

Pre-publication

Proceedings
of the

First International Workshop
on

Software Product Management

September 12, 2006
Minneapolis/St. Paul, Minnesota, USA,

In conjunction with the
14th IEEE International Requirements Engineering Conference,

September 11-15, 2006

Proceedings Editors
Johan Versendaal, Utrecht University, the Netherlands

Christof Ebert, Alcatel, France
Sjaak Brinkkemper, Utrecht University, the Netherlands

Pre-publication. Final proceedings to appear in the IEEE CS Digital
Library

First International Workshop on
Software Product Management

Program

 9.00 Welcome and introduction of the workshop participants

Sjaak Brinkkemper, Utrecht University, Netherlands

 9.10 Software Product Management: Practices and research challenges

Christof Ebert, Alcatel, France

 9.30 On the Creation of a Reference Framework for Software Product Management:

Validation and Tool Support
Inge van de Weerd, Sjaak Brinkkemper, Richard Nieuwenhuis, Johan Versendaal, Lex
Bijlsma, Utrecht University, Netherlands

 10.10 Can Agility be Introduced into Requirements Engineering for COTS Component

Based Development?
Kendra M. L. Cooper, University of Texas at Dallas, USA

 10.30 Coffee break

 11.00 Challenges of Knowledge and Collaboration in Roadmapping

Sami Jantunen, Kari Smolander, Lappeenranta University of Technology, Finland

 11.45 Lightweight Replanning of Software Product Releases

Thamer AlBourae, Guenther Ruhe, Mahmood Moussavi, University of Calgary, Canada

 12.30 Lunch break

 14.00 A Cost-Based Approach to Software Product Line Management

Holger Schackmann, Horst Lichter, RWTH Aachen, Germany

 14.25 Towards Context-Aware Product-Family Architectures

Mohammed Salifu, Bashar Nuseibeh, Lucia Rapanotti, Open University, Milton Keynes,
UK

 14.50 Ten Misconceptions about Product Software Release Management explained using

Update Cost/Value Functions
Slinger Jansen, Sjaak Brinkkemper, Utrecht University, Netherlands

 15.30 Coffee break

 16.00 Towards Comprehensive Release Planning for Software Product Lines

Muhammad Irfan Ullah, Guenther Ruhe, University of Calgary, Canada

 16.20 Panel discussion:

Getting best practices practiced: How to address product managers?
Panellists will be announced

 17.30 Workshop closing

Proceedings of the First International Workshop on
Software Product Management

Table of Contents

Introduction to the first international workshop on Software Product Management

Johan Versendaal, Christof Ebert, Sjaak Brinkkemper ...1

Software Product Management: Practices and research challenges

Christof Ebert ..3

On the Creation of a Reference Framework for Software Product Management: Validation and
Tool Support

Inge van de Weerd, Sjaak Brinkkemper, Richard Nieuwenhuis, Johan Versendaal, Lex Bijlsma .7

Can Agility be Introduced into Requirements Engineering for COTS Component Based
Development?

Kendra M. L. Cooper...17

Challenges of Knowledge and Collaboration in Roadmapping

Sami Jantunen, Kari Smolander ..20

Lightweight Replanning of Software Product Releases

Thamer AlBourae, Guenther Ruhe, Mahmood Moussavi ..28

A Cost-Based Approach to Software Product Line Management

Holger Schackmann, Horst Lichter ...36

Towards Context-Aware Product-Family Architectures

Mohammed Salifu, Bashar Nuseibeh, Lucia Rapanotti ...42

Ten Misconceptions about Product Software Release Management explained using Update
Cost/Value Functions

Slinger Jansen, Sjaak Brinkkemper ...48

Towards Comprehensive Release Planning for Software Product Lines

Muhammad Irfan Ullah, Guenther Ruhe ...55

Proceedings of the First International Workshop on
Software Product Management

Workshop Introduction

In today's competitive software markets it is of utmost interest to have winning products. The
success of any software product depends on skill-full and competent product management. Software
product management includes product requirements, release definition, product release lifecycles,
creating an effective multifunctional product introduction team and - above all - assuring a winning
business case. Indeed software product management is complex: there are many stakeholders, many
responsibilities and no formalized education or body of (scientific) knowledge.

This workshop aims at increasing the body of knowledge for this specific area of requirements
engineering by providing a forum to exchange ideas and publish results. It will build and shape the
community of leading practitioners and research experts.

Given the relevance of product management in IT and software companies, and the rather
unexplored scientific contribution in this field, the workshop will deliver a state-of-the-art overview of
the available scientific and practical knowledge on software product management, as well as an
overview of areas within software product management for further research.

The following topics are considered to be in the scope of the workshop:

- Product management and requirements management
- Release definition and roadmapping
- Product management processes
- Product families and product line management
- Portfolio management and product life-cycle management
- Subcontracting, partnering and incorporation of open-source components
- Product strategy definition and marketing
- Measuring and improving the performance of the product manager
- Product management skill and competence building
- Structured customer contacts
- Product management at SME's
- Tools for product management

The call for papers was distributed worldwide to the industrial communities in product management
and product marketing and to several relevant research communities. The workshop committee
received ten submissions, which were each reviewed by three members of the workshop program
committee. Based on the evaluations of the reviewers the workshop organizers selected for presentation
at the workshop eight papers, equally divided into four full research papers and four research in
progress papers. The selected papers form the contents of these proceedings.

The workshop organizing committee wishes to thank Martin Glinz, Program Chair of RE’06,
Mikio Aoyama, Workshop Chair, and Robyn Lutz, General Chair, for their support in arranging this
first workshop on Software Product Management. Furthermore, we thank Mats Heimdahl for the local
arrangements for the workshop.

This is the first formal research exchange meeting in the area Software Product Management ever

held anywhere in the world. Given the relevancy of this field for society and industry we hope that it
will serve as the start of a series of workshops to explore the field and to establish a body of knowledge.
We are looking forward to establishing this with our colleagues.

We hope you will enjoy the workshop proceedings.

Workshop organizing committee and proceedings editors:
Sjaak Brinkkemper, Utrecht University, the Netherlands
Christof Ebert, Alcatel, France
Johan Versendaal, Utrecht University, the Netherlands

Page 1 / 59

Workshop program committee

Sjaak Brinkkemper, Utrecht University, the Netherlands
Kendra Cooper, University of Texas at Dallas, USA
Christof Ebert, Alcatel, France
Xavier Franch, Technical University of Catalunya, Spain
Leah Goldin, Golden Solutions, Israel
Remko Helms, Utrecht University, the Netherlands
Tsvi Kuflik, The University of Haifa, Israel
Cornelius Ncube, City University, UK
Manuel Pumarada, SSA Global, USA
Carme Quer, Universitat Politècnica de Catalunya, Spain
Björn Regnell, Lund University, Sweden
Günther Ruhe, University of Calgary, Canada
Pnina Soffer, The University of Haifa, Israel
Stéphane S. Somé, University of Ottawa, Canada
Johan Versendaal, Utrecht University, the Netherlands
Tony Wasserman, Carnegie Mellon West, USA
Didar Zowghi, University of Technology, Sydney, Australia

Page 2 / 59

1

Seite 1

All rights reserved © 2006, Alcatel

Panel Discussion
SoftwareSoftware

Product Management:Product Management:
Practices andPractices and

Research ChallengesResearch Challenges

IWSPM ‘06
12. Sep. 2006

http://www.cs.uu.nl/groups/OI/IWSPM/

All rights reserved © 2006, Alcatel
Christof EBERT, 16. Oct. 2006
christofebert@ieee.org

Page 2

Challenges

 The success of any product depends on skilful and skilful and
competent product managerscompetent product managers.

 Product management includes product requirements
definition, release planning, product release lifecycles,
leading an effective multi-functional product team
and – above all – assuring a winning business caseassuring a winning business case.

 Yet, product management is complexcomplex:
There are many stakeholdersmany stakeholders, many responsibilities,
tons of information to gather and analyze, and no no
formalized education or body of knowledgeformalized education or body of knowledge.

 Interesting enough, software product management
has not yet evolved towards a discipline in its ownhas not yet evolved towards a discipline in its own.

All rights reserved © 2006, Alcatel
Christof EBERT, 16. Oct. 2006
christofebert@ieee.org

Page 3

Day-to-Day Product Management

“We need a
strategy

and solution;
not point releases”

“We need
end-to-end

security
features.”

“My customer won’t buy unless it’s red.”

“Today
markets
demand
SOA and

OSS.”

“We
Need it
NOW!

“My customer
won’t buy unless

it’s blue.”

Page 3 / 59

2

Seite 2

All rights reserved © 2006, Alcatel
Christof EBERT, 16. Oct. 2006
christofebert@ieee.org

Page 4

Terminology

 ProductProduct
A product is a deliverable which creates value.
It is a combination of materials and services that is produced, is tangible
and can be either an end item in itself to be used or a component item
used for other products.
The term "Product" covers products, customer solutions, systems,
services (e.g., consulting, install, operate, maintain), and the variants or
versions of those.
Products can be intended for general availability, limited deployment,
pilots or prototypes.

 Product ManagementProduct Management
Product management is the discipline and business process which
governs a product from its inception to the market/customer delivery in
order to generate biggest possible value to the business.

All rights reserved © 2006, Alcatel
Christof EBERT, 16. Oct. 2006
christofebert@ieee.org

Page 5

The Role of the Product Manager

 Product manager is responsible for strategy and resultsresponsible for strategy and results.

 He is the “MiniMini--CEOCEO”
He is accountable for definition, development, marketing and service
of a product
He understands customer needs and markets and positions the
product accordingly
He defines the business case, gets money to invest and delivers a
ROI.
He launches projects which deliver the committed results.
He “lives” in middle management and has strong strategic and
operational skills.
He reaches his objectives without direct line responsibilities.

$neunew$

All rights reserved © 2006, Alcatel
Christof EBERT, 16. Oct. 2006
christofebert@ieee.org

Page 7

Benchmarking

Chaos Report, 2003:
34% of IT projects successful.
15% of projects completely failed.
2004/5 trend is worsening
Chaos Report, 2003:
Only 52% of the originally committed requirements appear in the
final product.
Ebert, 2004:
Requirements change rate of 1-3% per month.
Depends on market, positioning, novelty, etc.
Cooper, 2004:
Top 20% of enterprises deliver 79% of new products in time.
Average delivers only 51% of projects in time.

Sources: Standish Group 2004; study with 10000 Projekten per year, 58% in USA; 45% Fortune 1000; ca. 50% NPI. 2006
State of Embedded Market Survey, Cooper, R.G. et al: Benchmarking Best NPD Practices: Research - Technology
Management; Part I: Jan. 2004, pg. 31, Part II: May 2004, pg. 43; Part III: Nov. 2004, pg. 43. Accessible via: www.apqc.org.
Ebert, C. et al: Best Practices in Software Measurement. Springer, New York, Heidelberg, 2004

Page 4 / 59

3

Seite 3

All rights reserved © 2006, Alcatel
Christof EBERT, 16. Oct. 2006
christofebert@ieee.org

Page 8

Reasons for Failure

Bermuda TriangleBermuda Triangle of
Sales
“Sell today and cash in the bonus –
agree it tomorrow.”
Marketing
“We know what our customers want!
We told ‘em so.”
Product management
“I am the only one understanding all
details – and that‘s how it should be.”
Engineering
“If the others would just be quiet. Our
technology will sell itself.”

All rights reserved © 2006, Alcatel
Christof EBERT, 16. Oct. 2006
christofebert@ieee.org

Page 9

What Are Success Factors?

1. Clear strategy, vision and objectives
2. “Mini-CEO” – empowered and accountable
3. “Voice of the customer”: good understanding

of market and customer needs
4. Contribution is visible from sales (top-line) to

profits (bottom-line)
5. Assumptions are periodically checked
6. Risks are taken and managed
7. Dependable project management
8. Life-cycle management and milestones
9. Discipline, responsibility, decisiveness
10.Lean processes and standardized templates

All rights reserved © 2006, Alcatel
Christof EBERT, 16. Oct. 2006
christofebert@ieee.org

Page 10

Trends in Product Management

External trends (society,
technology)

• Everything is fashion
• Individualism
• Focus on value
• Ever-changing

expectations
• Service, service, service
• Global competition
• Economic and ecologic

behaviors
• Security and stability

Trends in product management

• Focus on value (rather than price alone)
• Understanding the voice of the customer
• Dynamic segmentation down to the single-

buyer segment
• Building and systematically utilizing eco-

systems
• Innovation. Market and solution focus

rather than technology alone
• Flexibility. Detecting and managing

uncertainties
• Knowledge management

$neunew$

Page 5 / 59

4

Seite 4

All rights reserved © 2006, Alcatel
Christof EBERT, 16. Oct. 2006
christofebert@ieee.org

Page 11

Research Questions to Address

How to cross-fertilize the product- and market-perspectives?
How to deal (or cope) with uncertainty, changing assumptions and
unknown requirements?
How to optimize the duration from inception to break-even? What is
“good enough” market and requirements analysis?
How to evolve a single product perspective to a more global portfolio
management perspective?
How do parameters such as market, project type, product age,
variation of changes, architecture, technology, platform alignment,
culture influence overall product success?
How to anticipate and foster disruptive innovations?
Can knowledge management be more effectively used?

All rights reserved © 2006, Alcatel
Christof EBERT, 16. Oct. 2006
christofebert@ieee.org

Page 12

A Sayin from the Folks on the Continent

 It It mattereth not mattereth not
what thou doestwhat thou doest, ,

so so longlong as as thouthou dost dost
curecure the the pain pain

thythy customer customer feelethfeeleth!!

Page 6 / 59

On the Creation of a Reference Framework for Software Product Management:
Validation and Tool Support

Inge van de Weerd, Sjaak Brinkkemper, Richard Nieuwenhuis, Johan Versendaal, Lex Bijlsma

Department of Information and Computing Sciences
Utrecht University, The Netherlands

{i.vandeweerd, s.brinkkemper, rnieuwen, j.versendaal, a.bijlsma}@cs.uu.nl

Abstract

 Software product management does not get as much
attention in scientific research as it should have,
compared to the high value product software companies
ascribe to it. In this paper, we give a status overview of
the current software product management domain by
performing a literature study and field studies with
product managers. Based on these, we are able to present
a reference framework for software product management,
in which the key process areas, stakeholders and their
relations are modeled. To validate the reference
framework, we perform a case study in which we analyze
the stakeholder communication concerning the
conception, development and launching of a new product
at a major software vendor. Finally, we propose the
Software Product Management Workbench for
operational support for product managers in product
software companies.

1. Product management

 In the past decades, the software market has made a
shift from primarily developing customized software to
developing software as a standard product. With this
shift, a new function within product software companies
emerged: the product manager function. In other
industrial sectors, especially in manufacturing, product
management has been established since the industrial
revolution in the 19th century [29]. Recently, product
software companies like Microsoft [18] and Alcatel [20]
[21] [33] paid attention to product management as well.
In addition, scientific literature has covered software
product management [29].
 Product management is of critical strategic value in
many companies. However, it is also rather complex,
since a product manager has many responsibilities
covering requirements management, release definitions,
and new product launches. What makes these
responsibilities even more complex, is the fact that the
product manager must take the many internal and external
stakeholders into account [15] [46]. Although product
management has been established for several decades,

software product management has some new challenges.
Software products differ from other products in the fact
that the manufacturing and distributing of extra copies do
not require extra costs for the company [17]. Also,
software products can be changed or updated relatively
easy by using patches or release updates. The downside
of these advantages lies in the fact that due to the nature
of software products, the requirements organization is
highly complex. Furthermore, the release frequency is
high, since the product can be altered easily. Finally, a
software product manager has many responsibilities, but
does not have the authority over the development team.
Because of these problems, we claim that it is necessary
to integrate research efforts in this key domain.
 In a few (software) product management areas know-
how for research and educational purposes is available,
but it is very fragmented. The domain is in need for an
integrated body of knowledge, as exists in software
development [10] and project management [37]. In this
paper, we aim to develop a (preliminary) body of
knowledge for software product management, by
providing a reference framework for all its activities and
deliverables. This reference framework has been based on
an extensive overview of state-of-the-art literature,
industrial case studies, and by exploring opportunities for
operational tool support.
 The organization of the paper is as follows. In the
next section we elaborate on the rationale for the
reference framework, and the research method we have
applied to develop it. Then, in section 3, we discuss the
basic structure of the reference framework. The four
process areas are elaborated on in section 4. In section 5,
we describe a case study at a major Enterprise Resource
Planning software vendor. Subsequently, in section 6, we
describe the Software Product Management Workbench,
for operational tool support for the product manager.
Finally, we describe our conclusions and future research.

2. Rationale and research method

 In many fields, reference frameworks have proven to
be valuable for research and practice. Examples are the
ISO/OSI layers for the layering of network services [26]

Page 7 / 59

and the ANSI/SPARC 3-schema architecture for database
management systems [45]. The desire to get an
understanding of the complete software product
management domain can be satisfied by developing a
reference framework. Both research contributions as well
as developments in the software industry can be
positioned in this reference framework. In this way, the
consequences can be interpreted in a uniformed context.
Also, the software product management reference
framework can provide as a starting point for (a) a
definition of key terms in software product management
and the identification of open research questions; (b) the
education of product managers and competence building;
(c) the development of improved, integrated tool support.
 The available industrial and scientific knowledge on
software product management is limited and fragmented.
Therefore, we use a proper mix of empirical and
theoretical research steps for conceptualizing the
reference framework, which are:

1. Field interviews and discussions with experienced
product managers;

2. Literature review on both non-software product
management as well as on software product
management;

3. Creation of a draft reference framework;
4. Validation by an extensive case study at a large

product software company;
5. Validation with input from an industrial workgroup

on product management;
6. Finalization of the reference framework.

The resulting draft framework was adjusted several times
after suggestions from practitioners and researchers. We
do not claim that we now have produced the definitive
version of the reference framework. Small enhancements
might still be needed, but we are convinced that the basic
structure has been established. The framework served
furthermore as input for the design of the architecture of
the product management workbench.

3. Basic framework structure

 The nature of software products has a major impact
on how the product management function is carried out.
Therefore, we base the reference framework on its core,
the software product itself, structured in a hierarchical
way. Since part of the complexity is caused by the
communication with the various stakeholders, we
position them to reveal their interactions concerning
product management.

3.1. Artifact hierarchy

Professional software product management is in essence a
matter of well-organized processing of issues related to

requirements, products and releases [19] [15]. A
hierarchical ordering of these artifacts (see Figure 1)
imposes a structure on the process areas.

Figure 1. Artifact hierarchy of product

management

 Starting on top, the scope of work of software product
management concerns the complete set of products of the
company, the so-called product portfolio. Small or young
companies may have a portfolio of just one product,
whereas larger companies have several, due to
acquisitions and/or product derivation.
 All products have a release sequence of past, present
and future releases. The release numbering is usually
determined by internal conventions, where major changes
in the technical architecture are a reason to call it an X.0
release. Marketing reasons may lead to commercial
numbering using the year of release or the same release
code as an important customer.
 Finally, each release definition consists of a set of
selected requirements. Each requirement implies the
addition of a technical or functional feature to the
product. Non-functional requirements are also
considered, such as performance constraints or
availability requirements.
 The type of work differs when dealing with artifacts
from the distinct hierarchy levels. The hierarchy gives
rise to a subdivision of software product management
into four process areas: portfolio management to deal
with the products in the product portfolio; product
roadmapping to deal with the different releases each
product has, also called roadmapping; release planning to
deal with the set of requirements of each release; and
requirements management to deal with the content and
administrative data of each individual requirement.
 Observe however, that for the sake of diagram clarity,
we have swapped the positions of requirements
management and release planning in the reference
framework (Figure 2). Release planning processes
communicate about complete releases to internal
stakeholders, whereas requirements management interacts
with all stakeholders.

3.2. Stakeholder interaction

Page 8 / 59

 Software product managers are dealing with many
requirements, originating from internal and external
stakeholders. We distinguish the following internal
stakeholders [15] [19]:

- The Company board is responsible for the definition
and communication of strategy, vision and mission to
the rest of the company. Also, it has the managerial
supervision of the different departments, including
product management. Occasionally, requirements are
communicated through its strategy, but it can occur
that a requirement is sent directly to the product
manager.

- Research & innovation has two core responsibilities:
(1) doing research to new opportunities for product
innovations and (2) finding ways to incorporate
improvements or new features into the existing
products. The first one results in requirements in the
form of technology drivers that are communicated to
the product manager.

- The consultants of the Services department are
responsible for the implementation of the software
product at the customer organization. They need to
be aware of new release features and they gather new
requirements from the customers.

- Development has as main responsibility the
execution of the release plan. The release definition
also includes functional explanation of the product
requirements that serve as input for the functional
and technical design. It may occur that during the
development process new requirements can arise,
due to more complex requirements than was
anticipated.

- Support stands for the helpdesk to answer questions
(1st line support) and for small defect repair unit (2nd
line support). Large defect repair is usually
performed by Development (3rd line support).

- Sales & marketing is the first contact with a potential
customer. Through these contacts new requirements
can be gathered.

The following external stakeholders are recognized [32]:
- The Market is an abstract stakeholder, standing for

potential customers, competitors and analysts, such
as Gartner and Aberdeen. Numerous trends may be
recognizable in the market, either in an explicit way
by one of the market players, or in an implicit way
by product management.

- Most companies have different kinds of Partners: (1)
implementation partners, who implement the product
at a customer; (2) development partners, with whom
product components are developed; and (3)
distribution partners, selling the product.

- Customers often have new feature requests in the
process of closing the deal or during the usage of the
product. These requests can be communicated to

Services, Sales & marketing, Support, but also
directly to the product manager.

Observe that the stakeholder names are generic, so that
naming or grouping may differ in product software
companies. It is obvious that external stakeholders are
harder to be influenced in their operational execution and
decision making, whereas internal stakeholders should act
according to the corporate strategy.

4. Reference framework

 Little scientific literature explicitly addresses the
software product management domain. Only some sub
domains, like requirements engineering (e.g. [36], [38]
and [39]) and release planning (e.g. [11], [28] and [42])
are covered. Vähäniitty [48] found that product portfolio
management is largely overlooked in literature, and if it is
addressed, it does not mention small and medium sized
product software companies. Although software
development is largely addressed it adheres to project-
related development [24]. In this section we provide an
overview of the existing state-of-the-art research on
(software) product management.
 Figure 2 shows the reference framework for software
product management. The framework was developed
after literature research and field interviews with
experienced product managers that were employed at six
product software companies from the Netherlands. The
size of the companies ranges from 75 to 2,700 employees.
 Besides the four process areas, we show the sub
functions of the product management domain the
relations with the internal and external stakeholders. The
elements are connected with information flows, indicated
with arrows. Note that these flows should not be read as a
linear route, but as a continuing, iterative process. In the
remaining of this section, each of the four process areas is
provided with an explanation supported by research
contributions.

4.1. Portfolio management

 Portfolio management covers decision making about
the set of existing products; introducing new products by
looking at market trends and the product development
strategy; making decision about the product lifecycle; and
establishing partnerships and contracts. Product line
management is positioned in this area as well. In [14], a
software product line is defined as a set of software-
intensive systems sharing a common, managed set of
features that satisfy the specific needs of a particular
market segment or mission and that are developed from a
common set of core assets in a prescribed way. Several
case studies have shown that introducing product lines
organizations improves performance [8] [9] [44]. They

Page 9 / 59

are most popular in telecommunication organizations
[33], but the last years, also the software industry pays
more and more attention to this topic [1] [4] [14]. Some
research has been done to tool support for product lines.
An example is Laqua [30], who proposes a product line
content & knowledge base on top of arbitrary
configuration management system. Product lifecycle
management is a comprehensive approach for product-
related information and knowledge management within
an enterprise, including planning and controlling of
processes that are required for managing data, documents
and enterprise resources throughout the entire product
lifecycle [1]. This is a key process in decision making
about the product portfolio. Also partnering &
contracting are important issues in product management
[7].
 Portfolio management is placed on top of the
reference framework. It contains the following main
processes: partnering & contracting, market trend
identification, product lifecycle management and product
line identification. The Company board, Market and
Partner companies provide input for this process area.

4.2. Product roadmapping

 Roadmapping is a popular metaphor for planning and
portraying the use of scientific and technological

resources, elements and their structural relationships over
a period of time [47]. It is complex due to dependencies
on other related products (even from partners),
technology changes, and the distributed development
[13]. The origins of roadmapping lie in the manufacturing
industry. Here, is it used for business oriented long-term
planning and technology forecasting [32]. In the product
software industry roadmaps are used for planning
purposes [47]. In [27] the term roadmapping is used in
two perspectives: forecasting and planning. Forecasting
concerns technology or market trends; and planning
concerns products, product lines, resources or the entire
company. We use the definition of [39]: a roadmap is a
document that provides a layout of the product releases to
come over a time frame of three to five years. It is written
in terms of expectations, plans and themes and core assets
[34] of the product.
 As is illustrated in Figure 2, product roadmapping
receives input regarding product lines from portfolio
management. This input is used to identify themes and
core assets. Themes are used give a clear direction to the
roadmap and later on to structure the requirements. Core
assets are components that are shared by multiple
products, for example an authorization function that is
used by multiple software products. All information is
gathered and described in the product roadmap.

Figure 2. Reference framework for software product management

Page 10 / 59

4.3. Requirements management

Requirements management entails the activities of
gathering, identifying and revising incoming
requirements and organizing them by keeping in mind
dependencies, existing core assets, product lines and
themes. Sources are customers, sales and marketing,
development, support, R&D and the company’s
management.
 Requirements management is a key area in product
software companies [12], but [38] already recognized that
requirements engineering for product software is different
than for customized software. In [36], the following core
requirements engineering activities are recognized:
eliciting requirements, modeling and analyzing
requirements, communicating requirements, agreeing
requirements, and evolving requirements. Especially
analyzing requirements costs a lot of time in product
software companies, due to the (often) high requirements
rate, and the different sources of requirements. An
example is the use of linguistic engineering to link
customer wishes to requirements [35]. Another problem
is the integration of a software product with other
systems. Customers cannot expect that all their
requirements are met, which may lead to a software
product that does not integrate with their existing
systems. In [31] several improvements are suggested to
this practice. In [20], the requirements process in 246
industry projects is investigated and the results show that
four techniques improve schedule performance, if used in
parallel: installing of an effective core team for each
product release; focusing on the product-lifecycle on
upstream gate reviews; evaluating requirements from
various perspectives; and assuring a dependable portfolio
and release planning implementation.
 The position of requirements management in the
reference framework is between product roadmapping
and release planning. The process starts with gathering all
requirements from within the company and from external
stakeholders. The requirements gathered and organized
into product requirements. Product requirements are
identified by removing the duplicates, connecting
requirements that describe a similar functionality, and by
rewriting the requirements in understandable product
requirements. Then, the requirements are organized per
product and core asset. Also, the mutual dependencies
between the different product requirements are described.
In [35], a distinction is made between market
requirements, which refer to wishes related to future
products, defined in the customer’s perspective and
context; and business requirements, a product
requirement to be covered by the company’s products,
described in the company’s perspective and context. We
use a similar distinction. However, we make a distinction

between requirements and product requirements.
Requirements refer to all incoming wishes and change
requests. This are not only market requirements, but also
service requirement, board requests, technological drivers
form research & innovation, etc.

4.4 Release planning

 Software release management is the process through
which software is made available to, and obtained by, its
users [25]. Core functions in this process are
requirements prioritizing; release planning; constructing
and validating a release requirements document; and
scope management
Much research has been carried out on the domain of
release planning, where the set of requirements for the
next release is determined. Examples are release planning
using integer linear programming [1], the analytical
hierarchy process [41], stakeholders’ opinions on
requirements importance [40] and linear programming
techniques using requirement interdependencies [11].
More techniques can be found in [2] and [5].
 In the reference framework, release planning starts
with the product requirements prioritization. Not only the
product management is responsible for this, but also the
other stakeholders can influence this process. After the
prioritization, product requirements are selected that will
be implemented in the next release. This can be done in
multiple ways: one can choose the product requirements
with the highest priority or use integer linear
programming to estimate the best set of requirements.
During this process, also the resources have to be applied
in the calculations. When the product requirements are
selected, a release definition is written that is validated by
different stakeholders. A business case is sent to the
company board. When this has been approved by the
board, a launch preparation package is constructed and
sent to the stakeholders.

5. Case study

In finding confirmation for the validity of the identified
context, activities and relations depicted in the reference
framework, we analyzed the conception, development
and launching of a new product at a major Enterprise
Resource Planning (ERP) software vendor during the
period September 2000 to June 2002. The responsible
product manager at this company provided us with all
incoming e-mail traffic regarding this new product as a
source for our analysis. In the mentioned period the
product manager received about 1,200 emails related to
this product, which serve as the source for this case study.

Page 11 / 59

5.1 ERP vendor case

After an organizational repositioning, the management
board of the ERP vendor decided to focus on providing
add-on products, so-called solutions, next to ERP
products. So, from September 2000 onwards, an
integrated procurement product was planned, including
direct materials purchasing, indirect materials purchasing,
e-procurement, e-invoicing and e-kanban (a Just-In-Time
purchasing strategy solution), to be integrated via one
Supplier Trading eXchange (STX). Note that at the start,
some of the functionality was already available in
existing products (e.g. direct materials purchasing in the
ERP-product), while other functionality needed to be
created. Existing and new functionality needed to be
disclosed through STX.
 As for portfolio management, a number of e-mails
represented the assignment of solutions, including the
STX solution. Although the board indicated (based on
market signals) the necessity of solutions, the product
manager verified the need for a specific procurement
solution through industry analysts, important customers
and competitor analysis. Specifically the successful
implementation at Komatsu of a predecessor application
of the STX, i.e. the E-Collaboration tool, encouraged the
product manager to further prepare development of the
STX. In one of the e-mails the product manager was
invited by someone from the ERP vendor’s consultancy
department to attend a knowledge transfer on E-
Collaboration based on of the successful implementation
at Komatsu: “I spoke with Komatsu today just to see how
things are going and to ask permission to access their site
tomorrow for a knowledge transfer session that I am
doing for some of the consulting folks and Sales
Managers; you are most welcome to call-in”. Note that
this particular implementation has been described in a
case study in a separate paper [49].
 A potential partner company was approached to
further enhance functionality regarding the so-called
‘round-trip’ requisitioning (i.e. linking into suppliers’
item catalogues at the suppliers’ websites in order to
purchase goods from suppliers’ sites directly). Integration
between the partner’s product and STX would make this
possible, as one of the e-mails states: “Supplier's product
information is dynamically available through agent
technology in the partner product’s Java code”.
 Regarding product roadmapping, it became clear that
not all topics and themes for an (according to the product
manager) ideal procurement solution through the STX
could be covered in one release. An example was the late
discussion of e-kanban and its incorporation in the future:
in one of the e-mails the product manager asked a
colleague to “provide me with some compelling
arguments why it is good to develop E-Kanban in STX

from the business perspective”. In general, in many e-
mails dealt with themes projection over future anticipated
releases of the STX. This included communication with
the management board of the company.
 Many of the 1,200 e-mails dealt with requirements
management and release definition. A number of detailed
requirements became clear from the previous
implementation at Komatsu. In addition, communication
with the support and consultancy departments provided
other requirements for the STX. At the end of 2000, an
early version of a release definition was communicated
with a number of internal departments, including
marketing & sales, development, and the release
management department. Later on, the architect of the
development department interpreted the requirements in a
functional design document: “Here is the first draft of
functional design document” (e-mail of 9 March 2001).
Subsequent e-mails from the development department
mainly dealt with requirement clarification (“I need
clarification about the off-line purchase in the STX”) and
scope changes (“shouldn’t we support RosettaNet
message exchange?”).
 In cooperation with other departments and associated
country organizations the product manager prepared the
launch of the STX: e.g. a white paper was written on the
product with involvement of marketing and sales (“Sure
thing! I'll make sure this is in the plan and we can work
together to get it done”.).

5.2. Case analysis

 In the case study on STX we note that all main
product management areas (portfolio management,
product roadmapping, requirements management and
release management) were addressed. Some areas and
some topics within each of the areas were more subject in
e-mails than others. For example, product lifecycle
management in portfolio management was not so much
addressed, as it concerned the first releases of STX,
therefore roadmap construction was more extensively
addressed. Also, requirements prioritization and selection
was not addressed extensively, the scope of the STX, and
the list of all requirements was rather small However,
proposed scope increases were weighed carefully in order
to either include or exclude them: the product manager
had to balance between allowing scope creep for
development and satisfying sales & marketing.
 All identified stakeholders in figure 2 were
extensively involved in the communication with the
product manager, even for research & innovation: the
development department prototyped the round-trip
functionality with the STX’s partner product.
 The largest category of all the 1200 e-mails came
from development. This can be explained by the fact that

Page 12 / 59

development took place in another country than the
country of origin of the product manager. Much
communication was through conference calls and e-mails.

6. The Software Product Management
Workbench

 Product management is key to product software
companies and should be addressed and supported well.
Although there are several tools supporting part of the
product management functionality, they do not provide a
coherent and complete set of features dedicated to
software product management. Because there is a need
for an integrated tool to support the product manager, we
propose the software Product Management Workbench.
At the same time, we use this workbench to validate our
reference framework. We use the identified process areas
to outline the architecture of the system.

6.1. Existing support tools

 Several portfolio management support tools exist, e.g.
ProSight’s Application Portfolio Management, supporting
top-down portfolio management solutions for a company,
and UMT’s Portfolio Manager Software Suite, a web-
based application for portfolio management.

 Few support tools for product roadmapping exists.
ReleasePlanner [40] covers part of it. ReleasePlanner is a
web-based system solution to enable intelligent planning,
priority and road-mapping decisions.
 Tools that focus especially on requirements
management are Borland’s CaliberRM for managing
requirements throughout the software delivery process
and IBM’s RequisitePro, a requirements and use case
management tool. ReqSimile [35] is a tool that supports
the linkage process in large-scale requirements
management, by using a linguistic engineering approach.
 Some tools exist in the release planning area. The
Accept 360° platform form Accept Software is a product
planning and delivery solution that addresses the
spectrum of business requirements in all levels of the
organization. ReleasePlanner [40], earlier mentioned in
this section, is a uses integer linear programming and
prioritization of features for purposes of release planning.
This tool focuses on (but is not limited to) software
companies. In the Release Planner Provotype [11] a
selection algorithm is implemented that presents a
number of valid and good release suggestions.

6.2. An integrated solution

 To provide operational support for software product
management, we propose a tool: the Software Product
Management Workbench. As explained further, it
supports portfolio management, product roadmapping,
release planning and requirements management, in an
integrated way.
 The workbench is divided into four main modules, all
intended to aid the product manager with his daily
routines. The four modules are: requirements module,
release planning module, roadmap module, and product
portfolio module, their names corresponding to the
functionality they provide.
 The workbench is designed for different user types.
The product manager is the main user, but there are three
other users that are able to login into the system, all with
their own privileges. These three users are: administrator,
core asset developer, and employee. Product software
companies usually have multiple software products all
furnished with new releases every once in a while. The
main task of the administrator is to start new products or
new product releases. When a new core asset has been
identified, the core asset developer can login into the
system and add this new core asset to the system. In this
way the product manager can use the core asset in
defining a release, and the development team has always
access to information on the latest core assets. An
employee can logon to the system for reading the latest
news of the development progress or report some news
about his work on an upcoming release.

6.3. Architecture

The Software Product Management Workbench is a so-
called enterprise application. Building enterprise
applications is a hard and taunting task [23], because they
deal with a lot of persistent data, concurrent data access,
multiple users with different roles, and are built in a
distributed way. In the workbench the difficulties are
found in the great amounts of requirements that have to
be persistent, different actors that can login into the
system, and more. J2EE is a platform that enables the
easy creation of enterprise applications, since J2EE
handles all the difficult tasks described above for you.
This means that enterprise programmers only have to deal
with programming the business logic. For technical
information of J2EE see [6]. In [43], Szyperski provides a
thorough evaluation of the J2EE platform.
 Figure 3 gives a high level overview of the
architecture. The tool uses two types of clients: a web
client and an application client. Application clients run
on the client machine and offer the ability to perform
heavy calculations on the client machine, without
affecting the server. Enterprise Java Beans (EJB) form
the core of the J2EE platform that makes the life of an

Page 13 / 59

enterprise programmer easier. Two types of EJBs are
used in the architecture, namely entity and session beans.
One entity bean represents one row in a database table (or
a row in the result of a join operation). Two types of
session beans exist, which are stateful and stateless
session beans. A stateful session bean can maintain
conversational state for one client. A stateless session
bean offers its services to multiple clients.

Figure 3. High level architecture

 The response time, the amount of time it takes for the
system to process a request from the outside, is of great
importance [23]. The product manager uses
functionalities of the tool that require a lot of processing
time, so he is the only one able to login into the
application client to execute these calculations. The web
tier handles all the requests generated by the web client
and directs these requests to the controller beans that are
deployed into the EJB tier, which provide coarse grained
access to the entity beans. The application client accesses
the controller beans directly. Note that the web tier and
the EJB tier do not have to reside on the same machine.
 The extendibility of the tool is also an important issue.
As mentioned before there are now four main modules,
but the tool should be able to be extended with minimum
effort to provide other kinds of functionality. Figure 4
shows a small part of the full architecture, but captures
some of the patterns used.

Figure 4. Requirements administrator module

The figure shows part of the requirements module, where
incoming requirements are connected to product
requirements. Remote calls and calls from the web tier to
the EJB tier are relatively very slow, so this number
should be minimized. The system uses transfer objects
that capture as much data that the client possibly wants to
get his hands on, instead of getting one piece of data at

the time at the cost of one remote call every time. The
different components of the system have to be located
with so called “look-ups”. It is efficient to extract this
code from all the components and put all the look-up
code in a service locator object. In this way, references to
components can be cached for other components that may
need a reference to that component, minimizing the look-
ups. There is no tight coupling between the components,
which makes the tool easy to change. If for example the
presentation logic has to be adapted, only the view has to
be changed leaving the other components unharmed.

6.4. Prototype

 Figure 5 shows a screenshot of the prototype of the
Software Product Management Workbench. It shows the
requirements window, in which the product manager can
link requirements with product requirements that refer to
the same functionality [35]. At the top of the screen, a list
of product requirements is depicted. A product
requirement can be selected in order to find matching
requirements from the requirements list at the bottom of
the screen. After the system has found all the possible
candidates, the requirements are displayed together with
the source, similarity ratio and the option to link this
requirement to a product requirement. When the preferred
requirements are selected, the linkage can be saved.

7. Conclusions and further research

In this article we discussed the difference between
product management and software product management,
and the need for operational support for the latter. By
performing field interviews and discussions with product
managers and by doing a literature review on (software)
product management, we developed a reference
framework for software product management.
Furthermore, we provided an overview of state-of-the-art
literature on software product management. By carrying
out a case study, we found confirmation of the validity of
the identified context, processes and relations in the
reference framework for software product management.
Finally, we proposed the Software Product Management
Workbench, which integrates several software product
management areas. This workbench is currently being
developed. When it is finished, several industrial case
studies will be performed to test the functionality.
 We are convinced that the software product
management reference framework is a first step to
position this important industrial domain in the field of
scientific research on software product management. In
the future, we hope to contribute to further refinements of
the reference framework and to its application in various
domains.

Page 14 / 59

Figure 5. Screenshot of the Software Product Management Workbench

References

[1] M. Abramovici and O.C. Soeg, Status and Development

Trends of Product Lifecycle Management Systems, Ruhr-
University Bochum, Chair of IT in Mechanical
Engineering (ITM), Germany, 2002.

[2] M. van den Akker, S. Brinkkemper, G. van Diepen, and J.
Versendaal, “Flexible Release Planning Using Integer
Linear Programming”, Proceedings of the 11th
International Workshop on Requirements Engineering for
Software Quality (REFSQ'05), 13-14 June 2005, Porto,
Portugal, Essener Informatik Beitrage, Band 10.

[3] D. Alur, J. Crupi, and D. Malks, Core J2EE Patterns,
Prentice Hall PTR, 2001.

[4] M. Ardis, N. Daley, D.M. Hoffman, H. Siy, and D. Weiss,
“Software Product Lines: a Case Study”, Software -
Practice and Experience, 2000, vol. 30, no. 7, John Wiley
& Sons, Ltd, New York, pp. 825–847.

[5] P. Berander and A. Andrews, “Requirements
Prioritization”, Engineering and Managing Software
Requirements, A. Aurum and C. Wohlin (eds.), Springer
Verlag, Berlin, Germany, 2005, pp. 69-94.

[6] S. Bodoff, D. Green, K. Haase, E. Jendrock, M. Pawlan,
and B. Stearns, The J2EE Tutorial, Addison Wesley
Professional, Boston, MA, 2002.

[7] A. Bonaccorsi and A. Lipparini, “Strategic Partnerships in
New Product Development: An Italian Case Study”,
Journal of Production Innovation Management vol. 11,
no. 2, 1994, pp. 134–145.

[8] J. Bosch, “Product-Line Architectures in Industry: A Case
Study,” ICSE Proceedings, Los Angeles, CA, 1999, pp.
544-554.

[9] L. Brownsword, P. Clements, A Case Study in Successful
Product Line Development, Technical Report CMU/SEI-
96-TR-016, Carnegie Mellon, 1996.

[10] P. Bourque and R. Dupuis, (ed.), Guide to the Software
Engineering Body of Knowledge, 2004 edition, IEEE
Computer Society, Los Alamitos, California, USA, 2004.

[11] P. Carlshamare, “Release Planning in Market-Driven
Software Product Development Provoking and
Understanding”, Requirements Engineering, vol. 7, no. 3,
Springer, London, 2002, pp. 139-151.

[12] P. Carlshamre, B. Regnell, "Requirements Lifecycle
Management and Release Planning in Market-Driven
Requirements Engineering Processes", 11th International
Workshop on Database and Expert Systems Applications
(DEXA'00), 2000, p. 961.

[13] E. Carmel, Global Software Teams, Prentice Hall: Upper
Saddle River, NK, 1999.

[14] P. Clements and L. Northrop, Software Product Lines:
Patterns and Practice. Reading, MA: Addison Wesley,
Boston, MA, 2001.

[15] D. Condon, Software Product Management, Aspatore
Books, Boston, MA, 2002.

[16] R.G. Cooper, S.J. Edgett, and E.J. Kleinschmidt,
“Portfolio Management for New Product Development:
Results of an Industry Practices Study”, R&D
Management, vol. 31, no. 4, 2001, pp. 361-380.

[17] M.A. Cusomano, The Business of Software, Free Press:
New York, 2004

Page 15 / 59

[18] M.A. Cusumano and R.W. Selby, Microsoft Secrets,
Simon and Schuster, New York, 1995.

[19] A.S. Dver, Software Product Management Essentials,
Anclote Press, 2003.

[20] C. Ebert, “Understanding the Product Lifecycle: Four
Key Requirements Engineering Techniques”, IEEE
Software, vol. 23, no. 3, 2006, pp. 19-25.

[21] C. Ebert and J. De Man, “e-R&D – Effectively Managing
Process Diversity”, Annals of Software Engineering, vol.
14, no. 1, 2002, pp. 73 – 91.

[22] C. Ebert and M. Smouts, “Tricks and Traps of Initiating a
Product Line Concept in Existing Products” Proceedings
of the 25th International Conference on Software
Engineering (ICSE '03), IEEE Comp. Soc., Portland,
Oregon, USA, pp. 520-525.

[23] M. Fowler, Patterns of Enterprise Application
Architecture. Addison-Wesley, Boston, MA, USA, 2003.

[24] R.L. Glass, I. Vessey, and V. Ramesh, “Research in
Software Engineering: an Analysis of the Literature”,
Information and Software Technology, no. 44 2002, pp.
491–506.

[25] A. van der Hoek, “Software release management”,
Proceedings of the Sixth European Software Engineering
Conference together with the Fifth ACM SIGSOFT
Symposium on the Foundations of Software Engineering.
Springer: Heidelberg, Germany, 1997, pp. 159–175.

[26] Information Technology - Open Systems Interconnection
- Basic Reference Model: The Basic Model. International
Standard, ISO/IEC 7498-1. 2nd ed. Geneva: ISO, 1994.

[27] T. Kappel, "Perspectives on Roadmaps: How
Organisations Talk about the Future", IEEE Engineering
Management Review, vol. 29, no. 3, 2001, pp. 36-48.

[28] J. Karlsson and K. Ryan, “A Cost-Value Approach for
Prioritizing Requirements”, IEEE Software, vol. 14, no.
5, 1997, pp. 67-74.

[29] T. Kilpi, “Product Management Challenge to Software
Change Process: Preliminary Results from Three SMEs
Experiments”, Software Process - Improvement and
Practice, vol. 3, no. 3, 1997, pp. 165-175.

[30] R. Laqua, “Concepts for a Product Line Knowledge Base
& Variability”, Proceedings of NetObjectDays 2002,
October, 2002, pp. 30-39.

[31] S. Lauesen, "COTS Tenders and Integration
Requirements", 12th IEEE International Requirements
Engineering Conference (RE'04), 2004, pp. 166-175.

[32] L. Lehtola, M. Kauppinen, M., and S. Kujala, ”Linking
the Business View to Requirements Engineering: Long-
Term Product Planning by Roadmapping”, Proceedings
of the 13th IEEE international Conference on
Requirements Engineering (Re'05). IEEE Computer
Society, 2005, pp. 439-446.

[33] J. de Man and C. Ebert, “A Common Product Life Cycle
in Global Software Development”, Eleventh Annual
International Workshop on Software Technology and
Engineering Practice, 2003, pp. 16-21

[34] M. Moon and K. Yeom, “An Approach to Develop
Requirement as a Core Asset in Product Line”, Lecture
Notes in Computer Science, no. 3107, 2004, pp. 23 – 34.

[35] J. Natt och Dag, V. Gervasi, S. Brinkkemper, and B.
Regnell, “A Linguistic-Engineering Approach to Large-

Scale Requirements Management” IEEE Software, vol.
22, no. 1, 2005, pp. 32-39.

[36] B. Nuseibeh and S. Easterbrook, “Requirements
Engineering: A Roadmap”, The Future of Software
Engineering, A. Finkelstein (ed.), ACM Press: New York,
2000, pp. 37-46.

[37] PMBOK, A Guide to the Project Management Body of
Knowledge, first ed., Project Management Institute,
Pennsylvania USA, 2000.

[38] C. Potts, "Invented Requirements and Imagined
Customers: Requirements Engineering for Off-the-Shelf
Software," Second IEEE International Symposium on
Requirements Engineering (RE'95), 1995, p. 128.

[39] B. Regnell and S. Brinkkemper, “Market-Driven
Requirements Engineering for Software Products”,
Engineering and Managing Software Requirements, A.
Aurum and C. Wohlin (eds.), Berlin, Germany, Springer
Verlag, 2005, pp 287-308.

[40] G. Ruhe and M.O. Saliu, “The Art and Science of
Software Release Planning”, IEEE Software, vol. 22, no.
6, 2005, pp. 47-53.

[41] T.L. Saaty, The Analytic Hierarchy Process, McGraw-
Hill, New York, NY, 1980.

[42] M.O. Saliu and G. Ruhe, "Supporting Software Release
Planning Decisions for Evolving Systems," 29th Annual
IEEE/NASA Software Engineering Workshop, 2005, pp.
14-26.

[43] C. Szyperski, Component Software: Beyond Object-
Oriented Programming, 2nd ed., ACM Press and
Addison-Wesley, 2002

[44] S. Thiel, S. Ferber, T. Fischer, A. Hein, and M. Schlick,,
“A Case study in Applying a Product Line Approach for
Car Periphery Supervision Systems”, Proceedings of In-
Vehicle Software, SAE 2001 World Congress SP-1587,
Detroit, Michigan, USA, 2001, pp. 43-55.

[45] D. Tsichritzis and A. Klug, “The ANSI/X3/SPARC
DBMS Framework Report of the Study Group on
Database Management Systems”, Information Systems,
vol. 1, 1978, pp. 173–191.

[46] S. Unger, “Ten Marketing Challenges that Can Make or
Break your Business… and How to Address Them”,
Productmarketing.com, vol. 1, no. 1, 2003.

[47] J. Vähäniitty, C. Lassenius, and K. Rautiainen, "An
Approach to Product Roadmapping in Small Software
Product Businesses", Quality Connection - 7th European
Conference on Software Quality (ECSQ2002),
Conference Notes, Center for Excellence Finland,
Helsinki, Finland, 2002, pp. 12-13

[48] J. Vahaniitty and K. Rautiainen, "Towards an Approach
for Managing the Development Portfolio in Small
Product-Oriented Software Companies”, Proceedings of
the 38th Annual Hawaii International Conference on
System Sciences (HICSS'05), 2005, p. 314.

[49] J.M. Versendaal and S. Brinkkemper, “Benefits and
Success Factors of Buyer-Owned Electronic Trading
Exchanges: Procurement at Komatsu America
Corporation”, Journal of Information Technology Cases
and Applications, vol. 5, no. 4, 2003, pp. 39-52.

Page 16 / 59

Can Agility be Introduced into Requirements Engineering
for COTS Component Based Development?

Kendra M. L. Cooper
The University of Texas at Dallas

kcooper@utdallas.edu

Abstract

The Rational Unified Process is a popular software

development process framework that can be tailored to
meet the needs of different kinds of projects (large,
small, component development, component based
application development, etc.). This position paper
presents an overview of a comprehensive RUP based
process for developing COTS based systems and poses
a set of questions that need to be considered to
introduce agility into the process from a requirements
engineering perspective.

1. Introduction

The need to rapidly produce quality software and
respond to changes in a flexible and quick manner has
driven the definition of new techniques including Agile
Methods (AM) and Component Based Software
Engineering (CBSE) approaches, which use a variety
of software component products (e.g., off-the-shelf
(OTS), commercial OTS (COTS), etc.). These
approaches share many common goals: increasing the
productivity of the development teams, reducing
products’ time-to-market, reducing the development
costs, and improving customer satisfaction.

AMs are a set of software processes that share the
same core values defined in Agile Manifesto [1]:
individuals and interactions over processes and tools;
working software over comprehensive documentation;
customer collaboration over contract negotiation;
responding to changes over following a plan.
Numerous AMs have been proposed including Scrum
[11], Extreme Programming [2], and DSDM [6]. AMs
are not prescriptive processes: they don’t define
detailed procedures for how to create a given type of
model; instead they provide advice, or guidance.

The requirements in AMs are recognized as key
elements; this can be seen from the highest priority
principle in agile development: satisfy the customer.
The requirements engineering (RE) activities and

artifacts are defined in some form by the AMs. For
example, XP describes the RE activities in terms of
User Stories. A User Story is a brief summary of a
discussion with the customer about the requirements
that is hand-written on an index card; they capture
high-level functional and non-functional requirements
and are prioritized. Simplified, point form versions of
use cases have been proposed as an agile alternative to
a fully defined use case model [2]. The point form use
cases do not necessarily contain an overview, pre-
conditions, post-conditions, and so on. The flows of
events can be presented very simply as bullets.

CBSE methods are a set of software processes that
support the identification, evaluation, acquisition,
integration, testing, and/or maintenance of systems that
are developed using components (i.e., reusable
software products), rather than from scratch. The focus
in this work is on COTS CBSE (CBSEC) techniques, in
which the products are blackboxes (source code is not
available). The use of OTS products needs to be
considered as a separate, more general problem, as the
products are whiteboxes (source code is available).
Proposals that emphasize the requirements engineering
activities in CBSEC include Scarlet [9], COTS Aware
Requirements Engineering and Software Architecting
[5], and the Evolutionary Process for Integrating COTS
Based Systems (EPIC) [3].

Introducing agility into CBSEC techniques has
received little attention. An analysis of selected CBSEC
techniques with respect to agile principles is reported
in [10]. Points of consistency and conflict are
identified. For example, the authors’ analysis on the
agile principle to “welcome changing requirements” is
viewed as being consistent with COTS based software
development. Other principles, however, have a mix of
consistent and conflicting points. For example, the
principle that states the “business people and
developers need to work together” brings up practical
issues of having the vendors working on site,
protecting intellectual property, etc. In AMs, the
business people include stakeholders who understand

Page 17 / 59

the requirements for the application under
development.

The position presented in this work is that it is
important to further investigate how to introduce
agility into a CBSEc. Here, the first step is taken by
identifying some of the research questions and issues
involved. A specific CBSEc approach, EPIC, has been
selected for this phase of the work to provide a
concrete process definition to work with; additional
approaches need to be considered. EPIC has been
captured as a tailored version of the established
Rational Unified Process (RUP).

The remainder of this paper is structured as follows.
The RUP and a tailored version of the RUP for CBSEc,
the IBM RUP COTS plug-in, are overviewed in
Section 2. Open research questions on defining an agile
component oriented RE process are considered in
Section 3. Conclusions are in Section 4.

2. Tailoring the Rational Unified Process

2.1 Rational Unified Process

The Rational Unified Process (RUP) is a popular,
adaptable process framework that describes how to
effectively develop software using proven techniques
[8]. RUP is organized along two dimensions. The
horizontal dimension represents the dynamic structure;
it is described in terms of cycles, phases, iterations, and
milestones. The vertical dimension represents the static
structure. Here, disciplines (or workflows) such as
business modeling, requirements, etc. are described in
terms of the roles, activities, artifacts, workflows, and
additional process elements (templates, guidelines,
concepts, roadmaps, and help on tools). RUP defines
activities (how to do the work), roles (who is doing the
work), workflows (when the work is done), and the
artifacts (what is delivered).

The RE discipline begins in the inception phase, in
which the architecturally significant use cases are
identified and outlined by the analyst. The work
continues with substantial effort in the elaboration
phase, in which the use case model is completed to
80%, then tapers off in the construction and transition
phases. The requirements are managed throughout.

The RUP is intended to be tailored, to better meet
the needs of a specific project or organization. RUP is
included into the IBM Rational Method Composer
(RMC) product, which allows customizing the process
and publishing the resulting process through the
internet [7]. A tailored version is called a plug-in. For
example, a plug-in for agile projects with the Agile
Unified Process has been proposed [1]; numerous

plug-ins have been published by IBM, including the
COTS component based development plug-in.

2.2 EPIC and the IBM RUP COTS Plug-in

EPIC is a comprehensive, tailored version of the

RUP that meets the challenges of building, fielding,
and supporting COTS component-based business
solutions [3]. It simultaneously defines and makes
trade-offs among four spheres of influence: the
stakeholders' needs and their business processes (i.e.,
more traditional RE, analysis), the components
currently available in the marketplace, the architecture
and design of the system, and programmatics and risks.
The trade-offs are considered in each iteration. As
iterations progress and decisions are negotiated, the
solution space becomes smaller, knowledge of the
solution accumulates, and stakeholder buy-in increases.
As a result, the components available in the
marketplace are re-examined in each iteration to
determine if they are suitable (refer to Figure 1).

The milestones, workflows, activities, artifacts,
terms, and descriptions from the RUP are re-used
and/or modified as needed; new process elements are
added. For example, new artifacts to characterize the
component marketplace include the market segment
information, component dossier (for each component
that is considered), and the component screening
criteria and rationale. For each new artifact, EPIC
provides a guideline that describes the purpose of the
information gathered, key questions to answer, the
information needed, and techniques to use.

EPIC has been used as the basis for the IBM RUP
for COTS Package Delivery plug-in. For example,
templates for the COTS inception, elaboration,
construction, and transition iterations are defined.
Under each of these, the activities are refined into sub-
activities and ultimately tasks. Each task has properties
that can be instantiated, including the guidelines. The
guidelines are left empty in the plug-in to provide

S olu tion S pac e

T i m e

In c re as in g S tak e h o lde r B u y-in

A c c u m u lat in g K n o w le d ge

S ta keh o ld e r N eeds /
B us in ess P ro ces ses

P ro g ra m ma t ics /
R is k

M ar ke tp lace A rch itec tu re /
D es ig n

Ite ra t iv e ly
C o n v e rg in g D e c is io n s

S i m u l ta n e o u s
D e fi n iti on &

T r a de - of f

Figure 1. Overview of the EPIC Framework [3].

Page 18 / 59

flexibility. The guidelines are targeted in this work as a
way to introduce agility into the process.

3. Considering Agility and COTS in RE

The Agile Manifesto and the 12 principles for AMs
[2] provide the basis for introducing agility into the
IBM RUP COTS plug-in. Many of the principles are
highly related to the RE discipline (e.g., satisfy the
customer, adapt to changing requirements, deliver
working software frequently, business people and
developers work together). Of these principles, one in
particular stands out as a significant technical
challenge in introducing agility into RE for component
based systems: deliver working software frequently.

AMs propose to deliver working software in short
iterations (from a couple of weeks to a couple of
months). From a RE perspective, these frequent
deliveries are excellent opportunities to validate the
requirements realized in the software with the
customer. When the delivery is demonstrated, the
customer has an opportunity to identify what they do
and don’t like; problems can be quickly addressed.
However, many questions arise when considering the
short iterations from a component perspective:
1. Does a short iteration give enough time to wisely

identify, evaluate, select, and integrate COTS
components to meet the customer’s requirements?

a. Can a component dossier be simplified and still be
useful or replaced with tacit knowledge?

2. How does the relationship with the vendor need to
change to make COTS selection agile?

a. Can the evaluation workshop (i.e., meeting to
evaluate the components) with the vendor be
streamlined?

b. When, or for how long, is it appropriate to have
the vendors working on-site?

c. Can the process to address change requests to a
COTS component product be more agile?

3. What and how much information should be collected
for the four spheres of influence, particularly in the
inception and elaboration phases, when the RE effort
is significant?

4. Are only some kinds of components suitable in an
agile approach? For example, should only the
following kinds of components be considered:
a. The components meet an international standard

(IEEE, ISO, ANSI, etc.); their capabilities are well
documented and understood

b. The components are relatively small and/or simple
to understand and evaluate with respect to the
customer’s requirements. If the component is
small and/or simple, then is it worth buying or
should the requirements be realized in house?

c. The developers have used the component before to
meet similar requirements, reducing the effort
needed to understand and use it.

5. Are all of the requirements potential candidates for
realizing with COTS? AMs focus on realizing the
requirements for the current iteration. Is there a way
to characterize requirements that are better suited for
realization with COTS, for example, those that are
less likely to change in future iterations?

4. Conclusions and Future Work

There are numerous questions to investigate just

considering the single agile principle to “deliver
working software frequently” in the definition of an
agile RE process that addresses the management of the
component based system under development and the
reusable software products. The other agile principle
highly related to RE also need to be investigated.

5. References

[1] Agile Manifesto, available at

http://www.agilemanifesto.org/
[2] Ambler, S., Agile Modeling: Effective Practices for

Extreme Programming and the Unified Process, Wiley,
March, 2002.

[3] Albert, C. and Brownsword, L., Evolutionary Process
for Integrating COTS Based Systems (EPIC) Building,
Fielding, and Supporting Commercial-off-the-Shelf
(COTS) Based Solutions, technical report CMU/SEI-
2002-TR-005, November 2002.

[4] Beck, K., Extreme Programming Explained: Embrace
Change, Addison-Wesley, 1999.

[5] Cooper, K., Ramapur, C., and Chung, L., A COTS-
Aware Requirements Engineering and Architecting
Approach: Defining System Level Agents, Goals,
Requirements and Architecture (Version 4), UTDCS-
24-05, The Univ. of Texas at Dallas, December 2005.

[6] DSDM Consortium, www.dsdm.org
[7] IBM Rational Method Composer, www-

128.ibm.com/developerworks/rational/library/nov05/kro
ll/index.html

[8] Kruchten, P., Rational Unified Process, The: An
Introduction, 3rd Edition, Addison-Wesley, 2004

[9] Maiden, N., Kim, H., Ncube, C. “Rethinking Process
Guidance for Selecting Software Components”, in Proc.
of 1st ICCBSS, LNCS 2255, 2002.

[10] Navarrete, F., Botella, P., and Franch, X., “How Agile
COTS Selection Methods are (and can be)?”, in Proc.
of the 31st EUROMICRO Conf. on Software
Engineering and Advanced Applications, Porto,
Portugal, Aug. 30th – Sept. 3rd, 2005, pp. 160-167.

[11] Schwaber, K. and Beedle, M., Agile Software
Development with Scrum, Prentice-Hall, 2001.

Page 19 / 59

Challenges of Knowledge and Collaboration in Roadmapping

Sami Jantunen
Lappeenranta University of Technology

sami.jantunen@lut.fi

Kari Smolander
Lappeenranta University of Technology

kari.smolander@lut.fi

Abstract

Today’s software organizations need to cope with ever

intensifying technical and commercial turbulence. In such
environment, the level of market orientation could be the
deciding factor determining the future success of a
company. The activities bridging market orientation to
software product development terminology have
commonly been linked to terms such as roadmapping and
release planning. The purpose of this paper is to explore
the roadmapping practices currently followed in software
product development organizations. Due to the lack of
established theories of roadmapping practices,
exploratory and inductive research methods were used.
The study resulted with a conceptualized view of
roadmapping activities. We identified three types of
participants that need to be present in a roadmapping
context. Each of the identified participant types relates to
particular set of challenges regarding knowledge and
collaboration in a roadmapping context. When comparing
our results to the existing theories, we found out that the
knowledge-based theory of the firm could contribute to
further theory development in market-oriented software
development and related areas.

1. Introduction

Today’s software organizations need to cope with ever
intensifying turbulence of technical and commercial
environments. These challenges are often further
complicated with the global competition. In such
operating environment one would assume that
understanding the demand originating from the market
would be a source of competitive advantage. In other
words, the level of market orientation could be the
deciding factor determining the future success of a
company. Yet, according to Boehm [1], much of current
software engineering practice and research is done in a
value-neutral setting, in which every requirement, use
case, object, and defect is treated as equally important.
The current practice and research mostly sees software

engineers as responsible for turning software
requirements into verified code – without giving a greater
thought about business or market priorities and values.

Why there appears to be a gap between the recognized
need of market oriented product development activities
and the actual practices currently followed in software
organizations? What are the obstacles of introducing
market orientation to software organizations? Such
largely unanswered questions motivated us to gain a
deeper understanding of market oriented product
development in practice. In our learning process, we
wanted to pay our particular attention to the activities
where the future direction of a product is under
discussion, namely to the processes of roadmapping and
release planning. We believed that the results of such
study would be important because, as expressed in [2], “a
distinct and workable conceptualization of market
oriented product development is the first step towards
understanding the implementation process”.

The topic of market orientation in general has been
widely researched from various perspectives resulting
with several definitions for it. In their work on finding
synthesis from the most cited market orientation
definitions, Jaworski and Kohli [3] proposed their own
definition as: “the organization wide generation of market
intelligence pertaining to customers, competitors, and
forces affecting them, internal dissemination of the
intelligence, and reactive as well as proactive
responsiveness to the intelligence”.

The relationship between market orientation and
software product development has still been uncovered to
a large extent. The activities and artifacts bridging market
orientation to software product development terminology
have commonly been linked to terms such as
roadmapping, release planning and a roadmap. For the
sake of clarity we will provide the definitions used in this
paper for these terms. The definition for a roadmap has
been adopted from [4] as: “A roadmap describes a future
environment, objectives to be achieved within that
environment, and plans for how those objectives will be
achieved over time”. A roadmap usually includes a
description of how the pieces of technology fit together
and how they evolve in the future. The definition for

Page 20 / 59

roadmapping has also been adopted from [4]: “The
roadmapping process helps a team gather diverse
perspectives on all aspects of the environment and the
plan. It also helps the team build consensus and gets buy-
in of its members to carry out the plan”. For term release
planning we use the following definition from [5]: “The
release planning is the activity of determining a feasible
combination of dates, features, and resourcing for the next
release of a software product”. Based on these definitions
we consider release planning as a subset of roadmapping
activities. Therefore, the following findings from existing
literature regarding release planning can be considered
relevant also to the activity of roadmapping.

Several studies (e.g. [6, 7]) have identified the
necessity of listening the success critical stakeholders and
understanding the value of their needs when planning the
future releases of a product. However, despite the
importance of these objectives, the current practice of
release planning has been reported to be problematic with
such identified issues as lack of systematic release
planning practices, lack of resource considerations and
insufficient stakeholder involvement [8]. An important
factor that may potentially result as poor release planning
practices could be the complex nature of the release
planning phenomenon. Supporting evidence for such
proposition can be found from [6] with a conclusion that
“The initial attempt at supporting release planning proved
to be based on overly simplistic and structuralistic view”.

Requirements Engineering (RE) has an essential role
in accomplishing the goals of release planning task. RE is
a multi-disciplinary activity that is concerned with the
identification of the goals of stakeholders and their
elaboration into precise statements of desired services [9].
Several studies (e.g. [10-12]) have pointed out that
market-driven software organizations face unique
challenges in their RE activities compared to the
customer-specific software organizations. One
fundamental difference is due to the large customer base
of a product making it difficult to take into account a
large number of stakeholders that have varying and often
conflicting needs. The global presence of a product
exacerbates the RE related challenges even further. It has
been claimed [13] that the prioritization and negotiation
of customer requirements for a particular release is the
most significant challenge of a global organization.
Similar findings have also been presented by Lehtola
et.al. [10] with a statement that “prioritization methods
may have limited ability to support decision-making in a
complex area like requirements prioritization in market-
driven product development”. Therefore, they argue
further that prioritization results should be taken more as
being indicative than as an ultimate truth.

Relevant to the challenges of roadmapping and release
planning, a new discipline of Value-Based Software
Engineering (VBSE) has been emerging in recent years

aiming at “integrating value considerations into all of the
existing and emerging software engineering principles
and practices, and of developing an overall framework in
which they compatibly reinforce each other” [1]. Some of
the elements in the research agenda of VBSE addressing
roadmapping and release planning challenges includes
value based requirements engineering for identifying
success-critical stakeholders and their objectives, and
value-based design and development for ensuring that the
objectives and values are inherited by the design and
development [1]. More recent advances in the discipline
of VBSE can be found from [14], in which the challenge
of human involvement in Software Engineering has been
acknowledged to result in less formal, timeless and
universal theory in terms of situations, stakeholders, and
products. Similar findings regarding the challenge of
human involvement has also been identified in the context
of release planning. Ruhe and Saliu [7] distinguish
between the art of release planning addressing the need
for human intuition, communication, and capabilities to
negotiate between conflicting objectives and constraints
and the science of release planning formalizing the
problem and applying computational algorithms to
generate best solutions.

Given these findings from existing literature, we have
decided to make a deep dive into roadmapping activities
in practice and focus our attention to human knowledge
and collaboration in the roadmapping context. We believe
that this will provide important insights for the further
development of roadmapping practices. In particular, we
wish to answer the following questions in our study:
• What types of stakeholders should participate in a

roadmapping context? Why?
• What types of information is gathered in practice

from the product’s stakeholders?
• What types of information has proved to be of most

significant value?
• What challenges companies have faced on facilitating

roadmapping activities? What could be underlying
reasons for the identified problems?

• What challenges companies have faced on
disseminating roadmapping knowledge into the
organization?

The remaining part of this document is organized as
follows. Section 2 describes the research process and
methods used in this study. Section 3 presents our
findings and observations regarding roadmapping and
release planning in practice. In section 4, the research
results are reflected to the existing literature and finally
section 5 presents the conclusions of the study.

2. Research Process

This study explores roadmapping and release planning
practices currently followed in software product

Page 21 / 59

development organizations. The study area has been fairly
unexplored up to this point and lack previous theories.
Therefore, a qualitative and theory-forming strategy is a
necessity. The grounded theory method [15, 16] has
proved its suitability for theory-forming research in the
disciplines of software engineering and information
systems development [17-19]. Because of this fact, we
chose grounded theory as the research method in this
study.

The study used theme-based interviews as its main
data collection method. In total, we used 27 interviews
from 7 organizations as the data material for this study.
The organizations represented different areas of software
industry, such as engineering applications, content
management, database management, mobile applications
and telecom applications. Common to all the
organizations were that a major part of their business was
based on software products. The interviewees represented
various functions of their organizations, including product
management, marketing management, product
development, and general management. All interviews
were tape-recorded and transcribed to text. The total
amount of recordings adds up to 38 hours and the number
of transcript pages is in total 554 pages. In addition to the
interviews, data was also collected from company and
product presentations that were held to us and we also
received a good number of additional material, including
process, product, and company descriptions and
marketing material.

The data analysis is still at the time of writing an
ongoing process. The analysis started with open coding
[16], where essential sections of the data were
conceptualized and identified as categories. The
categories represent regularities or irregularities or any
phenomenon that was considered important in relation to
the research question. Currently we have continued to
axial coding [16], where the relationships between the
categories are in focus. This paper presents some of the
results of this phase that are related to roadmapping and
release planning. The study is currently continuing to
selective coding, where a coherent picture or theory of the
core category, market-driven software development, will
be formed.

3. Challenges of Knowledge and
Collaboration in Roadmapping

Why is it hard to be systematic in roadmapping

practices? Why stakeholders are not listened to the
sufficient extent when making decisions related to future
versions of a product? In order to be able to answer such
questions, we searched the data for mentions regarding
the phenomenon of roadmapping.

Since existing studies had recognized the human
knowledge as an important element of roadmapping, we

decided to focus our study to the challenges of human
knowledge and collaboration in a roadmapping context. In
our view, this was necessary in order to be able to
alleviate the obstacles of successful roadmapping
practices. In our analysis, we identified the following
types of participants that need to be present in a
roadmapping context:
• Contributor, who bring valuable information to a

roadmapping context,
• Controller, who ensures that roadmapping is being

done in a systematic manner,
• Distributor, who absorbs information at a

roadmapping context and disseminates it to those
who will need to act upon it.

The remaining part of this section will elaborate in
detail the identified challenges of knowledge and
collaboration regarding each of the identified participant
types.

3.1. Helping to see the unseen: Contributor

In order to be able to comprehend the gathered
information from the market and transform it to a usable
form of knowledge, it is essential that there are
contributors in a roadmapping context. That is, there must
be roadmapping participants that posses such mental
models that enable successful outcome of a roadmapping
activity. The challenge for the organizations is to
understand which mental models should be applied in
order to build economically sound understanding
regarding product’s future. Who should be the ones
selected to act as contributors in a roadmapping context?
What types of knowledge are most valuable for the
activity of roadmapping?

We investigated the practices currently followed in the
industry regarding how the future oriented understanding
of a product is formed. We searched the data so as to find
out in what ways the companies are currently gathering
information about the market, how the gathered
information is used and what challenges companies have
faced when gathering the information. We considered this
important in order to build a deeper understanding of the
types of market information and their potential
contribution to the roadmapping activity. A more detailed
description of market-driven practices in one of the
companies can be found from [20]. In our analysis, we
identified four categories of market knowledge that were
differentiated according to their time orientation (present-
future) and level of explicitness (explicit-tacit). The
identified categories of market knowledge (Figure 1)
included:

Page 22 / 59

Signific
ance

of

inform
atio

n

Explicit
information

Tacit
information

Present
needs

Future
needs

OBVIOUS

ARTICULATED VISIONARY

LATENT
Signific

ance
of

inform
atio

n

Explicit
information

Tacit
information

Present
needs

Future
needs

OBVIOUS

ARTICULATED VISIONARY

LATENT

Figure 1. The categories of market information.

• Obvious knowledge, that helps to explicitly describe

stakeholder’s current needs regarding the product,
• Articulated knowledge, that helps to explicitly

describe stakeholder’s future needs regarding the
product,

• Latent knowledge that helps to constitute
understanding about stakeholder’s current needs that
are beyond their own recognition.

• Visionary knowledge that helps to anticipate
stakeholder’s latent needs they are going to have in
future.

But what kind of contribution the different types of
market knowledge may offer in a roadmapping context?
We believed that the answer to the posed question can be
found by investigating the current challenges regarding
the roadmapping practices. In our analysis, a particular
pattern across the interviews was clearly visible. The
companies were not in general facing challenges of
collecting the explicit needs from the stakeholders.
Instead, the problem appeared to be gaining
understanding about the potential values behind the stated
needs of the market. Without such understanding it was
difficult for the companies to optimize the use of their
resources while attempting to maximize the value of
future work. This challenge can be expressed with the
following quotation:

”We receive large amounts of market information, but
the typical problem we are facing with it is that the
business implication behind the customer need is
often missing. In such case, we have difficulties on
prioritization. We might not be able to see that
focusing on other request would actually benefit us
much more. We have a horn of plenty on receiving
market information, but understanding the priority of
information often gets lost in the abundance of
technical details.”

This finding indicates that tacit knowledge is valued
over explicit knowledge. The finding can be further
strengthened with the following quotation:

“There is no equation that can determine the priorities
of market needs correctly. It takes certain touch,
hunch and experience to understand the priorities.
This knowledge has just been built into the
organization. [...] The more we have made business,
the more we have gained this tacit knowledge.”

Furthermore, a repeated theme across the interviews
was the necessity of being able to satisfy the unspoken
needs of a customer. While this further supports the
necessity of having tacit knowledge available in a
roadmapping context, it also gives insight about why
future-oriented knowledge may be valued over knowledge
about present needs:

“We have approximately one year release cycles. If
we want to take into account a feature request from a
customer, we can consider it to be included to the
release that is not currently under implementation. In
the worst case, this means that the request will be
implemented only after 24 months from the time of
request and in such case the customer have definitely
searched other options by then. In order to avoid such
situations, we need to be able to anticipate customer’s
latent needs in advance.”

We interpret these findings so that, for the success of
roadmapping, the future-oriented tacit knowledge
regarding the market will be of most significant value. As
a result, the roadmapping contributors should possess
primarily knowledge of visionary type.

3.2. Keeping it all intact: Controller

In order to produce a successful outcome from

roadmapping activities, the activity needs to be managed.
In other words, there need to be controller participants in
a roadmapping context. Their duty is to introduce and
facilitate systematic processes that guide the roadmapping
participants to produce desired outcome. How the
companies we interviewed have accomplished this in
practice? What challenges have they faced? The
interviews revealed that facilitating the roadmapping
activities is a complex task. A commonly found issue
across all interviewed companies was that the companies
were facing challenges in establishing systematic
practices into a roadmapping context. In particular, it
appeared to be challenging to determine which of the
articulated market needs should be included in the
forthcoming releases of a product:

“Everyone has their own view regarding what the
customer has said and how loud they have shouted.
After a voice vote [in a roadmapping session] some
kind of consensus will emerge describing what
features we will be able to do in following 9 months
and what features will not be implemented.“

Page 23 / 59

One of the underlying causes that complicate the
understanding of priorities is that the requirements have
often dependencies. One dimension that introduced such
dependencies was the global presence of a product:

”We have a challenge in the future that the ever
increasing product offering should be taken into global
marketplace. How to set the priorities in such
situation? They are convergent to some extent [in
different geographical areas] but not completely the
same.”

Another dimension introducing dependencies
identified in the interviews was the availability of a
product in diverse customer segments:

”It is quite a challenge for our resources and
processes that we need to serve pragmatic existing
customers while searching new businesses and being
a forerunner and a visionary.”

An articulated market need requested in a certain
geographical area may benefit other regions and other
customer segments to some extent. How is it possible then
to determine priorities of a market need in a presence of
such dependencies? According to our analysis, a great
contributor to the problems of determining the priorities
of market needs is the inability to understand the value of
them. If the needs of market would be complemented with
the potential values to the success-critical stakeholders,
the priorization and the decision processes in a
roadmapping context could be made more systematic and
transparent making the goals of a controller easier to
achieve.

3.3. Disseminating the roadmapping knowledge:
Distributor

A roadmap is nothing without implementation. The
challenge is then to know how to disseminate the results
of roadmapping to those who need to act on it. As several
studies (e.g. [21, 22]) report the weaknesses on
transferring knowledge solely in a written form, it is
therefore necessary that there exist distributors in a
roadmapping context. Their duty is to disseminate the
knowledge produced in a roadmapping context to the ones
who depend heavily on it. But who should be selected as
distributors to a roadmapping context? In order to answer
such question, a deeper understanding is needed on who
are the consumers of roadmapping knowledge and what is
the nature of their need.

In our study we investigated how information was
exchanged between organizational functions in the
context of product development and what challenges the
companies have faced regarding such collaboration. Our
study revealed that there are different levels related to the
consumption of roadmapping knowledge (Figure 2).

Figure 2. The lines of roadmapping knowledge

consumers.

The first line knowledge consumers depend heavily on
roadmapping knowledge as a roadmap is one of the main
inputs to their activities. The determination of the first
line knowledge consumers is a context dependent issue
that varies across the companies. However, based on the
interviews, two most likely candidates to be regarded as
the first line knowledge consumers are those units that are
responsible on construction and productization of the
software product. The failure of disseminating
roadmapping knowledge to such units may leave the
employees of an organization ignorant:

”Our marketing department has not been able to write
anything related to the new product until the product
has been implemented.”

or misinformed:

“In many cases, knowing the plans for the future
versions would have an impact on the design
decisions. If we would know that a certain requirement
is actually laying a foundation to something
forthcoming, we would implement the requirement
differently.”

The second line knowledge consumers are less
dependent on the richness of roadmapping knowledge.
Their information need can therefore be satisfied in most
cases with documented form of roadmapping knowledge.
In addition, they may be consumers of the knowledge
produced by the first line knowledge consumers. As with
the first line knowledge consumers, the determination of
second line knowledge consumers is a context dependent
issue. Some of the typical second line knowledge
consumers identified in our study were customers,
partners, sales and technical support.

Page 24 / 59

4. Discussion: Reflection to the Knowledge-
Based Theory of the Firm

Through the study we have built our understanding
regarding the complex phenomenon of roadmapping in
software development. The results presented in this paper
have been derived inductively from the data. When
reflecting the results of this study to the literature, there
appears to be a great resemblance with one particular
theory. In this section, we will introduce the knowledge-
based theory of the firm as it has been described by
Nonaka and Toyama in [23] and point out why it appears
to be relevant in the context of roadmapping.

The knowledge based theory of the firm can be
described with a model of knowledge creation (SECI
model) presented in Figure 3. According to Nonaka and
Toyama [23], knowledge creation starts with
Socialization, which is the process of converting new tacit
knowledge through shared experiences in day-to-day
social interaction. Since tacit knowledge is difficult to
formalize and often time- and space-specific, tacit
knowledge can be acquired only through shared direct
experience, such as spending time together or living in the
same environment. In our view, this phase of knowledge
creation addresses the challenges of market information
elicitation giving support to our finding of valuing the
visionary type knowledge at a roadmapping context.
Elicitation of visionary knowledge requires a deep
understanding of the customer’s domain and surrounding
environment. Such kind of knowledge can be acquired
from customers, suppliers and even competitors by
empathizing with them through shared experience [23].

The tacit knowledge is articulated into explicit
knowledge through the process of Externalization. Here,
dialogue is an effective method to articulate one’s tacit
knowledge and share the articulated knowledge with
others. Through the dialogue with individuals, one tries to
see the entire picture of the reality by interacting with
those who see the reality from other angles, that is,
sharing their context [23]. In our view this phase
represents the early parts of roadmapping activity
supporting our finding that it is necessary to have
contributors in the shared physical context of
roadmapping .

Explicit knowledge is collected from inside or outside
the organization and then combined, edited, or processed
to form more complex and systematic explicit knowledge
through the Combination process. The new explicit
knowledge is then disseminated among the members of
the organization [23]. In our view, this phase is similar to
the late parts of roadmapping activities where plan for the
future versions of a product is created and disseminated to
the organization. This supports our finding regarding the
necessity of having distributors in a roadmapping context.

Figure 3. SECI model of knowledge creation

adopted from [23].

Explicit knowledge created and shared throughout an
organization is then converted into tacit knowledge by
individuals through the Internalization process. This stage
can be understood as praxis, where knowledge is applied
and used in practical situations and becomes the base for
new routines [23]. In our view this phase relates to the
task of implementing new versions of a product and
gathering experiences of it. It is thus a precursor phase for
the next round of Socialization. Organizational
knowledge creation can be considered as a never-ending
process that upgrades itself continuously [23].

Similar to the roadmapping context, Nonaka and
Toyama [23] defines a term ba as a shared context in
motion, in which knowledge is shared, created, and
utilized. They see organizations as organic configurations
of various ba, where people interact with each other and
the environment based on the knowledge they have and
the meaning they create. Similarly to our finding of the
three roles necessary in a roadmapping context
(contributor, controller and distributor), Nonaka and
Toyama have identified the need of having three distinct
roles in a context of ba. That is, there need to be
innovators, who senses the new reality first; coaches, who
attains inter-subjectivity by interacting with the innovator
and brings in his/her own viewpoint; and activists, who
take a higher viewpoint and attain trans-subjectivity,
make the new reality understandable and tangible for
other people and who protects the team from outside
influence so that the other roles can keep their own
viewpoints.

5. Conclusions

Given that the phenomenon of roadmapping and
release planning in software development practice have
been rather unexplored up to this point, we conducted a

Page 25 / 59

qualitative study attempting to gain a deeper
understanding of the challenges of knowledge and
collaboration in a roadmapping context.

When interpreting the gathered data by using grounded
theory as the research method, we identified three distinct
roles that appeared to be necessary in a roadmapping
context. Each of the roles relates to particular challenges
regarding the knowledge and collaboration.

In case of contributor, the challenge is to determine
what type of information is of most significant value at a
roadmapping context. We sought for such answer by
investigating the practices and the challenges faced
regarding current information elicitation mechanisms and
concluded that future-oriented tacit knowledge of the
market will be most valuable for the organization.

The challenge of controllers is to introduce systematic
practices to the roadmapping context and provide
transparency of the made decisions. One underlying cause
for experienced problems appeared to be the inability to
understand the values behind the expressed needs.

One of the challenges regarding the dissemination of
the roadmapping knowledge into the organization is the
ability to understand who are most dependent of the
roadmapping knowledge. The answer of such question
will help on determining who should be taking the role of
distributor is a roadmapping context.

When reflecting our findings to existing theories, we
identified great resemblance with the knowledge-based
theory of the firm [23]. Therefore, this theory could
contribute to further theory development in market-
oriented software development and related areas, such as
Value-Based Software Engineering [14].

6. References

[1] B. Boehm, "Value-Based Software Engineering", SIGSOFT
Softw. Eng. Notes, vol. 28, pp. 3, 2003.

[2] R. A. W. Kok and B. Hillebrand, "What makes product
development market oriented? Towards a conceptual
framework", International Journal of Innovation Management,
vol. 7, pp. 137-162, 2003.

[3] B. J. Jaworski and A. K. Kohli, "Market Orientation:
Review, Refinement, and Roadmap", Journal of Market
Focused Management, vol. 1, pp. 119-135, 1996.

[4] R. E. Albright, "Roadmapping Convergence,"
"Commercializing and Managing the New Converging
Technologies" -Workshop September 22 2003.

[5] D. A. Penny, "An Estimation-Based Management
Framework for Enhancive Maintenance in Commercial Software
Products", Proceedings of International Conference on Software
Maintenance (ICSM'02), 2002.

[6] P. Carlshamre, "Release Planning in Market-Driven
Software Product Development: Provoking an Understanding",
Requirements Engineering, vol. 7, pp. 139-151, 2002.

[7] G. Ruhe and M. O. Saliu, "The Art and Science of Software
Release Planning", IEEE Software, vol. 2, pp. 47-53, 2005.

[8] G. Ruhe and M. O. Saliu, "The Science and Practice of
Software Release Planning", IEEE Software (Submitted).

[9] "Home page of The Requirements Engineering Specialist
Group of the British Computer Society," vol. 2006.

[10] L. Lehtola and M. Kauppinen, "Suitability of Requirements
Prioritization Methods for Market-driven Software Product
Development", Software Process Improvement and Practice,
vol. 11, pp. 7-19, 2006.

[11] L. Karlsson, Å. G. Dahlstedt, J. Natt och Dag, B. Regnell,
and A. Persson, "Challenges in Market-Driven Requirements
Engineering - an Industrial Interview Study", Proceedings of
Eight International Workshop on Requirements Engineering:
Foundation for Software Quality, Essen Germany, 2002.

[12] B. Regnell, M. Höst, J. Natt och Dag, P. Beremark, and H.
Thomas, "An Industrial Case Study on Distributed Prioritisation
in Market-Driven Requirements Engineering for Packaged
Software", Requirements Engineering, pp. 51-62, 2001.

[13] D. E. Damian and D. Zowghi, "RE challenges in multi-site
software development organisations", Requirements
Engineering, vol. 8, pp. 149-160, 2003.

[14] A. Jain and B. Boehm, "Developing a Theory of Value-
Based Software Engineering", Proceedings of 7th International
Workshop on Economics-Driven Software Engineering
Research (EDSER), St. Lois, Missouri, 2005.

[15] B. Glaser and S. A.L., The Discovery of Grounded Theory:
Strategies for Qualitative Research. Chigago: Aldine, 1967.

[16] A. L. Strauss and J. Corbin, Grounded Theory Procedures
and Applications. Newbury Park, CA: Sage Publications, 1990.

[17] G. Paré and J. J. Elam, "Using Case Study Research to
Build Theories of IT Implementation", Proceedings of The IFIP
TC8 Working Conference on Information Systems and
Qualitative Research, Philadelphia, Pennsylvania, United States,
1997.

[18] R. L. Baskerville, B. Ramesh, L. Levine, J. Pries-Heje, and
S. Slaughter, "Is Internet-Speed Software Development
Different?" IEEE Software, vol. 20, pp. 70-77, 2003.

[19] K. Smolander, M. Rossi, and S. Purao, "Going beyond the
blueprint: Unraveling the complex reality of software
architectures", Proceedings of 13th European Conference on
Information Systems (ECIS 2005), Regensburg, 2005.

Page 26 / 59

[20] S. Jantunen and K. Smolander, "Towards Global Market-
Driven Software Development Processes: An Industrial Case
Study", Proceedings of 28th International Conference on
Software Engineering & Co-Located Workshops. The first
International Workshop on Global Software Develpoment for
the Practitioner (GSD 2006), Shanghai, China, 2006.

[21] J. E. Orr, Talking about Machines: An Ethnography of a
Modern Job. Ithaca, Ny: ILR Press, 1996.

[22] I. Nonaka, "A Dynamic Theory of Organizational
Knowledge Creation", Organization Science, vol. 5, pp. 14-37,
1994.

[23] I. Nonaka and T. Ryoko, "The knowledge-creating theory
revisited: knowledge creation as a synthesizing process",
Knowledge Management Research & Practice, vol. 1, pp. 2-10,
2003.

Page 27 / 59

Lightweight Replanning of Software Product Releases

Thamer AlBourae
Software Engineering

Decision Support Labs,
University of Calgary,

albourae@cpsc.ucalgary.ca

Guenther Ruhe
Software Engineering

Decision Support Labs,
University of Calgary,

ruhe@ucalgary.ca

Mahmood Moussavi
Schulich School of

Engineering,
University of Calgary,

moussavm@enel.ucalgary.ca

Abstract

Well defined product features are the essence of

good product management. High quality features lead
to successful software products, both functionally and
financially. One of the crucial processes in software
product management is release planning where
features are assigned to releases. Volatile features,
resources and stakeholder preferences have been
recognized as factors that decrease release quality. In
this paper, we propose a lightweight replanning
process model where old features are compared with
newly added ones using the Analytical Hierarchy
Process (AHP). Then, a greedy replan algorithm is
applied to select the most promising features to
accommodate changing market driven product
demands.

1. Introduction and Motivation

As incremental development gains greater
acceptance in the software product development
society, the farther we move from the monolithic
waterfall model, and the greater the importance of the
release planning process becomes. Incremental
software product development allows customers to
receive deliverables early. This means the business
value of the product is recognized before the product is
fully delivered. Furthermore, it opens the door for
early feedback from clients. This implies the
incorporation of the feedback into future product
releases to gain higher customer satisfaction.

Features are the basis of software release products.
They provide a foundation to plan and re-plan software
releases, estimate effort and resources constraints and
reflect the customer expectations of the product.
Release planning is a process where we make
decisions on which features are assigned to which
releases. The planning process assigns incremental

components of the software system to be delivered on
a specific calendar date. These sub-systems are
planned in sub-releases to be delivered incrementally.
As change requests arrive, plans need to be adjusted
(replanned) for newly added features.

The process of planning or re-planning releases
considers several aspects, including effort estimation,
resource constraints and stakeholder preferences to
gain higher customer satisfaction [1].

As the software product development process
begins, a continuous stream of new change requests
arrive. This is common in market driven software
products [2]. These changes imply the modifications of
some features or the addition of new ones. Since not
all features can be implemented due to effort and
resources boundaries, we have to decide which feature
should be delivered and which have to wait.
Moreover, we cannot neglect these changes requests
since a high level of stakeholder satisfaction is
important.

In this paper, we present the foundation for a
process model to handle change requests and re-plan
software releases. The model pools all available
features ready to be allocated to releases. Then, we
apply the analytical hierarchy process (AHP) [3] to
define a degree of importance for each feature.

 The rest of the paper is organized as follows. In
Section 2, we present literature models related to the
problem. In Section 3, we describe the problem being
addressed. In Section 4, we formalize the re-planning
problem from a decision support perspective. In
Section 5, we perform a case study to demonstrate the
contribution of the new approach. In Section 6, we
summarize the findings and give an outlook for future
work.

Page 28 / 59

2. Related Work

2.1 Release Planning

Release Planning has gained interest in market
driven software product development [4], [5]. This
selection process has to take into consideration
multiple stakeholder preferences and available
resources. In addition, features interdependencies [6]
must be handled. Feature interdependencies can force a
low-priority feature to be implemented before a higher-
priority one. This may decrease the client satisfaction
and could lead to losing market share. Thus, the
decision making process of selecting features and the
tradeoffs involved are complex.

Various approaches address the problem of Release
Planning (RP) both in industry and academia. Anton
emphasized that complex software projects are likely
to fail without a plan [7]. Penny [8] proposed a high
level approach to RP where the estimation of the total
effort required for developing a project features should
fall in a certain confidence level. The planning game
(GM) in extreme programming tackled the same
problem in [9]. Others looked at the problem from an
optimization point of view like [10] and [11]. Ruhe et
al proposed a model (EVOLVE*) where a synergy
between the computational intelligence and human
decision maker is combined [12].

The replanning further adds to the complexity of the
problem. Considering new changes, maintaining the
stakeholders' satisfaction and adjusting releases to fit
within available resources all have to be accounted for.

The re-planning of a product release is used to
improve the process of release planning and increase
the quality of the releases [13]. Furthermore, it makes
us learn from the previous mistakes we committed in
case a retrospective analysis in conducted [14].

Davis's paper [15] addresses a special case of the
release planning problem where changes take place
and we have to select a new set of requirements for the
next release satisfying a given time and resource
capacity.

2.2 Change-Based Process Models

Many Change-Based process models have been
proposed in the literature. These models include the
PRISM process model [16] and the FEAST process
model [17]. PRISM is concerned with change
propagation from environmental perspective while the
FEAST model is more focused on the software process
as it changes over time. Other studies proposed a
Change Maturity Model based on their work on the

Design Improvements in Requirements Evolution
(DESIRE) project [18].

2.3 Change Categorization

Many studies addressed the importance of
categorizing changes to define processes for each
category. Harker and Eason [19] proposed a
classification to distinguish between stable and volatile
features (emergent, consequential, mutable, adaptive
and migration). Other studies agreed that
categorization is a wise step towards better change
management [20]. Some literature focused on the
problem from a management perspective and
categorized changes based on a cause-effect diagram.
Then, different scenarios were identified, and for each
scenario the authors define: a goal to be achieved,
strategy to be adopted, metric to be used and failure
mode to be avoided [21].

Some industrial organizations studied the problem
of change to define classification schemes. For
example, Stark's et al studied the problem [22] on 44
releases. Then, depending on the data collected, the
study proposed a formula to predict the time needed to
implement these changes. Also, the study extracted
some guidelines to be considered in the process of
release planning. On the same path, Higgins et al [23]
studied the features change problem to overcome the
potential of bottlenecks that can occur due to lack of
resources. Also, the study defined a process that
handles changes requests as they arrive.

2.4 Other Related Research

Other research provided some guidelines for
handling changes [24]. For instance, identifying
change early in the product development cycle,
providing a process to incorporate changes in the
development cycle and reducing the amount of change
by investigating its origins, are all considered change
handling fundamentals.

Other studies address the concept of incremental
evolutionary delivery [25] or tackle the problem of
categorizing changes [26].

3. Problem Description

Figure 1 illustrates the process of newly arriving
features competing against those already planned for,
where some features are already implemented. In the
beginning of the product development cycle, a set of
features F(i)= (f1, f2, .., fn) are assigned to releases to be
delivered in a certain sequence. As the development

Page 29 / 59

process starts on t0 (moment of time), change requests
arrive on t1 with new added features ∆F(i) = (fn+1, fn+2
…, fn+m) and we have to re-schedule the next release to
be delivered on t2. The dashed line represents t1, when
these changes requests arrive, t2 when the delivery of
the release being developed is shifted to release time t2,
and the dotted line separates the old and new features.

Figure 1 shows the different categories of features
at a given time t1. We have identified four main
categories of features in this scenario, these include:
A. Implemented features: features which are already
implemented and they are not included in the process
of re-planning.
B. On going features: features which are in the process
of being implemented.
C. Planned for features: features which are planned to
be implemented in the future, but have not been started
yet.
D. Added features: features proposed from
stakeholders to be added to the next release.

Thus, we can formulate the problem of replanning
of the release being developed by defining a function
to find a new set of features F' out of the previous set
of feature F plus the new added ones ∆F,
where: . FFF Δ+⊂′

The new set F' contains the best possible set of
features that provide the highest stakeholders
satisfaction while having a limited capacity of effort
and time available for the next release.

fn+1
fn

fn-1

fn+2

...
f4
f3
f2
f1

fn+3

Timet0 t1

A B C D

t2

Figure 1: The Re-plan problem

4. Lightweight Replan

4.1 Overview

The main goal of the proposed Lightweight Replan
model is to develop a new product plan that achieves
higher stakeholder satisfaction given a limited capacity
of time and resources. The Lightweight character
reflects the fact that replanning consumes a

considerable amount of the Product Manager's time
and effort [13]. Moreover, the computation complexity
is reduced by handling fewer change requests instantly.
This means incorporating changes earlier in the
product life cycle where changes cost less. Applying
the heavily `weight release planning process proposed
in [1] is time consuming and of a high complexity.
This would lead to delay incorporating the changes
proposed to later phases where implementing these
changes will cost more. In this section, we present the
Lightweight Replan process model and describe the
individual steps of it in details.

 Figure 2 shows a generic process model describing
main release replanning activities including their
inputs and outputs. These activities work together to
produce a framework for replanning product releases.
It is noteworthy that the activities inside the shaded
dashed box are part of the product release planning
process [1], while other activates complete the
proposed Lightweight Replan model.

In this model, three main roles are recognized –
Product manager, who is responsible of the whole
development process – Stakeholders, which include
any team member who are concerned with the product
development – and the supporting environment, which
facilitates the achievement of the processes goals. The
supporting environment can be processes or tools that
support the process. Major activities are represented in
rectangles while outputs of any process are represented
in ovals.

`

New Features

Stakeholder
Voting

Product
Manager Stakeholder Support Environment

Resource Estimation

Resource
Estimates

Stks. Assign priorities
to features

Release plan
Alt.

Re-plan releases

Set of Features

Feature
Categorization

AHP

Figure 2: Generic process model for the Light-
Weight Re-planning

Page 30 / 59

Every activity or output is engaged with the roles
appearing at the top, within that activity or outcome’s
“swim lane”. For example, the product manager and
other stakeholders contribute to the process of
"Resource Estimation" while the supporting
environment facilitates the achievement of "Resources
Estimates" through a tool. In the next section, we
describe each activity or output in detail.

4.2 Main Steps

4.2.1 New Features. As the product development
starts, the development team begins receiving new
change requests for the features sets. The change
requests received are added to the old sets of features
and directed to be categorized by the feature
categorization process.

4.2.2 Feature Categorization. Adopted from
Higgins's et al work [23], change requests should be
categorized to distinguish between duplicated features,
on-going features or newly added ones. This process
also helps assure that we have a complete and
consistent set of features.

4.2.3 Stakeholder Voting. Stakeholders Stk(p) =
{Stk(1), Stk(2), …, Stk(q)} are a group of people who
are concerned with the software product plan in a
direct or indirect way. They may include team
members from different organizational levels such as
management, development or customer services. In the
previous release planning process, an objective
function is used to maximize stakeholder's preferences
considering their relative weight of importance while
observing the available resource constraints. To learn
more about the process and how it is conducted, we
refer the reader to [12]. Furthermore, stakeholders are
required to assign to each new feature a level of
attractiveness.

4.2.4 Resource Estimation. Resources capacities are
one of the boundaries that should be considered when
replanning product releases. The main aim is to
determine the likely usage of effort Effort (fi), and time
Time (fi) for each feature fi for the next release.
Resource estimation is a complex problem on itself
and far beyond the scope of our research. Thus, we
encourage the reader to refer to [27] for detailed
approaches to effort estimation.

In our process model, we need to consider the rate
of consumption for implemented and ongoing features
when the changes where received at t1. Also, we
estimate effort and time needed for new features. Other

feature categories estimations and releases capacities
are assumed to remain unchanged. Figure 3 describes
the effort estimation process for features and the
release being developed.

The main goal is to maintain the effort and time
available as we replan so that the new replanned
release does not exceed the capacity available.

 Figure 3: Effort and time estimation over Time
(t0,t1)

2.5 The Analytical Hierarchy Process (AHP). The
Analytical Hierarchy Process (AHP) is a multi criteria
decision making method [3]. This process elicits
experts’ preferences in a formalized manner using a
pair-wise comparison technique. Each expert evaluates
a pair of features with respect to a defined criteria.
Figure 4 shows the pair-wise comparison prioritization
process using AHP.

 Figure 4: The Analytical Hierarchy Process
(AHP) pair wise comparison

Each stakeholder compares between the old set of

features F and the newly added features ∆F with

Page 31 / 59

respect to the degree of attraction. The Weighted
Average Satisfaction (WAS) was already computed for
F during the previous planning process [1]. Assuming
that the WAS values remain unchanged, each
stakeholder compares a pair of features (an old feature
from F with a newly added one from ∆F) to express
the level of attraction. In this situation, some old low
attractive features are substituted or swapped with
newly added ones. Then, the most promising features
are gathered in a new set to enter into the Greedy
Replan algorithm in the next step.

Figure 5, 6 and 7 illustrates the Expert's Choice tool
[28] where features are compared using the AHP
technique based on urgency and time.

Figure 5: The Analytical Hierarchy Process in

the tool

Figure 6: Pair wise comparison based on
urgency (time needed to deliver a feature to the

market)

4.2.6 Replanning Releases. The information gained
from the AHP pair-wise comparison process is used to
select a new set of features F' to be assigned to the new
(replanned) release.

Selecting the most promising set of features F' to
form a replanned release is a combinatorial

optimization problem. This problem is known as a type
of Knapsack problem where given a set of features, we
try to maximize the Weighted Average Satisfaction
(WAS) while maintaining the available effort and time
capacity. The algorithm to solve such problems are
time consuming and of a high complexity [29].

Figure 7: Pair wise comparison based on the

time estimation Time (fi) of each feature

In our process model, we adopt a lightweight

greedy algorithm which does not give an optimum
solution, yet it gives an approximation of it. The
greedy approximation algorithm was proposed by
Martello and Toth. For learning more about this
algorithm, we refer the reader to [30].

A simple pseudo code of the Greedy Replan
algorithm can be expressed as follows:

1. Define an objective Function F(fi) = 0.
2. Define F'= φ and empty set of features.
3. Define Effort = 0, Time = 0 (Effort and Time

Capacity).
4. Sort all features with the best attractiveness ratios

gained from the AHP comparison in a descending
order.

5. While Effort and Time are less than the release
capacity C do steps 6 - 9.

 6. Add feature fi to F'
 7. F(fi) = F(fi) + WAS(fi)
 8. Effort = Effort + Effort (fi)
 9. Time = Time + Time (fi)
10. Return F', F(fi), Effort, Time

5. Case Study: Re-planning product
releases in a Telecommunication project

To demonstrate the contribution of the proposed
process model we conduct a case study in on a project
from the telecommunication using a web-based tool
called ReleasePlanner® [28]. The tool is implemented

Page 32 / 59

based on the hybrid intelligent approach proposed in
[12]. The project has 7 stakeholders with different
perspectives and degrees of importance.

On t0, the project starts with 15 features. At t1, the
project receives change requests from different
stakeholders while the team is still developing release
1. We categorize features as described in Section 4.2.2.

At the time changes arise (t1), we have 3
implemented features (Feat.), 5 ongoing, 7 planned for,
and 4 added. Table 1 shows this categorization with
each feature ID.

According to each feature category, we re-estimate
the capital and time resources required as described in
section 4.2.4.

Table 1: Features categorization with each

feature ID

N # Belong
to Set Feat. Type Feat. Feature ID

1 f1 BTS-HW01
2 f2 BTS-SW01
3

F Impl.
f3 SYS-SW01

4 f4 SYS-SW09
5 f5 SYS-SW07
6 f6 SYS-SW06
7 f7 SYS-SW08
8

F On going

f8 SYS-SW04
9 f9 SYS-SW02

10 f10 SYS-SW17
11 f11 SYS-SW03
12 f12 SYS-SW10
13 f13 SYS-SW11
14 f14 BTS-HW07

n=15

F Planned For

f15 BTS-HW02
16 fn+1 SYS-SW15
17 fn+2 SYS-SW14
18 fn+3 BTS-HW04
19

∆F Added

fn+4 BTS-HW03

Then, we compare the old set of features (F) with
newly added ones (∆F) using AHP. During the AHP
comparison process, we use the Weight Average
Satisfaction (WAS) assigned to old features in the
previous release planning process and compare it with
the level of attraction assigned to the new features
(∆F).

As we apply the Greedy Replan algorithm
(described in section 4.2.6) the new (replanned) release
is formed. Comparing the new (replanned) release with
the old release with respect to the WAS, capital and
time usage, we have:

Table 2 shows the Old release compared to the
replanned one with respect to the WAS, while Table 3
shows the Old release compared to the replanned one
with respect to Capital and Time.

Table 2: The old and new (replanned) releases
structures

Old Release Replanned Release
Feat. WAS Feat. WAS

f1 -- -- --
f2 -- -- --
f3 -- -- --
f4 616 -- --
f5 1632 f5 1632
f6 2004 f6 2004
f7 654 -- --
f8 749 -- --
f9 1485 f9 1485
f10 1325 f10 1325
f11 1296 f11 1296
f12 723 -- --
f13 305 -- --
f14 967 -- --
f15 1114 f15 1114
-- -- fn+1 1962
-- -- fn+2 1911
-- -- fn+4 1593

Sum 12870 14322

Table 3: The old and new (replanned) releases
Capital and Time usage

Old Release Replanned Release
Feat. Capital Time Feat. Capital Time

f1 -- -- -- -- --
f2 -- -- -- -- --
f3 -- -- -- -- --
f4 0 800 -- -- --
f5 160 432 f5 160 432
f6 400 560 f6 400 560
f7 400 856 -- -- --
f8 800 980 -- -- --
f9 25 1150 f9 25 1150
f10 50 830 f10 50 830
f11 100 2200 f11 100 2200
f12 300 1600 -- -- --
f13 500 1150 -- -- --
f14 750 2045 -- -- --
f15 1500 2130 f15 1500 2130
-- -- -- fn+1 0 550
-- -- -- fn+2 50 650
-- -- -- fn+4 200 300

Sum 4985 14733 2485 8802

It is obvious that the new replanned release gained a

higher WAS compared to the old release. Moreover,
the replanned release requires less capital and time in
order to be delivered. However, the number of features
included in the replanned release is less than the old
release.

Page 33 / 59

It is obvious that the old release had more features
planned for implementation. However, our new
(replanned) release has a higher Stakeholder
satisfaction level with lower resource usage.

We refer the reader to our electronic version of the
empirical case study for more details [31].

6. Conclusions and Discussion

The lightweight replanning process model provides
a basis for incorporating changes instantly into the
development lifecycle. The lightweight factor is
beneficial since it will reduce the cost of introducing
changes in the development cycle.

The light weight Replanning process model can be
applied instantly to incorporate changes in the
development cycle as soon as possible. This is
recognized as one of the fundamentals used for
handling changes [24].

Integrating the process of categorization of changes
facilitates the re-planning process phases where we
select features with higher value while not exceeding
effort capacity available.

The model is of a low computation complexity
compared with the release planning process proposed
in [12]. This is considered good where the replanning
must be achieved quickly especially in dynamic
markets. Furthermore, light weight replanning enables
performing the process at any time. This is considered
to be common where the rate of change is often high
[22] particularly in market driven products [2].

Some open issues to be explored include validating
the lightweight replanning approach empirically. Also,
deciding when we should replan and when we should
not, possibly by defining a threshold, is an issue that
needs to be explored. Another related issue is
discerning how frequently the replanning process
should take place. Another area of future work
involves integrating an impact analysis process to
quantify the change effects on the existing
implemented features.

The Lightweight Replan model best fits products
that are market driven where maintaining a higher
stakeholder satisfaction is desired. However, the model
and the presented results are limited to the data and the
empirical study we conducted so far. Thus, there is a
need for real world industrial experiments to validate
the model and the results.

Acknowledgement

We thank the Ministry of Higher Education of
Saudi Arabia and Alberta Informatics Circle of

Research Excellence (iCORE) for their financial
support of this research. We also thank Jim McElroy
and the anonymous reviewers for their detailed and
valuable comments.

References

[1] G. Ruhe and M. O. Saliu, "The art and

science of software release planning," IEEE
Software, vol. 22, pp. 47-53, 2005.

[2] P. Carlshamre and B. Regnell, "Requirements
lifecycle management and release planning in
market-driven requirements engineering
processes," In Proceedings IEEE International
Workshop on the Requirements Engineering
Process: Innovative Techniques, Models, and
Tools to support the RE Process, pp. 961-5,
Greenwich, UK, 2000.

[3] T. L. Saaty, The analytic hierarchy process.
New York: McGraw-Hill, 1980.

[4] J. Karlsson and K. Ryan, "A cost-value
approach for prioritizing requirements,"
Software, IEEE, vol. 14, pp. 67-74, 1997.

[5] J. Karlsson, S. Olsson, and K. Ryan,
"Improved practical support for large-scale
requirements prioritising," Requirements
Engineering, vol. 2, pp. 51-60, 1997.

[6] P. Carlshamre, K. Sandahl, M. Lindvall, B.
Regnell, and J. Natt och Dag, "An industrial
survey of requirements interdependencies in
software product release planning," In
Proceedings 5th IEEE International
Symposium on Requirements Engineering,
pp. 84-91, Toronto, Ont, 2001.

[7] A. I. Anton, "Successful software projects
need requirements planning," Software, IEEE,
vol. 20, pp. 44, 46, 2003.

[8] D. A. Penny, "An estimation-based
management framework for enhancive
maintenance in commercial software
products," In Proceedings ICSM International
Conference on Software Maintenance, pp.
122-130, 2002.

[9] B. A. Nejmeh and I. Thomas, "Business-
driven product planning using feature vectors
and increments," Software, IEEE, vol. 19, pp.
34-42, 2002.

[10] A. J. Bagnall, V. J. Rayward-Smith, and I. M.
Whittley, "The next release problem,"
Information and Software Technology, vol.
43, pp. 883-90, 2001.

Page 34 / 59

[11] J. Ho-Won, "Optimizing value and cost in
requirements analysis," Software, IEEE, vol.
15, pp. 74-78, 1998.

[12] G. Ruhe and A. Ngo-The, "Hybrid
Intelligence in Software Release Planning,"
International Journal of Hybrid Intelligent
Systems, vol. 1, pp. 99–110, 2004.

[13] J. Momoh and G. Ruhe, "Release Planning
Process Improvement - An Industrial Case
Study," Software Process: Improvement and
Practice, vol. 11, pp. 295-307, 2006

[14] L. Karlsson, B. Regnell, and T. Thelin, "Case
Studies in Process Improvement through
Retrospective Analysis of Release Planning
Decisions " International Journal of Software
Engineering and Knowledge Engineering,
June, 2006 (in press).

[15] A. M. Davis, "The art of requirements triage,"
Computer, vol. 36, pp. 42-49, 2003.

[16] N. H. Madhavji, "Environment evolution: the
Prism model of changes," Software
Engineering, IEEE Transactions on, vol. 18,
pp. 380-392, 1992.

[17] M. M. Lehman, "Feedback in the software
evolution process," Information and Software
Technology, vol. 38, pp. 681-6, 1996.

[18] W. Lam and V. Shankararaman, "Managing
change in software development using a
process improvement approach," In
Proceedings 24th EUROMICRO Conference,
pp. 779-786, Vasteras, Sweden, 1998.

[19] S. D. P. Harker, K. D. Eason, and J. E.
Dobson, "The change and evolution of
requirements as a challenge to the practice of
software engineering," In Proceedings IEEE
International Symposium on Requirements
Engineering pp. 266-272, San Diego, CA,
USA, 1992.

[20] D. Rowe, J. Leaney, and D. Lowe, "Defining
Systems Evolvability - a Taxonomy of
change," In Proceedings International
Conference and Workshop on Engineering
Computer Based Systems, pp. 45-52,
Jerusalem, Israel, 1998.

[21] W. Lam and V. Shankararaman,
"Requirements change: a dissection of
management issues," In Proceedings 25th
EUROMICRO Conference. Informatics:
Theory and Practice for the New Millennium,
pp. 244-251, Milan, Italy, 1999.

[22] G. Stark, A. Skillicorn, and R. Ameele, "An
Examination of the Effects of Requirements
Changes on Software Maintenance Releases,"

Journal of Software Maintenance: Research
and Practice, vol. 11, pp. 293-309, 1999.

[23] S. A. Higgins, M. De Laat, P. M. C. Gieles,
and E. M. Geurts, "Managing requirements
for medical IT products," IEEE Software, vol.
20, pp. 26-33, 2003.

[24] R. C. Sugden and M. R. Strens, "Strategies,
tactics and methods for handling change," In
Proceedings IEEE Symposium and Workshop
on Engineering of Computer-Based Systems,
pp. 457-463, Friedrichshafen, Germany,
1996.

[25] T. Gilb, Principles of Software Engineering
Management Addison-Wesley, England,
1988.

[26] G. Kotonya and I. Sommerville,
Requirements Engineering: Processes and
Techniques: John Wiley & Sons Ltd, 1998.

[27] L. C. Briand and I. Wieczorek, "Resource
Estimation in Software Engineering " in:
Marciniak JJ (ed) Encyclopedia of software
engineering (2nd edition). New York: John
Wiley, 2005.

[28] http://www.expertchoice.com/.
[29] A. Ngo-The and G. Ruhe, "Optimized

Resource Allocation for Software Release
Planning," Software Engineering, IEEE
Transactions on, 2005 (Submitted).

[30] M. R. Garey and D. S. Johnson, Computers
and intractability : a guide to the theory of
NP-completeness. San Francisco: W. H.
Freeman, 1979.

[31] T. AlBourae. Calgary, AB:
http://sern.ucalgary.ca/%7Ealbourae/, 2006.

Page 35 / 59

A Cost-Based Approach to Software Product Line Management

Holger Schackmann, Horst Lichter
{schackmann, lichter}@informatik.rwth-aachen.de

RWTH Aachen University. Software Construction Group. Ahornstr. 55, 52074 Aachen, Germany

Abstract

The evolution of a software product line requires
different product management practices compared to a
single product since the diverging requirements of
different customers must be coordinated to preserve
the common product line architecture. Allowing too
much variability leads to substantial follow-up costs
during the lifecycle. This paper describes the
challenges of product management for an evolving
software product line. A costing approach is proposed
to enable more transparency on the costs of variability,
support sound decisions on the appropriate amount of
variability and gain control on the development
process.

1. Introduction

 The development of a software product line (SPL)
aims at exploiting commonalities between the products
in all phases of the development process. What are the
differences between product management for an SPL
and product management for a single product?

The management of a product within an SPL can
not be detached from the management of the other
products due to dependencies between development
artifacts and use of the same resources. Thus product
management in SPLs is characterized by a large
number of stakeholders that directly or indirectly exert
influence on product management and can be affected
by its decisions.

Furthermore, products may be situated in different
stages of their lifecycle. While a set of products will be
established as product line members with regularly
maintenance releases, there will be ongoing
development of new products and possibly the
integration of formerly independent products.

Thus product managers must constantly aim at
aligning the diverging needs of different products
towards the SPL approach; otherwise the promised
synergies can not be achieved.

The remainder of this paper is organized as follows.
Section 2 depicts the difficulties imposed upon
management of an SPL. Section 3 draws comparisons
to variability management in production engineering.
Section 4 then proposes an approach to variability
management for SPLs based on the application of
activity based costing. Section 5 gives an outlook on
further work and section 6 provides a summary.

2. Challenges of product management for

software product lines

In the following we will depict a list of challenges
for SPL management, also based on observations with
industrial cooperation partners.

2.1. Insufficient lifecycle scoping

Scoping is a part of domain analysis for SPLs.
According to Schmid the task of scoping is planning
and bounding what should be made reusable [1]. Based
on an analysis of the commonalities and variabilities of
the underlying domain, it must be decided which
features should be present in all products, which
should be implemented as optional or alternative parts,
and which features should be developed in a product
specific way.

While existing scoping approaches are focused on
initial scoping (see [1] for an overview), the problem
of scoping during maintenance and evolution is rather
unexplored. In practice we encounter that SPLs are
introduced gradually by exploiting commonalities
between products that had been developed in customer
specific projects. Thus an exhaustive scoping was not
performed or even no systematic approach to scoping
was used. Moreover scoping decisions may not be
documented, or lost during further development.

2.2. High coordination efforts

During maintenance and evolution of an SPL, new
or changed requirements have to be integrated which

Page 36 / 59

do not fit to the initial scope and therefore require the
adoption of existing core assets as well as introducing
additional variation points. Since these changes may
affect other existing or planned products, each change
must be coordinated with other development projects
within the SPL. Moreover, different customers may
impose conflicting constraints on delivery dates. This
requires considerable efforts for coordination.

2.3. Hindrances to systematic reuse

Since software development takes place under

continual deadline pressure it may often be faster to
produce a customer specific solution instead of
spending additional effort on investigating chances for
reuse and coordinating necessary changes induced by
an urgent customer request with other products.

Within an SPL there may typically be products
which have a bigger impact on business success, need
larger resources and undergo a more dynamic
development. These products have stronger impact on
core asset development whereby requests related to
other products may not be considered sufficiently.
Hence developers of less important products may again
be coerced to construct product specific solutions.

2.4. Insufficient product communication

The many temptations to product managers to

introduce new customer specific features or
adaptations of existing features, lead to a large amount
of variability accompanied by an increasing technical
and cognitive complexity.

The offering of features within an SPL can therefore
not completely be communicated to the customer. Thus
aligning customer requests with existing features of the
SPL as well as identifying chances for reuse becomes
difficult. Either it is not known to the analyst that there
exist other potentially reusable features, or the
similarities to features requested by the customer are
not recognized. Similar features may be developed
independently several times. If this is perceived later, it
will require considerable efforts to merge these
features into shared assets. But if no counteraction is
performed, the scarce resources of the development
organization will increasingly be loaded with
coordination efforts.

2.5. Lifecycle costs of variability

Added initial development costs due to missed
chances for reuse are not the only problem caused by
large variability. Each customer specific feature must
be maintained, integrated in subsequent releases, tested

separately and possibly considered during deployment,
user training and customer support. Requirements
engineering for new and existing products becomes
more complex and therefore costlier.

Summarized, variability is a cost driver during the
whole SPL lifecycle.

2.6. Misunderstood customer orientation

The concept of customer orientation may guide

product managers to fulfill many new customer
requests with new customer specific features. But with
regard to the follow-up costs, it must be examined
whether a new feature offers a corresponding business
value to the customer, or if the request can also be
fulfilled with a similar existing feature. In this case it
must be pointed out to the customer that an adaptation
of the requirements can result in a better fit to the SPL.
The customer can profit by better quality, better
support and reduced maintenance costs, if his product
relies more on the shared assets.

2.7. Lack of economic incentives

The mentioned difficulties indicate that managing

variability is the core task of product management for
SPLs.

One problem is that there is no sound basis of
decisionmaking. Development costs of a customer
specific feature can possibly be estimated. But neither
the resulting follow-up costs will be transparent; nor
the business value of a specific feature will usually be
assessed. Therefore there is no clarity on the effects of
variability on costs and accordingly a lack of economic
incentives to guide managerial decisions.

We believe that this is a major barrier for successful
further development of an SPL in the long term, which
not had been sufficiently addressed by SPL research
yet. Existing cost models for SPLs rather follow a top
down approach (see [2] for an overview) and support
SPL investment decisions on a high level. Developing
an approach to gather the costs of variability more
accurately will provide complemental input to enable
better estimations of future costs and sound variability
management decisions.

3. Variability management in production

engineering

The depicted challenges resemble a situation
perceived in manufacturing industry during the
eighties. Due to competitive pressure manufacturers
increased the variety of their product portfolio with the
objective of product differentiation. Only later it was

Page 37 / 59

recognized that the expected economies of scale were
overestimated, and the costs of additional variants
(diseconomies of scope) were not considered
sufficiently [3]. The added complexity leads to
increased costs in all phases of the product lifecycle,
including development, production, sales and customer
support.

3.1. Deficiencies in costing systems

A large part of these costs can not directly led back

to corresponding product variants. In traditional cost
accounting systems these overhead or indirect costs are
allocated to products on a per-unit basis. This leads to
an unconsciously cross-subsidization. More exotic
product variants will be sold below their actual costs,
thus leading to further competitive disadvantages for
standard products whose prices are charged with
increasing overhead costs. A collateral effect of
complexity in the product portfolio is the deterioration
of market power due to a declined effectiveness of the
distribution system, longer reaction rates on the market
and cannibalism in the product portfolio.

3.2. Variability management

Due to these problems variability management went
into the focus of product management. It was realized,
that the maximum benefit neither lies in arbitrary
widening the product portfolio nor in radical avoidance
of new variants. The costs of additional variants must
be balanced with the value offered to the customer.
The achievable additional customer satisfaction does
only increase on a degressive scale with the number of
possible variants. Therefore product management has
to find the economic optimum in the number of
variants.

3.3. Activity based costing

The depicted deficiencies of traditional costing

methods led to the development of new approaches
like activity based costing [4]. This approach seeks to
identify the activities in the product lifecycle and to
determine their costs. Cause and effect relationships
must be analyzed to find out how to allocate activity
costs to products, services or customers. So most of the
former overhead costs can be allocated more
accurately. This enables the identification of
unprofitable products, services, or customer relations.
Product managers can react in many different ways to
establish profitable customer relationships, e.g. by
changing the prices, reconfiguring or replacing
products, improving production processes, changing

the business strategy or eventually abandon a product
completely.

3.4. Analogies to software product line

management

Can these approaches be transferred to the
management of SPLs? Analogously the costs of
developing and maintaining an SPL are for the greater
part indirect or overhead costs, which can not easily be
allocated to a certain product or customer.

But since there are no or only marginal production
costs in software development, cost structures are
totally different to production engineering. Costs are
mostly independent from the number of sold units of a
product variant. Therefore one can not easily divide
between standard products and exotic products in the
product portfolio and assume the latter generate more
overhead costs. With an adequate product line
architecture those exotic products might be easily
configured based on the core assets.

 But as described before, the number of customer
specific features has a large impact on lifecycle costs.
Therefore one can analyze which features are standard
features that are relevant for most customers and which
features can be seen as more exotic features, only
included in products for one or a few customers.
Gathering the costs caused by these features more
accurately, would help to attain more clarity on the
influence of variability on costs.

The prevailing approaches to costing in software
development have the limitation that they are unable to
gather the costs caused by variability. Costs are usually
allocated either to customer projects, maintenance
projects or internal development projects. This may
suffice for accounting and budget control. But with
multiple reuse the relationship between direct labor
hours that went into development and the costs of
software breaks down [5]. Fichman and Kemerer
therefore propose the adoption of activity based costing
to component based software development. Since
systematic reuse is the core of SPL development, an
activity based costing approach will presumably be
suited for the information needs of managing SPLs.

4. Variability management for software

product lines

In this section an approach to variability
management is proposed, based on activity based
costing and the assessment of the customer value of the
variability. Subsections 4.2 to 4.4 depict how this
information can be utilized to achieve the following
goals:

Page 38 / 59

• Estimation of future costs of variability
• Guidance of scoping decisions and strategic

steering of variability
• Process improvements in SPL development and

customer support

4.1. Activity based costing for software
product lines

The application of activity based costing to software

development can be based on several existing
techniques. Defined development processes aid in
identifying the relevant activities. Change request
management systems, task management systems or
time registration systems basically enable a detailed
gathering of labor hours for most activities.

But the allocation of activity costs to customers and
software components respectively raises many
difficulties. It is not clear how development and
maintenance costs of core assets can be distributed to
customers. The use of software components as cost
objects is problematic when there is no direct relation
of an activity to a certain component, e.g. activities like
requirements engineering or system testing. Therefore
we propose the use of features as the primary cost
object for activity based costing in SPL development.

Feature modeling was established as a technique for
modeling commonalities and variabilities in
requirements engineering for SPLs [6][7]. Basically
feature models present a hierarchical structuring of
features and contain domain relations like alternative
or optional features and furthermore dependencies
between features.

 Since features are visible in all phases of the
development lifecycle, most development assets, like
requirements, software components, test cases,
documentation, change requests and even support calls
can be linked to one or more features. Thus the cost for
most activities can be distributed to features as cost
objects.

 The cost allocation from features to customers must
be based on an assessment of the importance of the
provided features to the different customers (Figure 1).
In case of features that are shared between different
customers, the costs have to be divided. In order to do
this, the value of the feature for each customer must be
assessed independently. The distribution of the costs
can then be based on proportions of these assessment
values.

Hence an integral part of this approach to variability
management must be the analysis of the value a feature
provides to customers. It might not be possible to
express this value in monetary units, but it suffices to
assess the contribution of a feature to user satisfaction

on a simple scale of values. Techniques like the Kano
method [8] or Quality Function Deployment [9][10]
may be applied to this purpose.

Figure 1: Features as cost objects

4.2. Estimation of variability costs

Gathering experience with accurate cost information

of features will enable an analysis of the relation
between initial development costs of a feature and its
follow-up costs.

A better understanding of the cost implications of
variability will allow better estimations of future
maintenance costs. This can guide decisions on the
architecture of the product line, e.g. on the use of
certain variability mechanisms or the merging of
existing product variants or features. Furthermore cost
estimations can be employed for quotation costing and
negotiations during early requirements engineering
phases.

4.3. Guidance of scoping decisions

Bringing together cost information based on
features as cost objects and the assessment of the
customer value of features provide a sound guidance
for scoping decisions (figure 2).

Features which are not that important for the
customers but generate high additional costs can be
identified. They can either be replaced by existing
similar features, modified in a manner that allows a
better fit to the SPL architecture, or can possibly be
abandoned completely. If a feature is important for
certain customers, it must be examined up to which
extent the customers can be charged with the real costs.

In all cases the importance of a feature or customer
for the market strategy has to be considered. It can be a
reasonable decision to take a loss in order to open or
develop a market. But to decide on the strategy, there

Page 39 / 59

must be some estimation where and how much money
is lost.

Figure 2: Approach to variability management

4.4. Process improvement

Cost information will not only help to decide on the
range of offered features and their pricing. It can also
be utilized to identify weaknesses in the internal
processes and guide respective improvements. As an
example it might be identified that there is a high effort
for testing certain features in each subsequent product
release. This can justify investments in flexible testing
technologies. Other examples might be a high effort for
customer support or for bug fixes related to certain
features.

5. Further work

In our further work we aim at developing a detailed

model for a costing approach based on features as cost
objects. Within the context of an ongoing industry
cooperation project we will conduct a case study on
gathering cost information in an SPL development
process, in order to validate if this approach can help to
evaluate product management decisions and support
cost estimations. To provide appropriate tool support,
the collection of costing information should be
integrated with our existing tool set for feature
modeling [11].

6. Summary

 Managing a software product line imposes novel
challenges to software product management due to
multiple stakeholders with diverging needs, and
complex dependencies between the products. The
cognitive complexity of the variability of features leads
to high coordination efforts, insufficient scoping
decisions and a suboptimal exploration of the reuse
potential. Difficulties in steering the increase of feature
variants within the product line are evidenced by
increasing maintenance costs.

This resembles the significant increase of overhead
costs caused by the growth of product variants in
manufacturing industry. Variability management was
therefore recognized as a core task of product
management. A key to gain control on product
variability was the application of new costing systems
to obtain more accurate cost information.

We believe that intransparent cost structures are a
major barrier for successful management of software
product lines. The presented approach to variability
management for software product lines aims at closing
this gap by utilizing an activity based costing approach
to software development with features as primary cost
objects. Features provide a natural basis for allocating
costs and are anchored in existing variability modeling
techniques. The gathering of more accurate cost
information is combined with an assessment of the
customer value of features within the product line. This
approach can support better estimations of future costs
of variability as a basis for customer negotiations and
enable a strategic steering of the variability within the
product line.

References

[1] Schmid, K. (2003): Planning Software Reuse – A
Disciplined Scoping Approach for Software Product Lines.
PhD Theses in Experimental Software Engineering, vol 12,
Fraunhofer IRB Verlag, Stuttgart.

[2] Clements, P.C., J.D. McGregor, S.G. Cohen (2005): The
Structured Intuitive Model for Product Line Economics
(SIMPLE). CMU/SEI-2005-TR-003, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania.

[3] Schuh, G. (2005): Produktkomplexität managen –
Methoden, Strategien, Tools. (in German) Hanser Verlag,
München.

[4] Kaplan, R.S., R. Cooper (1997): Cost and Effect.
Harvard Business School Press, Boston, Massachusetts.

[5] Fichman, R., C. Kemerer (2002): Activity Based
Costing for Component-based Software Development.
Information Technology and Management, vol 3 (1/2), 137-
160. Springer, Netherlands.

[6] Kang K., S. Cohen, J. Hess, W. Novak, A. Peterson
(1990): Feature-Oriented Domain Analysis (FODA)
Feasibility Study. CMU/SEI-90-TR-021, ADA235785,
Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, Pennsylvania.

[7] Lee, K., K.C. Kang, J. Lee (2002): Concepts and
Guidelines of Feature Modeling for Product Line Software
Engineering. In Gacek C. (Ed.) Proceedings of the 7th
International Conference on Software Reuse: Methods,

Cost allocation of variability
costs based on features

Estimation of future
variability costs

Assessment of the customer
value of variability

Optimize scoping decisions

Page 40 / 59

Techniques, and Tools, ICSR-7, Austin, Texas. 62-77. LNCS
2319, Springer, Berlin.

[8] Kano, N., N. Seraku, F. Takahashi, S. Tsuji (1996).
Attractive quality and must be quality. In J. D. Hromi (Ed.)
The best on quality (Vol. 7). 165-186. ASQ Quality Press,
Milwaukee, Wisconsin.

[9] Akao, Y. (1988): Quality Function Deployment QFD:
Integrating Customer Requirements into Product Design.
Productivity Press, Portland, Oregon.

[10] Helferich, A., G. Herzwurm, S. Schockert (2005): QFD-
PPP: Product Line Portfolio Planning Using Quality Function
Deployment. In Obbink, H., Pohl, K. (Eds.) Proceedings
of the 9th International Software Product Line Conference,
Rennes. 162-173. LNCS 3714, Springer, Berlin.

[11] von der Maßen, T., H. Lichter (2004): RequiLine: A
Requirements Engineering Tool for Software Product Lines.
In van der Linden, F. (Ed.) Software Product-Family
Engineering, 5th International Workshop, PFE 2003, Siena.
168-180. LNCS 3014, Springer, Berlin.

Page 41 / 59

Towards Context-Aware Product-Family Architectures

Abstract
The product-family paradigm is predicated on the
definition of a general product architecture from which
a number of different architectures can be derived,
each addressing the needs of a separate market
segment, with a high level of component reuse. The
way this is achieved is through the identification of
variability points within a generic product
architecture, from which variant product architectures
are generated, each product with a specific range of
functionality.

This position paper proposes an approach to
variability for software product-families that extends
traditional product-family variability mechanisms to
deal with context awareness. The approach is based on
the identification of relevant relationships between
context properties and user requirements on the one
hand, and architectural variability types on the other;
and the definition of design notations and principles
for the representation and trade-off analysis between
different variability types within a product-family
architecture. In broad terms, the approach links
requirements to software architectures using the
product-family paradigm as the underlying organising
principle. This is envisaged to provide context-aware
product-family system developers a conceptual means
to capture requirements and in linking such
requirements to architectural design choices in the
form of variability point types. This will contribute to
software systems design and management during
development and subsequent evolution.

Keywords
Product-line architectures; variability points; static
adaptability; dynamic adaptability

1. Introduction
The notion of product-line informally describes a
situation in which the supplier of a product seeks to
maximise profit by identifying and supplying different

categories of the product to different segments of
consumers of the product [5, 8, 25]. The process of
identifying or defining segments of consumers is
referred to as market segmentation [8].

The product-line paradigm is predicated on the
definition of a general product architecture from which
a number of different architectures can be derived,
each architecture addressing the needs of a separate
market segment, with a high level of component reuse.
In order for the generic architecture [30] to support
different market segments [5, 8], variability points [31,
37] are identified in the architecture at which the
differences are realized. The list of possible
architectural elements (components, connectors,
constraints on them) from which a variability point will
ultimately be assigned value(s) are referred to as
variants [17, 18, 35, 36]. When the decision as to
which variant to use at a variability point is taken and
all other variants previously available at this point are
discarded, the point is said to be bound or closed [18].
(An unbound variability point is referred to as an open
point.) The realisation of individual products is
achieved by statically binding the variability points
before they are delivered to consumers. We refer to
this type of variability points as static and the process
of realising the individual products as static
adaptability.

On the other hand, context-aware devices are expected
to change their behaviour in response to changes in
their operating environments or contexts. Reasons for
changes in the operating environment are many, from
fluctuating resources upon which the device relies
(e.g., reduced bandwidth for a mobile phone) to
different operating locations (e.g., a mobile user
travelling long distance) or the presence of other
devices (e.g., Bluetooth-enabled phones) [4, 12, 29,
34]. Changes may also be caused by users’
preferences; for example, users of a mobile phone may
require a particular set of features to be available to
them while at work and a different set of features while
at home. Adaptation to a changing environment may
well require the restructuring of a device’s software

Mohammed Salifu Bashar Nuseibeh Lucia Rapanotti
The Open University, Milton Keynes, UK

{M.Salifu, B.Nuseibeh, L.Rapanotti}@open.ac.uk

Page 42 / 59

architecture as different bindings of components may
be involved. We refer to the restructuring of an
application’s architecture in response to contextual
changes while the application is in operation as
dynamic adaptability and the binding or unbinding of
architectural elements as dynamic binding or
unbinding.

There is an increasing expectation for software
intensive devices to be context-aware, and many
consumers’ devices, such as mobile phones, which are
developed as product families, are expected to follow
this trend. To overcome the limitation of static binding,
there is a need for approaches to product-family design
which allow for both type of variability to be dealt with
at the architectural level, as this is considered to be
more efficient and cost effective [28]. Appropriate
design notations and analytical tools will be required to
enable trade-offs between static and dynamic
variability points depending on characteristic of
operating contexts and their associated requirements.
This would allow appropriate variants to be chosen at
variability points depending on the context for which
they are intended. We argue that the definition of an
architectural notation and a reasoning framework for
dealing with various types of variability points and
their instantiation, using a problem-oriented approach
(such as problem frames [14]), is a necessary
prerequisite to the successful design of product-
families of context-aware software devices.

To the best of our knowledge, a framework which
deals with these issues has yet to be developed.
Therefore, we propose an approach that extends
traditional product-family variability mechanisms to
deal with context awareness. The approach is based on:
the identification of relevant relationships between
context properties and user requirements on the one
hand, and architectural variability types on the other;
and the definition of design notations and principles for
the representation and trade-off analysis of different
variability types within a product-family architecture.

The rest of this paper looks at background and related
work and briefly describes our proposed approach.

2. Background & Related Work
This section briefly discusses current classification and
representation of variability points and dependency
relations between variants. This will be followed by a
discussion of current approaches to reconfiguring
product families.

2.1 Variability points and dependencies
Bachmann and Bass [2] have identified six sources of
variability points. These are variations in function or
features, such a word-processor with a voice-
recognition system (high-end) and one without (low-
end); variation in the data used by components for
communication, such as using a stack or queue and
variation in control flow such as two components
communicating using a publish-subscribe
communication pattern [33] or a dedicated
communication channel. Other sources of variabilities
are variations in technology, variations in quality
requirements and variations in the target operating
platforms. Irrespective of the source of variability,
variants available at variability points have been
largely classified into three main types [2, 24, 37]:
optional, single and multiple variants. An optional
variant is included in some product members but not in
others, for instance including a camera in a mobile
phone. In the case of single variant, exactly one variant
is chosen from a candidate set and all others discarded.
In the case of multiple variants, more than one variant
must be selected from a candidate list, for example
dual communication protocols for a mobile phone,
thereby giving it a wider area of operational access.
There are various combinations of these basic types
reported in [2]. This rigid classification is
unsatisfactory in the presence of contextual changes as
functionalities in a given set and for a single device
may be classified as single variant (i.e. mutually
exclusive) in one context and multiple variant (i.e. to
be selected together) in another context.

Jaring and Bosch [17] have looked at the classification
of variants and argued that whether a variant is
optional or not changes based on relational
dependencies. This is inline with earlier observation by
[3] when they looked into using use cases [6] to
communicate variability in product-family members to
customers. In this context, a relational dependency
refers to the changing of the type of a variant from
optional to mandatory, or vice-versa, following the
selection of another variant. That is, the selection of
one variant may automatically trigger the inclusion of
another variant which was previously classified as
optional. For example, in the Nokia phone product-
family, as currently implemented, the selection of the
FM radio feature will automatically require the
inclusion of the series 40 operating platform [26], as it
is the only platform that supports this functionality.
Therefore, at design time, it is necessary to consider all
dependencies which derive from all contexts within
which a product-family member is to operate. These
include dependency relations between variants at a

Page 43 / 59

given variability point and among variants at different
variability points. Conflicts also need to be resolved.

The representation of variability points in software
product-families, as currently practised, is achieved
primarily through feature diagrams [16, 37]. A feature
diagram shows the set of features available in the
generic architecture from which the features of
individual product members are selected. In this
context, a feature is a functional unit that is visible to
the consumer, such as a camera or FM radio in a
mobile phone. The representation of variability point
using use cases by Bühne et al. [3] is comparable to
those based on feature diagrams. On the other hand, a
graphical notation which is not based on feature has
been proposed by Bachmann and Bass [2]. This is
based on a generic UML (like) structure notation. What
all these have in common is that, none of them
explicitly consider the properties of the operating
contexts and the domains existing in these contexts.
We argue that the explicit representation of contextual
properties and requirements, using a problem-oriented
approach [14], is a prerequisite to successful
development of context-aware product-family
architectures.

In addition, all these notations are aimed at product-
families whose architectures are statically bound and
therefore made up of static variability points. Part of
our work will seek to explore possible extensions for
representing both static and dynamic variability points
and their associated variants, using a problem-oriented
approach.

2.2 Reconfigurable product families
There have been attempts [1, 10, 11, 21] at designing
reconfigurable product-family architectures, each of
which will be discussed next. The configuration of an
architecture refers to its set of components, their
interconnections and the constraints defining the
behaviour of this architecture [13]. The replacement of
such a configuration with a new (or different) one after
it has been released or during the operation of the
applications based on it, is referred to as
reconfiguration [22, 28].

The work of Gomaa and Hussein [10, 11] is based on
the use of architectural styles or patterns, such as the
client server architectural style, to construct what they
refer to as a reconfiguration pattern (based on the style
of the generic architecture). A reconfiguration pattern
is used to guide the process of automatically deriving
one product-line member from a different one. This
can be argued to be a generalised form of

parameterisation [30] as all instances of this product-
family must conform to the style and different
members are instantiated by changing the values of
parameters. The focus of Gomaa and Hussein [10, 11]
is on managing state transitions from one product
member to a different member during reconfiguration,
with no explicit discussion of the impact of
dynamically changing the operating context on
defining and reasoning about static and dynamic
variability points. This approach fits the definition of
static binding as the reconfiguration takes place as a
one-off, and instantiated members do not undergo any
dynamic adaptation of their structure during operation.
It therefore appears not to be suitable for context-aware
applications.

The work of Kim et al. [21] is similar to that of Gomaa
and Hussein, hence exhibits the same limitations. The
key difference is that Kim et al. provide an
architectural description language for describing
architectures and modifications to be applied to them
during reconfiguration. The example in [21] adopts a
pipe-and-filter architectural style and could therefore
be argued to be a specialised case of the work of
Gomaa and Hussein with the addition of a means to
describe the architecture and its modifications. Again,
as with Gomaa and Hussein,, the focus of this approach
is on managing the state transition from one product
member to a different member during reconfiguration.
Hence, it also fits the definition of static binding as
members do not undergo any dynamic adaptation of
their structure during operation. Therefore, this
approach too appears not to be suitable for context-
aware applications.

The work of Apel and Bohm [1] is based on the use of
a layered architectural style to design a reconfigurable
middleware for a context-aware environment. In this
work, context-aware environment refers to an
operating environment with network bandwidth
fluctuations, connection interruptions, device mobility
and resource-constrained devices. The services
provided by this architecture are operating system-
based and largely limited to the network infrastructure.
In designing the reconfigurable middleware
architecture, Apel et al. have adopted the product-line
paradigm and produced a generic architecture from
which specific architectures tailored to different
environments are produced as and when the context
requires, during runtime. Hence, this approach fits the
definition of dynamic binding as the general
architecture undergoes dynamic adaptation during
operation. However, note that the whole generic
architecture undergoes the dynamic adaptation and not
the individual product members. This distinction is

Page 44 / 59

significant as it implies that the entire generic
architecture is loaded onto each target device and each
adaptation represents a different product-family
member satisfying the requirements of a different
context. Therefore, this approach only applies to
devices that are capable of running the entire generic
architecture. To summarise, there is only one target
context-aware generic architecture, loaded in all
devices and the only notion of variance is in terms of
differences in operating contexts.

We argue that this approach has severe limitations for
developing consumer electronic devices, such as
mobile phones, with which the success of the
application of the product-family paradigm is largely
associated. For example, using this approach to
transform the current Nokia static product-family
architecture into one that is context-aware, will require
all the 1000 or so different handsets [23] to carry the
same generic architecture (including its complete set of
features). This is not realistic as different devices have
different capabilities, such as memory size, screen size,
processor speeds, operating platforms and hardware
features. Hence, the architecture of every device must
be optimised to take full advantage of its hardware
resources. This explains why Nokia has at least five
different platforms each with several versions [26]
aimed at optimising the hardware resources of every
device. It is also a requirement by the Open Mobile
Alliance community-OMA (a consortium of mobile
phone applications developers and operators, such as
Nokia and Phillips) [27] that no single architecture is
delivered to different devices with different hardware
resources and features as this leads to some devices
under utilising their resources while others are over
burdened with software resources they never use. This
requirement is stated as an architectural principle (#4)
by the OMA as:

“It is not acceptable for OMA Architecture and
Specifications to take a lowest common
denominator approach that prevents use of
advanced features in more capable devices and
networks. At the same time, users of less
capable devices should enjoy the best possible
experience that those devices can provide...”[27]

We therefore argue the need to (partially) statically
bind individual product-family members (containing
only the specific required architecture) before they are
delivered to consumers, and to dynamically bind these
architectures during runtimes in response to changing
contexts. Hence some variability points should be
statically bound (e.g. defining the specific type of
phone and architecture) while others dynamically

bound during operation in response to changes in
context (i.e. adapting the specific architecture for the
given context). The overall aim of our research is
product-family architectures capable of supporting a
mixture of both static and dynamic variability points.

3. Towards Context-Aware Product Family
Architectures
In this section, we briefly describe the main objectives
of our proposed research. These are:

1. to classify and represent variability point types
and their application to context-aware devices;

2. to elicit, define, and represent relationships
between context properties and requirements,
and types of variability (points);

3. to develop conceptual tools for trade-off analysis
in the choice of different types of variability
points within a product family architecture;

4. to evaluate the approach through relevant
exemplars and case studies.

Classification of variability points and their
application to context-aware devices
This will be based on the exploration of existing work
on variability points such as the works of Bachmann
and Bass [2], Svahnberg et al [37], Bühne et al [3] and
Jaring et al. [18], which are currently based on
statically bound generic architectures, in view of
possible extensions to cover dynamic variability
points.

Variability points representation
This will require the exploration of current notations,
such as that proposed in [2], used for static variability
points representation, in view of a possible extension.
Alternatively, a customisation of a UML structural
notation may be adopted. The aim is a notation suitable
for representing both static and dynamic variability
points.

Definition, capture and representation of relationships
between context properties and requirements, and
types of variability (points)
To this end, we are proposing to adopt a problem-
oriented approach based on Jackson’s problem frames
[14] and their extensions (such as [32]). This would
provide a conceptual framework for capturing context
information and requirements, and relating them to
architectural solution structures (in particular, types of
variability points in the architecture). This is because
of their underlying principle of separation between the
problem domain (the context of a software solution and

Page 45 / 59

the requirement) and the solution domain (where
software resides) [15]. Key strengths of the approach
could be argued to be its adoption of a multi-paradigm
approach to problems and solutions descriptions [7]
and a clear separation of indicative from optative
descriptions; that is the separation of what is true of the
development world with or without the presence of the
software to be constructed and that of the desired
behaviour wished upon the operating environment. The
problem frames approach is preferred over other
approaches such as goal-based [38] or scenarios [6], as
these do not allow for an explicit representation of
context and would therefore not be suitable in
addressing the kind of contextual information we need
to represent.

Definition of conceptual tools for trade-off analysis
We will explore current (generic) architectural
techniques for trade-off analysis such as ATAM [20]
or SAAM [19] for possible application to the analysis
of variability points trade-offs.

Evaluation of the approach through relevant
exemplars and case studies
To this end, we will elicit case studies found in the
product-family literature such as those published as
part of the “Engineering Software Architectures,
Processes and Platforms for System-Families
(ESAPS)” [9] European project (and where possible
solicit industrial partner support) and use them both in
the development and evaluation of our techniques.

4. Summary
Our research proposes an approach that extends
traditional product-family variability mechanisms to
deal with context awareness. As can be seen from the
discussion so far, the proposed research touches three
key research areas. These are (1) requirements and
contextual properties impacting (or constraining) their
satisfaction, (2) software architectures in the form
product-families architectures and variability points
mechanisms and (3) architecture level trade-off
analysis. Due to space limitations, the related work
considered is largely based on product-families and
variability points, in terms of architectural design
space. However, we argue that for a context-aware
product-family development tool or conceptual
framework to be useful, it must cover these three key
areas.

As the research is in its early stage, it is impossible to
say if the outcome will lead to an entirely new product-
family development paradigm. However, we argue that
at the very least, context-awareness will increase the

complexity of product-family based systems
development. Even though the increased complexity
may not be visible in all phases of software system
management, it is likely to significantly affect the
development and management of such systems during
requirement specification through to implementation. It
is these phases of system development that a reasoning
framework, such as the one envisaged, will provide a
means in dealing with the increased complexity.

References
1. Apel, S. and K. Böhm. Towards the Development of

Ubiquitous Middleware Product Lines. in Software
Engineering and Middleware: 4th International
Workshop, SEM 2004. 2005. Linz, Austria.

2. Bachmann, F. and L. Bass. Managing Variability in
Software Architectures. in SSR'01. 2001. Toronto,
Ontario, Canada: ACM Press.

3. Bühne, S., G. Halmans, and K. Pohl. Modelling
Dependencies between Variation Points in Use Case
Diagrams. in Proceedings of the 9th International
Workshop on Requirements Engineering Foundation for
Software Quality(REFSQ). 2003. Klagenfurt, Austria.

4. Chen, G. and D. Kotz, A Survey of Context-Aware
Mobile Computing Research, in Technical Report
TR2000-381. 2000, Dartmouth Computer Science.

5. Claycamp, H.J. and W.F. Massy, A Theory of Market
Segmentation. Journal of Marketing Research, 1968.
5(4): p. 388-394.

6. Cockburn, A., Writing effective use cases. 1st ed. 2001,
Longman, Upper Saddle River, NJ: Addison-Wesley. 1-
304.

7. Cox, K., Jon G. Hall, and L. Rapanotti, A Roadmap of
Problem Frames research, in To appear: Journal of
Information and Software Technology. 2005.

8. Dickson, P.R. and J.L. Ginter, Market Segmentation,
Product Differentiation, and Marketing Strategy.
Journal of Marketing, 1987. 51(2): p. 1-10.

9. ESAPS, Overview. 2002, Engineering Software
Architectures, Processes and Platforms for System-
Families: http://www.esi.es/esaps/overview.html.

10. Gomaa, H. and M. Hussein, Dynamic Software
Reconfiguration in Software Product Families. Lecture
Notes in Computer Science, 2004. 3014/2004: p. 435 -
444.

11. Gomaa, H. and M. Hussein. Software Reconfiguration
Patterns for Dynamic Evolution of Software
Architectures. in Proceedings of the Fourth Working
IEEE/IFIP Conference on Software Architecture
(WICSA’04). 2004: IEEE CNF.

12. Harter, n., et al., The Anatomy of a Context-Aware
Application. Wireless Networks, 2002. 8(2-3): p. 187 -
197.

13. Hoek, A.v.d. Configurable Software Architecture in
Support of Configuration Management and Software
Deployment. in INTERNATIONAL CONFERENCE ON
SOFTWARE ENGINEERING. 1999.

Page 46 / 59

14. Jackson, M., Problme Frames: Analyzing and
structuring software development problems. 1st ed.
2001b, New York, Oxoford: Addison-Wesley. 390.

15. Jackson, M. The World and the Machine. in ICSE'95.
1995. Seattle, Washington, USA: ACM.

16. Jaring, M. and J. Bosch. Representing Variability in
Software Product Lines: A Case Study. in SPLC2 2002,
LNC2379. 2002: Springer-Verlag Berlin Heidelberg.

17. Jaring, M. and J. Bosch. A Taxonomy and Hierarchy of
Variability Dependencies in Software Product Family
Engineering. in Proc. of the 28th Annual International
Computer Software and Applications Conference
(COMPSAC'04). 2004: IEEE CNF.

18. Jaring, M., R.L. Krikharr, and J. Bosch, Representing
variabilities in a family of MRI scanners. Software-
Practice And Experiance, 2004. 34: p. 69-100.

19. Kazman, R., et al. SAAM: A Method for Analyzing the
Properties of Software Architectures. in Software
Engineering, 1994. Proceedings. ICSE-16., 16th
International Conference. 1994.

20. Kazman, R., Mark Klein, and Mario Barbacci. The
Architecture Tradeoff Analysis Method. in Engineering
of Complex Computer Systems, 1998. ICECCS '98.
Proceedings. Fourth IEEE International Conference.
1998.

21. Kim, M., J. Jeong, and S. Park. From Product Lines to
Self-Managed Systems: An Architecture-Based Runtime
Reconfiguration Framework. in Workshop on the
Design and Evolution of Autonomic Application
Software (DEAS 2005. 2005: ACM Press.

22. Kramer, J. and J. Magee, The evolving philosophers
problem: dynamic change management. IEEE
Transactions on Software Engineering, 1990. 16(11).

23. Maccari, A. and A. Heie, Managing infinite variability
in mobile terminal software. SOFTWARE—
PRACTICE AND EXPERIENCE, 2005. 35(6): p. 513–
53.

24. Mannion, M., et al. Representing Requirements on
Generic Software in an Application Family Model. in
ICSR. 2000: Springer-Verlag.

25. Moorthy, K.S., Market Segmentation, Self-Selection,
and Product Line Design. Marketing Science, 1984.
3(4): p. 288-307.

26. Nokia, Nokia Architecture - Platform Architectures.
2005, Nokia -
http://europe.nokia.com/nokia/0,,62611,00.html: Online.
p. 1-2.

27. OMA, O.M.A., OMA Architecture Principles V1.2.
2004, Open Mobile Alliance - OMA Ltd. p. 1-10.

28. Oreizy, P., et al., An architecture-based approach to
self-adaptive software. Intelligent Systems and Their
Applications, IEEE [see also IEEE Intelligent Systems,
1999. 14(3).

29. Pascoe, J. Adding Generic Contextual Capabilities to
Wearable Computers. in Digest of Papers. Second
International Symposium on... 1998. Pittsburgh, PA,
USA.

30. Perry, D.E. Generic Architecture Descriptions for
Product Lines. in Lecture Notes in Computer Science.
1998: Springer Berlin / Heidelberg.

31. Pohl, K., G. Böckle, and F.J.v.d. Linden, Software
Product Line Engineering: Foundations, Principles and
Techniques. 1 ed. 2005: Springer. 468.

32. Rapanotti, L., et al. Architecture-driven Problem
Decomposition. in Proceedings of the IEEE RE 04
conference. 2004.

33. Rozanski, N. and E. Woods, Software Systems
Architecture. 2005, London: Addison-Wesley
Profession. 27-37.

34. Schilit, B.N., N. Adams, and R. Want. Context-Aware
Computing Applications. in Workshop on Mobile
Computing Systems and Applications. 1994.

35. Sinnema, M., S. Deelstra, and J. Bosch. COVAMOF: A
Framework for Modelling Variabilities in Software
Product Families. in SPLC'04. 2004: Springer-Verlag.

36. Sinnema, M., et al. Modeling Dependencies in Product
Families with COVAMOF. in Proceedings of the 13th
Annual IEEE International Symposium and Workshop
on Engineering of Computer Based Systems (ECBS’06).
2006: IEEE CNF.

37. Svahnberg, M., J.v. Gurp, and J. Bosch, A taxonomy of
variability realization techniques. Software: Practice
and Experience, 2005. 35(8): p. 705-754.

38. Van Lamsweerde, A., R. Darimont, and P. Massonet.
Goal-directed elaboration of requirements for a meeting
scheduler: problems and lessons learnt. in Proceedings
of the Second IEEE International Symposium on. 1995.

Page 47 / 59

Ten Misconceptions about Product Software Release Management explained
using Update Cost/Value Functions

Slinger Jansen, Sjaak Brinkkemper
Information and Computing Sciences Institute

Utrecht University
Utrecht, the Netherlands

{s.jansen, s.brinkkemper}@cs.uu.nl

Abstract

The decision for a young product software vendor to re-
lease a version of their product is dependent on different
factors, such as development decisions (it feels right), sales
decisions (the market needs it), and quality decisions (the
product is stable). Customers of these products, however,
are much more cost oriented when deciding whether to up-
date their product or not, and will look mainly at the cost
and value of an update. Product software vendors would
gain tremendously if their release package planning method
was supported by a similar cost/value overview. This paper
presents cost/value functions for product software vendors
to support their release package planning method. These
cost/value functions are supported by ten misconceptions
encountered in seven case studies of product software ven-
dors that these vendors had to adjust during their lifetime.
Finally, a number of cost saving opportunities are presented
to enable quicker adoption of a release and thus shorten re-
lease times and customer feedback cycles.

1 Introduction

Product software release planning has been characterised
as a “wicked” [4] and “complex” [1] problem for which no
perfect solution exists. One part of release planning, release
package planning, is often underestimated due to its seem-
ingly innocent and uncomplex nature. Product software
vendors that do not have much experience in release plan-
ning often publish their release packages because a team
of experts within the organization deems the release good-
enough, which results into some releases that are hardly
adopted by customers, whereas others are much more pop-
ular.

Simultaneously, release packages are created often dur-
ing the lifecycle of a product, which suggests that processes
such as release package creation, release package publica-
tion, informing the customer of a new release, and updating

are repetitious processes that must be automated as much
as possible, to ease both customer update effort and ven-
dor release package creation effort. Decreasing this effort
results into customers that are more willing to update, and
vendors who are more willing to release regularly, as sug-
gested by the agile development methods, such as extreme
programming [2]. However, from a number of case studies
performed in the past it is found that product software ven-
dors generally do not sufficiently plan their releases [10].

We define Software product release management as the
storage, publication, identification, and packaging of the el-
ements of a product. Release package planning, which is
part of the release planning process, is the process of defin-
ing what features and bug fixes are included in a release
package and the process of identifying these packages as
bug fix, minor, or major updates, taking into account re-
leases that have been published in the past and the possible
update process required to go from one release of the prod-
uct to another release. To illustrate, figure 1 displays a re-
lease snapshot from a recent case study [7], in which major,
minor, feature, and bug fix releases are shown.

An update package is a package that promotes a cus-
tomers configuration to a newer configuration. Secondly,
a bug fix update package contains only bug fixes, a fea-
ture update package contains only new features, and mi-
nor and major update packages contain both bug fixes and
new features. The distinction between minor and major up-
date packages is usually that major update packages change
structural parts of a product, such as the architecture or the
data model. Our view of software evolution described here
is similar to Rajlich and Bennet’s staged model [3], which
addresses evolutionary changes (minor and major update
packages) first, and then continues to see patches (bug fix
packages) until a release is phased out and closed down.

The objective of this paper is to create release package
planning awareness within software product management
research. This is achieved by the presentation of cost/value
functions that support misconceptions found in seven real-
life cases about software product release management. Two

1

Page 48 / 59

4.30 4.31

Branch, release and
freeze datamodel

Stop supporting

4.32 5.00

4.30 4.31 4.32

Release 5

Release 6

Release 4

feature

update

bug fix

update

Figure 1. Typical Versioning Example

complementary cost/value functions are presented that en-
able a product software vendor to estimate whether a release
package will actually be downloaded and installed by its
customers. Also, two complementary Cost/Value functions
are presented to help a software vendor decide whether the
next release package will be marked a bug fix, minor, or
major release.

The presented Cost/Value functions provide an extra
check before publishing a release package for product soft-
ware vendors. In that, the presented decision method is a
useful extension to product road mapping methods, such
as the one presented for small product software businesses
[15], the method that supports the product software knowl-
edge infrastructure [17], and other methods that support re-
lease planning [14]. Section 2 presents and describes the
Cost/Value functions. Section 3 describes ten misconcep-
tions encountered in seven case studies that support the
Cost/Value functions as a valid release package planning
method. In section 4 methods are described to save either
customer update costs or vendor side release costs. Finally,
in section 5 we discuss the presented method and describe
the conclusions.

2 Defining the Cost/Value functions

This section describes the Cost/Value functions for both
the customer (see figure 2) when updating its software and
the vendor (see figure 3) when releasing a new version.
These functions separately describe the cost of an update
for a customer, the value of an update for a customer, the
value of a new release for a vendor, and the cost to create
the release package for the vendor. The functions are based
on case studies performed at seven organisations [10]. Also,

the customer functions are based on different papers from
Enterprise Resource Planning (ERP) application updates
and migrations [13], and a recent case study we performed
at a content management systems vendor that also does up-
dates and migrations for customers [8]. The Cost/Value
functions are similar to the profit functions developed by
the Research Triangle Institute [16]. However, these profit
functions are used to calculate the impact of software testing
inadequacies to the software business and not specifically
for update release timing.

2.1 Customer Functions

A customer will base its decision to update a software
product on a number of factors. First and foremost, the cus-
tomer is interested in the value the update represents for her.
This value can be of many different forms, such as the ad-
dition of a new level to a game providing the customer with
more entertainment or a complete new production planning
module to an ERP package saving the customer many mil-
lions. Simultaneously the customer will take the cost of up-
dating into account. Such cost can be the downright effort
of downloading and installing the new level for the game or
downtime of the ERP system during the update costing the
company many millions.

A customer’s value of an update is defined as Cval (1).
The function defines the value of an update to a customer
as the value of new features the customer will use plus the
value of the removal of previous workarounds. The new
features include those features that have been added to the
new release, but also those that simply did not work in the
previous release and for which a workaround was not avail-
able.

Before a customer decides to update, however, the cus-
tomer will calculate the cost of an update to see if it is really
worth it. The cost function Ccost (2) defines the cost of an
update as the cost of downtime of a product, the cost of
training for the people using the new/changed functional-
ity, the cost of effort put into the update process, the cost of
functionality that was removed from the release or the cost
of customisations that can no longer be used after the up-
date, and finally the cost of the payments to the vendor for
the update.

For a customer to make the update decision, Cval must
exceed Ccost (3), especially when taking into account that
the resources that are required to perform the update nor-
mally perform other value adding tasks. It is quite surpris-
ing to see that many vendors do not invest structurally into
reducing these costs for the customer, especially since in
most of our case studies up to 70 percent of revenue was
coming from existing service contracts and only 30 percent
from new customers. Also, when a vendor sees that Ccost
exceeds Cval for a large number of customers, releasing an

2

Page 49 / 59

Cval(update) = value(newFeatures) + value(removalOfWorkarounds) (1)

Ccost(update) =
{

cost(downtime) + cost(training) + cost(updateEffort) +
cost(lostFunctionality) + cost(paymentToV endor) (2)

Cval(update) > Ccost(update) (3)

Figure 2. Customer Cost/Value Functions

V val(newUpdatePackage) =

{
newCustomers ∗ priceNewRelease +
oldCustomers ∗ priceOfUpdate + costReduction(support)

(4)

V cost(newUpdatePackage) =

 cost(development) + cost(updateCurrentCustomers) +
cost(increasedSupport) + cost(marketing) +
cost(deliveryToCustomers) + cost(packageCreation)

(5)

V val(update) > V cost(update) (6)

Figure 3. Vendor Cost/Value Functions

update becomes essentially useless, unless the vendor hopes
to attract a large number of new customers. This seems im-
probable though, since if current customers are not inter-
ested in the product, why would new ones be?

2.2 Vendor Functions

For a vendor the value of an update is much harder to cal-
culate, especially because it involves estimating how many
new customers are attracted with the new release and how
many customers are actually prepared to update. A vendor’s
value of a new release are new customers attracted by the
release that specifically targets a new market, the reduction
in support calls due to a bug fix to a commercial operating
system, or a customer that pays the vendor for an update of
their ERP product.

The function for a vendor’s value Vval (4) describes the
value of a new release as the number of new customers
times the price of a new release, the current customers who
are prepared to update against reduced cost, and finally the
cost reduction in support calls due to the fixes in the new
release package. Calculating the Vval is hardest, mostly be-
cause it involves estimating the number of new customers
and estimating how many customers are willing to update
from any previous version, which might introduce differ-
ent prices for the different updates. If the release package
contains a large number of bug fixes there might be a cost
reduction in support costs. However, if many new features
have been introduced, this reduction might be cancelled out
by the cost increase in support.

The Vcost (5) function is defined as the cost of devel-
opment of the functionality and bug fixes for the new re-
lease package, the cost of updating the current customers,
the cost of increased support questions relating to the new
release, the cost of marketing, the cost of delivering the new

release package to customers, and finally the cost of pack-
aging the release. The cost of updating current customers
includes such things as update tools [11], renewing their li-
censes, and possible support questions that arise during the
update process. The cost of marketing includes informing
current customers of the new release, the marketing cam-
paign, creating release notes, and maintaining the product’s
website. The cost of delivering the update to customers en-
compasses the creation of the delivery medium (CD, DVD,
floppy, USB-stick, website, etc.), the assembling of all ar-
tifacts, the possible translations of the products language
files, and completeness checking of the release.

The Vcost/Vval functions are used to evaluate whether
it is time to create a release package. This is generally the
case when Vcost exceeds Vval (6), i.e., when the potential
value of releasing an update is higher than the cost that was
required to create the update. Automation of the processes
that make up release package creation and publication can
potentially reduce Vcost, enabling a software vendor to re-
lease more often. This is similar to condition (3), where
automation of the delivery and deployment processes can
decrease Ccost, thus making it more attractive for customers
to update.

The functions shown in this section tend to change
largely when looking at either a bug fix, a minor, or a major
release package. In the case of a bug fix package that is re-
leased on-line, contrary to a major release, no new storage
media need to be created by a vendor. The decision to re-
lease either a bug fix, minor, or major release package can
be made using these functions. If the reduction in support
costs justifies the effort put into fixing a number of bugs, a
bug fix release is justified. If the reduction in support costs
does not justify the effort put into fixing a number of bugs
and the addition of functionality, you might want to earn it
back by making the next release a minor release. If the ven-

3

Page 50 / 59

dor feels that the next release should generate more revenue
from new customers and old customers as well, this might
be a justifiable case for a major release package. Of course
this is not a hard science. Especially in the case a bug cost a
disproportionate amount of time to fix, it might not be jus-
tifiable to publish a minor release package. A question the
vendor must ask itself then is whether it was worth it to try
and fix the bug in the first place.

3 Ten Misconceptions about Product Soft-
ware Releasing

All product software vendors undergo series of paradigm
shifts during their lifetime leading to radical changes in ear-
lier established principles [6]. These misconceptions are
generally strategic misconceptions that beginning software
vendors can easily have about product software manage-
ment and release management specifically. Here ten mis-
conceptions are presented that were encountered in seven
case studies of product software vendors. These product
software vendors have been the subject of study from 2004
until 2006, and include Dutch software organizations with
between 60 and 1500 employees [7] [8]. The main focus
of research were the vendors’ release, delivery, and deploy-
ment processes. For a further description on how the case
studies were undertaken we refer to the case study reports
and a paper describing all seven cases [10]. The value/cost
formulas presented in this paper support the lessons learnt
presented here.

1. Customers want to stay up-to-date - It is important
to realize that a customer of a software product uses it only
to make life better. If a newer release package does not
provide the customer with new functions, why would she
update? When, for instance, was the last time you updated
a computer game? Or your ftp client? To quote one of the
case study participant’s customers “Their software supports
our business process perfectly. Some of the workarounds
are strange, but as long as we don’t have to invest in the
ghastly process of updating, we’re happy.” This is a clear
example of where Ccost exceeds Cval.

2. Customers must stay up-to-date - To guarantee
success of a product software vendor it is often assumed
that customers must stay up to date. The misconception is
demonstrated by the example of a content management sys-
tem product software vendor, where customers use versions
from years back who never updated due to the large number
of customisations and complex update process. These cus-
tomers, however, don’t feel limited in their use of the prod-
uct however, and will update when they require new func-
tionality. Once again Ccost exceeds Cval. The difference
between the first and second misconception is that they are
discovered at different times in the product lifecycle. The
first misconception is discovered once a new version of a

product is released and is not adopted at all by customers.
The second misconception is discovered once a vendor has
many different versions out in the field, without encounter-
ing life-threatening problems.

3. Release n + 1 is better for a customer than release
n - Many of a bookkeeping software vendor’s customers
were still using the MS-DOS based version of their prod-
uct until 2005 when the vendor declared it would no longer
support the DOS version. When attempting to update all
these small entrepreneurs to a GUI based version the main
complaint was that the graphic interface was less intuitive
than their previous DOS versions. The bookkeeping soft-
ware vendor ended up implementing all the same keystroke
combinations that were typical of the DOS era, into their
GUI based client. Even though from the vendor’s point of
view their update to the GUI based version was necessary,
customers could have worked with the DOS version for at
least the next ten years and considered Ccost to be larger
than Cval.

4. Fixes can be postponed to the next major release -
A typical mistake to make is to postpone bug fixes for later
releases, hoping to save the effort of having to implement
the fix into multiple releases. This works fine if customers
are eager to update, and the next major release is around
the corner. However, in one of the case studies performed
in 2004 we encountered a vendor who postponed many bug
fixes to its next major release package. The major release
package, planned for early 2005, still has not been released
mid 2006. Many of the bug fixes had to be back ported
to keep customers satisfied. This is a clear example where
Vcost seemed to be lower than Vval, but actually was not.

5. Workarounds must be avoided at all costs - Once
again, as long as Ccost exceeds Cval, workarounds are a
nice solution to a problem that would otherwise require a
large investment from an organisation or person. An ex-
ample of this is the Internet Explorer workarounds for style
sheets. Quite often style sheets will look different on In-
ternet Explorer 6 than other browsers, due to a bug. It is
common knowledge, however, that Internet Explorer’s in-
terpreter can be fooled by adding specific characters to the
code of a style sheet. Microsoft has chosen not to fix this
bug until Internet Explorer 7, mainly due to the fact that ev-
eryone is aware of the workaround and too many customers
would need to be updated.

6. Customers always want new features - This com-
mon misconception is that any release package can contain
new features, since the customer should be happy with (pos-
sibly) free new features. An example encountered is a point
of sale product software vendor, whose users typed more
or less blindly into the system and checked only every ten
seconds to see if the screen was showing the desired result.
The simple displacing of a button in the user interface raised
so many complaints (Ccost exceeds Cval) that they decided

4

Page 51 / 59

to freeze the user interface to their application in between
minor releases as much as possible.

7. Releasing too often is bad - The aforementioned
bookkeeping product software vendor started releasing on
a weekly basis at some point, to shorten the feedback cy-
cle to developers. The vendor did receive more bug reports,
but product experience in general, declined. The vendor de-
cided that this was not caused by the fact that they released
too often, but that they released to their final customers too
often. The frequent releases were maintained, but only for
internal use, quality assurance, and pilot customers. Also,
customers are required to stay up to date to reduce the num-
ber of support calls.

8. A quiet customer is a happy customer - An in-
formal survey amongst a number of customers of a plug-
in software vendor showed that customers who contacted
the helpdesk in the early phases of its use were much more
content with the product than those customers who had not
called the helpdesk in the early adoption phases. Another
example encountered was a software vendor who called up
a customer for a yearly check-up, and heard that they had
recently decided to buy a competitors product, even while
the customer still had a contract with the current vendor.
This demonstrates the importance of regular customer con-
tact. The customer would still have been a customer if the
vendor had made the customer aware of the fact that Ccost
is smaller than Cval.

9. Customers read release notes - Especially system
managers of large software products are well accustomed
to browsing through release notes, trying to find that one fix
to a bug or that one new feature that justifies a customer’s
investment into updating the product. Clearly, this is a pro-
active customer that is looking to optimize the value of the
software product’s latest release package. These system
managers, however, would be much more interested in in-
formation about new releases that specifically targets them.
One software vendor [12] is currently experimenting with
a system that filters release notes for specific customers,
such that they do not receive information that is irrelevant
to them. An example of this is a bug fix to a component a
customer has not purchased.

10. Having many different releases out in the field is
bad - The earlier example of the content management sys-
tems product software vendor shows us that having many
different releases out in the field is not necessarily a bad
thing, as long as it is part of the business model. This
vendor, for instance, charges its customer for all services
in the form of a service contract, especially to those cus-
tomers with very old versions. To the software vendor
these customers present more of a knowledge management
problem, since many of the solutions built in the past have
to be reused for customers experiencing similar problems
now. The vendor does agree that this is only possible due

to its small “manageable” number of customers. The dif-
ference between the second and this misconception is that
the second misconception addresses the “happy” customer,
whereas this misconception concerns the successful product
software vendor.

Some other misconceptions encountered were “our next
release must contain less bugs than our previous release to
satisfy customers” and “we shouldn’t build an automatic up-
dater because the customer will feel they’re not in control”.
These misconceptions are proven wrong by our Cost/Value
functions as well, but we simply encountered them less of-
ten than the ten mentioned here. It is our firm belief that tak-
ing the profitability approach with regards to release pack-
age planning in a commercial environment is the way to go.
An interesting question of validity is whether this type of
anecdotal evidence is enough to prove that our Cost/Value
functions are correct. It is part of our future work to further
evaluate the validity of the Cost/Value functions based on
historical (cash flow) results from both software implemen-
tations at customers and software release history.

4 Reducing Costs of Release Management

Besides using the Cost/Value functions for daily deci-
sions, they allow us some thought experiments. Product
software vendors generally adhere to bug fix/minor/major
release scoping. When looking solely at version numbers,
an open source project such as Mambo/Joomla, has had
three major releases since 2001, approximately 10 minor
releases, and approximately 120 bug fix releases. These
numbers show that bug fix updates are released much more
often than major updates. Also, when looking at customer
behaviour, they are more inclined to regularly update to a
new bug fix release package than they will perform a costly
major update.

When looking at bug fix updates and the functions pre-
sented earlier the Cost/Value calculation impact factors
change compared to major updates. In the case of a major
update, the cost of development will largely exceed all other
costs, making those less important from a financial point of
view. For a major release, for instance, the completeness
checking of artifacts will be a relatively small step in the
release package creation project. When looking at a bug fix
project, however, the development might have taken only a
couple of days developing effort, whereas the creation of the
release package might take an equal amount of time and ef-
fort. If we then take into account that these bug fix releases
generally do not generate profit and only improve product
quality and reduce the number of support calls, other costs
are suddenly much more drastic.

Besides the scope of a release, the number of customers
who update to a new release determines how much effort
must be put into reducing the cost of release management.

5

Page 52 / 59

For Exact Software and its 160,000 customers [9], for in-
stance, the reduction in cost by introducing a combined soft-
ware configuration management system and customer rela-
tionship system was huge. By combining these two systems
they enable customers to automatically download and de-
ploy bug fix and minor updates. However, if a vendor only
serves twenty customers and is not planning to extend their
customer base beyond one hundred customers, it must con-
sider whether it is worth investing much into automatically
releasing, delivering, and updating releases at its customers.

A product software vendor can reduce its costs in a num-
ber of areas. This cost reduction in turn enables a vendor
to release more often. Releasing more often generates feed-
back about new releases quicker, which enables a vendor
to improve its product and make better informed decisions
on development and fixing plans. Cleary, this theory sup-
ports the agile camp, in its “Release early and often” view-
point [2].

4.1 Vendor Side Cost Reduction

To begin with a vendor must strive to release often, if
not continuously [18]. The more a product under develop-
ment is in the shape it will be in when finally released, the
less chance there is for errors to be introduced during re-
lease package creation. After all, any party within the ven-
dor organization, be it pilot customers, other developers, or
the quality assurance department, will use this latest release
for internal evaluation. The parties responsible for the final
release will also have less work in the final stages of release
package creation, a process that takes place often. This pro-
cess is hampered by a product that supports different lan-
guages, since quite often these language files are translated
shortly before the final release date.

The process of release package creation must be auto-
mated as much as possible to eliminate simple (error sen-
sitive) manual tasks. If a release package is checked for
completeness automatically each time a release package is
created, it does not need to be checked extensively by qual-
ity assurance, eliminating a large part of this process.

The cost of software delivery is greatly minimized if all
delivery is done through a network instead of expensive
media, such as CDs or DVDs. The releases stored on these
media are never as up-to-date as the ones stored in the ven-
dor’s release package repository, which could be accessible
through a network or secure Internet connection.

4.2 Customer Side Cost Reduction

Whereas the vendor might be reducing costs internally,
it must invest in making the deal to update to a new version
as attractive as possible. Though this seems like a large in-
vestment at first, the payoff comes quickly when customers

become more eager and better informed with regards to re-
leases a vendor offers.

Software deployment costs can be reduced for the cus-
tomer by automating the update process. This requires
the software vendor to seriously invest into an update tool
and to develop its architecture in such a way that customi-
sations remain functional after an update. Even though this
seems like a large investment up front, it makes the decision
for a customer to update easier, and as such makes them
more eager to update often. The same holds for the reduc-
tion of downtime, since customers will be much more eager
to update if downtime is reduced to a minimum.

Before customers can update to a new release, however,
they need to be informed about the new release package.
Currently, most product software vendors inform their cus-
tomers through information news letters, customer days, e-
mails, and many other ways. A higher rate of release pene-
tration can be reached, however, if the vendor uses the soft-
ware itself to inform the customer. This can range from a
small pop-up when the application starts up, to an automatic
pull of an update, such as Mozilla’s Firefox currently does.

With regards to informing customers, release notes are
an essential part of release management. When customers
are looking for a bug fix, for instance, they will browse
through the release notes looking for that specific piece of
information. Clearly these release notes need to be index-
able, such that customers who previously requested infor-
mation concerning a problem are informed as soon as a fix
for that problem has become available.

5 Discussion and Conclusions

This paper presents cost and value functions that product
software vendors can use to evaluate whether it is profitable
to release a version of their software. Simultaneously, func-
tions are provided that assist a customer in making the deci-
sion to update a vendor’s software product. These functions
support ten changed viewpoints that were encountered in
seven case studies. Finally, these functions show that costs
can be saved for both product software vendors and cus-
tomers on commonly occurring patch and minor updates,
which can shorten feedback cycles from end-user to prod-
uct software developer.

The process of release package planning is greatly sim-
plified with the use of the provided Cost/Value functions.
These functions also defend that product software vendors
invest into automating processes such as release package
creation, release package publication, informing the cus-
tomer of a new release, and updating. The fact that this
does not happen in practice raises a number of questions,
such as why the vendors do not invest more into these pro-
cesses. An answer often given when product software ven-
dors were confronted with this question was that they are

6

Page 53 / 59

busy creating their specific software solution already, but
that they would be happy to buy a tool that helps automat-
ing these tasks.

A weakness of the Cost/Value functions is that being ob-
sessed with short-term profits will lead any product soft-
ware vendor without a long-term vision to the abyss. Ven-
dors must take into account customers will always be pre-
pared to offer large amounts of money to small vendors if
they just build one little feature that is extremely valuable to
them. The vendor must always keep in mind that it is creat-
ing software for a market and not one particular customer.
The functions must only be used once the prioritization of
requirements for the next couple of releases has been final-
ized.

These calculations provide a decision method for updat-
ing and releasing, but only in case all costs and prognoses
are exact. Knowing that this is impossible, we leave it to the
practitioner to perform data gathering [5] and implement a
risk factor for unforeseen costs (and unforeseen value). Cur-
rently the Cost/Value functions are still in an experimental
state even though we feel they are of great value to the field
of release package planning. Thus it belongs to our future
work to evaluate the functions in real world scenarios with
historical release and cash flow data. We do recommend us-
ing a currency as the unit of measurement, since both sales
and full time employment units can be expressed in money.

Part of the work thus is to find methods and tools that as-
sist product software vendors in automating the tasks of re-
lease creation, release publication, informing the customer
of a new release, and updating a customer’s configuration.
In earlier work the lack of tools for software deployment
was identified [11] and possible solutions were presented.
With respect to continuous software releasing the tool Sisy-
phus was built to support product software vendors with
automatically creating their software releases [18]. Work
recently has started on the Pheme prototype, a communica-
tion infrastructure that assists product software vendors in
sharing software, data, feedback, licenses, and commercial
information with its customers.

References

[1] A. J. Bagnall, V. J. Rayward-Smith, and J. M. Whittley. The
next release problem. In Information and Software Technol-
ogy, volume 43, pages 883–890, 2001.

[2] K. Beck and M. Fowler. Planning Extreme Programming.
Addison-Wesley, 2001.

[3] K. Bennet and V. Rajlic. A staged model for the software
lifecycle. In IEEE Computer, July, 2000.

[4] P. Carlshamre. Release planning in market-driven soft-
ware product development: Provoking an understanding.
Springer-Verlag, 2002.

[5] C. Ebert, R. Dumke, M. Bundschuh, A. Schmietendorf, and
R. Dumke. Chapter 1. In Best Practices in Software Mea-
surement, 2004.

[6] I. Heitlager, S. Jansen, S. Brinkkemper, and R. Helms. Un-
derstanding the dynamics of product software development
using the concept of co-evolution. In Second International
IEEE Workshop on Software Evolvability (at the Interna-
tional Conference on Software Maintenance). IEEE, 2006.

[7] S. Jansen. Software Release and Deployment at Planon: a
case study report. In Technical Report SEN-E0504. CWI,
2005.

[8] S. Jansen. Software release and deployment at a content
management systems vendor: a case study report. Institute
of Computing and Information Sciences, Utrecht University,
Technical report UU-CS-2006-0XX., 2006.

[9] S. Jansen, G. Ballintijn, S. Brinkkemper, and A. van Nieuw-
land. Integrated development and maintenance for the re-
lease, delivery, deployment, and customization of product
software: a case study in mass-market erp software. In Jour-
nal of Software Maintenance and Evolution: Research and
Practice, volume 18, pages 133–151. John Wiley & Sons,
Ltd., 2006.

[10] S. Jansen and S. Brinkkemper. Definition and validation
of the key process areas of release, delivery and deploy-
ment of product software vendors: turning the ugly duck-
ling into a swan. In proceedings of the International Confer-
ence on Software Maintenance (ICSM2006, Research track),
September 2006.

[11] S. Jansen, S. Brinkkemper, and G. Ballintijn. A process
framework and typology for software product updaters. In
Ninth European Conference on Software Maintenance and
Reengineering, pages 265–274. IEEE, 2005.

[12] S. Jansen and W. Rijsemus. Balancing total cost of own-
ership and cost of maintenance within a software supply
network. In proceedings of the IEEE International Con-
ference on Software Maintenance (ICSM2006, Industrial
track), Philadelphia, PA, USA, September, 2006, 2006.

[13] C. S. P. Ng, G. G. Gable, and T. Chan. An erp maintenance
model. In 36th Hawaii International Conference on Systems
Sciences (HICSS), 2003.

[14] J. N. och Dag, V. Gervasi, S. Brinkkemper, and B. Regnell.
A linguistic-engineering approach to large-scale require-
ments management. IEEE Software, 22(1):32–39, 2005.

[15] K. Rautiainen, C. Lassenius, J. Vahaniitty, M. Pyhajarvi, and
J. Vanhanen. A tentative framework for managing software
product development in small companies. In Proceedings
of the 35th Hawaii International Conference on System Sci-
ences, 2002.

[16] Research Triangle Institute. The economic impacts of inad-
equate infrastructure for software testing. National Institute
of Standards and Technology, 2002.

[17] I. van de Weerd, S. Brinkkemper, R. Nieuwenhuis,
J. Versendaal, and L. Bijlsma. Towards a reference frame-
work for software product management. In Proceedings
of the 14th International Requirements Engineering Confer-
ence (Accepted for publication), 2006.

[18] T. van der Storm. Continuous release and upgrade of
component-based software. In Proceedings of the 12th Inter-
national Workshop on Software Configuration Management
(SCM–12), 2005.

7

Page 54 / 59

Towards Comprehensive Release Planning for Software Product Lines

Muhammad Irfan Ullah and Guenther Ruhe
Laboratory for Software Engineering Decision Support, University of Calgary, Canada

{ullah, ruhe}@cpsc.ucalgary.ca

Abstract

Release Planning (RP) plays an important role for

the success of incremental product development.
Proper planning includes consideration of stakeholder
preferences, resources and their capacities, as well as
product and business objectives. The complexity of this
process is getting even larger when looking for
releases of software product lines (SPL). SPL is
considered as a viable and important software
development paradigm allowing companies under
certain conditions to realize order-of-magnitude
improvements in time to market, cost, productivity,
quality, and other business drivers.

In this paper, we present ongoing research in the
process to develop a comprehensive and formalized
model for planning and optimizing releases for SPL.
We have identified key issues that are unique to RP of
SPL. Some of them are highlighted by an example
modified from literature for illustrative purposes.

1. Introduction

A software product line (SPL) is a set of software-
intensive systems that share a common, managed set of
features satisfying the specific needs of a particular
market segment or mission and that are developed
from a common set of core assets in a prescribed way
[1]. A software release is a collection of new and/or
changed features that form a new product.

Release planning (RP) for incremental software
development assigns features to releases such that most
important technical, resource, risk and budget
constraints are met. Without good release planning
‘critical’ features are jammed into the release late in
the cycle without removing features or adjusting dates.
This might result in unsatisfied customers, time and
budget overruns, and a loss in market share [2].

Release planning for software product lines (RP-
PL) involves a number of new aspects, which are not
applicable in traditional systems. It has to consider

multiple products being developed by multiple teams
for different customers. The research question is to go
beyond planning and managing just one, but a couple
of different products integrated into a product family.

Currently, there is no RP-PL model that allows
addressing the problem in a rigorous formalized
manner generating optimal solutions or at least
qualified solutions. Most of the popular SPL
development methodologies focus on the scoping
process. Riebisch et. al. [3] include release planning as
part of the scoping process for SPL. They have
proposed Decision Tables to prioritize features for
assignment to releases. Their approach is semi-formal
and does not support quantitative evaluation of release
plans. Release Matrix approach proposed by Taborda
[4] provides a holistic view of SPL release
management however, lacks the formalism needed to
generate optimal solutions. For the case of one
product, the hybrid approach called EVOLVE* was
designed for exactly that purpose. It improves existing
methods for release planning by combining the
strength of mathematical models with the subtleness of
experts’ knowledge [5]. It uses computationally
intelligent techniques such as evolutionary computing
and principles of multi-criteria decision support in
combination with human intelligence [5]. The
challenge is to extend this approach to RP-PL.

In this paper, we present ongoing research in the
process to develop a comprehensive and formalized
model for planning and optimizing releases for SPL.
The paper is subdivided into five sections. In the
following section 2, we present some terminology and
existing results in the context of RP-PL. Section 3 is
devoted to discuss the formal model of [5] and
mapping of RP-PL problem to reuse existing
functionality of the ReleasePlanner™ decision support
system [6] developed for optimized release planning of
one product. An illustrative example for the problem
statement and its solutions is given in Section 4.
Finally, Section 5 gives an outlook to future research.

Page 55 / 59

2. State of the Art

2.1. One Product Release Planning

One of the most prominent issues involved in
incremental software development is to decide upon
the most promising software release plans while taking
into account diverse qualitative and quantitative
project data. This is called release planning. Release
planning considers stakeholder priorities and different
types of constraints. The output of the release planning
process is a set of candidate assignments of features to
releases. They are supposed to represent a good
balance between stakeholder priorities and the shortage
of resources. In each release, all the features are
executed following one of the existing software
development paradigms including analysis, system
design, detailed design, implementation, component
testing, system testing, and user testing.

An overview of existing methods for release
planning of one product was given in [7]. The
following deficits were analyzed:
1. There is no major focus on addressing system

constraints. The attempt in [8] assumes operational
risk of system failure can be given probabilistic
values, without deriving such information from
the architecture, code base, and other historical
data of the system.

2. There are not enough decision support tools that
are fully developed and based on sound
formalism, except ReleasePlannerTM.

3. Release planning has been largely focused on
“fixed release intervals” and no current work on
planning with flexible time intervals.

2.2. Scoping vs. Release Planning for SPL

What is the difference between RP-PL and the
scoping activity being an established part of any PL
development approach? In general, release planning
prioritizes features for assignment to releases while
scoping focuses on identification and principal
categorization of features. In the strict sense [9],
scoping identifies the individual products, features
assigned to products and features assigned to core
assets of all products. RP deals with prioritizing the
features (common and variable) and assigning them to
releases. Scoping develops the product portfolio [10]
without considering the technological constraints,
resource capacities and consumptions. Because of the
inherent complexity, we suggest to make this process
more rigorous and optimized. Based on the output of
scoping process, this will allow generating qualified

alternative release plans in a transparent and repeatable
manner.

2.3. Release Planning – Conventional Systems
vs. Software Product Lines

RP-PL presents some new challenges, which do not

exist in the context of conventional systems. We
provide a list of new questions. For some of them, our
proposed approach will show how to handle them in a
more formal manner.
1. Managing delays in development of core assets

due to conflicting requirements of products so that
it does not affect product development.

2. Evolving core assets with competing requirements
of various products.

3. Synchronizing different product cycles.
4. Allocating resources across product teams.
5. Improving quality, productivity and time-to-

market goals while maximizing stakeholders’
satisfaction.

6. Moving excess resources across product
development teams to increase resource
utilization.

7. Quickly reacting to opportunities for new product
development based on existing core assets.

At this stage our proposed RP-PL model can

handle points 1 and 2 mentioned above with the help
of what-if analysis. For point 3, our model is based on
the assumption that all the products have same release
dates. For point 4, our model develops the release
plans with an assumption that only one team is
developing all the products. Our model uses
stakeholder preferences in a quantitative manner to
develop the release plans thus it fulfills point 5. Since
we are considering only one team therefore our RP-PL
model does not address point 6. Our model can handle
any number of products and therefore it is possible to
introduce new products and generate release plans for
them based on the existing core assets. Consequently,
it satisfies point 7.

3. Modeling and Problem Statement

Ruhe and Ngo-The [5] have presented a hybrid

release planning model for conventional product
development. It is able to produce optimal release plan
solutions by combining the strength of computational
intelligence and the knowledge and experience of
human experts [5]. In this section we will present the
formal notation used by the model [5] and later map
the release planning problem for software product lines

Page 56 / 59

on it. In a SPL there are two types of features, i.e. core
asset features (Fn) and product specific features (Fm).
In our model we are assuming that these two types of
features are already decided during the scoping process
and core asset features are used by all the products
while each product specific feature is required by only
one of the products. Therefore, the total set F of
features in the SPL is given as F = Fn + Fm = {f(1),
f(2), …., f(n+m)}. These features can be assigned to
one of the K possible release options. This is described
by decision variables {x(1), x(2), …..x(n+m)} where
x(i) = k if we assign feature i to release option k ∈ {1,
2, …., K} and x(i) = 0 if feature i is postponed.

The model considers two types of dependencies
amongst features: coupling and precedence. Coupled
features must be released together while the
precedence relationship imposes to release features in a
certain order [5].

We assume an available resource capacity Cap(k)
for each release k. For simplicity we only consider a
single type of resource although the model [5]
considers capacities for different types of resources. If
feature f(i) requires an amount r(i) of development
resources then each release plan x must satisfy

 ∑x(i) = k r(i) ≤ Cap(k) (1)

Stakeholders are extremely important in release

planning. Assume a set of stakeholder S = {S(1), …,
S(q)}. Each stakeholder p can be assigned relative
importance λ(p) ∈ {1, …., 9}. S(p) = 1 indicates the
lowest and S(p) = 9 the highest degree of stakeholder
importance. Each stakeholder prioritizes every feature
based on two criteria using a nine point scale. The first
criterion is represented by value(p, i) and the second
criterion is represented by urgency(p, i).

The objective is to maximize a function F(x) among
all release plans x subject to satisfaction of resource
constraints described in equation 1. The function F(x)
depends on a number of factors like value of the
release, importance of stakeholders, urgency of a
feature and its value to stakeholders.

F(x) = ∑k = 1…K ∑i: x(i) = k WAS(i, k) (2)

with

WAS(i,k) = ξ(k)[∑pλ(p).value(p,i).urgency(p,i)] (3)

In (3), ξ(k) expresses the relative (normalized to 1)

importance of release k. This release planning model is
the core functionality of the decision support system
ReleasePlanner™ [6]. The goal of our research is to
extend its applicability to allow also release planning

for SPL. As a first step in this direction, we have
mapped RP problem for SPL on [5] and used
ReleasePlanner™ [6] to generate optimal release plans.
For that, we have made the following assumptions.
1. Core asset and product specific features along with

their mapping on the products are available from
the scoping process.

2. All the products in the SPL have the same release
dates for respective releases.

3. Only one team is developing all the products in
SPL.

4. No customization effort is required to use a core
asset in a product.

4. Hypothetical Case Study

We have developed an example by looking at a
number of case studies presented in literature and
adapted it to highlight some issues relevant to RP. The
purpose of this example is to illustrate the mapping of
RP problem for SPL on [5] and generate optimal
release plans using ReleasePlanner™ [6].

Consider a SPL with two products, Product A and
Product B. There are ten candidate features in the
product line. The assignment of features to products
and core assets (C.A.) is shown in figure 1. The
graphical representation shown in figure 1 is adapted
from [11] but here we are only interested in
precedence and coupling types of interdependencies.

Figure 1: Graphical view of features in the SPL

Page 57 / 59

In this example we are considering K = 2 releases.
There is one type of development resource and its
capacity is Cap(1) = 55 person days and Cap(2) = 45
person days for release 1 and 2 respectively. The
relative importance of releases are ξ(1) = 0.7 and ξ(2)
= 0.3, respectively. The coupling and precedence
constraints amongst the features are illustrated in
figure 1. There are two stakeholders S(1) and S(2) with
relative weights λ(1) = 8 and λ(2) = 5. The resource
requirements for the ten features are given in table 1.
Stakeholders’ votes on all of the features for value and
urgency criteria are also shown in table 1.

Table 1: Effort estimates and stakeholders’ votes

ReleasePlanner™ presents the decision maker with

up to five qualified alternative solutions. The term
“qualified” here refers to solutions proven to be at least
95% optimal for the stated objective function. We have
selected two solutions provided by the
ReleasePlanner™ to discuss them in more detail.

4.1. Solution 1

Table 2 presents the structure of solution 1

generated by the ReleasePlanner™. It lists down the
features and the releases in which they will be
developed. A core asset feature will only need to be
developed once for all the products. In this release plan
feature f(3) of Product A is postponed (PP).

Table 2: Release plan for SPL: Solution 1

Product A Product B

R1 R2 PP R1 R2
f(2)
f(5)
f(8)

f(1)
f(4)
f(9)
f(10)

f(3)

f(2)
f(5)
f(6)
f(7)

f(4)
f(10)

4.2. Solution 2

Table 3 presents structure of the second alternate

solution provided by the ReleasePlanner™.

Table 3: Release plan for SPL: Solution 2

Product A Product B
R1 R2 PP R1 R2 PP
f(2)
f(5)
f(8)

f(1)
f(3)
f(4)
f(9)

f(10)

f(2)
f(5)
f(6)
f(7)

f(4)

f(10)

4.3. Analysis

Both of the release plans presented above are
within 97% quality range with respect to objective
function, however, they differ in their structure. One of
the major differences is in terms of postponed features.
In solution 1, f(3) is postponed while in solution 2,
f(10) is postponed. Postponement of f(10) affects both
the products since it is a core asset. ReleasePlanner™
also provides comparison of the solution alternatives in
terms of resource utilization, stakeholders’ satisfaction
and performance with respect to prioritization criteria.
Based on the requirements of the product, their
respective importance, time-to-market and
stakeholders, the project manager can then select one
of the solution alternatives.

The strength of our technique is based on its ability
to combine human knowledge and expertise with
computational power to generate different scenarios
for supporting pro-active release planning. It also
supports generation of what-if scenarios by varying
resource capacities, release weights, stakeholder
weights or by pre-assigning features to specific
releases. One can imagine the complexity of this task
when there are tens of products in the product line with
hundreds of features to assign to releases while
satisfying the constraints. On top of this, the release
plan has to maximize the satisfaction of stakeholders’
of multiple products having conflicting interests. With
the help of ReleasePlanner™ decision support system,
release planning of a product line with any number of
products and features can be performed efficiently.

5. Work-in-Progress

Some of the assumptions mentioned in section 3,
under which we have mapped the RP-PL problem on
[5] are restrictive and do not necessarily reflect most of
the real world situations. We are currently working to

Stakeholder S(1) Stakeholder S(2) Feature Effort
r(i) f(i)

(p. days)
Value(1,i) Urgency(1, i) Value(2,i) Urgency(2, i)

f(1) 5 6 7 4 2
f(2) 14 5 8 7 6
f(3) 7 6 7 5 6
f(4) 16 4 2 6 7
f(5) 15 7 6 6 4
f(6) 10 6 7 6 3
f(7) 5 5 7 7 7
f(8) 8 6 6 5 8
f(9) 13 3 1 4 3
f(10) 10 5 3 7 7

Page 58 / 59

removing these assumptions by extending [5].
Extensions will include:
1. Allowing stakeholders to vote on developing a

feature as core asset or product specific.
2. Ability to generate release plans with multiple

teams, each developing one product of SPL.
3. Ability to move excess resources across product

and core assets development teams to improve
quality of release plan solutions.

4. Assigning relative weights to products in the
product line based on their time-to-market
requirements, economic benefits and stakeholders,
etc.

5. Evaluate impact of different organizational
structures i.e. separate core assets team vs. product
teams developing core assets on release plan
solutions.

Acknowledgements

We thank the Alberta Informatics Circle of
Research Excellence (iCORE) and the Higher
Education Commission of Pakistan (HEC) for their
financial support of this research. We also thank the
anonymous reviewers for their detailed and valuable
comments.

References

[1] http://www.sei.cmu.edu/productlines.
[2] D. Penny, “An Estimation-Based Management

Framework for Enhancive Maintenance in
Commercial Software Products,” In Proceedings of
the International Conference on Software
Maintenance, Montreal, Canada, 2002, pp. 122-130.

[3] M. Riebisch, D. Streitferdt and I. Philippow, “Feature
Scoping for Product Lines,” in Proceeding of
PLEES’03, International Workshop on Product Line
Engineering The Early Steps: Planning Modeling and
Managing, Erfurt, Germany, September 2003.

[4] L. Taborda, “Generalized Release Planning for
Product Line Architectures,” in Proceedings of the
SPLC 2004, The Third Software Product Lines
Conference, Boston, USA, August 2004, pp. 238 –
254.

[5] G. Ruhe and A. Ngo-The, “Hybrid Intelligence in
Software Release Planning,” International Journal of
Hybrid Intelligent Systems, Vol. 1(2004), pp. 99 -
110.

[6] http://www.releaseplanner.com
[7] O. Saliu and G. Ruhe, “Supporting Software Release

Planning Decisions for Evolving Systems,” in
Proceedings of the 29th IEEE/NASA Software
Engineering Workshop, Greenbelt, MD, USA, April
2005, pp. 14 – 24.

[8] D. Greer, “Decision Support for Planning Software
Evolution with Risk Management,” in Proceedings of
the 16th International Conference on Software
Engineering and Knowledge Engineering, Banff,
Canada, 2004, pp. 503 – 508.

[9] K. Schmid, “A Comprehensive Product Line Scoping
Approach and Its Validation,” in Proceedings of the
24th International Conference on Software
Engineering, Orlando, USA, May 2002, pp. 593 –
603.

[10] K. Schmid, “Scoping Software Product Lines – An
Analysis of an Emerging Technology,” in Software
Product Lines – Experience and Research Directions,
P. Donohoe, Ed. Kluwer Academic Publishers, 2000.

[11] P. Carlshamre et. al., “An Industrial Survey of
Requirements Interdependencies in Software Product
Release Planning,” in Proceedings of the Fifth IEEE
International Symposium on Requirements
Engineering, Toronto, Canada, 2001, pp. 84 – 91.

Page 59 / 59

	Pre-publication
	Library

