
Testing properties of generic
functions

Patrik Jansson

Johan Jeuring

students of the Utrecht University
Generic Programming class

Department of Information and Computing Sciences,
Utrecht University

Technical Report UU-CS-2006-043

www.cs.uu.nl

ISSN: 0924-3275

Testing properties of generic functions

Patrik Jansson1, Johan Jeuring2, and students of the Utrecht University
Generic Programming class3

1 CSE, Chalmers University of Technology, Sweden, patrikj@chalmers.se
2 ICS, Utrecht University, the Netherlands, johanj@cs.uu.nl

3 Contributions from Laurence Cabenda, Gerbo Engels, Jacob Kleerekoper, Sander
Mak, Michiel Overeem, and Kees Visser.

Abstract Software testing is an important part of the software devel-
opment process. Testing comes in many flavours: unit testing, property
testing, regression testing, contract checking, etc. QuickCheck is proba-
bly one of the most advanced tools for testing properties of functional
programs. It supports the definition of properties and random test-data
generators in Haskell, and checks that a property passes the test cases.
A datatype-generic function is parametrised by a type. Examples of
generic functions are equality tests, maps and pretty printers. A generic
function can be seen as a template algorithm that can be instantiated
with (the structure of) a data type. Generic functions satisfy generic
properties. This paper discusses testing properties of generic functions.
It shows how generic properties can be formulated, and how QuickCheck
can be used to test generic properties. Furthermore, it shows how to
automatically generate QuickCheck generators using Generic Haskell.

1 Introduction

Software testing aims to find errors in software by means of running the software.
It is an important part of the software development process. Testing comes in
many flavours: unit testing, property testing, regression testing, contract check-
ing, black-box/white-box testing, etc.

Property testing is based on the fact that functions satisfy properties. To-
gether with a function a programmer writes one or more properties that should
be satisfied by the function. For example, consider the following excerpt from a
library for manipulating bits.

data Bit = O | I deriving (Show ,Eq)
bits2int :: [Bit] → Int
bits2int bs = bits2int ′ bs (length bs − 1)

where bits2int ′ [] n = 0
bits2int ′ (x : xs) n = bits2int ′ xs (n − 1) + bit2int x ∗ 2ˆn

bit2int :: Bit → Int
bit2int b = if b O then 0 else 1
int2bits :: Int → [Bit]

int2bits n = if n > 0 then int2bits ′ n [] else []
where int2bits ′ 0 bs = bs

int2bits ′ n bs = int2bits ′ (n ‘div ‘ 2) (int2bit (n ‘mod ‘ 2) : bs)
int2bit :: Int → Bit
int2bit n = if n 0 then O else I

Functions bits2int and int2bits convert a list of bits to an integer and vice versa.
To see if these functions are inverses we could check the following properties:

prop int2bits bits2int :: [Bit] → Bool
prop int2bits bits2int bs = (int2bits . bits2int) bs bs
prop bits2int int2bits :: Int → Bool
prop bits2int int2bits n = (bits2int . int2bits) n n

Checking with a property checker immediately reveals that they don’t hold.
A counterexample to the first property is [O , I , I] (leading zeroes should be
removed in the first property), and to the second property is −3 (negative num-
bers are not properly encoded in int2bits). Since mistakes like these are not at
all uncommon in programs, we want support to either prove or test that such
properties hold.

QuickCheck [1] is probably one of the most advanced tools for testing proper-
ties of functional programs. It supports the definition of properties and random
test-data generators in Haskell, and checks that a property passes the test cases.
Gast [7] is a tool similar to QuickCheck, but for property testing in Clean [12].
With Gast a user does not have to supply test-data generators: test data is
automatically generated for arbitrary data types. For recursive data types, the
test data generated by Gast is not of random size. Gast enumerates data in a
breadth-first manner, so for example for lists, the first 500 test cases do not
contain lists of length longer than four. QuickCheck generates lists of length up
to 200 in the same situation.

A generic function is parametrised by a type. Examples of generic functions
are equality, map, and pretty printers. A generic function can be seen as a
template algorithm that can be instantiated with (the structure of) a data type.
Generic functions satisfy generic properties. Just as a generic function, a generic
property can be seen as a template property that can be instantiated with (the
structure of) a data type to obtain a property. This paper

– discusses testing properties of generic functions. It shows how properties of
generic functions in Generic Haskell [3] can be formulated and tested using
QuickCheck.

– defines generic QuickCheck generators using Generic Haskell. This means we
get the best of both worlds — we combine the strengths of QuickCheck with
generic support inspired by Gast.

This paper is organised as follows. Section 2 briefly introduces and compares
QuickCheck and Gast. Section 3 introduces generic programming in Generic
Haskell. Section 4 shows how QuickCheck is used to check properties of generic

functions. Section 5 discusses the properties that should hold for the functions
in the library of Generic Haskell. Section 6 presents different ways of generating
test data for arbitrary data types. Section 7 concludes and discusses future work.

2 QuickCheck and Gast

QuickCheck and Gast are tools for checking properties of functions. This section
briefly introduces the two tools.

QuickCheck
QuickCheck is an automatic testing tool for Haskell programs. The programmer
provides a specification of the program, in the form of properties that functions
should satisfy, and QuickCheck then tests that the properties hold in a large
number of randomly generated cases. Specifications are expressed in Haskell,
using combinators defined in the QuickCheck library. The library provides com-
binators to define properties, observe the distribution of test data, and define
test data generators.

Many properties are simple Boolean functions, implicitly universally quanti-
fied over all arguments:

prop PlusAssoc :: Float → Float → Float → Bool
prop PlusAssoc x y z = (x + y) + z x + (y + z)

To test a property it is passed to the function test :

Main> test prop_PlusAssoc
Falsifiable, after 8 tests:
-4.6
-4.0
3.6

Here QuickCheck finds a simple counterexample illustrating that finite precision
Floats don’t behave like ideal real numbers.

The QuickCheck library also provides conditional properties, where tests not
satisfying the precondition are discarded:

prop SmallPrime :: Integer → Property
prop SmallPrime x = prime x =⇒ x < 100

Main> test prop_SmallPrime
OK, passed 100 successful tests.

Here QuickCheck has generated a few hundred test cases (randomly chosen num-
bers x) out of which 100 were prime and all of those were <100. As it turns out,
the default generator for integers starts with small numbers (within the interval
[−n / 2 . .n / 2] after n tests) which for this case means that 100 successful test

cases was not enough to find a counterexample. Fortunately, it is also possible
to define a custom generator, using the infinite list of primes:

primeNumbers :: Gen Integer
primeNumbers = do n ← arbitrary

return (primes !! abs n)
prop SmallPrime2 :: Property
prop SmallPrime2 = forAll primeNumbers (λx → x < 100)

Main> test prop_SmallPrime2
Falsifiable, after 26 successful tests:
107

QuickCheck also supports a simple but powerful way of searching for small
counter examples. When a test case fails, QuickCheck tries to shrink the test
case until a “local minimum” is found. As an example, for the properties of the
bits example in the introduction we get the following results

Main> test prop_int2bits_bits2int
Falsifiable, after 2 successful tests
(shrunk failing case 3 times):
[O]
Main> test prop_bits2int_int2bits
Falsifiable, after 1 successful tests:
-3

Gast
Gast (Generic Automated Software Testing) [7] is a property testing tool which
can be seen as a QuickCheck for Clean. Gast is implemented in the non-strict
functional language Clean [12], a close relative to Haskell. From the users per-
spective, Gast is very similar to QuickCheck — properties can be defined as
normal Boolean functions:

listsAreShort :: [Int] → Bool
listsAreShort xs = length xs < 5

and tests can be run by calling the function test :

Start = test listsAreShort

which in this case results in the answer

Passed after 500 tests.

This example is chosen to show that some care needs to be taken in interpreting
the results from testing: Gast enumerates data in a breadth-first manner, only
randomising the order “within each level”. For recursive data types this is prob-
lematic, because of the exponential growth of the search space — as we can see,

the first 500 test cases do not contain a single list with more than four elements.
QuickCheck generates lists up to length around 200 in the same situation.

The enumeration approach used by Gast does have a number of advantages:
it avoids generating the same test case more than once and it makes it possible to
actually prove properties over finite domains within the same framework (using
exhaustive testing). The Clean implementation of Gast is fast, but for recursive
data types the exponential search space means that reaching reasonably sized
test cases just takes too long.

Gast does not support shrinking, but there is no need to shrink failing test
cases when they are generated and tested in order of increasing size.

3 Generic programming in Generic Haskell

In this section we introduce type-indexed functions by means of an example and
we explain how type-indexed functions become generic in Generic Haskell.

Type-indexed functions
A type-indexed function takes an explicit type argument, and can have behaviour
that depends on this type argument. For example, suppose the unit type Unit,
sum type :+:, and product type :*: are defined as follows:

data Unit = U
data a :+: b = Inl a | Inr b
data a :*: b = a :*: b.

We use infix type constructors :+: and :*: and an infix value constructor :*:
to ease the presentation. The type-indexed function eq checks equality of two
values. We define the function eq on booleans, the unit type, sums, and products
as follows in Generic Haskell:

eq{|Bool|} n1 n2 = eqBool n1 n2
eq{|Unit|} U U = True
eq{|α :+: β|} (Inl x) (Inl y) = eq{|α|} x y
eq{|α :+: β|} (Inr x) (Inr y) = eq{|β|} x y
eq{|α :+: β|} = False
eq{|α :*: β|} (x1 :*: y1) (x2 :*: y2) = eq{|α|} x1 x2 ∧ eq{|β|} y1 y2,

where eqBool is the standard equality function on Booleans. The type signature
of eq is as follows:

eq{|a :: ∗|} :: (eq{|a|}) ⇒ a → a → Bool.

The context (eq{|a|}) ⇒ in this signature says that eq has a dependency [9] on eq .
A type-indexed function f depends on another type-indexed function g if g is
used on a type argument (a dependency variable) α in the definition of f . The
occurrences of α and β in the definition of eq are dependency variables.

Generic functions
A type-indexed function such as eq does not only work on the types that appear
as its type indices. To see why eq is in fact generic and works on arbitrary
data types, we give a mapping from data types to structure types such as units,
sums, and products. It suffices to define a function on structure types in order
to obtain a function that can be applied to values of arbitrary data types. If
there is no specific case for a type in the definition of a generic function, generic
behaviour is derived automatically by the compiler by exploiting the structural
representation.

For example, the definition of the function eq that is generically derived for
lists is equivalent to the following specific definition:

eq{|[α]|} [] [] = True
eq{|[α]|} (x : xs) (y : ys) = eq{|α|} x y ∧ eq{|[α]|} xs ys
eq{|[α]|} = False

To obtain this instance, the compiler needs to know the structural representation
of lists, and how to convert between lists and their structural representation. We
will describe these components in the remainder of this section.

Structure types
The structural representation (or structure type) of types is expressed in terms
of units, sums, products, and base types such as integers, characters, etc. For
example, for the list and tree data types defined by

data [a] = [] | a : [a]
data Tree a b = Tip a | Node (Tree a b) b (Tree a b),

we obtain the following structural representations:

type [a]◦ = Unit :+: a :*: List a
type Tree◦ a b = a :+: Tree a b :*: b :*: Tree a b,

where we assume that :*: binds stronger than :+: and both type constructors
associate to the right. Note that the representation of a recursive type is not
recursive, and refers to the recursive type itself: the representation of a type in
Generic Haskell only represents the structure of the top level of the type.

Embedding-projection pairs
If a type a can be embedded in, or represented by, another type b, a witness of
this property can be stored as a pair of functions converting back and forth (an
embedding-projection pair):

data EP a b = Ep{from :: a → b, to :: b → a}.
A type T can be embedded in its structure-representation type T◦, witnessed
by a value convT :: EP T T◦. For example, for lists we have that conv [] =
Ep from [] to[], where from [] and to[] are defined by:

from [] :: ∀a . [a] → [a]◦

from [] [] = Inl U
from [] (x : xs) = Inr (x :*: xs)

to[] :: ∀a . [a]◦ → [a]
to[] (Inl U) = []
to[] (Inr (x :*: xs)) = x : xs.

The definitions of such embedding-projection pairs are automatically generated
by the Generic Haskell compiler for all data types that appear in a program.

Tying the knot
Using structure-representation types and embedding-projection pairs, a call to a
generic function on a data type T is reduced to a call on type T◦. For example, for
equality we obtain a function of type a◦ → a◦ → Bool. To convert this function
back to a function of type a → a → Bool we use the function bimap [2]. Hence,
if the generic function is defined for view types such as Unit, :+:, and :*:, we do
not need cases for specific data types such as List or Tree anymore. For primitive
types such as Int, Float, IO or →, no structure type is available. Therefore, for a
generic function to work on these types, specific cases are necessary.

Generic abstractions, local redefinitions, and default cases
Generic Haskell supports a number of extensions that simplify defining and using
generic functions. First, using a generic abstraction, we can define a generic
function in terms of another generic function instead of by induction on the
structure types. For example, we can test equality of functions by means of the
following generic function:

feq{|b :: ∗|} :: (eq{|b|}) ⇒ (a → b) → (a → b) → a → Bool
feq{|b|} f g = λx → eq{|b|} (f x) (g x)

which is a generic abstraction that is defined in terms of, and depends on, the
standard generic equality function.

Generic functions may have dependencies. We can use local redefinition to
redefine the dependencies of generic functions. For example, if we want equality
on lists of characters to be case insensitive, we can write

equalCaseInsensitive :: Char → Char → Bool
equalCaseInsensitive x y = toUpper x toUpper y
let eq{|α|} = equalCaseInsensitive
in eq{|[α]|} "Generic Programming" "GENERIC programming"

Another way in which we may obtain this behaviour is via a so-called default
case, which allows us to extend an existing generic function by adding new cases
or overriding existing ones.

cieq{|a :: ∗|} :: (cieq{|a|}) ⇒ a → a → Bool
cieq extends eq
cieq{|Char|} x y = toUpper x toUpper y

Many more examples of these extensions, and a discussion about the merits and
disadvantages of these constructs can be found in Löh’s thesis [8].

4 QuickCheck for generic functions

This section explains how we use QuickCheck for testing properties of generic
functions. The biggest challenge here is to formulate generic properties. We start
this section with a number of generic properties, and then discuss how we can
use QuickCheck to test them.

Minimal and maximal values
Haskell’s prelude contains a class Bounded defined by

class Bounded a where
minBound :: a
maxBound :: a

minBound and maxBound are the minimal and maximal value of a type, respec-
tively. They should satisfy

prop minBound x = compare minBound x 6 GT
prop maxBound x = compare maxBound x 6 LT

that is, minBound is smaller than or equal to any other value, and maxBound is
larger than or equal to any other value. The method compare ::a → a → Ordering,
in the class Ord (used for totally ordered data types) allows a single comparison
to determine the precise ordering of two elements:

data Ordering = LT | EQ | GT

Haskell allows to derive the bounds automatically for some user-defined data
types (enumeration types and single-constructor data types whose constituent
types are in Bounded). Generic Haskell’s library contains definitions of the
generic values gminBound{|·|} and gmaxBound{|·|} for all algebraic types (not
only for those types for which Haskell supports deriving). To formulate a gen-
eralisation of the property above, we also need the generic compare function
gcompare from Generic Haskell’s library. The desired properties now read as
follows:

prop gminBound{|t :: ∗|} :: (gcompare{|t|}, gminBound{|t|}) ⇒ t → Bool
prop gminBound{|t|} x = gcompare{|t|} (gminBound{|t|}) x 6 GT
prop gmaxBound{|t :: ∗|} :: (gcompare{|t|}, gmaxBound{|t|}) ⇒ t → Bool
prop gmaxBound{|t|} x = gcompare{|t|} (gmaxBound{|t|}) x 6 LT

Note that the properties are formulated as generic abstractions in Generic Has-
kell. Since generic properties describe properties of generic functions, all generic
properties are defined as generic abstractions.

Properties of map
The generic equivalent gmap of the well known map function applies zero or more
functions (depending on the kind of its data type argument) to the appropriate
elements in a value of the data type.

gmap{|a :: ∗, b :: ∗|} :: (gmap{|a, b|}) ⇒ a → b

For example, the instance of gmap on the data type Tree a b defined in Section 3
has the following type:

gmap{|Tree a b|} :: (a → c) → (b → d) → Tree a b → Tree c d

Function gmap is defined as the deep identity function, and local redefinition is
used to obtain map-like behaviour. For tree :: Tree Int Char we would write

let gmap{|α|} = chr
gmap{|β|} = ord

in gmap{|Tree α β|} tree

to convert the integers to characters, and the characters to integers.
Properties of gmap can be derived from properties of map. Function map on

lists is a part of a functor, and satisfies the functor laws: it preserves the identity,
and distributes over composition.

map id id
map (f . g) map f .map g

where () is pointwise equality of functions on lists, implemented by feq{|[]|},
see Section 3. Generalised versions of these properties should hold for the generic
map function gmap.

Function gmap preserves the identity, and it distributes over composition.
For a type constructor c :: ∗ → ∗, we want to obtain something like

prop gmap comp{|c|} f g = feq{|c|} (map{|c|} f .map{|c|} g) (map{|c|} (f . g))

However, we want this property to allow instantiations for types like · :+: · of
kind ∗ → ∗ → ∗, where instead of two, four functions are passed as argument.
Hinze [2] shows how to generalise these properties for types of arbitrary kinds.
For example, for a type constructor d of kind ∗ → ∗ → ∗ we have

prop gmap id{|d|} = feq{|d|} (gmap{|d|} id id) id
prop gmap comp{|d|} = feq{|d|} (gmap{|d|} f h . gmap{|d|} g j)

(gmap{|d|} (f . g) (h . j))

The resulting property is kind-indexed.

Testing generic properties
As the examples of generic properties for gmap show, a generic property may
involve kinds, type constructors, polymorphic types, higher-order functions, and
plain values. To test a property, we have to supply values for each of the above
components. QuickCheck can generate values of monomorphic types and func-
tions, but generating type constructors, let alone kinds, is out of reach. This im-
plies, amongst others, that we have to instantiate the properties on monomorphic
types

Happily, generating type constructors and kinds is not necessary. To prove a
generic property, it suffices to prove instances of the property on the structure
types [2]. Similarly, to test the validity of a generic property, it suffices to test the
validity of a property on the structure types. To test the validity of a property on
all structure types, we would have to write a separate instance of the property
for each structure type. Take the property prop gminBound as an example. The
simplest structure type is Unit. For this case, the following expression would be
tested:

gcompare{|Unit|} (gminBound{|Unit|}) U 6 GT

By definition of gminBound and gcompare, this test, and the equivalent test for
Int and Char trivially pass. For the sum type case QuickCheck would need to
test something like

prop gminBound Sum cmpa cmpb mba mbb x =
(∀a . cmpa mba a 6 GT) =⇒
(∀b . cmpb mbb b 6 GT) =⇒
(gminBound Sum cmpa cmpb mba mbb x 6 GT)

Since gminBound depends on gcompare and on itself, prop gminBound Sum
takes five arguments. The last argument is a value of type a :+: b, and the other
arguments are instances of gcompare and gminBound on the types a and b,
respectively.

In general, implications P =⇒ Q may be hard to test in QuickCheck. In
particular when the condition P is often False, Q is only tested for a few of the
generated test cases. For many of the properties this turns out to be a problem
— for example, for most properties of equality the condition requires generated
values to be equal. For the above property for gminBound the problem is even
worse, because the left-hand side of the implication includes a local universal
quantification which is not implementable with QuickCheck properties. We solve
this problem by supplying generators: instead of testing λx → P x =⇒ Q x we
test forAll genP (λx → Q x). In general it is hard or impossible to convert
a property to a generator, but to obtain testable properties this is a necessary
step.

To avoid some of the problems with implications and local quantification, we
define a data type which combines the structure types in a single data type, and
use that data type for testing the library. The following data type combines the

most important structure types, and is easily extended with more cases for basic
structure types.

data StructureTypes a = STUnit
| STInt Int
| STChar Char
| STProd (StructureTypes a) (StructureTypes a)
| STLabel{anA :: a}

The data type StructureTypes contains cases for units, integers, characters, prod-
ucts, and labels. The cases for sums and constructors are implicit, but ap-
pear since there is a choice between constructors in the data type, and there
are constructor names in the data type. To test the validity of the property
prop gminBound with this approach we use the QuickCheck function test on
the data type StructureTypes Int:

test (prop gminBound{|StructureTypes Int|})
QuickCheck generates test cases from the data type StructureTypes Int if we
provide a generator (an element of Gen (StructureTypes Int)). We have used an
instance of the generic generator arb3 (defined later in Section 6).

5 Properties of the Generic Haskell Library

The Generic Haskell library consists of a number of basic generic functions
that are used often in generic programs. It is a prelude for generic programs.
Many functions of the Generic Haskell library are taken from Haskell’s pre-
lude [11]. This includes functions that implement the methods that are derivable
in Haskell, and generalisations of list functions such as map, sum, prod , and , etc.
Another source of inspiration for the Generic Haskell library is PolyLib [5], the
library of PolyP, which contains many basic generic functions.

Since generic functions from the library will often be used as basic building
blocks in generic-programming applications, it is important that they are cor-
rect. Therefore, the generic functions in the Generic Haskell library are natural
candidates for applying our approach to testing generic functions.

The Generic Haskell library consists of twelve modules, of which we will
consider the following six: Eq.ghs, Compare.ghs, Enum.ghs, Bounds.ghs, and
ReadShow.ghs, corresponding to the derivable Haskell classes Eq , Ord , Enum,
Bounded , Read , and Show , and the module Map.ghs, which implements the
generic map function gmap. We will introduce the generic functions used in
this section briefly, often referring to their non-generic Haskell equivalents. More
information about the functions in the Generic Haskell library can be found in
the user’s guide [10].

It is impossible to give a complete set of properties for the functions defined in
the six modules. Furthermore, this paper would become far too long if we would
give properties for all of the functions defined in these modules. We intend to
add the properties to the library of Generic Haskell though.

Properties of gread and gshow
Functions gshow and gread implement the derivable read and show functions
from Haskell. Just as in Haskell, they are defined in terms of helper functions
gshowsPrec and greadsPrec. Reading a value after showing it should be the
identity. Showing after reading need not be the identity: the original value might
contain concrete syntax (spaces, newlines) that are not generated by the show
function.

prop gread gshow{|t :: ∗|} :: (eq{|t|}, greadsPrec{|t|}, gshowsPrec{|t|}) ⇒
t → Bool

prop gread gshow{|t|} = feq{|t|} (gread{|t|} . gshow{|t|}) id

where feq is pointwise equality of functions, see Section 3.
It turned out that gread could not cope with named fields in data types. The

StructureTypes a data type contains this constructor:

data StructureTypes a = ...
| STLabel{anA :: a}

The anA field triggered a runtime error (pattern match failure) in gread . Quick-
Check does not trap exceptions, so when a property fails, QuickCheck fails in-
stead of just counting this as a failed test case. Fortunately, the Haskell compiler
ghc includes (unsafe) functions to catch exceptions in pure code, so by wrapping
the property in an exception handler returning False for all exceptions, we have
used QuickCheck to find the bug.

Main> test (protect prop_gread_gshow_STInt)
Falsifiable, after 3 successful tests
(shrunk failing case 3 times):
STLabel {anA = -2}
The problem was actually not in gread , but in gshow . There was no space char-
acter after the equality sign, so when a negative integer was shown, the two char-
acters "=-" were later “parsed” by gread as one token. A one-character change
to the source code fixed this problem, but revealed another bug, this time in
gread . Function gread did not allow parentheses around STLabel{anA = 2},
while gshow (and the derived show in Haskell) printed parentheses. After this
second fix, all tests passed.

Properties of gmap
Function gmap preserves the identity:

prop gmap id{|t|} :: (eq{|t|}, gmap{|t, t|}) ⇒ t → Bool
prop gmap id{|t|} = feq{|t|} (gmap{|t|}) id

To test this function, we instantiate it on the type StructureTypes a.

prop gmap id ST :: (Eq a) ⇒ StructureTypes a → Bool
prop gmap id ST = let eq{|a|} = ()

gmap{|a|} = id
in prop gmap id{|StructureTypes a|}

Function gmap distributes over composition. For a type constructor c :: ∗ → ∗,
we want to obtain something like

prop gmap comp{|c|} f g = feq{|c|} (map{|c|} f .map{|c|} g) (map{|c|} (f . g))

However, we want this property to allow instantiations for types like · :+: · of
kind ∗ → ∗ → ∗, where instead of two, four functions are passed as argument.
To use a single function for expressing this property on types of different kinds,
we formulate the distributivity property by means of three copies of gmap, of
which we only define gmap1 here. Using local redefinition we can instantiate
these copies differently for different cases.

gmap1{|a :: ∗, b :: ∗|} :: (gmap1{|a, b|}) ⇒ a → b
gmap1 extends gmap
prop gmap comp{|a :: ∗, b :: ∗, c :: ∗|} ::

(eq{|c|}, gmap1{|b, c|}, gmap2{|a, b|}, gmap3{|a, c|}) ⇒ a → Bool
prop gmap comp{|t|} = feq{|t|} (gmap1{|t|} . gmap2{|t|}) (gmap3{|t|})

To instantiate this property on the data type StructureTypes a, we locally redefine
the gmap copies.

prop gmap comp ST op f g =
let eq{|a|} = op

gmap1{|a|} = f
gmap2{|a|} = g
gmap3{|a|} = f . g

in prop gmap comp{|StructureTypes a|}

Properties of enum
Function enum exhaustively enumerates all possible instances of a particular
data type.

enum{|t :: ∗|} :: (enum{|t|}) ⇒ [t]

For example, enum{|Int|} yields the list of all possible (machine-) integers. A
property that should hold for this function is the following:

prop enum{|t|} :: t → Bool
prop enum{|t|} value = value ∈ enum{|t |}

This property says that any value of type t should be in the enumeration of
that type. Interestingly, checking this property is not really an option — at
least for most real-life data types. Recursive data types often have infinitely
many values, so using QuickCheck to test whether or not a value appears in the

enumeration may take infinitely long. When testing the property instantiated
with the StructureTypes Int data type QuickCheck just looped, and at first we
thought this was just to be expected. But a more careful examination revealed
that the property looped already for the first test case, which should have been
small enough to be found early in the enumeration list. It turned out to be
a subtle bug in the definition of the generic enum function. The enumeration
used a version of Cantor diagonalisation which was “non-productive” in the
case of infinite lists. By replacing just the diagonalisation function, the generic
enum implementation worked as expected. Still, the property remains effectively
untestable — already some trees built from just seven constructors are more than
10000 elements down the list.

The problem is just another instance of the problem Gast has with coverage
for recursive data types (remember that Gast also uses (randomised) enumera-
tion): While every element is somewhere in the enumeration list, and will even-
tually be generated by Gast, only small elements are reachable (will be tested
by Gast) within reasonable time. Testing the enumeration property with Gast
(instead of QuickCheck) is possible but not very useful — it is not very sur-
prising that values (test cases) generated from an enumeration list actually are
elements of a very similar enumeration list.

Another property of enum relates enum to the generic function empty that
returns the ‘least’ value of a type. For example, for the List type empty would
return the empty list.

prop enum empty{|t|} :: Bool
prop enum empty{|t|} = empty{|t|} ∈ enum{|t|}

As the type signature reveals, this is more a unit test than a QuickCheck prop-
erty. No random value is generated, so QuickCheck tests the same thing in each
test. It would be more interesting to range over different types for t, but this
does not fit the (current, non-generic) QuickCheck framework.

Properties of gcompare
Function gcompare generalises the derivable compare function from Haskell. It is
often desirable that the gcompare function imposes a partial order on its domain.
This implies that we want to test whether or not gcompare is anti-symmetric
(∀a, b ∈ X : aRb ∧ bRa ⇒ a = b), reflexive (∀a ∈ X : aRa), and transitive
(∀a, b, c ∈ X : aRb∧bRc ⇒ aRc). Transitivity can be expressed as a QuickCheck
property by:

prop gcompare trans{|t :: ∗|} :: (gcompare{|t|}) ⇒ t → t → t → Property
prop gcompare trans{|t|} x y z = gcompare{|t|} x y gcompare{|t|} y z =⇒

gcompare{|t|} x y gcompare{|t|} x z

We use the fact that if we know that gcompare{|t|} x y gcompare{|t|} y z ,
then it suffices to check that gcompare{|t|} x y gcompare{|t|} x z , because
this implies gcompare{|t|} y z gcompare{|t|} x z . We use the QuickCheck
conditional operator =⇒ to rule out non-interesting test cases.

Reflexivity and anti-symmetry can be implemented in a similar fashion.
Another property relates function gcompare with the generic equality func-

tion eq . Function gcompare returns True for two arguments if and only function
eq returns True.

prop gcompare eq{|t :: ∗|} :: (gcompare{|t|}, eq{|t|}) ⇒ t → t → Bool
prop gcompare eq{|t|} x y = (gcompare{|t|} x y EQ) eq{|t|} x y

This concludes the section on properties for generic functions in the Generic
Haskell library. Formulating and testing these properties has been useful: we
have discovered three bugs in the library.

6 Generic generators

Normally, QuickCheck requires a user to write a test case generator for a user-
defined data type on which QuickCheck is used. Generic programming allows us
to automatically generate test cases for any given data type. This makes testing
properties of (generic) functions easier.

Porting the Gast generator to Haskell
A generic approach to generating test cases is already available: Gast (Generic
Automated Software Testing) [7], written in Clean. We have translated their
implementation of pseudo random data generation [6] into Generic Haskell.

generate{|g :: ∗|} :: Int → StdGen → [g]

But we cannot immediately use this result for testing with QuickCheck. The Gast
implementation provides an infinite list of elements while QuickCheck expects a
generator to have type Gen g. To convert the provided list to a Gen,

QuickCheck .elements :: [g] → Gen g

looks like a good candidate. The function elements requires that the input list
is finite and it picks random values from the list. So, it does not preserve the
order from the generated list.

The required finite list can be obtained by applying take n to the input list,
for some suitable n. QuickCheck uses 100 test cases by default, so one solution
could be to let n be 100. But this is not good enough: when using implication
(=⇒) in a QuickCheck property, the condition may rule out some test cases,
which means that 100 test cases would not be enough. To be on the safe side we
could set n to be, say, 100000, but that gives an other problem: picking a random
element from the list gives very low probability for ‘edge cases’, like [−1, 0, 1] for
Ints which are at the beginning of the list. The best solution would be to let n
be a parameter, start with a small n and let it grow while testing. Fortunately,
there is a convenient combinator in the QuickCheck library which does just that
— it turns a “size-parametrised generator” into a generator:

QuickCheck .sized :: (Int → Gen a) → Gen a.

Thus if xs :: [a] is the list generated by the (translated) Gast generator, we can
use sized (λn → elements (take n xs)) :: Gen a as a generator for QuickCheck.

Thus we obtain a QuickCheck generator, written in Generic Haskell, which
works for all Haskell data types. But, unfortunately, it has the same weakness
for recursive types as the Gast generator in that it takes very long before any
reasonably sized elements are generated. Worse, where Gast can use the system-
atic generation of test data for exhaustive checking for finite types, QuickCheck
may generate duplicates (making testing less efficient) and cannot guarantee
to generate all elements (incompleteness). Still, it is convenient to have a fully
generic generator around, and it can be modified with default cases and local
redefinitions to customise its behaviour for selected constructors or types.

Non-terminating generators
Instead of first enumerating and then selecting it should be possible to define
a generic generator directly. As a first try we can define the following generic
generator:

arb1{|a :: ∗|} :: (arb1{|a|}) ⇒ Gen a
arb1{|Unit|} = return U
arb1{|Int|} = arbitrary
arb1{|Char|} = arbitrary
arb1{|α :+: β|} = arb Sum (arb1{|α|}) (arb1{|β|})
arb1{|α :*: β|} = liftM2 (:*:) (arb1{|α|}) (arb1{|β|})

arb Sum :: Gen a → Gen b → Gen (a :+: b)
arb Sum ga gb = oneof [liftM Inl ga, liftM Inr gb]

This generator is very simple, works for all data types and it does generate
reasonably sized values, but it has at least two drawbacks: a skewed distribution
and possible non-termination.

The first problem is because Generic Haskell encodes multiple-constructor
data types with nested binary sums, which means that arb1 will give a very
skewed distribution of the constructors. If pi denotes the probability of con-
structor Ci we get pi = 1/2i for i ∈ {1..n − 1}. Here a symmetric encoding
would help and the good news is that the upcoming Generic Haskell release will
support this as a Generic View. It is possible to work around this problem al-
ready in the current version of Generic Haskell by first analysing the data type,
but we have not done so.

The second problem is more subtle, but it was noted already in the first
QuickCheck paper (for a specific Tree data type). For recursive data types that
branch into more than one subtree, it is fairly easy to accidentally define a
generator that often fails to terminate (or, actually, terminates but with an
infinite tree as the result). The problem is that if a branching constructor is
often generated, the final tree is only finite if all the subtrees are finite and after

a few branches the number of subtrees is high. The skewed distribution offers
some degree of protection against these infinite trees, but this Bin data type is
an example of the problem:

data Bin = B1 Bin Bin | B2 Bin Bin | L.

Here the probability to generate L is 1/4 and the probability for a finite tree is
only 1/3.

A terminating generic generator
The solution to the termination problem is to use sized generators — we use a
parameter n to limit the size of the generated trees. For a generic function it is
not obvious to define what “size” should measure, but one simple choice is the
number of constructors in the tree. Using a sized generator, we generate trees of
size at most n. The first few cases in the definition are simple generalisations of
arb1 :

arb2{|a :: ∗|} :: (arb2{|a|}, empty{|a|}) ⇒ Int → Gen a
arb2{|Unit|} n = return U
arb2{|Int|} n = resize n arbitrary
arb2{|Char|} n = resize n arbitrary
arb2{|α :+: β|} n = arb Sum (arb2{|α|} n) (arb2{|β|} n)

Our size measure tells us that we should reduce the size when passing through a
constructor and distribute the size over the two subtrees in the product. In the
product case it is tempting to just use

arb2{|α :*: β|} n = liftM2 (:*:) (arb2{|α|} (n / 2)) (arb2{|β|} (n / 2))

but that would generate only balanced or even total trees. Instead we divide the
size randomly over the two subtree:

arb2{|Con c α|} n = liftM Con (arb2{|α|} (n − 1))
arb2{|α :*: β|} n
| n > 1 = do m ← choose (1,n − 1)

x ← arb2{|α|} m
y ← arb2{|β|} (n −m)
return (x :*: y)

| n 6 1 = return (empty{|α|} :*: empty{|β|})

This generator works for all data types, it always terminates and generates finite
trees (if there are any). It still has the skewed constructor distribution and it
has a similar problem with a skewed size distribution for nested products. Both
these problems can be avoided with a symmetric view or with an analysis of
the data type. Initial experiments are promising, but messy so we leave that for
future work.

Better distribution for regular data types
A problem with all the “fully generic” generators is that they cannot treat the
recursive case differently from other cases. As an example, the arb2 generator
for a normal list will distribute the size parameter evenly between the element
and the tail. For lists we can include a special case in the definition, but similar
problems occur also for other data types. Generic Haskell is being extended with
Generic Views [4], and using the Fix view it is possible to detect the recursive
case, at least for regular data types.

Using the latest (yet to be released) version of Generic Haskell we have
implemented yet another (sized) generic generator:

arb3{|a :: ∗|} :: Int → Gen a

This generator produces finite elements and has an even distribution of con-
structor probabilities and subtree sizes. The limitation is that it only works for
regular data types (no mutual recursion and recursive occurrences must have
the same parameters). The code depends on the generic function

children{|a :: ∗ viewed Fix|} :: a → [a]

which is the classical example of what could be done in PolyP but cannot be
done in the “old” Generic Haskell implementation.

7 Conclusions and future work

We have shown how we can formulate and test properties of generic functions
using Generic Haskell and QuickCheck. Furthermore, we have defined a few
generic QuickCheck generators.

Since an inductive proof of a property of a generic function only requires cases
for the structure types used to represent data types, it suffices to test properties
of generic functions on these structure types.

We have implemented a number of properties for generic functions in the
Generic Haskell library. Formulating and testing these properties has revealed
three bugs in the library. We have not yet completed the description of the
properties of the functions in the library, so we expect (but do not hope) to find
more bugs.

The generic QuickCheck test data generators produces test data that varies
more in size than the test data generated by Gast. But they do generate dupli-
cates.

While implementing the different tests using QuickCheck we encountered a
few problems, in particular with exception handling and a better control of the
size of generated test cases. It turned out that the latest version from QuickCheck
(obtained from CVS) solves some of these problems.

Future work consists of finishing formulating properties for the functions
in the Generic Haskell library, and further fine-tuning the generic QuickCheck
test data generators. Another idea we would like to investigate is to generate
random types instead of values, and use these randomly generated types for
testing, instead of the StructureTypes a type.

References

1. Koen Claessen and John Hughes. QuickCheck: A lightweight tool for random test-
ing of Haskell programs. In Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming, pages 268–279. ACM Press, 2000.

2. Ralf Hinze. Generic Programs and Proofs. Bonn University, 2000. Habilitationss-
chrift.

3. Ralf Hinze and Johan Jeuring. Generic Haskell: practice and theory. In Roland
Backhouse and Jeremy Gibbons, editors, Generic Programming, Advanced Lec-
tures, volume 2793 of LNCS, pages 1–56. Springer-Verlag, 2003.

4. Stefan Holdermans, Johan Jeuring, Andres Löh, and Alexey Rodriguez. Generic
views on data types. In Tarmo Uustalu, editor, Proceedings 8th International
Conference on Mathematics of Program Construction, MPC’06, volume 4014 of
LNCS. Springer-Verlag, 2006.

5. Patrik Jansson and Johan Jeuring. PolyLib – a polytypic function library. In
Workshop on Generic Programming, Marstrand, June 1998.

6. Pieter Koopman and Rinus Plasmeijer. Generic generation of elements of types.
In 6th Symposium on Trends in Functional Programming, TFP 2005: Proceedings,
pages 167–179. Tallinn, 2005.

7. Pieter W. M. Koopman, Artem Alimarine, Jan Tretmans, and Marinus J. Plas-
meijer. Gast: Generic automated software testing. In IFL, pages 84–100, 2002.

8. Andres Löh. Exploring Generic Haskell. PhD thesis, Utrecht University, September
2004.

9. Andres Löh, Dave Clarke, and Johan Jeuring. Dependency-style Generic Haskell.
In Olin Shivers, editor, Proceedings of the International Conference on Functional
Programming, ICFP’03, pages 141–152. ACM Press, August 2003.

10. Andres Löh and Johan Jeuring (editors). The Generic Haskell user’s guide, Version
1.42 - Coral release. Technical Report UU-CS-2005-004, Utrecht University, 2005.

11. Simon Peyton Jones et al. Haskell 98, Language and Libraries. The Revised Report.
Cambridge University Press, 2003. A special issue of the Journal of Functional
Programming.

12. Rinus Plasmeijer and Marko van Eekelen. Clean Language Report version 2.1,
2005.

