly. This cut-off value will typically vary from
application to application, but it is always possible to choose such a cut-off value, since the values
α = 0 or α = 1 yield a trivial partitioning of the set of influences. In real-life applications of enhanced
qualitative probabilistic networks, however, the cut-off value neednot be established explicitly. The
partitioning into strong and weak influences is then elicited directly from the domain experts involved
in the construction of the network.

Example 3.2 We consider once again theAntibioticsnetwork from Example 2.1. Suppose that we
choose for our cut-off valueα = 0.30. For the influence of variableA on variableT , we now find that

Pr(t | a)− Pr(t | ā) ≤ 0, and |Pr(t | a)− Pr(t | ā)| = 0.34 ≥ α

We therefore conclude thatS−−(A,T ); we similarly find thatS+(A,F ) andS++(D,H). For the
influence of variableT on variableD, we find thatPr(d | tF ) − Pr(d | t̄F ) ≥ 0, regardless of the
value ofF , as well as

Pr(d | tf)− Pr(d | t̄f) = 0.80, and Pr(d | tf̄ )− Pr(d | t̄f̄ ) = 0.79

which both exceed the level of the cut-off valueα. We therefore have thatS++(T,D); we similarly
find thatS+(F,D). The signs of the product synergies exhibited by the variablesT andF on variable
D, in the presence of a value forD, equal the signs of the corresponding intercausal influences. The
intercausal influences are defined in terms of differences betweenPr(f | tx) andPr(f | t̄x), where
x represents different combinations of values for the variablesD andA. These probabilities can be
found from the network in Example 2.1 by applying Bayes’ rule; we list them here for ease of refer-
ence:

Pr(f | tx) Pr(f | t̄x)
x = da 0.54 0.94
x = dā 0.52 0.92
x = d̄a 0.20 0.49
x = d̄ā 0.17 0.41

For the sign of the intercausal influence of variableT on variableF given the valued for D, we now
have that

Pr(f | tda)− Pr(f | t̄da) = −0.40 ≤ −α, and

Pr(f | tdā)− Pr(f | t̄dā) = −0.40 ≤ −α
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Figure 4: The enhancedAntibioticsnetwork.

We conclude that the intercausal influence, and therefore its corresponding product synergy, are
strongly negative:X−−({T, F}, d); we similarly find thatX−({T, F}, d̄).

The resulting enhanced qualitative probabilistic network, showing just the qualitative influences
involved, is depicted in Fig. 4.�

We would like to note that, in our enhanced formalism, the semantics of the sign of an influence
has slightly changed. While in a basic qualitative probabilistic network, the sign of an influence repre-
sents the sign of differences in probability only, in an enhanced qualitative network a sign in addition
captures the relative magnitude of the differences.

4 Enabling inference in an enhanced network

For inference with a basic qualitative probabilistic network, an efficient algorithm is available. We
recall from Section 2 that this algorithm builds on the idea of propagating signs throughout a network
and combining them with the⊗- and⊕-operators. We further recall that the algorithm thereby exploits
the properties of symmetry, transitivity, and parallel composition of influences. In this section we
generalise the idea of sign-propagation to inference with an enhanced qualitative probabilistic network
by taking into account the strength of influences. We first introduce, in Section 4.1, a structure for
bookkeeping the strengths of influences during inference. In Section 4.2, we then address the property
of symmetry, followed by a discussion and enhancement of the⊗- and⊕-operators to provide for the
properties of transitivity and parallel composition of strong and weak influences, in Sections 4.3 and
4.4.

4.1 Multiplication-index lists for bookkeeping

In the previous section, we defined the strength of a direct qualitative influence relative to a cut-
off value α. Upon inference, the strengths of indirect influences need to be computed. As we will
demonstrate in Sections 4.3 and 4.4, the strengths of these indirect influences can be described in terms
of apolynomialexpression inα. To capture such a polynomial, we list its exponents together with an
indication of whether its terms are added or subtracted. We will call such a list amultiplication-index
list.
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Definition 4.1 Consider a non-empty listi = i1, . . . , in such that each indexij ∈ Z, j = 1, . . . , n.
Themultiplication-index listi represents the polynomial

∑
ij≥0

αij −
∑
ij<0

α|ij |

From this definition we have that a multiplication-index list can represent any polynomial inα that
has a non-negative constant coefficient and all other coefficients inZ. The polynomials we want to
be able to describe adhere to these properties. We now define some properties of multiplication-index
lists.

Definition 4.2 Let i = i1, . . . , in, n ≥ 1, be a multiplication-index list. Then

• i is calledpositive if for eachj, j = 1, . . . , n, ij ≥ 0; i is calledstrictly positiveif ij > 0 for
all j;

• i is calledsimple if n ≤ 2, or if n > 2 and for eachij > 0, j = 1, . . . , n, there existsno ik,
k = 1, . . . , n, such thatij = −ik.

(Strictly) negativeindex list are defined analogously. We take the definitions to apply to sublists as
well.

The reason for defining simple multiplication-index lists is motivated by the following. Upon in-
ference in an enhanced network, multiplication-index lists are constructed by combining such lists. Af-
ter their combination, the resulting list can often be simplified. For example, the listi = 1, 2,−1,−3,
representing the polynomialα+α2−α−α3, can be simplified toi = 2,−3. That is, two complement-
ing indices can be removed as long as this does not result in the entire elimination of the multiplication
index. For example, the listi = 1,−1 represents the constant0 and notα0 = 1. A list of the form
i = n,−n should therefore be represented in the given form; the actual value ofn, however, is irrele-
vant and any non-zero integer value could be used without changing the list’s meaning. Duplicates in
a multiplication-index list cannot be removed, since for examplei = 1, 1 represents the polynomial
α+α which equals2·α and not simplyα. From here on, we assume that lists of multiplication indices
are simplified as much as possible.

Upon comparing and combining signs during inference, we need to compare and combine multiplication-
index lists. For this purpose, we define a number of operations on these lists. In their definition we use
the standard list operatorsconcat, for concatenating lists, andmap(f, i), for applying a functionf to
every element of a listi.

Definition 4.3 Let i = i1, . . . , in, n ≥ 1, andj = j1, . . . , jm, m ≥ 1 be twosimplemultiplication-
index lists. Letk be the length of the strictly negative sublist ofi. Without loss of generality, assume
i1 ≤ . . . ≤ in andj1 ≤ . . . ≤ jm. Then

• −i = map(−, i);

• i + j = concat (concatl=1,...,k (map(−,map(+ ik, j
−)),map(+ ik,map(−, j+))) ,

concatl=k+1,...,n (map(− ik, j
−),map(+ ik, j

+))),
wherej− is the strictly negative sublist of listj andj+ is its positive sublist;

• i ≤ j if n− 2 · k ≥ m andil ≤ jl for all l = 2 · k + 1, . . . ,m.



4 ENABLING INFERENCE IN AN ENHANCED NETWORK 13

The summation of two lists of multiplication indicesi andj results in the multiplication-index
list representing a polynomial inα, which is the product of the two polynomials represented byi
andj. Upon multiplying the two polynomials, we multiply all combinations of terms from the two
expressions and, hence, sum all combinations of powers of theα-terms in the two expressions. In
constructing the resulting multiplication-index list, we subsequently have to add in the minus-signs
that indicate subtraction of terms. It is the latter step that makes the definition ofi + j above look so
complex. With respect to the definition ofi ≤ j, at this stage we suffice it to say that it is defined so
as to suit our purposes, as will become clear in Section 4.4.2.

The multiplication-index list we introduce is used to augment signs in an enhanced network during
inference only. The list is used solely for the purpose of computation and we do not intend to output
signs augmented with these indices to the user. The following definition describes the meaning of an
influence with an augmented sign more formally.

Definition 4.4 Let G = (V (G), A(G)) be an acyclic digraph in which the variablesA and B are
connected by an active trailt. Let Pr be a joint probability distribution onV (G) that respects the
independences inG. Then, the qualitative influence of variableA on variableB along trail t is
strongly positive with multiplication-index listi1, . . . , ik, k ≥ 1, written Ŝ++i1,...,ik (A,B, t), if it is
positive, and

|Pr(b | ax)− Pr(b | āx)| ≥
∑
ij≥0

αij −
∑
ij<0

α|ij |

for every combination of valuesx for the subsetX = (
⋃

C∈V (t)\{A} π(C)\V (t)) of relevant ancestors
of B. The qualitative influence ofA on B along t is weakly positive with multiplication-index list
i1, . . . , ik, written Ŝ+i1,...,ik (A,B, t), if it is positive, and

|Pr(b | ax)− Pr(b | āx)| ≤
∑
ij≥0

αij −
∑
ij<0

α|ij |

for every combination of valuesx for X.

Strongly and weakly negative influences with a multiplication-index list are again defined analogously.
Zero and ambiguous influences are once more defined as in basic qualitative probabilistic networks
and are not augmented with multiplication indices.

From the definition above we note that astrongsign, augmented with a multiplication-index list of
the formn,−n, represents an influence with a strength anywhere between zero and one. An equivalent
representation of such an influence is given by a weak sign with the single multiplication index0. So
although, as remarked earlier, we cannot simplify a multiplication-index list of the formn,−n, we
can, for example, replace the sign++n,−n by the sign+0 without changing its meaning.

Upon initiating inference, the signs of the influences associated with the arcs of the digraph of an
enhanced network are now interpreted as having a single multiplication index equal to 1. Note that a
multiplication-index list that contains only a single indexi represents an influence-strength relative to
αi; in this case we necessarily have thati ∈ N.

4.2 The property of symmetry

In a basic qualitative probabilistic network, the property of symmetry guarantees that, if a variableA
exerts an influence on a variableB, then variableB exerts an influenceof the same signon variable
A. As a result, signs can be propagated during inference over an arc in both directions. In an enhanced
qualitative network, as in a basic qualitative network, an influence and its reverse are both positive,
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Figure 5: A fragment of a network.

both negative, both zero, or both ambiguous. The symmetry property, however, does not hold with
regard to the strength of an influence: the reverse of a strongly positive qualitative influence, for
example, may be a weakly positive influence, and vice versa. There are two ways of ensuring, in an
enhanced network, that during inference signs can be propagated in both directions of an arc:

• specify the signs of all influences against the direction of an arc explicitly (note that these signs
will have to be elicited from the domain experts involved in the network’s construction);

• alternatively, use positive and negative signs of ambiguous strength, that is, signs whose strength
is unknown and may be anywhere between zero and one.

Using the latter option, the symmetric counterpart of a positive influence, for example, would be
an ambiguously positive influence, which can be represented by+0. However, upon using signs of
unknown strength, much useful information is lost and we therefore opt for explicitly specifying the
signs of influences against the arc directions. With respect to intercausal influences we note that since
they can be regarded as a qualitative influence, the above observations also hold with respect to the
signs of such influences.

4.3 The property of transitivity

For propagating qualitative signs along active trails in an enhanced qualitative probabilistic network,
we have to enhance the⊗-operator that is defined for this purpose for basic qualitative networks, to
apply to strong and weak influences. We recall that the⊗-operator provides for multiplying signs of
influences. In a basic qualitative probabilistic network, an influence in essence captures a difference
between two probabilities. Combining two influences with the property of transitivity then amounts to
determining the sign of the product of two such differences. In our formalism of enhanced qualitative
probabilistic networks, however, we have associated an explicit notion of strength with influences. It
will be evident that these strengths need to be taken into consideration when multiplying signs with
the⊗-operator.

To address the sign-product of two signs in an enhanced qualitative probabilistic network, we con-
sider the network fragment shown in Fig. 5. The fragment includes an (active) trail that is composed
of the variablesA, B, C, and two qualitative influences between them. In addition,X denotes the set
of all predecessors ofB other thanA, andY is the set of all predecessors ofC other thanB. The
following lemma now indicates that the strength of the indirect influence ofA on C along the given
trail equals the product of the strengths of the influences ofA onB and ofB onC.

Lemma 4.5 Let G = (V (G), A(G)) be an acyclic digraph whereA,B,C ∈ V (G) and A →
B,B → C is the only active trail between the variablesA and C. Let Pr be a joint probability
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distribution onV (G) that respects the independences inG. Then,

Pr(c | axy) − Pr(c | āxy) =
= (Pr(c | by)− Pr(c | b̄y))·(Pr(b | ax)− Pr(b | āx))

for any combination of valuesx for the set of variablesX = π(B) \ {A} and any combination of
valuesy for the setY = π(C) \ {B}.

Proof: We observe that, inG, variableC is independent of the variablesA andX, givenB andY ; in
addition, variableB is independent of variableY , givenA andX. By conditioning onB we now find

Pr(c | axy) − Pr(c | āxy) =
= Pr(c | abxy)·Pr(b | axy) + Pr(c | ab̄xy)·Pr(b̄ | axy)
−Pr(c | ābxy)·Pr(b | āxy)− Pr(c | āb̄xy)·Pr(b̄ | āxy)

= (Pr(c | by)− Pr(c | b̄y))·Pr(b | ax) + Pr(c | b̄y)
−(Pr(c | by)− Pr(c | b̄y))·Pr(b | āx)− Pr(c | b̄y)

= (Pr(c | by)− Pr(c | b̄y))·(Pr(b | ax)− Pr(b | āx))

�

Similar lemmas hold for the strengths of the influences along any other possible active trail between
the variablesA andC that can be obtained by reversing one or both arcs in Fig. 5 without introducing
a head-to-head node on the trail. The lemma can further be easily extended to apply to the situation
whereA andB, andB andC, respectively, are connected by indirect active trails rather than direct
arcs. We would like to note that the existence of additional (parallel) active trails between the variables
A andC is handled by the⊕-operator, and is therefore disregarded here.

The differencesPr(c | axy) − Pr(c | āxy) for the various combinations of valuesxy serve to
indicate the strength of the indirect influence of variableA on variableC. We informally investigate
these differences using the property stated in Lemma 4.5. Suppose that the qualitative influences ofA
on B and ofB on C both are strongly positive, that is, we haveS++(A,B) andS++(B,C). Let α
be the cut-off value used for distinguishing between strong and weak influences. From the expression
stated in the lemma, we now find that

Pr(c | axy)− Pr(c | āxy) ≥ α · α = α2

for any combination of valuesxy for the set of variablesX ∪ Y . Sinceα ≤ 1, we have thatα2 ≤ α.
Upon multiplying the signs of two strong direct influences, therefore, a sign results that indicates an
indirect influence that is not necessarily stronger than a weak direct influence. Similar observations
apply to strongly negative influences. Now suppose that both qualitative influences in the network
fragment from Fig. 5 are weakly positive, that is, we haveS+(A,B) andS+(B,C). For the indirect
influence of variableA on variableC, we then find that

0 ≤ Pr(c | axy)− Pr(c | āxy) ≤ α · α = α2

for any combination of valuesxy. Similar observations apply to weakly negative influences. While the
indirect influence resulting from the product of two strong influences cannot be compared to a weak
direct influence, we have from the above observation that this indirect influence is always at least as
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strong as an indirect influence that results from the product of two weak influences. Finally, suppose
that one qualitative influence in the network fragment from Fig. 5 is weakly positive and that the other
is strongly positive, for example,S+(A,B) andS++(B,C). We then find for the indirect influence
of variableA on variableC that

0 = 0 · α ≤ Pr(c | axy)− Pr(c | āxy) ≤ α · 1 = α

for any combination of valuesxy. Similar observations apply to other combinations of weak and
strong influences. We thus have that the strength of an indirect influence resulting from the product of
a strong and a weak influenceis comparable to the strength of a weak direct influence.

From the previous observations, we conclude that to provide for comparing indirect qualitative
influences along different trails with respect to their strengths, as required for trade-off resolution, we
have to retain the length of the trail over which signs have been multiplied.

4.3.1 Enhancing the⊗-operator

We employ themultiplication-index list, formally defined in Section 4.1, to retain information about
the length of the trail over which signs have been multiplied. Table 2 now defines the enhanced⊗-
operator. From the table, it is readily seen that the ‘+’, ‘−’, ‘ 0’, and ‘?’ signs in essence combine just
as in a basic qualitative probabilistic network; the only difference is in the handling of the multipli-
cation indices. The enhanced⊗-operator shapes the transitivity property for qualitative influences in
an enhanced network. The following lemma shows that the operator correctly captures the sign of the
transitive combination of two weakly positive influences.

Lemma 4.6 Let Q = (G,∆) be an enhanced qualitative probabilistic network. LetA,B, and C
be variables inG for which there exist an active trailt1 from A to B and an active trailt2 from
B to C such that their concatenationt1 ◦ t2 is an active trail fromA to C. Let i and j be simple
multiplication-index lists. Then,

Ŝ+i
(A,B, t1) ∧ Ŝ+j

(B,C, t2) =⇒ Ŝ+i+j
(A,C, t1 ◦ t2)

Proof: Let Pr be a joint probability distribution onV (G) that respects the independences inG, and
let α be the cut-off value used for distinguishing between strong and weak influences. We will start by
assuming that the multiplication-index listsi andj each consist of a single index. Then, the weakly
positive influencêS+i

(A,B, t1) of variableA on variableB expresses that

0 ≤ Pr(b | ax)− Pr(b | āx) ≤ αi

for every combination of valuesx for the setX =
⋃

C∈V (t1)\{A} π(C) \ V (t1) of relevant ancestors

of B. Similarly, the weakly positive qualitative influencêS+j
(B,C, t2) of variableB on variableC

expresses that
0 ≤ Pr(c | by)− Pr(c | b̄y) ≤ αj

for every combination of valuesy for the setY of relevant ancestors ofC. For the indirect influence
of variableA on variableC, we thus find that

0 ≤ Pr(c | axy)− Pr(c | āxy) ≤ αi · αj = αi+j

for every combination of valuesxy for the setX ∪Y . More in general, we observe that the strength of
the resulting influence lies between0 and the product of the polynomial expressions inα captured by
the multiplication-index listsi andj, respectively. We therefore conclude thatŜ+i+j

(A,C, t1 ◦ t2). �
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Table 2: The enhanced⊗-operator.

⊗ ++j +j 0 −j −−j ?
++i ++i+j +j 0 −j −−i+j ?
+i +i +i+j 0 −i+j −i ?
0 0 0 0 0 0 0
−i −i −i+j 0 +i+j +i ?
−−i −−i+j −j 0 +j ++i+j ?

? ? ? 0 ? ? ?

From the above lemma and the appropriate entry in Table 2, we conclude that for two weakly positive
influences the enhanced⊗-operator indeed correctly captures the sign of their transitive combination.
Similar observations hold for the transitive combination of any two weak influences or two strong
influences, be they positive or negative.

The following lemma shows that the operator in Table 2 correctly captures the sign of the transitive
combination of a weakly positive and a strongly positive influence.

Lemma 4.7 LetQ, A, B, C, t1, t2, t1 ◦ t2, i andj be as in the previous lemma. Then,

Ŝ+i
(A,B, t1) ∧ Ŝ++j

(B,C, t2) =⇒ Ŝ+i
(A,C, t1 ◦ t2)

Proof: Let Pr be a joint probability distribution onV (G) that respects the independences inG, and
let α be the cut-off value used for distinguishing between strong and weak influences. We will start by
assuming that the multiplication-index listsi andj each consist of a single index. Then, the weakly
positive influencêS+i

(A,B, t1) of variableA on variableB expresses that

0 ≤ Pr(b | ax)− Pr(b | āx) ≤ αi

for every combination of valuesx for the setX =
⋃

C∈V (t1)\{A} π(C) \ V (t1) of relevant ancestors

of B. The strongly positive qualitative influencêS++j
(B,C, t2) of variableB on variableC further

expresses that
αj ≤ Pr(c | by)− Pr(c | b̄y) ≤ 1

for every combination of valuesy for the setY of relevant ancestors ofC. For the indirect influence
of variableA on variableC, we thus find that

0 ≤ Pr(c | axy)− Pr(c | āxy) ≤ αi · 1

for every combination of valuesxy for the setX ∪ Y . More in general, we observe that the strength
of the resulting influence lies between0 and 1 times the polynomial expression inα captured by
multiplication-index listi. We therefore conclude that̂S+i

(A,C, t1 ◦ t2). �

From the above lemma and the appropriate entry in Table 2, we conclude that for a weakly positive
and a strongly positive influence the enhanced⊗-operator indeed correctly captures the sign of their
transitive combination. Similar observations hold for the transitive combination of any weak influence
with any strong influence, be they positive or negative. The proofs for the signs of all other transitive
combinations of influences stated in Table 2, are analogous to the proofs of Lemmas 4.6 and 4.7.
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Figure 6: Another network fragment.

4.4 The property of parallel composition

For combining multiple qualitative influences between two variables along parallel active trails in an
enhanced qualitative probabilistic network, we have to enhance the⊕-operator that is defined for this
purpose for basic qualitative networks, to apply to strong and weak influences. We recall that the⊕-
operator provides for summing signs of influences. We further recall that, upon adding the signs of
two conflicting influences during inference with a basic qualitative network, the represented trade-off
cannot be resolved and an ambiguous influence results. In our formalism of enhanced qualitative prob-
abilistic networks, we have associated an explicit notion of strength with influences. These strengths
can now be taken into consideration when summing the signs of influences and can be used to resolve
trade-offs. For example, if a trade-off is encountered during inference, and the negative influence
is known to be stronger than the conflicting positive one, then we may conclude that the combined
influence is negative, thereby forestalling ambiguous results.

When addressing the property of transitivity in the previous section, we have argued that the
product of two influences may yield an indirect influence that is weaker than the influences it is built
from. We will now see that the sum of two influences, in contrast, may result in a stronger influence.
To address the sign-sum of two signs in an enhanced qualitative probabilistic network, we consider
the network fragment shown in Fig. 6. The fragment includes two active trails between the variables
A andC, one of which captures a direct influence ofA on C and the other one an indirect influence
throughB. In addition, the setX denotes the set of all predecessors ofB other thanA, andY is the
set of predecessors ofC other thanA andB. The following lemma now relates the strength of the net
influence of variableA on variableC to the strengths of the influences it is built from.

Lemma 4.8 Let G = (V (G), A(G)) be an acyclic digraph whereA,B,C ∈ V (G) and A →
B,B → C and A → C are the only active trails between the variablesA and C. Let Pr be a
joint probability distribution onV (G) that respects the independences inG. Then,

Pr(c | axy) − Pr(c | āxy) =
= (Pr(c | aby)− Pr(c | ab̄y))·Pr(b | ax) + Pr(c | ab̄y)
− (Pr(c | āby)− Pr(c | āb̄y))·Pr(b | āx)− Pr(c | āb̄y)

for any combination of valuesx for the setX of all predecessors ofB other thanA and any combi-
nation of valuesy for the setY of all predecessors ofC other thanA andB.

Proof: The proof of the property stated in the lemma is similar to that of Lemma 4.5. �

Similar lemmas hold for the strengths of the net influences ofA on C along other combinations of
multiple parallel trails that can be obtained by reversing one or more arcs in Fig. 6, as long as both
trails remain active. A similar lemma can also be formulated for situations where one or more of
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the arcs in Fig. 6 are replaced by active trails. We would like to note that the existence of additional
parallel trails between the variablesA andC is handled by repeated application of the composition
property, and is therefore disregarded here.

The differencesPr(c | axy) − Pr(c | āxy) for the various combinations of valuesxy serve to
indicate the sum of the strengths of the direct influence and the indirect influence of the variableA
on the variableC. If all the arcs in the network fragment from Fig. 6 are associated with a weakly
positive influence, for example, we find that

Pr(c | axy)− Pr(c | āxy) ≤ α + α2

Building upon Lemma 4.8, we will prove this property shortly. From the inequality, we observe that
the parallel composition of two weak direct influences of the same sign may result in an indirect
influence that is stronger than a weak direct influence. Its relation to a strong influence is unknown,
however. So, although the sign of the resulting influence is known unambiguously, its strength is not
readily expressible as a simple power ofα. Alternatively, if all the arcs in the network fragment from
Fig. 6 are associated with a strongly positive influence, we find that

Pr(c | axy)− Pr(c | āxy) ≥ α + α2

We now observe that the parallel composition of two strong direct influences of the same sign results
in an indirect influence that is slightly stronger than a strong direct influence.

From these observations we have that the parallel composition of two or more influences may
result in an influence for which the strength cannot be expressed by a single power of the cut-off value
α. In the remainder of this section, we present two ways of capturing the strengths of such influences,
by defining two different⊕-operators for summing signs. The first operator works on signs with
single multiplication indices only, and in essence discards the higher-order terms of the polynomial
expression inα, leaving a singleα-term whose power is taken to be the single multiplication index
for the resulting sign; if these higher-order terms cannot be discarded without introducing a possible
error, a sign of unknown strength is yielded. This first operator is called theenhanced operator⊕e and
is described in Section 4.4.1. Obviously, application of the⊕e-operator can result in loss of available
information when adding two signs upon inference. To prevent such loss of information, at least to
some extent, we augment signs with a multiplication-index list carrying information about the entire
expression inα that describes their strengths. To provide for summing such signs, we define therich
enhanced operator⊕r, which is discussed in Section 4.4.2.

4.4.1 The enhanced⊕e-operator

In the foregoing, we have argued that the composition of two influences along parallel active trails
may yield an influence whose sign is known but whose strength is not easily expressed as a simple
power of the cut-off value used. In this section, we take such influences to be of unknown strength —
where unknown implies anywhere between zero and one — and use the positive and negative signs+0

and−0, respectively, to denote them. We note that apositivequalitative influence ofunknown strength
of a variableA on a variableC, writtenS+0

(A,C), is equivalent to a positive qualitative influence in a
basic qualitative probabilistic network; a similar observation applies to anegativequalitative influence
of unknown strength. We further note that, while trade-offs in a basic qualitative probabilistic network
result upon inference in an ambiguous sign indicating loss of information at the level of signs, trade-
offs may now result upon inference in loss of information at the level of just the strengths of signs.
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Table 3: The enhanced⊕e-operator.

⊕e ++j +j 0 −j −−j ?

++i ++m ++i ++i a) ? ?
+i ++j +0 +i ? d) ?
0 ++j +j 0 −j −−j ?
−i b) ? −i −0 −−j ?
−−i ? c) −−i −−i −−m ?

? ? ? ? ? ? ?

wherem = min(i, j), and

a) +0, if i ≤ j; ?, otherwise

b) +0, if j ≤ i; ?, otherwise

c) −0, if i ≤ j; ?, otherwise

d) −0, if j ≤ i; ?, otherwise

Table 3 defines the enhanced⊕e-operator for summing signs of influences along multiple parallel
trails. From the table, it is readily seen that the ‘+’, ‘−’, ‘ 0’, and ‘?’ signs in essence combine just as in
a basic qualitative probabilistic network; the difference is again in the handling of the multiplication
indices introduced in Section 4.1. The enhanced⊕e-operator shapes the composition property for
influences in an enhanced qualitative network. The following four lemmas show, for four different
situations, that the operator correctly captures the sign of a combination of two parallel influences;
the proofs for the other combinations of influences are quite similar. The first lemma pertains to the
situation where two weakly positive influences along parallel trails are combined.

Lemma 4.9 LetQ = (G,∆) be an enhanced qualitative probabilistic network. LetA,C be variables
in G and lett1 andt2 be parallel active trails inG fromA toC, wheret1 ‖ t2 is their trail composition.
Let i andj be single multiplication indices. Then,

Ŝ+i
(A,C, t1) ∧ Ŝ+j

(A,C, t2) =⇒ Ŝ+0
(A,C, t1 ‖ t2)

Proof: Let Pr be a joint probability distribution onV (G) that respects the independences inG. Let α
be the cut-off value used for distinguishing between strong and weak influences. For ease of exposi-
tion, we assume that the trailt1 consists of a single arc and that the trailt2 consists of the arcsA→ B,
B → C for some variableB, as in the network fragment of Fig. 6. Additional trails betweenA and
C can be handled by repeated application of the composition property, and are therefore disregarded
here. We recall that with each arc is associated an influence with multiplication index1. We further

0 1 0 1

f g

Pr(b | ax) Pr(b | āx)

Pr(c | aby)

Pr(c | āb̄y)Pr(c | ab̄y)

Pr(c | āby)

Figure 7: Possible functionsf(Pr(b | ax)) andg(Pr(b | āx)).
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recall that Lemma 4.8 gives the net influence of variableA on variableC along the trail composition
t1 ‖ t2. We now write the equation from Lemma 4.8 as the difference between two functionsf andg:

Pr(c | axy) − Pr(c | āxy) =
=

[
(Pr(c | aby)− Pr(c | ab̄y))·Pr(b | ax) + Pr(c | ab̄y)

]
− [

(Pr(c | āby)− Pr(c | āb̄y))·Pr(b | āx) + Pr(c | āb̄y)
]

= f( Pr(b | ax) )− g( Pr(b | āx) )

for all value combinationsx andy for the setX of predecessors ofB other thanA and the setY of
predecessors ofC other thanA andB, respectively. We note that the functionsf andg are both linear
in their respective parameter.

We now assume that the positive influence along trailt2 is composed of two separate positive influ-
ences. From the influence of variableB on variableC being positive, we have that the functionsf
andg are both linearly increasing, as depicted in Fig. 7; the fact that in the figure the gradient of the
functionf is larger than the gradient of the functiong is an arbitrary choice. From the positive direct
influence of variableA on variableC we further have thatf(0) ≥ g(0) andf(1) ≥ g(1). We therefore
have that the functionsf andG do not intersect. If the two influences along trailt2 are both negative,
then the functionsf andg are decreasing and similar observations apply.

To determine the sign of the composite influence of variableA on variableC, we have to consider the
sign of the difference between the functionsf andg. We observe that, although the functionsf and
g are expressed in terms of different parameters, these parameters cannot be varied independently as
their difference is restricted by the sign of the qualitative influence of variableA on variableB. Under
this constraint, we are allowed to compare the function values off andg for different parameters. For
ease of comparison, we have depicted for this purpose the two functionsf andg in a single graph, in
Fig. 8.

Since the positive indirect influence along trailt2 is composed of two positive influences, we have
three possible situations:

(1) S+1
(A,B) and S++1

(B,C), or

(2) S++1
(A,B) and S+1

(B,C), or

(3) S+1
(A,B) and S+1

(B,C).

Here, we only consider the latter situation; the proofs for the other two situations are quite similar. As
the direct influence of the variableA on the variableB is weakly positive, we have that0 ≤ Pr(b |
ax)− Pr(b | āx) ≤ α. Therefore, when investigating the difference between the two functionsf and
g, we have to satisfy the following constraints:

• the parameterPr(b | ax) for the functionf should be greater than or equal to the parameter
Pr(b | āx) for the functiong;

• the difference between the two parameters may not be greater thanα.
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Figure 8: The functionsf( Pr(b | ax) ) and g( Pr(b | āx) ) depicted in a single graph, with (a)
gradient( f ) > gradient( g ), and (b)gradient( g ) > gradient( f ).

We now show that under these constraints the differencef(Pr(b | ax)) − g(Pr(b | āx)) is greater
than or equal to zero. To this end, we consider the graph from Fig. 8(a); similar observations hold for
the graph from Fig. 8(b). Under the given constraints, we have that the minimal difference between
f(Pr(b | ax)) andg(Pr(b | āx)) is attained forf(0) andg(0). We find that

Pr(c | axy)− Pr(c | āxy) ≥ f(0)− g(0) = Pr(c | ab̄y)− Pr(c | āb̄y)

The minimal difference is positive as a result of the direct influence ofA onC being positive. The sign
of the composite influence of variableA on variableC is therefore positive. The maximal difference
betweenf(Pr(b | ax)) andg(Pr(b | āx)) is attained forf(1) andg(1 − α). Once again exploiting
the information that the signs of the direct influences are all weakly positive, this difference equals:

Pr(c | axy) − Pr(c | āxy) ≤ f(1)− g(1 − α)
= Pr(c | aby)− Pr(c | āb̄y)− (

Pr(c | āby)− Pr(c | āb̄y)
)·(1− α)

= Pr(c | aby)− Pr(c | āby) + α·(Pr(c | āby)− Pr(c | āb̄y)
)

≤ α + α · α = α + α2

We conclude that the composite influence of variableA on variableC is positive and of unknown
strength, that is, we conclude that the composite influence equalsŜ+0

(A,C, t1 ‖ t2). �

From the above lemma and the appropriate entry in Table 3, we conclude that for two weakly pos-
itive influences the enhanced⊕e-operator correctly captures the sign of their composition. Similar
observations hold for the composition of two weakly negative signs.

The next lemma addresses the situation where two strongly positive influences along parallel trails
are combined into a composite influence.

Lemma 4.10 LetQ, A,C, t1, t2, t1 ‖ t2, i andj be as in the previous lemma. Then,

Ŝ++i
(A,C, t1) ∧ Ŝ++j

(A,C, t2) =⇒ Ŝ++min(i,j)
(A,C, t1 ‖ t2)

Proof: The proof proceeds in a similar fashion as the proof of Lemma 4.9. We again assume that
the positive influence along trailt2 is composed of two separate positive influences, with similar
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observations applying when both influences are negative. Since the indirect influence of variableA
on variableC along trailt2 is strongly positive, it must be composed of two strongly positive direct
influences. We thus have that

S++1
(A,B) and S++1

(B,C)

and therefore thatS++2
(A,C, t2). We now investigate the difference between the two functionsf

andg defined in the proof of Lemma 4.9. Since the influence of the variableA on the variableB is
strongly positive, we have that the difference between the two parameters forf andg should be at
leastα. To establish the minimum difference betweenf(Pr(b | ax)) andg(Pr(b | āx)), we once again
consider the graph from Fig. 8(a); similar observations again hold for the graph from Fig. 8(b). Under
the constraint mentioned above, it is readily seen that the minimal difference betweenf(Pr(b | ax))
andg(Pr(b | āx)) is attained forf(α) andg(0). We find that

Pr(c | axy) − Pr(c | āxy) ≥ f(α)− g(0)
= (Pr(c | aby)− Pr(c | ab̄y)) · α + Pr(c | ab̄y)− Pr(c | āb̄y)
≥ α2 + α ≥ αmin(1,2)

We conclude that the composite influence of variableA on variableC is strongly positive with
multiplication index1, which is the minimum of1 and 2. The composite influence thus equals
Ŝ++min(1,2)

(A,C, t1 ‖ t2). �

From the above lemma and the appropriate entry in Table 3, we conclude that for two strongly pos-
itive influences the enhanced⊕e-operator correctly captures the sign of their composition. Similar
observations hold for the composition of two strongly negative signs.

The next lemma addresses the combination of a strongly positive and a weakly positive influence.

Lemma 4.11 LetQ, A,C, t1, t2, t1 ‖ t2, i andj be as in the previous lemma. Then,

Ŝ++i
(A,C, t1) ∧ Ŝ+j

(A,C, t2) =⇒ Ŝ++i
(A,C, t1 ‖ t2)

Proof: We distinguish between two different cases:

(I) the trail t1 consists of a single arc and the trailt2 consists of the arcsA→ B, B → C for some
variableB;

(II) the trail t1 consists of the arcsA→ B, B → C and the trailt2 consists of the single arc.

For each of these cases, the proof proceeds in a similar fashion as the proof of Lemma 4.9. First
we address case (I). As before, we assume that the indirect weakly positive influence of variable
A on variableC along trail t2 is composed of two separate weakly positive influences; the proofs
for the other possible situations again are analogous. To establish the minimal difference between
the functionsf and g defined in the proof of Lemma 4.9, we once again consider the graph from
Fig. 8(a). Since the influence of variableA on variableB is weakly positive, the difference between
the two parameters forf andg should be at mostα. Under this constraint, the minimal difference
betweenf(Pr(b | ax)) andg(Pr(b | āx)) is attained forf(0) andg(0). We thus find that

Pr(c | axy)− Pr(c | āxy) ≥ f(0)− g(0) = Pr(c | ab̄y)− Pr(c | āb̄y)
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Since the direct influence of variableA on variableC is strongly positive, we have thatPr(c |
axy) − Pr(c | āxy) ≥ α. We conclude that the composite influence of variableA on variableC
is strongly positive with multiplication index1, that is, we conclude that the composite influence
equalsŜ++1

(A,C, t1 ‖ t2) in case (I).

We now consider the minimal difference between the two functionsf andg in case (II). We again
assume that the indirect positive influence ofA on C along trail t1 is composed of two separate
positive influences, with similar observations applying when both influences are negative. Since the
indirect influence ofA on C now is strongly positive, we have from Table 2 that the two separate
influences fromA to B and fromB to C must both be strongly positive. We thus have that

S++1
(A,B) and S++1

(B,C)

and, therefore, that̂S++2
(A,C, t1). Since the influence of variableB on variableC is positive, we

have that the two functionsf andg are both linearly increasing. Since the influence ofA on B is
strongly positive, we further have that parameterPr(b | ax) for the functionf should be greater than
the parameterPr(b | āx) for the functiong, with a difference of at leastα. To establish the minimum
difference betweenf(Pr(b | ax)) andg(Pr(b | āx)), we again consider the graph from Fig. 8(a), with
similar observations applying for the graph from Fig. 8(b). Under the constraints mentioned above,
we observe that the minimal difference betweenf(Pr(b | ax)) andg(Pr(b | āx)) is attained forf(α)
andg(0). We thus find that

Pr(c | axy) − Pr(c | āxy) ≥ f(α)− g(0)
= (Pr(c | aby)− Pr(c | ab̄y)) · α + Pr(c | ab̄y)− Pr(c | āb̄y))

Since the direct influence ofA onC is weakly positive, we have that0 ≤ Pr(c | ab̄y)−Pr(c | āb̄y) ≤
α. We conclude that the composite influence of variableA on variableC is strongly positive with
multiplication index2, that is, we conclude that the composite influence equalsŜ++2

(A,C, t1 ‖ t2)
in case (II). �

From the above lemma and the appropriate entry in Table 3, we deduce that for a weakly and a strongly
positive influence the enhanced⊕e-operator correctly captures the sign of their composition. Similar
observations hold for the composition of a strongly negative and a weakly negative influence.

The main reason for enhancing qualitative probabilistic networks with a notion of strength has
been to provide for resolving trade-offs upon inference. Trade-off resolution in essence amounts to
associating an unambiguous sign with the composite influence that is built from two or more conflict-
ing influences along parallel active trails. The next lemma provides for the combination of conflicting
influences and describes the type of trade-off that can now typically be resolved upon inference.

Lemma 4.12 LetQ, A,C, t1, t2, t1 ‖ t2, i andj be as in the previous lemma. Then, ifi ≤ j,

Ŝ++i
(A,C, t1) ∧ Ŝ−j

(A,C, t2) =⇒ Ŝ+0
(A,C, t1 ‖ t2)

Proof: Let Pr be a joint probability distribution onV (G) that respects the independences inG and let
α be the cut-off value used for distinguishing between strong and weak influences. As in the proof of
Lemma 4.9, we construct two functionsf andg with

Pr(c | axy) − Pr(c | āxy) =
=

[
(Pr(c | aby)− Pr(c | ab̄y))·Pr(b | ax) + Pr(c | ab̄y)

]
− [

(Pr(c | āby)− Pr(c | āb̄y))·Pr(b | āx) + Pr(c | āb̄y)
]

= f(Pr(b | ax))− g(Pr(b | āx))
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Depending on the sign of the influence of variableB on variableC, we have that the functionsf andg
are either both linearly increasing, or linearly decreasing functions. We assume that the two functions
are increasing, which implies that the influence of variableB on variableC is positive. We further
assume that the gradient of the functionf is larger than the gradient of the functiong, as depicted in
the graph from Fig. 8(a). Similar observations apply to the graph from Fig. 8(b), and to decreasing
functions.

We now distinguish between the two cases (I) and (II) from the proof of Lemma 4.11:

(I) the trail t1 consists of a single arc and the trailt2 consists of the arcsA→ B, B → C for some
variableB;

(II) the trail t1 consists of the arcsA→ B, B → C and the trailt2 consists of the single arc.

First we address case (I), with a strongly positive direct influence of variableA on variableC. From
our assumptions we have that the indirect negative influence along trailt2 is composed of a negative
influence ofA on B and a positive influence ofB on C. More specifically, we have one of the
following three situations:

(1) S−1
(A,B) and S+1

(B,C), or

(2) S−−1
(A,B) and S+1

(B,C), or

(3) S−1
(A,B) and S++1

(B,C).

The indirect influence of variableA on variableC along trailt2 has associated the sign−2 in situation
(1) and the sign−1 in the situations (2) and (3).

To establish the sign of the composite influence ofA on C, we first establish the minimal difference
between the functionsf andg. We begin by considering the situations (1) and (3) described above.
Since the influence of variableA on variableB is weakly negative, we have that the parameters
Pr(b | ax) and Pr(b | āx) for the functionsf and g, respectively, have to satisfy the following
constraints:

• the parameterPr(b | ax) for functionf is smaller than or equal to the parameterPr(b | āx) for
functiong;

• the difference between the two parameters is at mostα.

From Fig. 8(a), we observe that under these constraints the minimal difference betweenf andg is
attained forf(0) andg(α). The minimal difference thus is

Pr(c | axy) − Pr(c | āxy) ≥ f(0)− g(α)
= Pr(c | ab̄y)− Pr(c | āb̄y)− (

Pr(c | āby)− Pr(c | āb̄y)
)·α

The difference between the first two terms isα or more, due to the strongly positive direct influence
of A onC. The difference between the last two terms is captured by the influence ofB onC, which is
weakly positive in situation (1) and strongly positive in situation (3). In situation (1) we now have that
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Pr(c | axy) − Pr(c | āxy) ≥ α − α · α; for situation (3) we find thatPr(c | axy) − Pr(c | āxy) ≥
α− 1 · α = 0.

We now consider the situation (2) described above. The strongly negative influence of variableA on
variableB imposes the following constraints on the parameters forf andg:

• the parameterPr(b | ax) for functionf is smaller than the parameterPr(b | āx) for functiong;

• the difference between the two parameters is at leastα.

From Fig. 8(a), we observe that under these constraints the minimal difference betweenf andg is
attained forf(0) andg(1):

Pr(c | axy) − Pr(c | āxy) ≥ f(0)− g(1)
= Pr(c | ab̄y)− Pr(c | āb̄y)− (Pr(c | āby)− Pr(c | āb̄y))

We therefore have thatPr(c | axy)− Pr(c | āxy) ≥ α− α = 0.

For all three situations (1), (2), and (3), the maximum difference between the functionsf andg is
attained forf(1− α) andg(1). The maximum difference thus is

Pr(c | axy) − Pr(c | āxy) ≤ f(1− α)− g(1)
= Pr(c | aby)− Pr(c | āby)− (Pr(c | aby)− Pr(c | ab̄y)) · α

We find that the maximum difference is at most1 in situations (1) and (2), and1− α in situation (3).
We conclude that in case (I), the composite influence of variableA on variableC is positive but of
unknown strength, that is,̂S+0

(A,C, t1 ‖ t2).

We now address case (II). Since the indirect influence along trailt1 is strongly positive, it must be
composed of two strong direct influences. Recall that we assume that the influence of variableB on
variableC is positive, hence both the strong influences are positive, that is,

S++1
(A,B) andS++1

(B,C),

resulting in the indirect influenceS++2
(A,C). As the lemma addresses only situations where the

multiplication index of the strong sign is at most that of the weak sign, we now assume that the
weakly negative direct influence of variableA on variableC has a multiplication index of (at least)2.
The above observations result in the following constraints:

• functionf lies below functiong, that is,f(0) ≤ g(0) andf(1) ≤ g(1);

• the parameterPr(b | ax) for functionf is greater than the parameterPr(b | āx) for functiong,
with a difference of at leastα;

• the functionsf andg are both linearly increasing functions.

We again assume the gradient off to be larger than that ofg, with similar observations holding for
the opposite case.
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To establish the sign of the composite influence of variableA on variableB, we once again investigate
the minimal and maximal differences between the functionsf andg. Under the constraints above, we
find that the minimal difference betweenf andg is attained forf(1) andg(0), and thus equals

Pr(c | axy) − Pr(c | āxy) ≥ f(1)− g(0)
= Pr(c | aby)− Pr(c | ab̄y) + Pr(c | ab̄y)− Pr(c | āb̄y)

From the strongly positive influence of variableB on variableC, we have thatPr(c | aby) − Pr(c |
ab̄y) ≥ α; from the weakly negative influence of variableA on variableC we have that0 ≥ Pr(c |
ab̄y)− Pr(c | āb̄y) ≥ −α2. The minimal difference therefore equalsα− α2. Similarly, the maximal
difference between the functionsf andg is attained forf(α) andg(0), and equalsα2. We conclude
that for case (II), the composite influence of variableA on variableC is positive, but of unknown
strength, that is,S+0

(A,C, t1 ‖ t2).

To summarise, in all possible situations where the multiplication indexi of the strong sign is less
than or equal to the multiplication indexj of the weak sign, the composite influence of variableA on
variableC is positive, but of unknown strength, that is,S+0

(A,C, t1 ‖ t2). Note that ifi > j, then
we cannot guarantee that the composite influence is positive. �

From the above lemma and the appropriate entry in Table 3, we observe that for a strongly positive
influence with multiplication indexi and a weakly negative influence with multiplication indexj,
i ≤ j, the enhanced⊕e-operator correctly captures the sign of their composition. Similar observations
apply to other combinations of strong and weak conflicting influences. We conclude that, under certain
conditions, the composition of conflicting strong and weak influences using the enhanced⊕e-operator
leads to an unambiguous result at the level of the basic sign of the composite influence. The enhanced
⊕e-operator thus indeed serves to resolve trade-offs upon inference.

4.4.2 The rich enhanced operator⊕r

We recall that the composition of two influences along parallel active trails may yield an influence
whose strength cannot be expressed as a simple power of the cut-off valueα. In the previous section,
we took such influences to be of unknown strength, which was captured by the signs+0 and−0. From
the proofs in the previous section, however, we have that the strength of a composite influence can
be expressed as a polynomial expression in terms of the cut-off valueα. By discarding the higher-
order terms in this polynomial, or — if discarding introduces possible errors — by settling for a
sign with unknown strength, clearly some information loss occurs. To retain this information, the
entire polynomial should be incorporated into the multiplication index of the sign of the composite
influence. For this purpose, we augment a sign with alist of multiplication indices such as defined in
Section 4.1.

Table 4 now defines therich enhanced⊕r-operator for combining signs with a multiplication-
index list. From the table, it is readily seen that the ‘+’, ‘−’, ‘ 0’, and ‘?’ signs combine as in a basic
qualitative probabilistic network; the only difference is in the handling of the multiplication indices.
When comparing the table to Table 3 for the enhanced⊕e-operator in the previous section, we note
that stronger results can now be provided for the sum of two weak signs having the same basic sign. In
addition, we can also give stronger results upon adding two strong signs, and for the sum of a strong
and a weak sign. The following lemmas show, for the situations in which the enhanced⊕r-operator
differs from the enhanced⊕e-operator, that the operator defined in Table 4 correctly captures the sign
of a combination of two parallel influences; the proofs for the other combinations of influences are
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Table 4: The rich enhanced⊕r-operator.

⊕r ++j +j 0 −j −−j ?

++i ++i,j ++i ++i a) ? ?
+i ++j +i,j +i ? d) ?
0 ++j +j 0 −j −−j ?
−i b) ? −i −i,j −−j ?
−−i ? c) −−i −−i −−i,j ?

? ? ? ? ? ? ?

where

a) ++i,−j, if i ≤ j; ?, otherwise

b) ++−i,j, if j ≤ i; ?, otherwise

c) −−i,−j, if i ≤ j; ?, otherwise

d) −−−i,j, if j ≤ i; ?, otherwise

quite similar. The first lemma pertains to the situation where two weakly positive influences along
parallel trails are combined.

Lemma 4.13 Let Q = (G,∆) be an enhanced qualitative probabilistic network. LetA,C be vari-
ables inG and lett1 and t2 be parallel active trails inG from A to C, wheret1 ‖ t2 is their trail
composition. Leti andj be simple multiplication-index lists. Then,

Ŝ+i
(A,C, t1) ∧ Ŝ+j

(A,C, t2) =⇒ Ŝ+i,j
(A,C, t1 ‖ t2).

Proof: Following the proof of Lemma 4.9 we find, for relevant value combinationsxy, that

0 ≤ Pr(c | axy)− Pr(c | āxy) ≤ αi + αj ,

if we assumei andj to be single multiplication indices. More in general, we find that the strength of
the composite influence lies between zero and the sum of the two polynomials inα, captured by the
multiplication-index listsi andj, respectively.

We conclude that the composite influence of variableA on variableC is weakly positive with multiplication-
index listi, j, that is, we conclude that the composite influence equalsŜ+i,j

(A,C, t1 ‖ t2). �

From the above lemma and the appropriate entry in Table 4, we conclude that for two weakly pos-
itive influences the enhanced⊕r-operator correctly captures the sign of their composition. Similar
observations hold for the composition of two weakly negative signs. From the proofs of Lemmas 4.9
and 4.13, the difference between the enhanced⊕e-operator from the previous section and the rich
enhanced⊕r-operator, for combining weak influences having the same basic sign, becomes apparent:
whereas with the enhanced⊕e-operator the polynomial expression inα was summarised in a sign
with unknown strength, the powers of eachα term are now retained in the multiplication-index list of
the resulting sign. The same observations hold when we combine the signs of two strong influences,
positive or negative, with the same basic sign: instead of a composite sign with a single multiplication
index equal to the lowest-order term from the polynomial expression inα, the power of each term is
now retained in the multiplication-index list.

The next lemma provides for the important trade-off situation where two influences with conflict-
ing signs are combined upon inference.

Lemma 4.14 LetQ, A,C, t1, t2, t1 ‖ t2, i andj be as in the previous lemma. Then, ifi ≤ j,

Ŝ++i
(A,C, t1) ∧ Ŝ−j

(A,C, t2) ⇒ Ŝ++i,−j
(A,C, t1 ‖ t2)
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Proof: Following the proof of Lemma 4.12, we find for case (I), in all situations, as well as for case
(II), that for relevant value combinationsxy

Pr(c | axy)− Pr(c | āxy) ≥ αi − αj

if we assume thati andj are single multiplication indices. More in general, we find that the strength
of the resulting influence is at least the difference between the two polynomials inα captured by the
multiplication-index listsi andj, respectively; this difference is guaranteed to be positive ifi ≤ j (see
Proposition 4.15 below).

We conclude that the composite influence of variableA on variableC is strongly positive with
multiplication-index listi,−j, that is,Ŝ++i,−j

(A,C, t1 ‖ t2). �

From the above lemma and the appropriate entry in Table 4, we conclude that for a strongly positive
influence with multiplication-index listi and a weakly negative influence with multiplication-index
list j, i ≤ j, the rich enhanced⊕r-operator correctly captures the sign of their composition. Similar
observations apply to other combinations of strong and weak conflicting influences.

From Table 4 it is obvious that only in those situations where the⊕r-operator is applied to a strong
sign augmented with multiplication-index listi and a weak sign with multiplication-index listj, the
propertyi ≤ j is required to conclude a non-ambiguous result. The following proposition shows that
in these situations the definition of≤ on lists of multiplication indices ensures that thestrengthof the
concluded sign is non-negative.

Proposition 4.15 Let i and j be two simple multiplication-index lists wherei is associated with a
strong sign andj is associated with a conflicting weak sign. Let[α]i denote the polynomial inα
represented by listi. If i ≤ j, as defined in Definition 4.3, then[α]i − [α]j ≥ 0.

Proof: We assume that the signs associated with the direct influences along arcs in an enhanced
network are augmented with a single positive multiplication index, and this index equals1. We now
observe that multiplication-index listj is always positive: examining Tables 2 and 4 we see that
a weak sign can only be the result of applying one of the enhanced operators⊗ or ⊕r to at least
one weak sign; in those situations, the multiplication-index list for the resulting sign is inherited
from the multiplication-index list(s) of the weak sign(s) to which the operator was applied. In none
of these cases do we introduce negative multiplication indices, so weak signs always have positive
multiplication indices only.

We now consider multiplication-index listi. Let i = i1, . . . , in, n ≥ 1, and assume thati1 ≤ . . . ≤ in.
Let k be the length of the strictly negative sublist ofi. From Definition 4.3 we have thatk ≤ 1

2 · n.
In addition, ifk 6= 0, then the definition ensures that each negative index ini is compensated for by a
positive index, that is,|il| ≥ i2k−l+1 for all 1 ≤ l ≤ k. Therefore, we have that both[α]i1,...,i2k ≥ 0
and[α]i2k+1,...,in ≥ 0.

Finally, letj = j1, . . . , jm, m ≥ 1, and assume thatj1 ≤ . . . ≤ jm. From Definition 4.3 we have that
i ≤ j if n − 2 · k ≥ m andil ≤ jl for all l = 2 · k + 1, . . . ,m. Since bothj andi2k+1, . . . in contain
only non-negative indices, we conclude that ifi ≤ j then[α]i2k+1,...,im − [α]j1,...,jm ≥ 0. As a result,
[α]i1,...,i2k + [α]i2k+1,...,im + [α]im,...,in − [α]j1,...,jm ≥ 0, that is,[α]i − [α]j ≥ 0. �

We provide some examples to illustrate the application of the rich enhanced⊕r-operator to con-
flicting signs.
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Example 4.16 For each of the following examples we assume the lists of multiplication indices to be
simple. We now consider the following sign-sums:

1) −−2 ⊕r +2 5) −−1,2 ⊕r +1,1

2) ++2 ⊕r −1 6) ++−2,1 ⊕r −2

3) −−1,2 ⊕r +1,3 7) −−−2,2 ⊕r +3

4) ++1 ⊕r −1,1 8) ++−4,−2,1,3,3 ⊕r −3

1) Both multiplication-index lists are positive and of equal length. Obviously,2 ≤ 2, therefore
−−2 ⊕r +2 = −−2,−2.

2) Again we have positive multiplication-index lists of equal length. However,1 6≤ 2, therefore
the weak negative sign may in fact be stronger than the strong positive sign and we can only
conclude++2 ⊕r −1 = ?.

3) We now have two positive multiplication-index lists, both of length2. From1 ≤ 1 and2 ≤ 3
we conclude thati = 1, 2 ≤ j = 1, 3 and therefore−−1,2 ⊕r +1,3 = −−1,2,−1,−3. The
multiplication-index list of the resulting sign can be simplified to2,−3.

4) The two positive multiplication-index lists are of different lengths. More specifically, the num-
ber of indices for the strong sign is smaller than that for the weak sign. We can therefore not
conclude that the strongly positive sign is definitely stronger than the weak negative sign. We
conclude that++1 ⊕r −1,1 = ?.

5) Again we consider two positive multiplication-index lists of equal length. From1 ≤ 1, but
2 6≤ 1 we conclude thati = 1, 2 6≤ j = 1, 1 and therefore−−1,2 ⊕r +1,1 = ?.

6) The multiplication-index listi of the strong sign contains a sublist of length1 with negative
indices. This negative index is compensated for by the only positive index, leaving a sublist
of length0 to compare with the multiplication-index list of the weak sign. We can therefore
not guarantee that the strong sign is actually stronger than the weak sign and we conclude that
++−2,1 ⊕r −2 = ?.

7) Recall that multiplication-index lists of the form−n, n cannot be simplified. From the same
argument as given above, we conclude that if the rich enhanced⊕r-operator is applied to a
sign with such an multiplication-index list and to a conflicting weak sign, then the result is
always ambiguous. Therefore,−−−2,2⊕r +3 = ?. Note that replacing the sign−−−2,2 by the
equivalent sign−0, does not change the result.

8) The multiplication-index listi of the strong sign again contains a sublist with negative indices;
its length is2. After discarding these indices together with the1 to compensate for the−2 and
a 3 to compensate for the−4, a positive sublist of length1 remains. This sublist is compared
to the weak sign’s multiplication-index list, which has the same length. Since3 ≤ 3, we may
now conclude that the strong sign is guaranteed to be at least as strong as the weak sign and
therefore++−4,−2,1,3,3 ⊕r −3 = ++−4,−2,1,3,3,−3, which is simplified to++−4,−2,1,3. �

Again we observe that whereas the strength of an influence resulting from the combination of a strong
and a weak influence with the enhanced⊕e-operator from the previous section is summarised to be
unknown, we now retain more information by representing the powers of allα terms in the list of
multiplication indices.
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4.5 Algebraic properties

We conclude our discussion of the enhanced operators with reviewing some basic algebraic properties.
The addition of multiplication-index lists has not changed the⊗-operator’s commutative or associative
properties. With respect to the basic enhanced⊕e-operator and the rich enhanced⊕r-operator we
observe that, although the operators for combining signs of parallel influences are still commutative,
they are no longer associative. The latter is illustrated by the following example:

(++i ⊕v +i ) ⊕v −i = ++i ⊕v −i =
{

+0 if v = e
++i,−i if v = r

++i ⊕v (+i ⊕v −i ) = ++i ⊕v ? = ? if v = e or v = r

We note that both combinations lead to correct results, regardless of the⊕-operator used, the first just
being more informative than the second. Heuristics, such as, for example, separately adding all posi-
tive and all negative signs before combining them, can be designed to prevent unnecessary ambiguous
results due to order of combination.

In addition, we observe that the enhanced⊗-operator distributes over neither the⊕e-operator nor
the⊕r-operator. Compare, for example, the following:

(++i ⊕v +i ) ⊗ −i = ++i ⊗ −i = −i if v = e or v = r

(++i ⊗ −i ) ⊕v (+i ⊗ −i ) = −i ⊕v −2i =
{ −0 if v = e
−i,2i if v = r

Again, we note that all these results are correct, but they strongly differ in level of informativeness
with respect to the strength of the resulting sign.

5 Probabilistic inference revisited

In Section 3 we introduced the formalism of enhanced qualitative probabilistic networks. In Section 4,
we enhanced the standard⊗- and⊕-operators for combining signs of influences upon inference and
have addressed propagation of signs against the direction of arcs. Building upon the new, enhanced
operators, the basic sign-propagation algorithm for probabilistic inference with a qualitative network
is generalised straightforwardly to apply to enhanced networks: instead of the standard⊗- and⊕-
operators, the enhanced operators are used for propagating and combining signs. In this section we
illustrate the application of the resulting algorithm, for both versions of the enhanced⊕-operator, by
means of our running example which is reproduced in Fig. 9. In addition, we discuss some complexity
issues concerning the different versions of the sign-propagation algorithm.

5.1 Inference using the enhanced operators

The idea behind the sign-propagation algorithm is basically to establish the net influence between
an observed variable and all other variables in a qualitative probabilistic network, and multiply the
sign of this net influence with the sign of the observation to return the effect of the observation on all
variables. For ease of implementation, the algorithm starts by sending the sign of observation, a ‘+’
or a ‘−’, to the observed variable, thereby already incorporating the effect of the observation in all
messages that are subsequently sent. Due to the algebraic properties of the basic⊗- and⊕-operators,
the actual implementation does not affect the results.
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Figure 9: The (a) qualitativeAntibioticsnetwork and (b) its enhanced version.

In an enhanced qualitative network, the enhanced operators doe not adhere to the algebraic prop-
erties that ensure that the order in which signs are combined does not affect the result of their combi-
nation. As a consequence, multiplying the sign of a net influence with the sign of the observation may
lead to a different result that that obtained by directly incorporating the sign of observation in the mes-
sages sent by the observed variable. To disturb the computation of the signs of net influences as least
as possible, we propose entering an observation using an “identity” sign with respect to strength. More
specifically, we require a signs such that for arbitrary signt, the resultt∗ of s⊗t is exactly as strong as
t. We note from Table 2 that the signs++0 and−−0 are suitable for this purpose, since they basically
represent1 and−1, respectively. We now present an example that illustrates sign-propagation with
the enhanced⊗- and⊕-operators.

Example 5.1 We consider once again the qualitativeAntibiotics network, which is reproduced in
Fig. 9(a). Recall that entering the sign ‘+’ for variableA results upon inference with the basic sign-
propagation algorithm in the ambiguous sign− ⊕ + = ‘?’ for variable D, which in turn causes an
ambiguous sign for variableH.

Now, consider the enhancedAntibioticsnetwork reproduced in Fig. 9(b); the signs specified are
taken to hold in the direction of the corresponding arcs. We recall that initially all influences associated
with the arcs in the network’s digraph have signs with a multiplication-index of1. We once again apply
the sign-propagation algorithm, now using our enhanced operators.

We enter the sign++0 for variableA, reflecting a positive observation forA. VariableA propa-
gates a message with sign++0 ⊗−−1 = −−1 towards variableT . VariableT updates its node-sign
to −−1 and sends a message with sign−−1 ⊗ ++1 = −−2 to variableD. VariableD updates its
node-sign to−−2 and only sends a message with sign−−2 ⊗ ++1 = −−3 to variableH. Variable
H updates its sign accordingly and sends no messages.

VariableA also sends a message, with sign++0⊗+1 = +1, to variableF . VariableF updates its
sign and passes a message with sign+1 ⊗+1 = +2 to variableD. VariableD receives the additional
sign+2. VariableD will now combine the signs it has received from the two parallel trails originating
in A. The result of this combination depends on the enhanced operator used. More specifically, if
the sign-propagation algorithm employs the enhanced⊕e-operator then variableD updates its sign to
−−2 ⊕e +2 = −0, and then computes a message with sign−0 ⊗ ++1 = −0 for variableH. On the
other hand, if the rich enhanced⊕r-operator is applied, then variableD updates its sign to−−2⊕r +2

=−−2,−2, and computes for variableH a message with sign−−2,−2⊗++1 = −−3,−3. VariableH,



5 PROBABILISTIC INFERENCE REVISITED 33

however, does not need a sign update as its current sign is already correct, regardless of the operator
used (−−3 ⊕e −0 = −−3 and−−3 ⊕r −−3,−3 = −−3). The variablesD andH therefore send no
further messages and the algorithm halts.�

From the above example, it seems at first glance that the results from sign-propagation with the rich
enhanced⊕r-operator are similar to the results from using the enhanced⊕e-operator, with only the
node-sign for nodeD differing. This illusion, however, is caused by the specific example network
used. With the⊕r-operator, the node-sign of variableD is of the form−−i,−i due to the fact that
the two trails with conflicting influences have the same length; recall that this node-sign captures
the same information as the negative sign−0 of unknown strength returned by the⊕e-operator, and
therefore the results of inference hardly differ for the two operators. If the conflicting trails have
different lengths, however, then the difference between the two⊕-operators becomes more important:
for those situations in which the algorithm using the enhanced⊕e-operator leads to a node-sign−0,
the algorithm using the rich enhanced⊕r-operator will result in a node-sign−−i,−j, with i 6= j;
this latter sign captures more information than the ambiguous negative sign and may aid in resolving
even more trade-offs. Note that contrary to purely ambiguous signs, signs of unknown strength do not
necessarily spread throughout a network once they occur.

We conclude that, while in the basic framework of qualitative networks trade-offs cannot be re-
solved upon inference and result in an ambiguous net influence, enhanced qualitative probabilistic
networks allow for resolving at least some trade-offs.

5.2 Complexity of probabilistic inference

For quantitative probabilistic networks, in general, exact computation of probabilities is NP-hard [5].
The algorithms for probabilistic inference in a probabilistic network, however, are known to behave
polynomially under certain restrictions concerning the topology of the network’s digraph. In general,
the sparser the digraph, the better most algorithms perform.

The basic sign-propagation algorithm for inference in a basic qualitative network has a worst-case
runtime complexity that is polynomial in the number of nodes of the network’s digraph, regardless
of the digraph’s topology. In a singly connected digraph, each pair of nodes is connected by a single
simple trail. Upon sign-propagation, therefore, each variableA is visited at most once to receive the
single sign which is the sign-product of the sign of observation and the signs associated with the arcs
on the trail betweenA and the observed variable. In a multiply connected graph, two nodes can be
connected by more than one simple trail. As a result, a variable should be visited as many times as the
number of active simple trails between that variable and the observed variable to receive the sign of
influence along each of those trails. To limit this possibly exponential number of visits to a variable,
the basic propagation algorithm exploits the fact that node signs can only change twice; a variable
needs therefore only be visited if it requires a change in node-sign. The fact that a node-sign can only
change twice is apparent from the diagram in Fig. 10. The diagram displays the possible transitions
from one node-sign to another using the basic⊕-operator from Table 1. We observe that node-signs
remain unchanged after at most two updates. As variables therefore need to be visited at most twice,
and each visited variable inspects and constructs a message for at most all other variables, we have that
the basic propagation algorithm halts after a number of operations that is polynomial in the number
of nodes in the network’s digraph.

The basic formalism of qualitative probabilistic networks does not allow for resolving trade-offs,
as combining two conflicting influences with the basic⊕-operator immediately results in an ambigu-
ous node-sign. From the example in the previous section, we have that the enhanced⊕-operators do
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provide for resolving some trade-offs, using the additional information carried by the enhanced signs
and their multiplication-index lists. The possibility of resolving trade-offs, however, comes at the ex-
pense of efficiency of sign-propagation. This is not surprising, since qualitative trade-off resolution is
also known to be NP-hard [17]. The main difference between sign-propagation in a basic qualitative
probabilistic network and sign-propagation in an enhanced network is that, in multiply connected di-
graphs, the limit of two visits to each variable no longer applies. Although a variable’s basic enhanced
node-sign can change at most three times, the multiplication indices associated with the sign may need
to change each time the variable is inspected. Therefore, the runtime of the algorithm on an enhanced
network using the rich enhanced⊕r-operator is of the order of the number of active simple trails em-
anating from the observed variable in the network’s digraph; for dense graphs this can be exponential
in the number of nodes.

The diagram in Fig. 11 shows the possible transitions from one node-sign to another using the
rich enhanced⊕r-operator from Table 4. In the diagram we observe several self-loops indicating that,
although the basic enhanced node-sign remains the same, its multiplication-index listi needs to be
updated with the multiplication-index listj of the sign added. As a result of these self-loops, in worst
case, a variable’s node-sign will need as many updates as the number of simple trails between that
variable and the observed variable, which means that the variable is possibly visited an exponential
number of times. The difference between using the enhanced⊕e-operator and the rich enhanced⊕r-
operator is that the multiplication-index list of a sign cannot grow: the list for the resulting sign either
equals the smallest of the lists of the two combined signs, or it equals the single index0. The effect
of this simplification is apparent from the diagram in Fig. 12 which displays the possible transitions
of one node-sign to another when propagation is done using the enhanced⊕e-operator. From this
diagram we have that one of the self-loops for the strong signs from Fig. 11 is replaced by a loop
between the strong signs and signs with unknown strength (i = 0) in Fig. 12. In addition, upon adding
two or more weak signs, the self-loop among the weak signs is invoked only once. Using the enhanced
⊕e-operator may therefore turn out to be more efficient in practice, than using the rich enhanced⊕r-
operator. We illustrate this observation with an example.

Example 5.2 Consider an enhanced qualitative network and one of its variablesA. Suppose that sign-
propagation has, at some stage, resulted in the node sign++3 for A. In addition, assume that variable
A is connected to the observed variable by another nine simple trails and that no messages travelling
these trails have yet reachedA. We number the trails, and variableA’s neighbours on these trails,1
through9, and assume that variableA is inspected by its neighbours in that order. Now suppose that
the signs of the messages computed by neighbours1 through9 for variableA are, respectively, 1)

0

+ −

?

Figure 10: Possible node-sign updates during sign-propagation in a basic qualitative probabilistic
network.
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?
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i← i, (−)ji← i, (−)j

i← i, j i← i, j

+i −i

++i −−i

Figure 11: Possible node-sign updates during sign-propagation, using the rich enhanced⊕r-operator,
in an enhanced qualitative network.

++2, 2)−4, 3) ++4, 4) ++2, 5)−3, 6) +3, 7) ++3, 8)−2, and 9)−4.
When the sign-propagation algorithm uses the enhanced⊕e-operator, the following will now hap-

pen at variableA:

1. VariableA has node-sign++3 and neighbour 1) has computed the message++2 for A. Since
++3 ⊕e ++2 = ++2, variableA needs to update its node-sign and thus the message from
neighbour1 is sent toA;

2. variableA now has node-sign++2. As ++2 ⊕e −4 = +0, the message from neighbour2 is
also sent to variableA, which then updates its node-sign to+0;

3. since+0⊕e++4 = ++4, A also receives a message from neighbour3 and updates its node-sign
to ++4;

4. as++4 ⊕e ++2 = ++2, A receives a message from neighbour4 as well, and updates its
node-sign accordingly;

5. since++2 ⊕e −3 = +0, A receives a message from neighbour5 and updates its node-sign;

6. now, since+0 ⊕e +3 = +0, variableA does not need to update its node-sign and therefore
neighbour6 sends no message toA;

7. as+0 ⊕e ++3 = ++3, variableA does receive a message from neighbour7 and updates its
node-sign;

8. since++3 ⊕e −2 = ?, A also receives a message from neighbour8 and updates its node-sign.
The ambiguous node-sign cannot be changed, hence, variableA will be visited no more;

9. as a consequence, neighbour9 does not send a message to variableA.

When, on the other hand, the rich enhanced⊕r-operator is used, propagation will result in the follow-
ing:



5 PROBABILISTIC INFERENCE REVISITED 36

?

0

i← min(i, j)

i← 0

+i −i

++i −−i

i← min(i, j)
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i← 0 i← 0

Figure 12: Possible node-sign updates during sign-propagation, using the enhanced⊕e-operator, in
an enhanced qualitative network.

1. Since++3 ⊕r ++2 = ++2,3, variableA receives a message from neighbour1 and updates its
node-sign;

2. ++2,3 ⊕r −4 = ++2,3,−4, soA receives a message and updates its node-sign;

3. ++2,3,−4 ⊕r ++4 = ++2,3, A updates (and simplifies) its node-sign;

4. ++2,3 ⊕r ++2 = ++2,2,3, A updates its node-sign;

5. ++2,2,3 ⊕r −3 = ++2,2, A updates (and simplifies) its node-sign;

6. since++2,2 ⊕r +3 = ++2,2, variableA does not need to update its node-sign and therefore
receives no message from neighbour6;

7. ++2,2 ⊕r ++3 = ++2,2,3, variableA updates its node sign;

8. ++2,2,3 ⊕r −2 = ++2,3, variableA updates (and simplifies) its nod-sign;

9. ++2,3 ⊕r −4 = ++2,3,−4, A updates its node-sign.

We observe that for this specific pattern of messages, propagation using the enhanced⊕e-operator
halts after fewer steps than propagation using the rich enhanced⊕r-operator. In addition, the signs
required for the use of the⊕r-operator have to store more information. We also observe, however, that
use of the rich enhanced⊕r-operator has led to a more informative answer for variableA. �

The higher level of detail provided by the lists of multiplication indices and the rich enhanced operator
thus may introduce a higher computational cost of inference than when the basic enhanced operator for
summing signs is used. In fact, using the enhanced⊕e-operator, propagation will take exponential time
only if, for a certain variable, the signs of the messages sent to that variable in order for it to update its
node-sign, obey a certain pattern. This may occur, for example, if the node-sign of the variable is++i,
it subsequently is updated with between zero andi−1 strongly positive signs (self-loop), followed by
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a weakly negative sign with a larger multiplication index (resulting in a+0), followed by a strongly
positive sign (resulting in a++i), etc. The same process will occur with positive and negative signs
switched. Such a pattern of node-sign updates will require at least the same amount of time when the
⊕r-operator is used instead.

We conclude that there exists a trade-off between the amount of information present in inference
results after sign-propagation and the complexity of the propagation algorithm. Inference using the
basic sign-propagation algorithm has a runtime complexity that is polynomial in the number of nodes
of a qualitative network’s digraph, but always leads to ambiguous results when the network models
a trade-off. Inference using the enhanced⊕-operators may become exponential, but does enable the
resolving of trade-offs.

6 Related work

The problem of trade-off resolution within the framework of qualitative networks has been addressed
before by different researchers. In this section we briefly review this related work.

S. Parsons introduced the concept of categorical influence [19]. A categorical influence is a quali-
tative influence that serves either to increase a probability to 1 or to decrease a probability to 0, disre-
garding all other influences. For example, a positive categorical influenceS[++](A,B) of a variableA
on a variableB is defined asPr(c | ax) = 1 for all relevant variablesX. A categorical influence thus
serves to resolve any trade-off in which it is involved, but can only capture deterministic relationships
between nodes; in real-life applications few to none of such relationships will exist. In addition, this
extension requires new signs for indicating the increase to 1 and decrease to 0, respectively, and the
incorporation of these new signs in the tables for the⊗- and⊕-operators.

Parsons also studied the use of both relative and absolute order-of-magnitude reasoning in the con-
text of qualitative probabilistic networks [19]. Relative orders of magnitude can be used to relate dif-
ferent qualitative influences to each other. Using the relative order-of-magnitude systemROM[K] [6],
one qualitative influence can be specified as being, respectively,negligible with respect to,distant
from, comparableto, or close to another influence. The use of relative orders of magnitude thus
serves to relate the strengths of different influences, but it requires the specification of a relation be-
tween all pairs of influences, instead of a notion of strength per influence. In addition, the relations
used seem to be ill-defined, which makes reasoning with them anything but intuitive. For absolute
order-of-magnitude reasoning, Parsons proposes a method that revolves around the propagation of
abstract intervals between−1 and1, that correspond to labels like ‘Strongly Positive’, ‘Weakly Pos-
itive’, etc. Two different sets of labels are required: one for modelling influences that are associated
with the arcs in the network’s digraph, and one for modelling changes that occur at the nodes in the
graph (comparable to ‘node-signs’). The intervals corresponding to a set of labels do not overlap and
together span the interval[−1, 1]. The boundaries of the intervals, however, are not actually quan-
tified, but set to beα, β, etc.; this approach is therefore comparable to our treatment of the cut-off
value. Probabilistic inference is based on propagating and combining the abstract intervals; the in-
terval comparisons required to this end are done using≥int, where [α, β] ≥int [γ, δ] iff α ≥ γ and
β ≥ δ. Note that if one interval is considered larger than another with this operator, then they may in
fact overlap. To prevent considerable loss of information, assumptions about the actual values of the
interval boundaries have to be made.

κ-calculus [24] can be considered another absolute order-of-magnitude system. Using a proba-
bilistic interpretation of theκ-calculus, probabilities can be abstracted toκ-values, where aκ-value of
n indicates that the associated probability has the same order of magnitude asεn for some infinitesimal
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numberε [7]. Drawbacks of the use of theseκ-values are that they are not concerned withchangesin
probabilities, but rather with the probabilities themselves, and that the probabilistic interpretation is
suitable for infinitesimal probabilities only. The former problem can be lifted as an absolute change
in probability is a number between zero and one and can therefore be abstracted to aκ-value. This
principle has more recently been used in another approach to enhance the expressiveness of qualitative
probabilistic networks [23]. With this approach, an interval ofκ-values is associated with the sign of
an influence to capture its possible strengths. Theseκ-intervals are propagated along with the qualita-
tive network’s signs. Propagation results, however, are only guaranteed to be correct for infinitesimal
probabilities. Finally, the definition of aκ-value is not very intuitive and such values are therefore
hard for domain experts to specify and interpret.

Categorical influences, order-of-magnitude reasoning andκ-calculus are of a purely qualitative
nature, yet serve for resolving some trade-offs. C.-L. Liu and M.P. Wellman designed methods for re-
solving trade-offs based upon the idea of reverting to numerical probabilities whenever necessary [17].
They propose to reason with a probabilistic network in a qualitative way, thereby exploiting the effi-
ciency of sign-propagation, and only reverting to the full quantification whenever a trade-off leads to
an ambiguous result. Two methods are described for resolving the trade-off. The first method provides
for incrementally applying numeric inference to the point where qualitative reasoning can produce a
decisive result. That is, a trade-off between two variables is resolved numerically and then abstracted
into a net qualitative influence between the two variables. The second method amounts to estimating
bounds on the net influence along the trails that give rise to a trade-off. These bounds are then again
used to compute the qualitative sign of the net influence. The methods presented by Liu and Well-
man resolve any trade-off present in the network, but require a fully specified, numerical probabilistic
network.

We would like to mention that some other approaches to dealing with uncertainty in a qualitative
way have been proposed in the literature. As these approaches are not tailored for use within the
framework of qualitative probabilistic networks, we do not review them here.

7 Conclusions and further research

Qualitative probabilistic networks have been designed to overcome, to at least some extent, the quan-
tification problem known to probabilistic networks. Qualitative networks in essence are qualitative
abstractions of their quantitative counterparts: while in a probabilistic network relationships between
variables are quantified by probabilities, these relationships are expressed by qualitative signs in qual-
itative probabilistic networks. As a result of their coarse level of representation detail, qualitative
networks lack the expressive power that allows for resolving trade-offs the way probabilistic networks
do. To provide for trade-off resolution we have therefore enhanced the formalism of qualitative prob-
abilistic networks. To this end, we have distinguished between strong and weak influences. We have
further enhanced the multiplication and addition operators to guarantee the transitivity and parallel-
composition properties of influences. To handle the asymmetry of an influence’s strength we have
proposed specifying two influences for each arc. With these enhancements we have generalised the
basic sign-propagation algorithm to apply to enhanced qualitative networks. We have shown that our
formalism provides for resolving at least some trade-offs in a qualitative way, that is, without having
to resort to numerical computation.

To distinguish between weak and strong influences, we have introduced additional signs and aug-
mented all signs with multiplication-index lists. As it is hard to interpret the meaning of such lists of
indices, it is not our intention to output the augmented signs. The multiplication indices are merely
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used internally for trade-off resolution. The output of inference, as in a basic qualitative network, is
a basic sign for each variable that indicates whether the net influence of an observation on that vari-
able is positive, negative, zero or ambiguous. If desirable, an additional level of strength can be added
by introducing, for example, ‘+ + +’ and ‘− −−’ signs using an additional cut-off value. Alterna-
tively, signs with a multiplication index other than 1 could be allowed on the arcs of the enhanced
network’s digraph. Both options, however, would require domain experts to be able to distinguish
between more than two levels of strength and the first option would, in addition, render the necessary
⊗- and⊕-operators more complex.

When the sign-propagation algorithm is used with the enhanced⊕-operators, it becomes less
efficient than the basic sign propagation algorithm. In fact, inference may then in theory become
infeasible. Further research will be necessary to determine the actual complexity of sign-propagation
with the enhanced operators in real-life qualitative networks. Two approaches can, however, be used
to bound the complexity of inference. The first approach amounts to posing a limit on the number of
sign-additions performed for a single variable. If this limit is reached, the node-sign of the variable
is changed into a basic sign (‘+’, ‘−’, ‘ 0’, or ‘?’) and the basic sign-propagation algorithm is used
for further propagation. Note that this approach may lead to weaker, but correct, results. The other
approach, especially suitable when using the⊕r-operator, is to use enhanced signs only in small parts
of the network, that is, in those parts where trade-offs reside. In constructing the enhanced network,
we then focus on the multiply connected parts of the network’s digraph and ask the domain experts
whether the possible parallel trails between variables consist of conflicting influences. If so, enhanced
signs are elicited for the influences on these trails. During inference, the trade-off can be locally
resolved using the enhanced sign-propagation algorithm, and the basic sign for the net influence is
then used for further propagation with the basic sign-propagation algorithm. Another advantage of
such local computation with enhanced signs is that it requires only local specification of such signs. As
a consequence, during the elicitation of signs, domain experts then only have to compare differences in
strengths for small sets of influences. As correctly specifying strengths will be harder for experts than
correctly specifying the basic sign for an influence, local specification of enhanced signs will make
the resulting signs less prone to error. Local specification also allows for different interpretations of
strong and weak influences for different parts of the network, that is, it allows for different cut-off
values to be (implicitly) used in different parts of the network.

Qualitative probabilistic networks can play an important role in the construction of quantitative
probabilistic networks for real-life application domains. As the assessment of the various probabili-
ties required is a hard task, it is performed only when the probabilistic network’s graph is considered
robust. Now, by assessing signs for the influences modelled in the graph, a qualitative network is
obtained that can be exploited for studying the projected probabilistic network’s reasoning behaviour
prior to the assessment of probabilities. The qualitative signs can in addition be used in several ways as
constraints on the quantification. For example, by interpreting the signs as continuous subintervals of
the interval[−1, 1], the constraints they impose on the conditional probability distributions involved
can be used for stepwise quantification of a probabilistic network: once a conditional probability table
for a certain variable is filled, the interval associated with all direct influences upon that variable can
be decreased. An interval-propagation algorithm, very similar to the sign-propagation algorithm then
serves to study the behaviour of the partially quantified network [22]. Patterns of qualitative influences
can also be used to recognise different types of causal interaction, such as the noisy-or, which greatly
simplify the quantification effort [18]. At a somewhat higher level, the constraints imposed by quali-
tative influences can be used to bound the entire space of possible joint probability distributions over
the network’s variables [11]. Finally, the qualitative signs can be used for explanation of the (qualita-
tive) probabilistic network’s reasoning processes [8]. We therefore argue that it is important to derive
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as much information as possible from a qualitative network. The formalism of enhanced qualitative
networks provides for a step into making qualitative networks more applicable.
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