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Abstract

Sequential statistical models such as dynamic Bayesian networks and hidden Markov mod-
els more specifically, model stochastic processes over time. In this paper, we study for
these models the effect of consecutive similar observations on the posterior probability dis-
tribution of the represented process. We show that, given such observations, the posterior
distribution converges to a limit distribution. Building upon the rate of the convergence,
we further show that, given some wished-for level of accuracy, part of the inference can
be forestalled. To evaluate our theoretical results, we study their implications for a real-life
model from the medical domain and for a benchmark model for agricultural purposes. Our
results indicate that whenever consecutive similar observations arise, the computational
requirements of inference in Markovian models can be drastically reduced.
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efficiency

1 Introduction

Sequential statistical models for reasoning about stochastic processes include hid-
den Markov models (HMMs) and dynamic Bayesian networks (DBNSs); when these
models satisfy thélarkovian property where the future state of the represented
process is assumed to be independent of the past state given its present state, we
call themMarkovian Markovian models represent the dynamics of a discrete-time
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process by explicitly specifying a stochastic transition rule for the change of the
state of the process over time. DBNs [9,13,16] model the interactions among a
collection of dynamic variables and in essence constitute an extension of HMMs
which capture the dynamics of a single variable [3,15,19]. Applications of Marko-
vian models include medical diagnosis [1,5] and treatment planning [18], speech
recognition [3,19], computational biology [6], and reliability engineering [23].

Exact inference in Markovian models is computationally hard, since the runtime
requirements of the available algorithms are exponential in the number of variables
that represent the unknown hidden state [4,16]. In this paper, we will show that
the nature of the observations obtained may help reduce the requirements involved.
We will show more specifically that, after a specific number of consecutive simi-
lar observations have been propagated, the posterior distribution of the stochastic
process has converged to a limit distribution within some level of accuracy. Con-
tinuing to obtain similar observations will not alter the distribution beyond this
level and therefore no further inference is required. The total number of time slices
over which we need to perform inference can thus be drastically reduced, leading
to considerable computational savings. The achieved reduction depends upon the
wished-for level of accuracy: the higher the accuracy we want, the fewer the sav-
ings will be. It is well known from the literature on Markov chains [12,20], that an
ergodic Markov chain converges geometrically to a stationary distribution that is
(in the limit) independent of the initial distribution of its states. To the best of our
knowledge, integration of these results into Markovian models in general with the
aim of reducing the computational requirements involved has not been addressed
before.

In this paper we initially restrict our presentation to HMMs, using an example ap-
plication from the medical domain. We subsequently indicate how our method can
be extended to Markovian models with a richer structure in their set of observable
variables and to models that capture interventions of the modelled process. We fur-
ther show how our analysis applies to Markovian models consisting of interacting
processes. We validate our theoretical results on the dVAP model for the diagno-
sis of pneumonia in mechanically ventilated patients [5] and on the Mildew model
for forecasting mildew fungus and gross yield from a field wheat [13]. Our exper-
imental results support our theoretical analysis and show that consecutive similar
observations can play a significant role in speeding up inference. For some patients
in the dVAP model especially, we achieved a reduction of the number of computa-
tions involved by a factor of the order 3, which led to a substantial speed up of
the inference.

The remainder of the paper is organised as follows. In Section 2, we set out by in-
troducing the real-life application that motivated our study. In Section 3 we discuss
inference in Markovian models and propose an alternative framework for inference
with HMMs that is tailored to our analysis. We continue in Section 4 by studying

the effect of consecutive similar observations in HMMs and determining the con-
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Fig. 1. A dynamic model for the evolution of pneumonia with two observable variables; the
probability tables are obtained from [21].

vergence rate for the probability distribution of the hidden process. We then address
in Section 5 the effect of consecutive similar observations for Markovian models
with richer structure. In Section 6, we analyse the runtime savings that are achieved
by forestalling part of the inference and illustrate these savings on the dVAP and
Mildew models. We end the paper with our conclusions in Section 7.

2 A motivating example

Throughout the paper we will use the dynamic model from Figure 1 for our run-
ning example. The model constitutes a fragment of a temporal Bayesian network
that was developed for the management of ventilator associated pneumonia (VAP)
in patients at an Intensive Care Unit (ICU) [14,21]. Pneumonia, denoté&tNas
constitutes the binary unobservable variable that we would like to study over time.
The observable variables model a patient’s body temperature, dendddd \aih
values{>38.5°C, normal <36.0°C}, and sputum amount, denoted %8 with
values{yes, ng. The observable variables are measured every two hours. As an
example, Figures 2 and 3 illustrate the data obtained for two patients on a spe-
cific day. From Figure 2 we note that within the data for patient I1d.1051, two se-
guences of consecutive similar observations can be discerned per variable; for both
variables combined, three such sequences are found. From Figure 3 pertaining to
patient 1d.851, two sequences of consecutive similar observations can be discerned
for BT and three sequences 84 for both variables combined, there also are three
sequences. Table 1 summarises these findings.

We now are interested in determining whether we need to use all the data that
are available for a particular patient to establish the probability distribution of the
variablePN within reasonable accuracy. For example, using the model from Figure
1, we compute the probability of pneumonia at time 22:00 for patient Id.1051 to be
0.997887. This probability does not differ much from the probability at time 20:00
which is 0.997881, nor from that at time 18:00 which $997726. Similarly for
patient 1d.851 we find the probability of pneumonia at time 22:00 t6.b&4551,

while at time 20:00 this probability i8.036490 and at time 18:00 it i9.047090.

Since after a specific number of consecutive similar observations the probability
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Fig. 2. The data for patient 1d.1015 on a specific day, wledseused for a BT observation
ando for an SA observation.

BT4 4 SA
<36.
o o o 0 yes
normal ° ° ° ° ° °
& & & <& & & & & no
>38.5 @ e o ° ° °

24 2 4 6 8 10 12 14 16 18 20 22
time (hrs)

Fig. 3. The data for patient 1d.851 on a specific day, wheikeused for a BT observation
ando for an SA observation.

distribution of the hidden process does not change much with respect to a given
level of accuracy, it is worthwhile to investigate whether we can forestall part of
the inference.

3 Markovian models

We review some basic concepts from the theory of Markovian models [15,16,19],
and present an alternative framework for inference with HMMs that is tailored to
our analysis.

3.1 Basic notions

An HMM can be looked upon as an extension of a finite Markov chain, by includ-
ing observable variables that depend on the hidden variable. W& ,use denote

the hidden variable at time, with statesSy = {1,2,...,m}, m > 1. We denote

the prior probability distribution of the hidden variable at timéy the vectorG,

with probabilitiesg; = p(X; = ). The transition behaviour of a Markov chain is
generally represented by a mattixof transition probabilities We consider only
homogeneous Markov chains in which the transition probabilities do not depend
on time, and defing;; =p(X,+1=7| X, =1) for everyi, j=1,...,m,n>1. The
transition matrix? from Figure 1, for example, indicates that if a patient does not



Observations 1d.1051 1d.851

BT=normal || 24:00-12:00 12:00-22:00

BT=> 38.5 14:00-22:00 24:00-10:00

SA=no 2:00-4:00 10:00-22:00

SA=yes 6:00-22:00 | 24:00-2:00,6:00-8:0(

Set of observations 1d.1051 1d.851

BT=normal, SA=no|| 2:00-4:00 12:00-22:00

BT=normal, SA=yes|| 6:00-12:00 -

BT=> 38.5, SA=yes|| 14:00-22:00| 24:00-2:00,6:00-8:0(

Table 1
The sequences of consecutive similar observations per variable and for both variables com-
bined, from the data for patients 1d.1015 and 1d.851.

have pneumonia at a particular timgthen there is a probability of 15 that she/he

will have developed pneumonia at timet+ 1. We assume that the diagonal of the
transition matrix has non-zero elements only, that is, we assume that it is possi-
ble for each state to persist. We denote the observable variablés byth values

Sy ={1,2,...,r},r > 1. The observations are generated from the state of the hid-
den variable according to a time-invariant probability distribution matjxvhere
the (7, j)-th entry gives, for each time > 1, the probability of observing,, = j

given that the hidden variablg, is in state:, that is,o;; = p(Y,, = j | X,, = 7).

The observation matriK) g from Figure 1, for example, states that the probabil-
ity that a patient will show a high temperature given that she/he has pneumonia, is
0.56; if she/he does not have pneumonia, this probability isGuiiS.

A DBN can be looked upon as an extension of an HMM, that captures a pro-
cess that involves a collection of hidden variables. The set of varidblesf the
model is partitioned into three mutually exclusive and collectively exhaustive sets
I,,X,,Y,, where the set§, andY, constitute the input and output variables at
time n respectively, andX,, includes the hidden variables. The joint probability
distribution over the variables at a particular time is captured in a factorised way by
a graphical model.



3.2 Inference in Markovian models

When applying Markovian models, usually the probability distributions of the hid-
den variables are computed using an inference algorithm. Three different types
of inference are distinguished, which are monitoring, smoothing and forecasting.
Monitoring is the task of computing the probability distributions &y, at time

n given observations that are available up to and including tim@moothingor
diagnosi$ is the task of computing the probability distributions 2y, at timen

given observations from the future up to timé whereN > n. Finally, forecast-

ing is the task of predicting the probability distributions Xf, at time n given
observations about the past up to and including tievhereN < n.

For exact inference with an HMM, an efficient recursive scheme, called the Forward-
Backward, or Baum-Welch, algorithm, has been proposed [2]; this algorithm was
introduced originally for finding unknown parameter probabilities for an HMM,
but can also be used for inference purposes [19]. Instead of using the Forward-
Backward algorithm directly, we propose an alternative framework for inference
with HMMs that is better suited to our analysis of the effect of consecutive similar
observations and is directly related to the concepts from linear algebra that we will
use in later sections. Our framework uses an explicit representation of the matrix
multiplications that are involved in inference. It further builds upon the concept of
arc reversal for smoothing [22]. Our framework can in addition be readily extended
to Markovian models with conditionally independent observable variables as we
will show in Section 5.

We denote byDy the set of observations that are available up to and including
time N; we assume that there are no missing value®jn We further denote

by OM(j) = diag(Oy;,...,0n;), j = 1,...,r, the diagonal matrix that is con-
structed from theth column of the observation matri®; we call this matrix the
observation colummatrix for observatiory. Thepresent row vectoPV,, for time

n now is defined as?V,,(i) = p(X, =i | D,),i=1,...,m, and is computed
recursively as follows:

e attimel, if there is an observatiof we takePV, =G - OM (j);
e attimen = 2,..., N, if there is an observatiofyy we takePV,,=PV,,_; - P -
OM(j).

In each step, we normalise the vectov,, by dividing it by >, PV,,(i). As an
example, we consider a patient who has a normal temperature for the first two time
slices. We are interested in the probability that this patient has pneumonia at time
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Fig. 4. Arc reversal in an HMM.

2. For time1l, we compute the present row vect®r’; to be

024 0

Py = [0.13 0.87] : = {0.0364 0.9636}
0 0.95

For time2, we find for the present row vector that

0.95 0.05| [0.24 O
. =...= {0.0522 0.9478]

PVy = [0.0364 0.9636}'
0.15 0.85 0 095

The probability that this patient currently has pneumonia therefore i9 Juis2.

For forecasting the probability distribution of the hidden variak)gat some time
n > N in the future, we define thieiture row vectorF'V,, y by F'V,, v (i) =p(X,, =
i |Dy),i=1,...,m. The vector is computed as

FV, xn = PVy-P" N (1)

For computing a smoothed probability distribution for some time N in the past,

we define thebackward row vectoBV,, y by BV, n(i) = p(X, =i | Dy),i =
1,...,m. The backward row vector can be computed recursively by applying evi-
dence absorption and arc reversal [22]; Figure 4 illustrates the basic idea. We ob-
serve that the states of the variablg affect the probability distribution of the
variable X, via the transition matrix. By using Bayes’ theorem

P(Xns1 | Xn) - p(Xn)
p(Xn—H)
we find that the states of the variahlg, ; affect the probability distribution of

the variableX,, via the matrixAP" 1", with AP 4 (i5) =p(X,, =7 | Xpp1 =
i),1,7 = 1,...,m. The matrixAP"*1" is established fon = 1,..., N — 1 from

(2)

p(Xn | Xn—H) -

e p(X,) =PV,

o p(Xnt1) = p(Xn) - P;
o AP"tL7is computed fronp(X,, | X,,.1) using equation (2).



The backward row vectaBV,, y then is computed recursively from

° BVNJV = PVy;
e for n=N—1,...,1, we takeBV,, y = BV, 41 n - AP"TH",

Again, we normalise the vect@V,,  in each step by dividing by, BV}, 5 (7).

Note that the matrixAP"™" essentially represents the reversed transition be-
haviour of the process and determines the strength of the influence of observations
in the future on the probability distribution of the hidden process in previous times.
Also note that the matrixd P+ is well-defined when each state of the repre-
sented process has a non-zero probability of persisting.

In essence, the computational complexity of our framework is the same as that of
the Forward-Backward algorithm when used for inference [15,16]. An extension
of our inference framework to Markovian models with multiple interacting subpro-
cesses is possible. Since the number of states of the overall process grows exponen-
tially with the number of subprocesses, however, maintaining an explicit represen-
tation of a transition and an observation matrix will be infeasible. A more efficient
algorithm then is thenterface algorithm[16]. This algorithm is an extension of

the junction-tree algorithmfor inference in Bayesian networks in general [8]. It
efficiently exploits the concept dbrward interface which is the set of variables

at timen that affect some variables at time+ 1 directly. The complexity of the
interface algorithm has been shown to lie betw@én/’ ') andO(M’*P), where

I is the size of the forward interfacé) is the number of hidden variables, and

is the maximum number of values that a hidden variable in the model can take. We
show in later sections, both theoretically and experimentally, that the nature of the
observations obtained and the graphical structure of the Markovian model can be
exploited to effectively reduce the runtime requirements of the interface algorithm.

4 Consecutive similar observations

We analyse the effect of observing consecutive similar values for an observable
variable on the probability distribution of the hidden variable. More specifically,
we are interested in the convergence behaviour of the posterior distribution of the
variableX,, in terms of the numbek; of consecutive observatiorisWe will argue

that, given a specifi€;, observing more similar values will not alter the probability
distribution of the hidden variable beyond a given level of accuracy.

We consider an HMM with a single observable variable and an associated dataset
Dy. We suppose that the same values observed for this variable from time

up to and including timeV for somen < N; the number of consecutive similar
observations thus #s; = N — (n — 1). Using our inference framework, the present
row vectorPVy is computed to be



PVy :a(kj, Pan) - PV1- (P ’ OM(]))kj
— a(kj, PV_1) - PVy_y - (R;)% (3)

wherea(k;, PV,_1) is a normalisation constant that depends:pandPV,,_;, and

R; is the square matrik; = P - OM(j). We will now use equation (3) to study
the convergence of the present row vector to a limit distribution. More specifically,
we would like to estimate the numbgy of consecutive similar observations such
that

|[PVij41 — PViyloo < 0

whered > 0 is a predefined level of accuracy dnd., = max; |w;| denotes thé >

norm of a vectow = (wy, ..., w,,). We then have that observing more thgrcon-
secutive similar values will add no extra information to the probability distribution
of the hidden variable and no further inference needs to be performed. To establish
the convergence behaviour of the present row vector and of the nfatnrore
specifically, we build upon the notion spectral radiuswhere thespectral radius

p(A) of a square matrix is defined ag(A) = max{|A| : Ais an eigenvalue ofl }.

The following theorem [11, Theorem 5.6.12] reviews a necessary and sufficient
condition for the convergence of reflexive multiplication of a square matrix in terms
of its spectral radius.

Theorem 1 Let A be a square matrix. Theliy,, .., A*=0 if and only ifp(A) < 1.

To study the spectral radius of the matii, we recall thatR; is the product of

a stochastic matrix’ and the nonnegative diagonal observation column matrix
OM (j). The following proposition now states a property of the spectral radius of
such a product, based upon which we will argue g{aét;) < 1 for any non-trivial

Rj.

Proposition 1 Let A be a stochastic matrix and |é2 be a diagonal matrix. Then,
p(A-B) < p(B).

Proof. From [11, Theorem 5.6.9] we have that for any square matrix holds
thatp(A) < ||A||, where|.|| is any matrix norm. From this property we have that
p(A - B) < ||A- B||. Now, any matrix norm satisfies the submultiplicative axiom
which states thatA- B|| < ||A]- || B||. Hencep(A- B) < ||A]|-||B||- By choosing
the maximum row sum matrixorm ||. ||, which is defined oM as

n
[Alloe = m?XZ |aj]
=1

we find that||A||« = p(4) = 1 and||B||.c = p(B). The property stated in the
proposition now follows directly. O

From Proposition 1 we conclude for the spectral radius of the mAtrtkatp(R;) <
p(OM(j)) <1. We note thap(R;) =1 only if OM (j) is the identity matrix, which



basically means that the observatipns deterministically related with the hid-

den state, or the hidden process itself is deterministic and at least one element of
OM (j) equals one. For any non-trivial transition matrix and observation column
matrix, therefore, we have thatR;) < 1. From Theorem 1 we can now conclude

thatlimy,; oo R?j = 0. Note that from this property we cannot yet conclude that the
present row vectoPVy converges to some limit distribution, since we also need to
establish the limit behaviour of the normalisation constet;, PV,,_,). We recall

that the normalisation constant is dependent not only; dfut of PV;,_, as well.

If PV converges, it will converge to a probability distribution, which implies that
a(k;, PV,_1) will diverge according td / p( R;)" . To establish whether or nétVy
converges therefore, we have to look at the limit behavioar(éf, PV, _1)-(R;)".

For this purpose, we build upon the following theorem, known as Perron’s theorem
[11, Theorem 8.2.11], which provides a limit matrix fa( ;)" - R;]".

Theorem 2 (Perron’s theorem) Letd be a square matrix with positive elements.
Thenlimy, o [p(A) "1 A]* = LywhereL, = x-yT, withA-z = p(A)-z, AT .y =
p(A) -y, x>0,y >0, andz? -y = 1.

Before applying Perron’s theorem to(R;)~" - R;]", we re-arrange equation (3)
to get

PVy = PV,_1 - a(k;, PVi_1) - p(R;)" - (R;/p(R;))™ (4)

Note thata(k;, PV,_1) being a non-linear function aPV;,_, prohibits a straight-
forward application of Perron’s theorem in equation (4). We therefore begin by
showing that we can indeed establish the convergendelaf by building upon

the theorem of Perron.

Proposition 2 Letcy, = oy, (PV,—1)-p(R;)", whereay, (PV,,_1), k; and R; are as
in equation (3). Therimy,; ., cx; =c for some constant> 0, andlimy,; .., PVy =
c- PV, Lg,, WhereLR]. is as defined in Theorem 2.

Proof. By definition we have that

p(R;)"
k;

= alkj, PV, 1) - p(R)¥ =
Ck] CY( J 1) IO( J) Zi(PVn_1'Rj )(Z)

From Theorem 2, we now find thétn,, .. c,, = ¢, wherec equals

-1

c= |3 (PViy-Lg)(@)| >0

)

10



For any vector norm we further have that

O‘(kﬁpvn—l)'PVn—l'R";j — ¢ PV, 1-Lp,

qkj
= ||aky, PVi1)- PVoa-p(Ry)S - [ 5| = - PV,y - L,

kj
=|lex, - PVar-[505]7 = ¢-PVioa-Li |

p(R)
R7

<|ck —c|- HPVn ST

S TR

The last inequality results from the submultiplicative axiom and the triangle in-
equality for vector norms. Sinag, converges te and[p(R;)* - R;]" converges
to Ly, for k; — oo, the right-hand side of the inequality converges to 0. We con-
clude that .

k}linoo akj (PVn_1) : PVn_l : Rjj =C- PVn_l : LR]- (5)

which completes the proof. O

From Proposition 2 we now have that the present row vekidy; converges to a
particular limit distribution. This limit distribution can in fact be directly computed
from equation (5) from the proof of the proposition. Horn and Johnson [11, Lemma
8.2.7] further provide an upper bound on the rate of the convergence to this limit
distribution

H o - La || <d-r ©6)

for some positive constadtg 1 WhICh depends oi?; and for anyr with

| Az
p(R;)
where); is the second largest modulus eigenvalué&qf

<r<l1 (7)

From the upper bound on the rate of convergence of the present row vector, we can
now establish, for any level of accuragythe value oft; for which the right-hand

side of equation (6) becomes smaller tifanhat is, the value of; for which the
present row vector will converge to the limit distribution witlinThe importance

of this result lies in the observation that for a given Markovian model, we can de-
termine, before actually obtaining any evidence, the number of consecutive similar
observations for which the probability distribution of the modelled process will
converge within a wished-for level of accuracy. We can then forestall performing
inference whenever this number is exceeded. Figure 5 summarises our scheme for
inference in Markovian models with consecutive similar observations. Note that the
inference is resumed as soon as a dissimilar observation is found after a sequence
of similar observations. The inference then is resumed using the approximate row
vector which may include an error of masThe error in this vector decreases ex-
ponentially over time. The rate of the decrease depends on the mixing properties of
the transition matrixP of the process; we refer to [4] for further details.

11



for each valug determinet’ such thatl - % < 6 whered is the specified level of
accuracy;

forn=1,..., N do
j < observed value at time;
if n > k! and the observations at times- k; — 1,...,n — 1 equalj then
PV, =PV,
else
PV, =a-PV,_;-P-OM(j) wherea is a normalisation constant

Fig. 5. Pseudocode for monitoring with consecutive similar observations.

As an example, we consider again our model of pneumonia from Figure 1 and
the data for patient I1d.1051. For the combination of observatigfhs> 38.5 and
SA=yes we find that

0.950.05| [0.56 O 0.708 0 0.3767 0.0008

0.15 0.85 0 0.028 0 0.55 0.0595 0.0131

From the computed matrik; we thus have thai(R;) =0.3768 and A\, = 0.0131.

From equation (7), we now find that the rate of convergence is approximately
0.0345, which means that the speed with which the present row vector approaches
its limit distribution is quite high. In fact, for any level of accuragy> 0.001,

the number of consecutive similar observations for which inference has to be per-
formed equals at mogt = 3. We thus find that, for this patient, the probability
distribution of pneumonia does not change by more thafter time 18:00. Any
additional similar observations can therefore be disregarded upon inference.

Similar results hold also for the other two types of inference in Markovian mod-
els. For forecasting, it is evident from equation (1) that as long as the present
vector PV converges, the future row vectéiV,, y,n > N, converges as well.
With regard to smoothing, we observe from equation (2) that the matFx+
remains bounded whep(X,,) converges, because the rai0X,)/p(X,+1) re-
mains bounded. Since the matd"+!1" stays bounded, the backward row vector
BV, n,n < N, will converge.

5 Markovian models with richer structure

The essence of our analysis for HMMs extends to Markovian models in general.
These models can have a richer structure either in the observable variables or in the
hidden variables, or in both. In this section we briefly review the extension of our
analysis to these different types of model.

12
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Fig. 6. Markovian models with different structures in their observable variables; the grey
nodes represent the observable variables and the dotted nodes represent compound vari-
ables.
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Fig. 7. The effect of input variablég, on the hidden process.

5.1 Structure in the observable variables

The simplest extension of our analysis pertains to Markovian models with multiple
observable variables that are conditionally independent given the hidden variable.
Each such observable variablg, k = 1, ..., £, has associated observation column
matricesO M, (jy) for its possible valueg,. Upon inference we now have, for each
time n, a set of observations corresponding with the separate observable variables.
We then use the product matdXM (j,, . .., je) = I15—, OMy(ji) in the various
computations. Our motivating example illustrates a model with such multiple ob-
servable variables. Note that Markovian models with multiple observables that are
independent given the hidden variable can be considered as dynamic extensions
of Naive Bayesian classifiers, where the focus is to distinguish between various
classes based on a collection of observations [10]. If the observation variables ex-
hibit some mutual dependencies as in Figure 6, we can construct an observation
matrix that describes the joint distribution over these variables. This matrix then is
looked upon as the observation matrix of a single compound variable with the joint
value assignments of the included variables for its values. Note that the new obser-
vation matrix can become very large for multiple observable variables that can take
many values.

The dynamics of the hidden variable of a Markovian model may depend on the
evolution of another variable. Such models have been called input-output models
in the speech recognition literature [3]. Similar models have been used for deci-
sion planning in medicine [18], where the input is an action variable modelling
alternative treatments. As an example, Figure 7a depicts a Markovian model with
an input variabléer;, for our example domain of application. In general, a Marko-
vian model with input variable¥',, has associated@nditional transition matrix

13



Px|t,, which in essence is a set of transition matrices for the evolution of the hid-
den variable, given each combination of values for the input variables. Whenever
the input and observable variables of a model are jointly observed to have the same
combination of values, we can use the conditional transition matrix to perform an
analysis similar to the one in the previous sections.

To conclude, we consider models in which an input variable affects the hidden
process through another hidden variable. Figure 7b illustrates such a model. For
these models also, as long as the input variable is observed to consecutively have
the same value, the probability distribution of the hidden process converges to a
limit distribution within a predefined level of accuracy. The rate of the convergence
however depends on the properties of a matrix that consists of a linear combina-
tion of the conditional transition matrices that represent the influence of the hidden
variable on the hidden process. More specifically, in the model of Figure 7b, the in-
put variablel affects the hidden variablg which subsequently affects the hidden
processX through the conditional transition matrixy;,, for each valueq; of H.

With s > 1 consecutive input observatiofis= ¢ starting at time., the present row
vector will converge with a rate proportional to the rgtig|/p(A), where); is the
second largest modulus eigenvalue of the matrix >, p(H = h; | T =t)- Px,

that represents the unconditional transitional behaviour of the hidden pr&cess

5.2 Structure in the observable and hidden variables

Another extension of our analysis pertains to Markovian models in which sepa-
rate subnetworks can be distinguished that are conditionally independent given the
hidden variable. Fo¢ conditionally independent subnetworks with the observ-

able variable'p,,i=1...,¢, we then use in the various computations the matrix
OM(Yg,,...,Yn,) = [I\-; OMg,(Yg,), whereOM3, (Yg,) = p(Ys, | X,)
captures the influence of the observations inqtiie subnetwork on the posterior
distribution of the hidden variable.

So far, we assumed that the sequences of consecutive similar observations in-
volved all the observable variables. Dependent upon the topological properties of
the model, however, our analysis also applies to sequences of similar observations
that involve only some of the observable variables. We recall that the concept of
separation[17] provides for reading independencies off the graphical structure of

a Markovian model. A subséi,, of the hidden variables may then be d-separated
by a set of observable variabl&s, from another set of observable variablgs,

Figure 8 illustrates the basic idea. The Zetupon observation then cannot affect

the probability distributions of the hidden variablesHp,. Our analysis now ap-

plies directly to similar consecutive observations for the observable variables that
are not d-separated froH,,.
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Fig. 8. The hidden variabléd,, is independent of the set of observable variables
Z, = {S,, R,} aslong asy,, = {K,,} is observed. Our analysis holds for any sequence
of similar consecutive observations fdf,,, K,,, regardless of the observations .

6 Computational savings

In the previous two sections, we have argued that the observation of consecutive
similar values for the observable variables in a Markovian model can be exploited
to forestall part of the inference. To investigate the ensuing computational savings,
we monitor the example Markovian model from Figure 1 as well as the real-life
dVAPandMildew models.

6.1 The example Markovian model

For the example Markovian model from Figure 1, we briefly address the computa-
tional savings that can be achieved upon runtime by exploiting consecutive similar
observations. We begin by observing that, if the hidden variablerhasssible
states, monitoring require8(m?) operations per time slice. Smoothing requires
O(m? - N) operations for a dataset with observations up to and including Aime
smoothing further need®(m - N) space to store the matricesP that will be

used to compute the backward row vector. We now suppose that for our model we
have available a dataset that includesequences of;, i = 1,...,q, consecu-

tive similar combinations of observations, respectively. We further suppose that out
of theseq sequences, there atedifferent combinations, each with its own value

k;, 7 =1,...,, for the number of observations that need to be propagated; each
such combination occurs; times, so thap-7_, A; = ¢. For the sequenceof the

jth combination of observations, therefore, we do not need to perform inference for
s; — k; time slices. For the dataset under study, we will thus perform inference for
[N — (X% si — Xj—1 Aj - k;)] time slices with our new scheme, compared to the
N slices that would be performed with an exact algorithm.

To study the computational savings in a more practical yet controlled setting, we
generated three datasets. Each dataset concerns a period of three weeks and there-
fore includes3 - 7 - 12 = 252 combinations of observations for the two variables

BT andSA Each dataset further has been generated to contain sequences of similar
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Fig. 9. The number of time slices performed by exact inference and by approximate infer-
ence for different levels of accuracy.

dataset 1|| dataset 2|| dataset 3

61 | 55.19% || 62.60% 62.97%

0y | 41.15% 48.92% 47.44%

05 | 31.43% || 41.06% | 37.36%

Table 2
The percentage of savings in space requirements compared to exact inference.

observations of lengthts 8, and10. Dataset 1 has2 such sequences of lengthl10
sequences of length and8 sequences of lengtt); for the second dataset, these
numbers ar8, 12 and10 respectively, and for the third dataset they Bre8 and12.

With each dataset, we performed exact inference using our alternative framework;
we further performed approximate inference as described above using the levels of
accuracy; = 0.01,60, = 0.001 and#; = 0.0001. The experiments were run on a

2.4 GHz Intel(R) Pentium computer, using Matlab 6.1. Figure 9 shows the number
of time slices for which the computations are conducted per dataset. We note that
the number of time slices for which inference is performed, is reduced for all the
datasets by approximatebp% with 6., by 45% with 65, and by30% with 65. Table

2 shows the savings in space requirements upon runtime per dataset for the different
levels of accuracy. We note that increasing the accuracy by one order of magnitude
results in al0 — 15% increase in space savings. The results thus reveal considerable
savings and suggest that longer sequences of observations and a lower wished-for
accuracy may lead to larger savings in both time and space requirements. For valid
statistical conclusions, however, more experimental results are necessatry.
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Fig. 10. The dVAP model for the diagnosis of VAP for two consecutive time slices; clear
nodes are hidden, shaded nodes are observable. The dashed boxes indicate the hidden pro-
cesses of the model.

6.2 The dVAP model

ThedVAPmodel is a DBN that has recently been constructed for diagnosing VAP

in ICU patients [5]. Figure 10 gives a compact representation of the dVAP model,
where each time slice represents a single day. The model has been developed with
the help of a single infectious disease specialist and has been evaluated for a period
of 10 days on a group of 20 patients drawn from the files of the ICU of the Univer-
sity Medical Centre Utrecht in the Netherlands, 5 of whom were diagnosed with
VAP.

The dVAP model includes two hidden processeslgnisationand pneumonia

that interact with each other, three input processes (summarisetmnonologi-

cal statu$, three input observable variabldsogpitalisation mechanical ventila-

tion, andprevious antibioticy and seven output observable variables (summarised
in symptoms-signsin each time slice, the model includes a total of 30 variables.
Each of the interacting processes consists of seven subprocesses that are a-priori
independent. In total, there are 17 variables that belong to the forward interface
of the model and there are 17 binary hidden variables per time slice. The runtime
complexity of the interface algorithm for exact inference in the dVAP model thus is
betweer2(2'¥) andO(23), showing that inference is quite time consuming if not
infeasible.

From the topological structure of the dVAP model we notice that we need to obtain
consecutive similar observations for all the observable variables to allow for re-
ducing the computational burden of inference. The application under study further
allows consecutive similar observations for the last four days of the observation pe-
riod only, becausenechanical ventilatiochanges periodically until the sixth day
after ICU admission, before it remains unaltered. We found that for six out of our
collection of 20 patients, there were at least two consecutive days during which
the same combination of values for the observable variables was obtained. Table 3
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’ day H m.v ‘ x.t ‘ ile.r ‘ b.t ‘ a.d ‘ s.a‘ s.p‘ l. ‘ p.d ‘ i ‘ C. ‘ h. ‘ p.a‘
1 5 1 - - 2 2 2 - 2 2| 2 1 30
2 4 2 1 2 1 2 1 2 2| 2 1 2
3 3 1 2 2 1 2 2 2 2| 2 1 2
4 3 - 1 2 2 1 2 1 2 2| 2 1 2
5 2 1 2 2 2 1 2 1 2 2| 2 1 2
6 2 1 2 2 1 1 1 2 2 2| 2 2 2
7 1 1 1 2 1 1 2 2 2 2| 2 2 30
8 1 2 1 2 1 1 2 2 2 2| 2 2 30
9 1 2 1 2 1 1 2 |2 2 22| 2| 30
10 1 2 2 2 1 1 2 2 2 2| 2 2 30

Table 3

The dataset for patient 1d.25724, where the names of the observable variables have been

abbreviated and the numbers stand for their different values respectively; see [5] for more
details.

X107 Convergence for p(VAP) for patient 1d.25724

p(VAP)

Ll L L L L L
0,
7 8 9 10 11 12 13 14
mechanically ventilated days before VAP

Fig. 11. The convergence behaviour in the probability of pneumonia for patient 1d.25724
for two periods of consecutive similar combinations of observations.

15

presents the dataset for one of these six patients.

Upon studying the probability distributions of the two hidden processes for the six
patients, we found that on average after three days of consecutive similar obser-
vations these distributions had converged to a limit distribution for any level of
accuracyl > 0.0028. More specifically, each of the subprocesses of the two hidden
processes had converged to a limit distribution and could thus be disregarded for
further inference as long as consecutive similar observations were obtained. The
size of the forward interface thereby is reduced from 17 to three and the number of
hidden variables reduced from 17 to two. The model-specific runtime complexity
of the interface algorithm now lied betweér2') and O(2°). We thus achieved
saving of at least an order af3. Figure 11 illustrates the convergence behaviour

of the probability of pneumonia for a specific patient for whom two different se-
guences of consecutive similar combinations of observations were obtained; one

sequence within the period of days 8-9 and another sequence extending for five
days after day 10.

On a 2.4 GHz Intel(R) Pentium computer, exact inference with the dVAP model
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Fig. 12. The Mildew model for forecasting the extension of mildew fungus and the gross
yield for three consecutive time slices; clear nodes are hidden, shaded nodes are observable.

Convergence for Mildew and Dry m.
0.65 ; . . . ! .

0.6f

0.55F
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0.451
0.41

0.35f

0.3f."

0.25

2 3 4 5 6 7 8 9

time slices of consecutive similar observations
Fig. 13. The convergence behaviour in the probability of Mildew and Dry m. for consecu-
tive similar observations.

took about two and a half minutes for 10 time slices, with an average of 0.25 min-
utes per slice. For a patient who is observed for one month and for whom two se-
guences of 10 days of consecutive similar combinations of observations are found,
the inference time is reduced from approximately 7.5 minutes to 4 minutes, which
is a 47 reduction of the runtime requirements. We feel that especially for datasets
of patients who have a long observation period and for whom several sequences
of consecutive similar combinations of observations are found, the runtime savings
can be substantial.

6.3 The Mildew model

TheMildewmodel is a DBN for forecasting the extension of mildew fungus and the
gross yield from a wheat field [13]. The Mildew model has nine variables per time
slice, four of which are hidderMildew, Micro climate, Photo-synthes#d Dry

matter), four are input observable variabldaungicide, Precipitation, Temperature
andSolar energy, and one is an output observable varialledf Area Index Fig-

ure 12 depicts the model, where the names of the variables have been abbreviated
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for readability. Our focus is on determining the probability distributions of the vari-
ablesMildew and Dry matterover time. We notice thdDry matteris d-separated
from Mildew given theLeaf Area IndexFor computing the probability distribution

of Dry matter, therefore, we need to take into account only the observations for the
variabled_eaf Area Index, Solar energ;wdTemperatureWhen the values for these
variables are consecutively observed to stay the same, the probability distribution
for Dry matterwill converge no matter what the values for the other two observ-
able variabled-ungicideandPrecipitation are. The rate of the convergence can be
determined using the conditional transition matfty m photo Similarly the values

for the observable variablBolar energydo not influence the probability distribu-
tion of Mildew as long as similar values are observed for the variablegicide,

Leaf Area Index, PrecipitatioandTemperature

For binary variables, the runtime complexity of inference in the Mildew model us-
ing the interface algorithm is betwe€¥{2°) andO(2?). When the values for all the
observable variables are the same for consecutive time slices, the complexity of the
inference is reduced to betwe@i12?) andO(2?) after convergence has been estab-
lished. We generated random parameters and observations for the Mildew model to
study the convergence behaviour of the probability distributions of the hidden pro-
cesses oMildew and Dry matterwhen similar values are obtained consecutively
for the variables that influence these probability distributions respectively. Figure
13 illustrates the behaviour that we found. We notice that after obtaining four con-
secutive similar observations, the probability distributions of both variables have
converged within a level of accuraéy= 0.0043; for the variableMildew in fact, a

level of accuracy as small &= 0.0033 is guaranteed.

7 Conclusions

Inference in Markovian models such as DBNs and HMMs is hard in general. Algo-
rithms for exact inference in fact are practically infeasible for many real-life appli-
cations due to their high computational complexity. We have shown, that the nature
of the observations obtained can sometimes be exploited to reduce the computa-
tional requirements of inference upon runtime. We have studied more specifically
the effect of consecutive similar observations on the posterior distribution of a hid-
den process, and have shown theoretically that it will converge to a limit distribu-
tion within some level of accuracy. Observing further similar values will therefore
not alter the distribution beyond this level and no further inference is required. We
have presented an algorithm that builds upon these results and forestalls inference
as soon as possible.

We have introduced a realistic example from the medical domain that motivated our
analysis. Experimental evaluation of our ideas on the example has shown promis-
ing results with respect to the computational savings that can be achieved upon
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runtime. We have further demonstrated how our analysis can be extended to Marko-
vian models with richer structure in the observable or hidden space and discussed
the potential of reducing the runtime requirements for inference in such models. To
validate our theoretical results, we further experimented with two larger real-life
Markovian models. We showed that upon obtaining consecutive similar observa-
tions for the dVAP model, the runtime requirements of inference can be reduced
considerably allowing for runtime savings in the computations involved. For the
Mildew model, we showed how our results can be exploited to reduce the compu-
tational requirements upon runtime when only a subset of the observable variables
is consecutively observed to have the same value. We conclude that for monitoring-
like applications where it is not unlikely that consecutive similar observations are
obtained, our results provide for speeding up the inference procedure by forestalling
some of the computations involved.
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