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Abstract. For an arbitrary graph G, we consider the problem of deciding whether G is a disk
graph (DG). The problem is known to be NP-hard, but it is open whether the problem actually is
in NP. The problem is related to another open problem, the Polynomial Representation Hypothesis
(PRH) for disk graphs: given an n-node disk graph G, can it be embedded in the plane such that
the disk centers and disk radii have a binary representation in polynomially many bits. We give
several reductions of the problem, and prove that the PRH for disk graphs is equivalent to another
interesting and purely geometric conjecture, the Separation Hypothesis for DGs. We give an exact,
exponential algorithm for recognizing DG’s that have an ε-separated embedding, for any given ε > 0.
Most results apply ipso facto to unit disk graphs, and will generalize to ball graphs and unit ball
graphs of fixed sphericity d > 2.

1 Introduction

In modern information and communication technology there is a widely increasing use of
ad hoc networks. In the modeling and optimization of ad hoc networks there are many
questions that are best studied in graph-theoretic terms. This has given a new stimulus
to the study of geometric intersection graphs such as disk graphs and their variants [11],
which all model certain aspects of the interaction and possible interference of the network
nodes. A graph G is a disk graph (DG) if it is the intersection graph of some set of closed
disks in the 2-dimensional plane, say with centers ci and radii ri (1 ≤ i ≤ n). Any concrete
set of disks in the plane that ‘realizes’ G is called a representation of G. If all ri can be
taken to be equal, then G is called an unit disk graph (UDG), and the representation is
called an ‘even disk representation’. By scaling we may as well assume that all ri are equal
to 1, in which case we speak of a ‘standard (unit disk) representation’.

In this paper we study some complexity issues for disk graphs. A fundamental problem
for (unit) disk graphs is the following:

DG Recognition
Given a graph G, decide whether G is a disk graph.

The DG recognition problem is algorithmically decidable ([18], Sect. 4.3) and known to be
NP-hard [3] and in PSPACE [11, 13], but it is open whether the problem actually is in NP.
Even the UDG recognition is not yet known to be in NP. Disk graphs are not abundant:
one can show that of the n-node graphs at most 2O(n log n) of them can be disk graphs, using
a purely algebraic argument ([18], Sect. 4.1).

? This research was partially supported by project BRICKS (Basic Research for Creating the Knowledge Society).
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Graph Class Recognition Representation Reference
planar graphs linear polynomial [6]
interval graphs linear polynomial [2]
unit (proper) interval graphs linear polynomial [4]
circular-arc graphs linear polynomial [12, 16]
unit circular-arc graphs quadratic polynomial [8, 14]
tolerance graphs ∈ NP polynomial [10]
disk graphs NP-hard ? [3]
unit disk graphs NP-hard ? [3]

Fig 1. Some geometric graph classes

A related and equally fundamental problem is the DG construction problem: given a
graph G that is known to be a disk graph, construct a representation of G as the intersection
graph of a concrete set of disks in the plane. The problem can be solved algebraically (cf.
[18], Sect. 4.3) but this may well lead to a representation in which some of the disk centers
and radii are exponentially large or small or even irrational, which is highly undesirable
from a computational viewpoint. A similar issue arises in other geometrically defined classes
of graphs (Figure 1) and in the so-called localization problem for wireless sensor networks. It
is widely conjectured that all disk graphs do have a polynomial representation. (Whenever
the term ‘polynomial’ is used in this paper, we essentially mean a polynomial nk for some
integer k ≥ 1.)

Polynomial Representation Hypothesis (PRH, for disk graphs)
Every n-node disk graph G has a representation by means of n disks in the plane of
which the centers and radii are all integral and have a binary representation in at
most p(n) bits, for some fixed polynomial p.

In Section 2 we prove the easy part that every (unit) disk graph has an all-integer (even
disk) representation, but the PRH itself is open. Note that, if the PRH holds, then the DG
recognition problem is in NP. For unit disk graphs we implicitly assume in the PRH that
all disks in the polynomial representation must have equal radius. For the case of unit disk
graphs we also formulate the PRH in a modified form for the unit representation. In this
case we want all radii in the representation equal to 1 and thus need a scaled version of
the PRH.

‘Special’ Polynomial Representation Hypothesis (s-PRH, for unit disk graphs)
Every n-node unit disk graph G has a representation by means of n disks in the plane,
all of radius 1 and with centers that have a (possibly fractional) binary representation
in at most p(n) bits, for some fixed polynomial p.

In Section 2 we show the easy part of the hypothesis, namely that all unit disk graphs have
a finite fractional binary representation with radii equal to 1. In Section 3 we prove that
the s-PRH is indeed a correct equivalent of the PRH in the case of unit disk graphs.
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Returning to the original motivation behind disk graphs, it is also of interest to study
the relative degree by which the disks in a representation overlap or are disjoint. Let
G = (V, E) be an (even) disk graph, and let dist denote the Euclidean distance measure
in the plane.

Definition 1. A representation of G by (even) disks is called ε-separated, for some 0 <
ε ≤ 1, if the following holds for all nodes i, j ∈ V : (i, j) ∈ E ⇒ dist(ci, cj) ≤ (1−ε)(ri+rj),
and (i, j) /∈ E ⇒ dist(ci, cj) ≥ (1 + ε)(ri + rj).

Observe that an ε-separated representation is ε′-separated for every 0 < ε′ < ε. Scaling an
ε-separated representation leaves it ε-separated.

Definition 2. An (even, unit) disk graph G is said to have a q-separated representation,
for some polynomial q = q(n), if and only if G has a ε-separated representation with
ε = 1

2q(n) .

Separation is a purely geometric notion for sets of disks, which we show to be well-
defined in Section 2. From a practical viewpoint we wish to have embeddings that are at
least ‘well separated’, and it is reasonable to believe that this can always be achieved for
all (unit) disk graphs. Then the following hypothesis is realistic:

Separation Hypothesis (SH, for disk graphs)
For some fixed polynomial q, every n-node disk graph G has a q-separated represen-
tation.

We prove that the Polynomial Representation Hypothesis and the Separation Hypothesis
are equivalent, for disk graphs as well as for unit disk graphs. In other words:

Theorem 1 (Equivalence). PRH ⇔ SH.

This ‘translates’ the PRH into a plausible and purely geometric conjecture. The proof uses
some observations from mathematical programming. For the case of unit disk graphs we
also prove that s-PRH ⇔ SH.

Corollary 1. SH ⇒ disk graph recognition ∈ NP (and thus DG is NP-complete).

A side-result of the proof is the first exact, exponential-time algorithm for recognizing
DG’s (UDG’s), assuming they are ε-separated for some ε > 0. The algorithm delivers a
representation that satisfies the PRH, if the tested graph indeed has a q-separated repre-
sentation for some polynomial q. In Section 5 we give some reductions of the PRH. Most
results will generalize to ball graphs and unit ball graphs in higher dimensions, i.e. of fixed
sphericity d > 2.

2 Preliminaries

In this section we list a number of simple, but useful facts for DG’s and their representation.
A number of these facts are analogues of similar results or observations for other classes
such as tolerance graphs (cf. [9], Ch 2).
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2.1 ε-Separation

We first show that ε-separation is a well-defined concept. The main tools in the observations
that follow are moving, scaling and the density of the rationals in the reals.

Proposition 1. Every (unit) disk graph has an ε-separated embedding, for some ε > 0.

Proof. Let G be a n-node (unit) disk graph and consider a representation of G with n
disks, with centers ci and radii ri (1 ≤ i ≤ n). If G has no touching disks we are done, so
consider the case in which some disks do touch. We will make all touching disks overlapping
by slightly moving all disks, without creating new intersections. (This leaves the radii
unchanged, which is desirable.)

Consider the given representation. For all nodes i, j ∈ V define the values δij ≥ 0 by:
(i, j) ∈ E ⇒ dist(ci, cj) = (1−δij)(ri+rj), and (i, j) /∈ E ⇒ dist(ci, cj) = (1+δij)(ri+rj).
Let δ be the smallest of the nonzero δij’s. If all δij’s are zero, take δ = 1. Let α = 2

2+δ
and

ε = δ
2+δ

, and note that 0 < α < 1 and 0 < ε < δ.
Now move all disks from ci to c′i = αci. We claim that we have again a representation

of G, now without touching disks. To show this, take any nodes i, j ∈ V .

- If (i, j) ∈ E and disks i and j intersect but do not touch, then
dist(c′i, c

′
j) = αdist(ci, cj) = α(1− δij)(ri + rj) < (1− δ)(ri + rj) < (1− ε)(ri + rj)

and thus the disks i and j again intersect and do not touch.
- If (i, j) ∈ E and disks i and j touch, then
dist(c′i, c

′
j) = αdist(ci, cj) = 2

2+δ
(ri + rj) = (1− δ

2+δ
)(ri + rj) ≤ (1− ε)(ri + rj)

and the disks i and j intersect but now do not touch anymore. Note that this is the
only case in which all δij’s can be zero (in which case δ was chosen to be equal to 1).

- If (i, j) /∈ E and disks i and j do not intersect, then
αdist(ci, cj) ≥ α(1+δ)(ri+rj) = 2

2+δ
(1+δ)(ri+rj) = (1+ δ

2+δ
)(ri+rj) ≥ (1+ε)(ri+rj).

This shows that we have a good representation again. From the argument it follows that
the new representation of G is ε-separated, for the value ε > 0 as defined. 2

We will see later that no polynomial representations are missed by moving to ε-separated
representations.

Given that all (unit) disk graphs have an ε-separated representation, it follows that we
do not need to insist on hard boundaries of the disks in order to have a representation.
Define an open (unit) disk graph to be any graph that is the intersection graph of a set of
open (unit) disks.

Proposition 2. The classes of open (unit) disk graphs and (unit) disk graphs coincide.

Proof. We prove this in two parts. Let G be any (unit) disk graph. By Proposition 1, G has
an ε-separated representation. By simply replacing the closed disks by their open version
one keeps a representation of G, but now as an open (unit) disk graph.
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Conversely, let G be any open (unit) disk graph and consider a representation of G
by means of n open disks, with centers ci and radii ri (1 ≤ i ≤ n). Replacing the open
disks by their closed version does not work, as it would formally turn touching disks into
intersecting disks. We will separate all touching disks by slightly moving all disks, without
creating new touchings or intersections (and leaving radii unchanged).

Consider the representation by open disks and define the values δij ≥ 0 as in the proof
of Proposition 1. Let δ be the smallest of the values 1 and the nonzero δij’s. Let α = 2

2−δ

and ε = δ
2−δ

, and note that α ≥ 1 and 0 < ε ≤ δ. Now move all disks from ci to c′i = αci.
We claim that we have again a representation of G, now without touching disks. To show
this, take any nodes i, j ∈ V .

- If (i, j) ∈ E and (open) disks i and j intersect but do not touch, then
αdist(ci, cj) = α(1−δij)(ri+rj) ≤ 2

2−δ
(1−δ)(ri+rj) = (1− δ

2−δ
)(ri+rj) = (1−ε)(ri+rj)

and thus the disks i and j again intersect and do not touch.
- If (i, j) /∈ E but disks i and j touch, then
dist(c′i, c

′
j) = αdist(ci, cj) = 2

2−δ
(ri + rj) = (1 + δ

2−δ
)(ri + rj) ≥ (1 + ε)(ri + rj)

and the disks i and j do not touch anymore but also do not intersect.
- If (i, j) /∈ E and disks i and j do not intersect, then
dist(c′i, c

′
j) = αdist(ci, cj) ≥ α(1 + δ)(ri + rj) ≥ (1 + δ)(ri + rj) ≥ (1 + ε)(ri + rj).

(Note that this is the only case in which all δij’s can be > 1, in which caseδ was chosen
to be equal to 1).

This shows that we have a good representation again. Now replacing the open disks by
their closed versions keeps a good representation of G, now as an ordinary (unit) disk
graph. Note that the new representation happens to be ε-separated. 2

We will see later that no polynomial representations are missed by restricting to closed
disks, as we will do from now on.

2.2 Finite representation

With Proposition 1 we have a useful tool for proving the easy part of the Polynomial
Representation Hypothesis (PRH), i.e. the part without the explicit polynomial bound.

Proposition 3. Every (unit) disk graph has an all-integer (even disk) representation, i.e.
a representation in which all disk centers have integer coordinates and all radii are integers.

Proof. Let G be an n-node (unit) disk graph. By Proposition 1 it has an ε-separated
representation, say consisting of disks with centers ci = (xi, yi) and radii ri (1 ≤ i ≤ n).
We thus assume w.l.o.g. that ε < 1. We apply two steps of scaling to obtain our result.

Let δ = 1
4

√
2 · ε. Let rmin be the smallest radius, and let p be any integer such that

0 < 1
p

< δrmin. Then any interval (xi − δri, xi + δri) contains some integer multiple of 1
p
,

say x′
i. Likewise any interval (yi − δri, yi + δri) contains some integer multiple of 1

p
, say y′

i.

The point c′i = (x′
i, y

′
i) lies within the 1

2
εri-ball around the center ci. Now move the disks

from ci to c′i, for 1 ≤ i ≤ n. We claim that this gives a valid representation of G again. To
prove it, consider any i, j ∈ V :
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- If (i, j) ∈ E then the old disks i and j overlap but for the new positions of the disk we
have
dist(c′i, c

′
j) ≤ 1

2
εri +dist(ci, cj)+ 1

2
εrj ≤ 1

2
εri +(1− ε)(ri +rj)+ 1

2
εrj = (1− 1

2
ε)(ri +rj)

and thus they also overlap.
- If (i, j) /∈ E then the old disks i and j are disjoint and for the new positions of the disk

we have
dist(c′i, c

′
j) ≥ −1

2
εri+dist(ci, cj)− 1

2
εrj ≥ −1

2
εri+(1+ε)(ri+rj)− 1

2
εrj = (1+ 1

2
ε)(ri+rj)

and thus they are also disjoint.

The resulting representation is still ε′-separated, for ε′ = 1
2
ε, but the centers c′i are now

all multiples of 1
p
. Scale by multiplying all centers and radii by p. It keeps a valid and

ε′-separated representation of G but now all centers have integer coordinates.
For the next step, assume that we have an ε-separated representation of G for some

ε > 0, with integer centers. We devise another scaling step to obtain integer radii as well.

Let δ =
1
2
ε

1+ 1
2
ε

and note that 1+ε
1+δ

= 1 + 1
2
ε. Let rmin be the smallest radius, and let q be

any integer such that 0 < 1
q

< δrmin. Then any interval (ri, ri + δri) contains some integer

multiple of 1
q
, say r′i. Now change the radius of disk i from ri to r′i, for 1 ≤ i ≤ n. This

keeps a valid representation of G again. To prove it, consider any i, j ∈ V :

- If (i, j) ∈ E then the old disks i and j overlap but for the new disks we have
dist(ci, cj) ≤ (1− ε)(ri + rj) ≤ (1− ε)(r′i + r′j)
and thus they also overlap.

- If (i, j) /∈ E then the old disks i and j are disjoint but for the new disks we have
dist(ci, cj) ≥ (1 + ε)(ri + rj) = 1+ε

1+δ
(ri + δri + rj + δrj) ≥ (1 + 1

2
ε)(r′i + r′j)

and thus they are also disjoint.

The resulting representation is again ε′-separated, for ε′ = 1
2
ε, the centers haven’t moved,

but the radii r′i are all multiples of 1
q
. Scale by multiplying all centers and radii by q. This

results in a valid representation of G with centers and radii integral. 2

In our definition of unit disk graphs we have only insisted on the radii being equal,
not on the radii being all 1. The proof of proposition 3 gives the possibility to conclude a
slightly stronger integrality result for unit disk graphs.

Corollary 2. Let G be an unit disk graph. Then for every integer s sufficiently large, G
has an all-integer (even disk) representation with radii equal to s, i.e. a representation in
which all disk centers have integer coordinates and all radii are equal to s.

Proof. Let G be a unit disk graph. Consider an ε-separated representation of G by means
of even-sized disks, say of radius equal to r. Scale by multiplying the centers and radii by
a factor of 1

r
. This gives an ε-separated representation of G, say with centers ci but now

with all radii equal to 1.
Consider the first part of the proof of Proposition 3, and apply it to this representation

of G. Following the proof, the centers of the disks are moved slightly (without changing



Representation of Disk Graphs 7

the radii), and an integer p is determined such that scaling by a factor p leads to a valid
representation with purely integral centers, and in this case all radii equal to p. But this
part of the proof can be carried out with any integer s ≥ p instead of p, thus leading to a
valid representation with purely integral centers and all radii equal to s. 2

Another observation is the following, now for the special case of unit disk representations
where we have radii equal to 1. The result is the basis for the s-PRH hypothesis.

Corollary 3. Every unit disk graph has a representation in which the centers have a finite
(possibly fractional) binary representation and all radii are equal to 1.

Proof. Let G be a unit disk graph. Consider an ε-separated representation of G by means
of even-size disks, say of radius equal to r. Scale it again to obtain a representation with
centers ci = (xi, yi) and all radii equal to 1.

Consider the first part of the proof of Proposition 3 again, and only look at the step
in which new centers c′i = (x′

i, y
′
i) are determined. We keep a valid representation of G for

any choice of x′
i and y′

i, as long as they are chosen from the intervals (xi − δri, xi + δri)
and (yi − δri, yi + δri) respectively, with δ > 0 as chosen in the proof. Like all non-empty
intervals, these intervals certainly contain numbers that have a finite binary representation,
possibly in a fractional form. This proves the result. 2

Corollary 3 clearly implies that every unit disk graph has a standard representation in
which the centers have rational coordinates (and all radii are equal to 1).

3 On Polynomial Representation

The relevant question is: are all (unit) disk graphs polynomial objects. This question was
phrased more accurately in the Polynomial Representation Hypothesis (PRH). In this
section we give some first observations. We are especially interested in the relationship
between polynomial representations and q-separated representations.

3.1 Implications for q-separation

An important observation in relation to the formulated hypotheses is the following.

Lemma 1. PRH ⇒ SH, in other words: if all (unit) disk graphs have a polynomial
representation, then all (unit) disk graphs have a q-separated representation.

Proof. Assume that all (unit) disk graph have an integral representation in which the
center-coordinates and radii are all p(n)-bit integers, for some (fixed) polynomial p(n). In
the proof we use that for 0 < x < 1,

√
1− x < 1 − 1

4
x and

√
1 + x > 1 + 1

4
x. (These

estimates are not best possible but suitable for our purposes.)
Let G be an arbitrary (unit) disk graph, and consider some representation of G with

centers ci = (xi, yi) and radii ri all given by p(n)-bit integers. Let δ = 1
22p(n)+4 . We claim

that any two disks in the representation are δ-separated, unless they touch. To see this,
consider any two nodes i, j ∈ V .
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- Suppose that disks i and j overlap but do not touch. Because dist(ci, cj)
2 = (xi −

xj)
2 + (yi − yj)

2 and (ri + rj)
2 are both integral, they must differ by at least 1. Thus

dist(ci, cj) ≤
√

(ri + rj)2 − 1 =
(√

1− 1
(ri+rj)2

)
(ri + rj) ≤ (1− 1

4·(ri+rj)2
) (ri + rj) ≤

(1− 1
4·22p(n)+2 ) (ri + rj) = (1− δ) (ri + rj).

- Next suppose that disks i and j do not overlap. Then by a similar argument we have

dist(ci, cj) ≥
√

(ri + rj)2 + 1 =
(√

1 + 1
(ri+rj)2

)
(ri + rj) ≥ (1 + 1

4·(ri+rj)2
) (ri + rj) ≥

(1 + 1
4·22p(n)+2 ) (ri + rj) = (1 + δ) (ri + rj).

All we need to do now is to make the touching disks overlap. Let α = 2
2+δ

and ε = δ
2+δ

.
We can now use the exact same argument as in the proof of Proposition 1. It means that
by moving the disks from ci to c′i = αci, we obtain a fully ε-separated representation.
Because ε ≥ δ

4
= 1

22p(n)+6 , it follows at once that all (unit) disk graphs have a q-separated
representation with q = q(n) = 2p(n) + 6. 2

Corollary 4. If all (unit) disk graphs have a polynomial representation, then all (unit)
disk graphs have an q-separated ‘all-integer’ polynomial (even disk) representation.

Proof. We continue the argument in the preceding proof. The result after moving all disks
to c′i (1 ≤ i ≤ n) is a q-separated representation in which the p(n)-bit integer radii ri of
the disks haven’t changed but the centers now have coordinates equal to 2

2+δ
xi and 2

2+δ
yi.

Scale the representation by multiplying all coordinates and radii by a factor 22p(n)+5 +1. It
gives a q-separated representation, now with disk centers c′′i = (22p(n)+5xi, 2

2p(n)+5yi) and
radii equal to (22p(n)+5 +1)ri. Thus this is a q-separated and at the same time a polynomial
representation in which all relevant parameters are at most (3p(n) + 7)-bit integers. 2

3.2 Implications for unit disk graphs

For unit disk graphs we show that any polynomial representation with even disks can be
transformed into a ‘standard’ representation with unit disks of radius 1, with all centers
having a fractional binary representation in polynomially many bits.

Proposition 4. For unit disk graphs: PRH ⇔ s-PRH, in other words: the s-PRH is a
correct equivalent of the PRH in the case of unit disk graphs.

Proof. Clearly s-PRH ⇒ PRH for unit disk graphs, by scaling the polynomial even disk
representation with a factor of 2p(n).

For the converse, assume that every unit disk graph has a representation with even
disks of which the centers (ui, vi) and radius r are all p(n)-bit integers. By Corollary 4 we
may assume w.l.o.g that the graphs are also q-separated, for some polynomial q(n). Scale
the representation, to obtain one with centers ci = (xi, yi) and radii equal to 1, where
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xi = ui

r
and yi = vi

r
. Note that bxic and byic are p(n)-bit integers, and the representation

is still q-separated. Assume w.l.o.g. that q(n) ≥ p(n).
Consider the argument in the first part of the proof of Proposition 3 and apply it to

the representation we have. In this case ri = 1 and δ = 1
4

√
2 1

2q(n) . Observe that 1
2q(n)+2 <

1
4

√
2 1

2q(n) rmin, where clearly rmin = 1. Then any interval (xi − δri, xi + δri) contains some
integer multiple of 1

2q(n)+2 , say x′
i, and any interval (yi− δri, yi + δri) contains some integer

multiple of 1
2q(n)+2 , say y′

i. Let c′i = (x′
i, y

′
i). The proof of Proposition 3 shows that moving

the disks from ci to c′i, for 1 ≤ i ≤ n, gives a valid (unit disk) representation of the original
graph again.

But note that for every 1 ≤ i ≤ n, x′
i and y′

i lie within distance 1 from bxic and byic,
respectively, which are both p(n)- thus q(n)-bit integers. Thus x′

i and y′
i both have a finite

binary representation, with integer and fractional parts both of at most q(n)+2 bits. This
proves the s-PRH. 2

Corollary 5. PRH ⇒ for some polynomial q = q(n) every unit disk graph has a (stan-
dard) representation in which the centers have a (possibly fractional) binary representation
in q(n) bits, all radii are equal to 1 and the representation is q-separated.

In Lemma 1 we established that PRH ⇒ SH. In the Corollary this is strengthened
for unit disk graphs. In this case we can show the converse.

Proposition 5. For all unit disk graphs one has: ‘SH in at least one standard represen-
tation’ ⇒ PRH, in other words: if for some fixed polynomial q all unit disk graphs have
at least one q-separated standard (unit disk) representation, then they have a polynomial
representation.

Proof. Assume that for a certain polynomial q = q(n), every unit disk graph has a standard
representation that is q-separated, i.e. with all disks of radius 1 and ε-separated with
ε = 1

2q(n) ≤ 1
2
. We first show that the representation can be boxed in by a small box.

To show this, consider the given standard representation consisting of the n unit disks.
Move the representation into the first quadrant so the leftmost and lowest disks touch
the y- and x-axis respectively. Projecting the unit disks on the x-axis, gives a set of one
or more disjoint segments of size ≥ 2 on the line. If two consecutive segments are more
than 2ε apart, slide all disks on the right horizontally leftward so the two segments become
precisely 2ε apart. Note that this leaves the representation (valid and) ε-separated, because
all centers of non-intersecting disks remain at least 2 + 2ε = (1 + ε) · 2 apart as in the
original representation. Thus we can assume that every two consecutive segments on the
x-axis are 2ε apart. It follows that the horizontal projection of the representation is at
most 2n + (n − 1)2ε ≤ 3n. By the same argument and without affecting this bound, the
representation can be shifted vertically so it is valid and the projection on the y-axis is
bounded by 3n. It follows that we may assume that every unit disk graph has a standard
representation that is q-separated and fits in a 3n x 3n-square, fitted against the origin in
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the first quadrant of the plane. (This bound can be improved but is good enough for our
purposes.)

Thus we may assume that every unit disk graph has a standard representation that is
q-separated, and has (xi, yi) such that 0 ≤ xi, yi ≤ 3n, and thus that bxic and byic are
log 3n-bit integers. But now we have very much the same situation as in the second part
of the proof of Proposition 4. The proof shows that the representation can be altered to
obtain a polynomial-size fractional binary standard representation. By scaling this gives a
(not necessarily standard) polynomial representation as required in the PRH. 2

With the results at hand we can conclude the basic equivalence between polynomial
representation and q-separation for unit disk graphs, in which the q-separation condition is
limited to standard representations by unit disks of radius 1. (Without this constraint, there
would not be an á priori polynomial bound on the radii in the q-separated representation.)

Corollary 6. For all unit disk graphs one has: PRH ⇔ ‘SH in at least one standard
representation’.

Proof. Consider unit disk graphs. The proof of Lemma 1 shows that PRH ⇒ SH, where it
is implicit that all disks have equal radius ri = r. By scaling (dividing) by a factor equal
to r, we obtain a standard representation that continues to be q-separated. (Corollary 5
gives a stronger implication but this is not needed here.) Thus PRH ⇒ SH in at least one
standard representation. The converse follows by Proposition 5. 2

4 Polynomial Representation versus Separation in General

In Lemma 1 we showed PRH ⇒ SH. This section is devoted to a proof of the converse. The
observations in Section 3 showed what is essential for the converse: in order to prove that
SH ⇒ PRH one needs to show that under the given condition every (general) disk graph
has a q-separated representation that fits within a 2s(n) x 2s(n) box, for some polynomial
s = s(n) and has disk radii of (possibly fractional) polynomial size only, which is important
for preventing extremely small radii. For unit disk graphs this could be done easily. We
now show it for general disk graphs. In the sequel q = q(n) need not be a polynomial but
can be any other suitable function e.g. q(n) = log n, as long as ε = 1

2q .

4.1 A model

Assume the Separation Hypothesis. We write ε = 1
2q where q = q(n) throughout. We

assume w.l.o.g. that ε is smaller than a suitable constant e.g. 1
256

, i.e. that q is larger than
a suitable constant e.g. 8 or 10. Let G = (V, E) be an arbitrary disk graph. Clearly any
q-separated representation of G is completely determined by the following quadratic model
(where we use that every representation can be moved entirely into the first quadrant):

(xi − xj)
2 + (yi − yj)

2 ≤ (1− ε)2(ri + rj)
2 if (i, j) ∈ E

(xi − xj)
2 + (yi − yj)

2 ≥ (1 + ε)2(ri + rj)
2 if (i, j) /∈ E

ri > 0 for 1 ≤ i ≤ n
xi, yi ≥ 0 for 1 ≤ i ≤ n.
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Because the model is scalable by positive factors, we may as well replace the third set of
inequalities by ri ≥ 1 without loss of generality. Thus we consider the model

(xi − xj)
2 + (yi − yj)

2 ≤ (1− ε)2(ri + rj)
2 if (i, j) ∈ E

(xi − xj)
2 + (yi − yj)

2 ≥ (1 + ε)2(ri + rj)
2 if (i, j) /∈ E

ri ≥ 1 for 1 ≤ i ≤ n
xi, yi ≥ 0 for 1 ≤ i ≤ n.

Let Cr denote the circle with its center at the origin and radius r. The model can then be
restated in the following terms (model Q).

(xi − xj , yi − yj) lies inside (or on) C(1−ε)(ri+rj) if (i, j) ∈ E
(xi − xj , yi − yj) lies outside (or on) C(1+ε)(ri+rj) if (i, j) /∈ E
ri ≥ 1 for 1 ≤ i ≤ n
xi, yi ≥ 0 for 1 ≤ i ≤ n.

We proceed to approximate this system of 1
2
n(n− 1) quadratic constraints by a system

of linear constraints in such a way that feasibility of solutions is preserved. Divide every
circle Cr by sectors of width 2α, where α > 0 will be specified later. (We will be choosing
α in the order of

√
ε or less.) Let a given sector be bounded by the rays at angles ϕ − α

and ϕ + α. Let the ray at angle ϕ intersect the circle of radius (1 − ε)r in A and let the
rays at angles ϕ− α and ϕ + α intersect the circle of radius (1 + ε)r in B and C. We now
linearize the constraints as follows:

– A constraint of the form ‘(xi−xj, yi− yj) lies inside (or on) C(1−ε)r’ will be replaced by
the constraint ‘(xi−xj, yi−yj) lies inside (or on) the triangle formed by the rays at the
angles ϕ−α and ϕ + α and the tangent to C(1−ε)r in the point A’ (outer linearization).

– A constraint of the form ‘(xi − xj, yi − yj) lies outside (or on) C(1+ε)r’ will be replaced
by the constraint ‘(xi − xj, yi − yj) lies outside (or on) the open quadrilateral formed
by the rays at angles ϕ − α and ϕ + α and the chord BC of the circle C(1+ε)r’ (inner
linearization).

Note that for a given sector at angles ϕ±α, the tangent at A and the chord BC are parallel
lines, irrespective of the choice of circles.

With some elementary geometry, this leads to the following model in terms of linear
inequalities (model QL). For the sake of argument we only specify the model for angles ϕij

with 0 < ϕij < 1
2
π and omit the obvious case specifications for sectors in other quadrants.

If (i, j) ∈ E, there exists an angle ϕij such that for (x, y) = (xi − xj , yi − yj) and r = ri + rj :
sin(ϕij − α) · x− cos(ϕij − α) · y ≤ 0
sin(ϕij + α) · x− cos(ϕij + α) · y ≥ 0
cos ϕij · x + sin ϕij · y ≤ (1− ε) · r

If (i, j) /∈ E, there exists an angle ϕij such that for (x, y) = (xi − xj , yi − yj) and r = ri + rj :
sin(ϕij − α) · x− cos(ϕij − α) · y ≤ 0
sin(ϕij + α) · x− cos(ϕij + α) · y ≥ 0
cos ϕij · x + sin ϕij · y ≥ (1 + ε) cos α · r

ri ≥ 1 for 1 ≤ i ≤ n
xi, yi ≥ 0 for 1 ≤ i ≤ n.
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The linearized model has some useful and important properties. Recall that model Q
precisely captures all ε-separated representations of G.

Proposition 6. (a) (Consistency) Every solution of model Q is a solution of model QL.
(b) (Scalability) If xi, yi, ri (1 ≤ i ≤ n) is a solution of model QL, then k · xi, k · yi, k · ri

(1 ≤ i ≤ n) is a solution of model QL also, for every k ≥ 1.
(c) If α satisfies tan α ≤ 1

2

√
ε then every solution of model QL is a 1

2
ε-separated represen-

tation of G.

Proof. Consistency follows by construction, and it is easily seen that multiplication of
solutions by an arbitrary factor k ≥ 1 leaves all inequalities in the model satisfied. For (c)
we distinguish two cases as in the model. The cases prove that any solution of model QL

is a 1
2
ε-separated representation of G.

Consider the case (i, j) ∈ E. With the earlier notation, let the tangent to C(1−ε)r at A
intersect the ray ϕ + α in D. Let z = |AD|. Considering the right triangle 4OAD, the
base line of the triangle and thus the triangle itself lies entirely within the circle C(1− 1

2
ε)r

if and only if

(1− ε)2r2 + z2 ≤ (1− 1

2
ε)2r2,

or: z2 ≤ (ε− 3
4
ε2)r2. If tan α ≤ 1

2

√
ε, this is indeed satisfied because:

tan α =
|AD|
|OD|

=
z

(1− ε)r
≤ 1

2

√
ε ⇒ z ≤ 1

2

√
ε(1− ε)r ≤ 1

2

√
ε r

and thus z2 ≤ 1
4
εr2 ≤ (ε− 3

4
ε2)r2.

Next consider the case (i, j) /∈ E. With the earlier notation, let the edge BC of the
open quadrilateral intersect the ray at angle ϕ in E. Let z = |EB|. Consider the right

triangle 4OEB, where |OB| = (1 + ε)r. If tan α ≤ 1
2

√
ε, we also have sin α = |EB|

|OB| =
z

(1+ε)r
≤ tan α ≤ 1

2

√
ε and hence z ≤ 1

2
(1 + ε)

√
ε r. It follows that

|OE|2 = (1 + ε)2r2 − z2 ≥ (1 + ε)2r2 − 1

4
ε(1 + ε)2r2 ≥ (1 + ε)2(1− 1

4
ε) r2 ≥ (1 +

1

2
ε)2r2

as an easy calculation shows. Thus |OE| ≥ (1+ 1
2
ε)r and (x, y) indeed lies outside C(1+ 1

2
ε)r.

2

Note that the condition tan α ≤ 1
2

√
ε is satisfied for all angles α small enough e.g.

α ≤ 1
4

√
ε. We assume this bound on α from now on, to keep feasible solutions 1

2
ε-separated.

4.2 Bounding the model

Recall that ε = 1
2q where q = q(n) is some polynomial. We assumed that G is an arbitrary

disk graph on n nodes and that it has some ε-separated representation, i.e. that model
Q has a solution. We have shown in Proposition 6 that in this case it must also be the
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solution of a linear system of constraints (model QL) and that this system is even a good
approximation of model Q for any α small enough.

However, model QL does not tell us very much yet, as its coefficients can be ‘very
irrational’ (and even arbitrarily small). In this subsection we will relax model QL a little
further to obtain a model that has only integer coefficients, while preserving the nice
properties of Proposition 6. The coefficients a will all satisfy 0 ≤ |a| ≤ c · 2q, for some
constant c.

The model we aim at is the following, now in terms of linear inequalities entirely with
integer coefficients (model QN). Again we only specify the model with triangles and open
quadrilaterals in the first quadrant and omit the case specifications for other quadrants.

If (i, j) ∈ E, there exist an angle ϕij and integer coefficients 0 ≤ aij , bij , cij , dij ≤ 2q+2 (with aij > cij and
bij < dij) such that

line bij · x− aij · y = 0 lies between rays ϕij − α and ϕij − 1
2
α,

line dij · x− cij · y = 0 lies between rays ϕij + 1
2
α and ϕij + α,

the segment from (
cij

2q+2 ,
dij

2q+2 ) to (
aij

2q+2 ,
bij

2q+2 ) lies between C1−ε and C1− 1
2 ε

and for (x, y) = (xi − xj , yi − yj) and r = ri + rj :

bij · x− aij · y ≤ 0,
dij · x− cij · y ≥ 0,
(dij − bij)2

q+2 · x + (aij − cij)2
q+2 · y ≤ (aijdij − bijcij) · r

If (i, j) /∈ E, there exist an angle ϕij and integer coefficients 0 ≤ aij , bij , cij , dij ≤ 2q+2 (with aij > cij and
bij < dij) such that

line bij · x− aij · y = 0 lies between rays ϕij − α and ϕij − 1
2
α,

line dij · x− cij · y = 0 lies between rays ϕij + 1
2
α and ϕij + α,

the segment from (
cij

2q+2 ,
dij

2q+2 ) to (
aij

2q+2 ,
bij

2q+2 ) lies between C1+ 1
2 ε and C1+ε

and for (x, y) = (xi − xj , yi − yj) and r = ri + rj :

bij · x− aij · y ≤ 0,
dij · x− cij · y ≥ 0,
(dij − bij)2

q+2 · x + (aij − cij)2
q+2 · y ≥ (aijdij − bijcij) · r.

ri ≥ 1 for 1 ≤ i ≤ n.
xi, yi ≥ 0 for 1 ≤ i ≤ n.

We first show how one can approximate the (inner) ‘triangles’ defined by the constraints
of model QL in case (i, j) ∈ E. Next we do it for the (outer) ‘open quadrilaterals’ defined
by the constraints in case (i, j) 6∈ E.

4.2.1 The case (i, j) ∈ E

Consider the case (i, j) ∈ E (see Figure 1) and assume without loss of generality that

0 < ϕ < 1
2
π. Our aim will be to show that points (

cij

2q+2 ,
dij

2q+2 ) and (
aij

2q+2 ,
bij

2q+2 ) can be found
with the property stated in model QN . To give the argument in a general way we do it by
locating points (

cij

2q+2 r,
dij

2q+2 r) and (
aij

2q+2 r,
bij

2q+2 r) with the desired property, in between the
circles C(1−ε)r and C(1− 1

2
ε)r. However, the argument is independent of the (model variable)

r: just carry out the construction for r = 1 and scale the points and the line that connects
by a factor r. This gives the same result.
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e

1
2α

1
2α

(1− ε)r
(1− 1

2ε)r
d′

c′

a′ b′

b
a

c d

Fig. 1. The case (i, j) ∈ E.

Consider the circles C(1−ε)r and C(1− 1
2
ε)r. Look at quadrilateral abcd in Figure 1. (Note

that the line c − c′ is tangent to the circle, line b − b′ is parallel to c − c′ and both are
perpendicular to e.) We show that the quadrilateral can be guaranteed to be ‘sufficiently
fat’. To this end we choose α = 1

8

√
ε.

We now determine bounds on the ‘width’ and the ‘height’ of abcd. The width is deter-
mined by |c|. From Figure 1, we observe for |c| that

(1− ε)r tan α− |c| = (1− ε)r tan
1

2
α

(1− ε)r
2 tan 1

2
α

1− tan2 1
2
α
− |c| = (1− ε)r tan

1

2
α

(1− ε)r
2 tan 1

2
α

1− tan2 1
2
α
− |c| ≤ (1− ε)r

tan 1
2
α

1− tan2 1
2
α

|c| ≥ (1− ε)r
tan 1

2
α

1− tan2 1
2
α

|c| ≥ (1− ε)r tan
1

2
α

By the tangent inequality tan x ≥ x and our choice of α it follows that

|b| ≥ |c| ≥ (1− ε)r tan
1

2
α ≥ 1− ε

16

√
ε r.

and thus |b| ≥ |c| ≥ 1
32

√
ε r.



Representation of Disk Graphs 15

Let the height of abcd be h. Note that abcd contains a rectangle of size |c|−h tan 1
2
α by

h. For the height h we have h = |e| − (1− ε)r. To estimate h, let f be the extension of line

segment b to the intersection with line e. From Figure 1, tan α = |f |
|e| . Using the tangent

inequality and given our choice of α,

1

8
|e|
√

ε ≤ |e| tan α = |f | = sin α

cos α
|e| ≤ 2 sin α |e| ≤ 1

4

√
ε |e|.

Using the Pythagorean Theorem,

|f |2 + |e|2 =

(
1− 1

2
ε

)2

r2

1

64
ε|e|2 + |e|2 ≤

(
1− 1

2
ε

)2

r2 ≤ 1

16
ε|e|2 + |e|2

(1− 1
2
ε)√

1 + 1
16

ε
r ≤ |e| ≤

(1− 1
2
ε)√

1 + 1
64

ε
r.

Observing that

(1− 1
2
ε)√

1 + 1
16

ε
≥

(
1− 3

4
ε

)

for all the values of ε we are looking at, we have

(1− 3

4
ε)r ≤ |e| ≤ (1− 1

2
ε)r

and thus
1

4
εr ≤ h ≤ 1

2
εr.

Using the tangent inequality again it follows that

|c| − h tan
1

2
α ≥ (1− ε)r tan

1

2
α− 1

2
εr tan

1

2
α ≥ (1− 3

2
ε)r

1

2
α ≥ 1

32

√
ε r ≥ 1

4
εr.

We conclude that abcd actually contains a square of size at least 1
4
εr by 1

4
εr, thus a circle of

diameter at least 1
4
εr. Hence choosing a grid with point distance 1

4
εr ensures that quadri-

lateral abcd contains a point (
cij

2q+2 r,
dij

2q+2 r) with cij, dij integral and bounded by 2q+2 as

desired. By symmetry, the quadrilateral a′b′c′d′ contains a point (
aij

2q+2 r,
bij

2q+2 r) with aij, bij

as desired. The triangle formed by the origin and these points gives the lines we claimed
in model QN (easily adapted in degenerate cases).

4.2.2 The case (i, j) 6∈ E
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e

1
2α

1
2α

(1 + 1
2ε)r (1 + ε)r

d′
c′

a′ b′

b
a

c d

Fig. 2. The case (i, j) 6∈ E.

Now consider the case (i, j) 6∈ E (see Figure 2) and assume without loss of generality that

0 < ϕ < 1
2
π. We show again that points (

cij

2q+2 ,
dij

2q+2 ) and (
aij

2q+2 ,
bij

2q+2 ) can be found with

the desired property. We do it again by appropriately locating points (
cij

2q+2 r,
dij

2q+2 r) and

(
aij

2q+2 r,
bij

2q+2 r), now in between the circles C(1+ 1
2
ε)r and C(1+ε)r. Again, the argument is

independent of the model variable r: just carry out the construction for r = 1 and scale
the result by a factor of r. (The details are similar to Subsection 4.2.1 and only given for
reasons of completeness.)

Consider the circles C(1+ 1
2
ε)r and C(1+ε)r. Look at quadrilateral abcd in Figure 2. (Note

that the line c − c′ is tangent to the circle, line b − b′ is parallel to c − c′ and both are
perpendicular to e.) We show that the quadrilateral can be guaranteed to be ‘sufficiently
fat’. To this end we can choose α = 1

4

√
ε this time.

We now determine bounds on the ‘width’ and the ‘height’ of abcd. The width is deter-
mined by |c|. From Figure 2, we observe for |c| that(

1 +
1

2
ε

)
r tan α− |c| =

(
1 +

1

2
ε

)
r tan

1

2
α(

1 +
1

2
ε

)
r

2 tan 1
2
α

1− tan2 1
2
α
− |c| =

(
1 +

1

2
ε

)
r tan

1

2
α(

1 +
1

2
ε

)
r

2 tan 1
2
α

1− tan2 1
2
α
− |c| ≤

(
1 +

1

2
ε

)
r

tan 1
2
α

1− tan2 1
2
α

|c| ≥
(

1 +
1

2
ε

)
r

tan 1
2
α

1− tan2 1
2
α
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|c| ≥
(

1 +
1

2
ε

)
r tan

1

2
α

By the tangent inequality and our choice of α,

|b| ≥ |c| ≥
(

1 +
1

2
ε

)
r tan

1

2
α ≥

1 + 1
2
ε

8

√
ε r

and thus |b| ≥ |c| ≥ 1
8

√
ε r.

Let the height of abcd be h. Again abcd contains a rectangle of size |c| − h tan 1
2
α by h.

For the height h we have h = |e| − (1 + 1
2
ε)r. To estimate h, let f be the extension of line

segment b to the intersection with line e. From Figure 2, tan α = |f |
|e| . Using the tangent

inequality and given our choice of α,

1

4
|e|
√

ε ≤ |e| tan α = |f | = sin α

cos α
|e| ≤ 2 sin α |e| ≤ 1

2

√
ε |e|.

Using the Pythagorean Theorem,

|f |2 + |e|2 = (1 + ε)2 r2

1

16
ε|e|2 + |e|2 ≤ (1 + ε)2 r2 ≤ 1

4
ε|e|2 + |e|2

(1 + ε)√
1 + 1

4
ε

r ≤ |e| ≤ (1 + ε)√
1 + 1

16
ε

r.

Observing that

(1 + ε)√
1 + 1

4
ε
≥

(
1 +

3

4
ε

)

for all the values of ε we are looking at, we have

(1 +
3

4
ε)r ≤ |e| ≤ (1 + ε)r

and thus
1

4
εr ≤ h ≤ 1

2
εr.

Using the tangent inequality again it follows that

|c| − h tan
1

2
α ≥ (1 +

1

2
ε)r tan

1

2
α− 1

2
εr tan

1

2
α ≥ r

1

2
α ≥ 1

8

√
ε r ≥ 1

4
ε r.

We conclude that abcd again contains a square of size at least 1
4
εr by 1

4
εr, thus a circle of

diameter at least 1
4
εr. Hence, again a grid with point distance 1

4
εr ensures that quadrilateral
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abcd contains a point (
cij

2q+2 r,
dij

2q+2 r) with cij, dij integral and bounded by 2q+2 as desired. By

symmetry, the quadrilateral a′b′c′d′ contains a point (
aij

2q+2 r,
bij

2q+2 r) with aij, bij as desired.
The open quadrilateral formed by the rays from the origin through these points and their
connecting line segment, gives the lines we claimed in model QN (again easily adapted in
degenerate cases).

4.2.3 Properties of the construction

This completes the construction of the model. Note that model QN is essentially equivalent
to model QL, except that the corner points of the triangles and of the open quadrilaterals
are very carefully chosen as points of a suitable grid (with coefficients independent of r).
The equivalence is expressed in the exact analogue of Proposition 6, where we note that α
is bounded as required by Proposition 6.

Proposition 7. (a) (Consistency) Every solution of model Q is a solution of model QN .
(b) (Scalability) If xi, yi, ri (1 ≤ i ≤ n) is a solution of model QN , then k · xi, k · yi, k · ri

(1 ≤ i ≤ n) is a solution of model QN also, for every k ≥ 1.
(c) Every solution of model QN is a 1

2
ε-separated representation of G.

Proof. By construction. 2

4.3 Bounding a solution

The new model QN is important for our further, final step. Recall that by assumption, disk
graph G has an ε-separated representation and thus model QN admits a feasible solution.
We now proceed to show that model QN in fact must admit a feasible solution fully in
integers, all of polynomially bounded size.

Consider model QN again. It consists precisely of 3 · 1
2
n(n− 1) inequalities, of the form

bij · (xi − xj)− aij · (yi − yj) ≤ / ≥ 0
dij · (xi − xj)− cij · (yi − yj) ≥ / ≤ 0
fij · (xi − xj) + eij · (yi − yj) ≤ / ≥ gij · (ri + rj)

and the constraints

ri ≥ 1 for 1 ≤ i ≤ n
xi, yi ≥ 0 for 1 ≤ i ≤ n.

We bring the linear system into standard form by introducing non-negative variables si

defined as si = ri−1 and slack variables tαij, t
β
ij, t

γ
ij that turn the constraints into equalities:

bij · (xi − xj)− aij · (yi − yj)± tαij = 0

dij · (xi − xj)− cij · (yi − yj)∓ tβij = 0
fij · (xi − xj) + eij · (yi − yj)± tγij − gij · (si + sj) = 2gij

now simply with the standard constraints
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xi, yi, si, t
α
ij, t

β
ij, t

γ
ij ≥ 0 for all relevant i, j with 1 ≤ i, j ≤ n

where we note that |aij|, |bij|, |cij|, |dij| ≤ 2q+2 and |eij|, |fij|, |gij| ≤ 22q+4 according to the
details of model QN . The system of linear equalities can be written in matrix-vector form:
Ax = b with the constraint x ≥ 0, where

A is a 3
2
n(n− 1) by 3n + 3

2
n(n− 1) all-integer matrix

all entries a of A satisfy |a| ≤ 22q+4

3
2
n(n − 1) columns of A are unit vectors, namely the columns corresponding to the variables tα

ij , t
β
ij , t

γ
ij

(1 ≤ i ≤ j ≤ n)

x = (· · · , xi, · · · , yi, · · · , si, · · · , tα
ij , t

β
ij , t

γ
ij , · · · )

T

b = (· · · 0, 0, 2gij , · · · )T , thus with all entries g of b satisfying |g| ≤ 22q+5.

It follows that rank(A) = 3
2
n(n− 1). We can now show the following, using some common

facts from the theory of linear programming (cf. [17]).

Proposition 8. Model QN has an all-integer solution with 0 ≤ xi, yi, ri ≤ 24n(2q+6+log n)+1.

Proof. Because Ax = b with x ≥ 0 has a feasible solution, it also has a basic feasible
solution. As rank(A) = 3

2
n(n − 1), this basic feasible solution has (at least) 3n of the

coordinates of x equal to 0, whereas the 3
2
n(n− 1) by 3

2
n(n− 1) submatrix A′ consisting

of the columns corresponding to the other coordinates is invertible and satisfies A′x′ = b
(with x′ ≥ 0), where x′ is the subvector of x consisting of these other coordinates. Hence,
using Cramer’s rule [17], it follows that

(x′)i =
detA′

i

detA′ ,

where A′
i is the matrix formed by replacing the i-th column of A′ by the column vector

b. From this we obtain a solution xi, yi, ri of model QN that satisfies the following, noting
that ri = si + 1:

xi = 0 or xi =
detA′

i1

detA′

yi = 0 or yi =
detA′

i2

detA′

ri = 1 or ri =
detA′

i3

detA′ + 1

for suitable indices i1, i2, i3 for every i. Note that, because A′ and A′
i are integer matrices,

their determinants are integer as well. Assume without loss of generality that detA′ > 0,
which implies that detA′ ≥ 1.

Now multiply the solution by | detA′|. By Proposition 7 this can be done while keeping
a solution to model QN . Writing it as xi, yi, ri again, this solution satisfies:
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xi = 0 or xi = detA′
i1

yi = 0 or yi = detA′
i2

ri = detA′ or ri = detA′
i3

+ detA′

To estimate the values of xi, yi, ri we use that for any square matrix U = (u1 · · ·uN) one
has

| detU| ≤‖ u1 ‖ · · · ‖ uN ‖ .

If we apply this to any detA′
i or to detA′, note that the matrices A′

i and A′ have at least
3
2
n(n − 1) − 3n − 1 columns that are unit vectors and thus at most 3n + 1 non-trivial

columns with entries bounded by 22q+5 in the worst case. Thus:

1 ≤ | detA′
i|, | detA′| ≤ (

√
3/2 · n2 22q+522q+5)3n+1 ≤ (22q+6 n)3n+1 ≤ 24n(2q+6+log n),

by using a crude estimate. This leads to the bounds for the solution stated in the Propo-
sition. 2

Lemma 2. SH ⇒ PRH, in other words: if all (unit) disk graphs have a q-separated
representation, then all (unit) disk graphs have a polynomial representation.

Proof. This follows immediately from Proposition 8. Because the integers xi, yi, ri in the
solution are all bounded between 0 and 24n(2q+6+log n)+1, they can all be represented in
4n(2q + 6 + log n) + 1 bits, i.e. as polynomial-size integers. (By improving the estimates,
this bound may be improved but it is sufficient for our purposes.) 2

The construction as presented has another interesting and useful consequence from a rep-
resentational viewpoint. It is the most concrete result from the model approximation in
this section. Let ε = 1

2q as before and assume again that ε is sufficiently small e.g. less than
1

256
.

Corollary 7. If G has an ε-separated representation, then it has an all-integer 1
2
ε-separated

representation with all centers and radii represented within 4n(2q + 6 + log n) + 1 bits.

Lemmas 1 and 2 together prove the main result as stated in Theorem 1, the Equivalence
Theorem. The bounds in Corollary 7 also hold if we look only for unit disk representations,
by fixing the ri to 1 throughout.

5 Further Remarks

We have shown that all (unit) disk graphs have integer representations and we have studied
the question whether (unit) disk graphs can in fact be guaranteed to have integer represen-
tations in which all centers and radii are polynomially size-bounded. We have reduced it
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to an equivalent, purely geometric problem, the Separation Hypothesis: PRH ⇔ SH. The
Separation Hypothesis is plausible and adds considerable intuition to the Polynomial Rep-
resentation Hypothesis for (unit) disk graphs. Does this make the representation problem
easier, and what does it mean for the recognition problem for (unit) disk graphs?

5.1 Weakening the Separation Hypothesis

Can the Separation Hypothesis be weakened? We give one possible weakening that may be
useful. Let G = (V, E) be an (even) disk graph, and let dist denote the Euclidean distance
measure in the plane again. Define the concept of separation again, but now with emphasis
on the non-overlapping disks only. (Similar results hold if we emphasize the overlapping
disks only.)

Definition 3. A representation of G by (even) disks is called ε-outer separated, for some
0 < ε ≤ 1, if the following holds for all nodes i, j ∈ V : (i, j) ∈ E ⇒ dist(ci, cj) ≤ (ri + rj),
and (i, j) /∈ E ⇒ dist(ci, cj) ≥ (1 + ε)(ri + rj).

Clearly every ε-separated representation is ε-outer separated, but there is also a converse.

Proposition 9. Let G have an ε-outer separated representation, for some 0 < ε ≤ 1. Then
G also has a 1

3
ε-separated representation.

Proof. Let G be a n-node (unit) disk graph and assume it has an ε-outer representation.
Consider a representation of G with n disks, and centers ci and radii ri (1 ≤ i ≤ n) that
satisfy the corresponding requirement. Let α = 1− 1

3
ε. Move all disks from ci to c′i = αci.

We claim that this gives a valid representation of G again, that is (at least) 1
3
ε-separated.

To show this, take any nodes i, j ∈ V .

- If (i, j) ∈ E, then disks i and j intersect and we have
dist(c′i, c

′
j) = αdist(ci, cj) ≤ α(ri + rj) = (1− 1

3
ε)(ri + rj).

- If (i, j) /∈ E, then disks i and j do not intersect and
dist(c′i, c

′
j) = αdist(ci, cj) ≥ α(1+ε)(ri+rj) = (1− 1

3
ε)(1+ε)(ri+rj) ≥ (1+ 1

3
ε)(ri+rj).

This shows that we have a good representation again and that it is 1
3
ε-separated. The size

of the radii is unaffected in the move. 2

From this observation it follows that w.l.o.g. the Separation Hypothesis can be restricted
to q-outer separated representations, i.e. ε-outer separated representations for some ε = 1

2q

with q as before.

Corollary 8 (Equivalence - extended). Every (even) n-node disk graph G has an all-
integer representation with centers and radii that are p(n)-size bounded for some fixed
polynomial p, ⇔ every (even) n-node disk graph G has a q-outer separated representation,
for some fixed polynomial q = q(n).
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5.2 Recognition of (unit) disk graphs

The recognition of (unit) disk graphs is a known NP-hard problem. However, the notion
of ε-separation give an interesting measure because the recognition problem for (unit) disk
graphs really is the recognition problem for ε-separated (unit) disk graphs for a suitably
small ε. The latter can be tackled with the models from Section 4.

One particular consequence is the following. Let a nondeterministic recognizer Rε for ε-
separated (unit) disk graphs, for some fixed ε > 0, be called an NP -approximate recognizer
if the following holds, for some constant c = cε > 0:

if G is ε-separated, then Rε outputs YES.
if Rε outputs YES, then G is c ε-separated.
every (nondeterministic) ‘run’ of Rε is polynomial-time bounded.

Proposition 10. For every ε > 0, the class of ε-separated (unit) disk graphs has an NP -
approximate recognizer.

Proof. Without loss of generality we may assume that ε is sufficiently small as required
by the results in Section 4, by using the scaling factor c. The simplest approach is to use
the result of Corollary 7. Assume again w.l.o.g. that ε = 1

2q . Guess a representation of the
centers and radii in 4n(2q+6+log n)+1 bits each and verify, all in polynomial time, whether
a 1

2
ε-separated representation is obtained. This is easily seen to be an NP -approximate

recognizer. 2

The exact simulation of the NP -approximate recognizer takes time in the order of 2O(n2 log 1
ε
).

Consequently, the following bound can be given if the Separation Hypothesis holds, say
w.l.o.g. for all q ≥ 10.

Corollary 9. SH ⇒ (unit) disk graphs can be recognized in 2O(n2q) time.
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