
Two polynomial algorithms for relabeling
non-monotone data

Ad Feelders

Marina Velikova

Hennie Daniels

Department of Information and Computing Sciences, Utrecht University

Technical Report UU-CS-2006-046

www.cs.uu.nl

ISSN: 0924-3275

Two polynomial algorithms for relabeling

non-monotone data

Ad Feelders∗ Marina Velikova† Hennie Daniels†

October 6, 2006

Abstract

We describe and compare two algorithms for making data sets monotone with
as few label changes as possible. These algorithms are useful for preparing data sets
for the analysis with data mining algorithms that require monotone data. Also, the
relabeled data set can be viewed as the monotone classifier with minimum error rate
on the training data. The first algorithm is a greedy algorithm that runs in O(LN3)
time, where L is the number of distinct class labels, and N is the number of obser-
vations, but it is not guaranteed to perform the minimum number of label changes
required. The second algorithm is an exact algorithm based on a translation of the
problem to finding a maximum weight independent set in the so-called monotonicity
violation graph. This problem, in turn, is solved by solving a minimum flow prob-
lem in a transportation network, and runs in O(N3) time. Experiments on artificial
and real data show that the greedy algorithm is typically very close to the optimal
solution.

1 Introduction

In many prediction problems it is reasonable to assume a monotone relationship between
the predictors and the response variable: an increase (decrease) in a predictor should (all
else equal) lead to an increase (decrease) in the response. In house pricing, for instance,
one would expect the price of a house to increase with the house area, volume and number
of rooms. In practice, however, the observed data are often non-monotone due to noise,
or the omission of important predictors. We present two algorithms for relabeling such
datasets in order to make them monotone. The objective of both algorithms is to do
this by changing as few labels as possible. Such an algorithm can be used for several
purposes:

1. Some data mining algorithms for constructing monotone models require monotone
data.

∗Department of Information and Computing Sciences, Universiteit Utrecht, ad@cs.uu.nl
†Department of Information Systems and Management, Tilburg University

1

2. Some data mining algorithms for constructing monotone models work better with
monotone data.

3. The relabeled data set may itself be viewed as a non-parametric monotone classifier
that minimizes the error rate on the training data. Since this classifier is defined
on the observed data points only, it would have to be extended with a rule to label
other points from the input space.

The remainder of the paper is organized as follows. In the next section we introduce
some notation and definitions, which are used in the discussion throughout the paper.
In section 3 we discuss two polynomial algorithms for relabeling: the greedy algorithm
introduced in (Velikova and Daniels 2004; Daniels and Velikova 2006) and an exact
algorithm based on solving a minimum flow problem. We show that the the greedy
algorithm is not guaranteed to produce a monotone data set with the minimum number
of label changes. In section 3.2 we describe a transformation of the relabeling problem
into a minimum flow problem in a transportation network. In section 4 we compare the
algorithms on a number of artificial and real data sets. Section 5 concludes the paper.

2 Preliminaries

Let X denote the vector of predictors (attributes), which takes values x in a k-dimensional
input space X = ×Xi, and let Y denote the class variable which takes values y in a one-
dimensional space Y. Let D = {(xi, yi)}N

i=1 denote the set of observed data points in
X ×Y. We also use the alternative representation U = {(xi, yi)}n

i=1, of n distinct points
in X × Y together with a vector of weights wi = n(xi, yi), i = 1, . . . , n, where n(xi, yi)
denotes the number of observations in D with X = xi and Y = yi. Clearly, we have
N =

∑n
i=1 wi. Furthermore, we assume a partial order on X and a total order on Y.

Typically, the partial order on X is the product order induced by total orders on Xi,
that is

x ≤ x′ ⇔ xi ≤ x′
i ∀i = 1, . . . , k,

but at no point do we require this to be the case.
A pair of points (xi, yi) and (xj , yj) from U (or D) is called non-monotone if

xi ≤ xj and yi > yj (1)

We define the monotonicity violation graph to be the directed graph G = (V,E), with
V = {1, 2, . . . , n} and (i, j) ∈ E if xi ≤ xj and yi > yj. The monotonicity violation
graph is the graph of a strict partial order, since it is

1. Anti-symmetric: (i, j) ∈ E ⇒ (j, i) 6∈ E.

2. Transitive: (i, j) ∈ E and (j, k) ∈ E ⇒ (i, k) ∈ E.

2

These properties follow immediately from the ordering on the class labels. We associate
with each node i ∈ V the weight wi. Finally, we define the downset ↓(i,S) and the upset
↑(i,S) for any S ⊆ V and i ∈ V :

↓(i,S)= {j ∈ S|xj ≤ xi} and ↑(i,S)= {j ∈ S|xi ≤ xj}.

3 Two polynomial relabeling algorithms

3.1 The greedy algorithm

In (Daniels and Velikova 2003), the authors present an algorithm for relabeling, which
will be referred to as the greedy algorithm in the remainder of this paper. The idea is to
reduce the number of non-monotone pairs by relabeling at least one data point in each
step. To do this, a data point is chosen such that the increase in consistently labeled
points is maximal.

The process is continued, until the data set is monotone. In the original version of the
algorithm introduced in (Daniels and Velikova 2003), the authors assume that the data
consist of unique points only, which may not be the case in practice (e.g., for discrete
predictor variables). Here we drop this assumption and present a formal description of
the generalized algorithm.

We call a point non-monotone if it violates the monotonicity constraint with at least
one other point. Let V = {1, . . . , N}, and let Q denote the set of indices of all non-
monotone points in D. For each data point i ∈ Q and for each y ∈ Y, we define

A(i, y) = {j ∈↓(i,V) |xj 6= xi ∧ yj = y}
B(i, y) = {j ∈↑(i,V) |xj 6= xi ∧ yj = y}
C(i, y) = {j ∈ V \ {i}|xj = xi ∧ yj = y}

Let ai
y, bi

y, and ci
y denote the number of points in A(i, y), B(i, y), and C(i, y), re-

spectively. Furthermore, we define
ymin, ymax − the minimum and maximum value of the class labels,
N(xi, yi) − total number of points consistently labeled with respect

to xi for the current label yi, i.e.,

N(xi, yi) = ai
ymin

+ . . . + ai
yi + bi

yi + . . . + bi
ymax

+ ci
yi .

For each i ∈ Q we compute the maximal increase, Ii
max, in the number of consistently

labeled points with respect to xi if the label of xi is changed into y as follows

Ii
max = max

y∈Y
N(xi, y) − N(xi, yi)

If there is more than one label with the same maximal increase in consistently labeled
points, then we choose the label closest to the current label of xi. This choice is unique

3

as shown in Lemma 3 in (Daniels and Velikova 2003). Finally, we select a point j ∈ Q for
which Ij

max is the largest, and change its label and the labels of all the points (xk, yk) ∈ D
that are identical to (xj, yj). If there is more than one point with the same maximal
increase, the choice is made arbitrarily. This process is repeated until the data set is
monotone. The correctness of the algorithm follows from Lemma 2 in (Daniels and
Velikova 2003). The algorithm outline is given in Algorithm 1.

Algorithm 1 Greedy relabeling
Initialization: Compute Q on the basis of D
while Q 6= ∅ do

for all i ∈ Q do
Ii
max = maxy∈Y N(xi, y) − N(xi, yi)

Λ = arg maxy∈Y N(xi, y) − N(xi, yi)
Form a triple (i, Ii

max, yi∗) where yi∗ ∈ Λ is the closest label to yi

end for
r = arg maxj∈Q Ij

max (choose randomly if not unique)
R = {k ∈ Q | (xk, yk) = (xr, yr)}
for all j ∈ R do

D(xj , yj) → D(xj, yr∗)
end for
Update Q on the basis of the modified data set D

end while

Next, we analyze the computational complexity of this algorithm. Let D denote
a data set of N points and L distinct labels. At each iteration of the algorithm, we
compute Q(D′) where D′ denotes the modified data set after a number of label changes.
Suppose there are p points in Q(D′). Then, for each step described in the algorithm,
the effort is computed as follows:

p
N(N − 1)

2
to compute Q(D′)

p L(N − 1) to compute Imax

L to compute Λ
p L to form the triples

p to find the triple with maximal Imax

p(p − 1)
2

to compute R

Hence, the total effort, C(p), for one iteration is

C(p) = p
N(N − 1)

2
+ p L(N − 1) + L + p L + p +

p(p − 1)
2

.

In the worst case when there are N non-monotone points in the data set and Q(D)
decreases by only one point at each step, the complexity is

4

x1, 1
•

•

•

•
x4, 2

x5, 2
x2, 1

x7, 2

x3, 1

•

•

x6, 2
•

Figure 1: Data set of seven points in a two-dimensional input space

N∑
p=2

C(p) = O(N3L).

This result shows that the greedy algorithm is polynomial in the number of points
and labels in the data. However, the greedy algorithm does not guarantee a minimum
number of label changes. To illustrate this, we consider the following example.

Figure 1 represents the structure of a data set of seven points with their labels, in a
two-dimensional input space. Obviously, the data set is non-monotone; the dotted lines
show the non-monotone relationships between the points. In order to make these data
monotone, we apply the greedy algorithm for relabeling. First, we compute the maximal
increase Ii

max in the number of consistently labeled points with respect to each point as
follows.

x1,x2,x3 x4 x5,x6 x7

N(xi, 1) = 0 N(xi, 1) = 1 N(xi, 1) = 1 N(xi, 1) = 5

N(xi, 2) = 2 N(xi, 2) = 0 N(xi, 2) = 1 N(xi, 2) = 2
⇓ ⇓ ⇓ ⇓

I1
max = I2

max = I3
max = 2 I4

max = 1 I5
max =I6

max = 0 I7
max = 3

The results show that the maximal increase in the number of consistently labeled
points, Imax = 3, is obtained for x7; so, this will be the point chosen to be relabeled
at the first step. In the next steps, the algorithm needs to relabel three other points to

5

make the data monotone. In other words, the algorithm will make four label changes
in total. However, if we relabel only the three points x1, x2, and x3, we also obtain a
monotone data set. This indicates that the greedy algorithm for relabeling could make
a sub-optimal choice for the set of points to be relabeled.

3.2 An optimal flow network algorithm for relabeling

A subset of the vertices of a graph is an independent set if no two vertices in the subset
are adjacent. The second algorithm is based on finding a maximum weight independent
set in the monotonicity violation graph. As Rademaker, De Baets, and De Meyer (2006)
observe, a maximum weight independent set in the monotonicity violation graph, corre-
sponds to a maximum size monotone subset of the data. Relabeling the complement of
the maximum weight independent set results in a monotone data set with as few label
changes as possible; it is important to note that it is always possible to find a consistent
relabeling of this complement. Although the monotonicity violation graph is defined to
contain a node for all distinct points in D, it is obvious that points that do not violate
the monotonicity constraint with any other point will always be part of the maximum
weight independent set, and can be ignored in the sequel.

Although finding a maximum independent set in an arbitrary graph is known to be
NP-hard (Garey and Johnson 1979), this is not the case for so-called comparability graphs
(the graph of a partial order). For such graphs, a maximum independent set corresponds
to a maximum antichain in the corresponding partial order, and can be computed in
O(N3) time by solving a minimum flow problem on a transportation network that is
easily constructed from the comparability graph (Möhring 1985). Since we have already
shown that the monotonicity violation graph is the graph of a partial order, we have a
polynomial time exact algorithm to compute a maximum weight independent set of G.

Möhring (1985) shows that the maximum weight independent set of a comparability
graph equals the minimum flow value in a transportation network that can be obtained
by a simple transformation of the graph. Hence, our problem is finally reduced to
finding this value. We next describe the transformation of the monotonicity violation
graph G = (V,E) to the corresponding transportation network G′ = (V ′, E′). Because
the monotonicity violation graph has weights associated with the vertices rather than
the edges (as is assumed by standard network flow algorithms), we transform vertices to
edges, by so-called vertex splitting:

V ′ =
⋃
i∈V

{i1, i2} ∪ {s, t},

where s is the source, and t is the sink of the transportation network. The edge set E′

contains edges i1i2 for all i ∈ V , and edges i2j1 for all ij ∈ E. Furthermore, E′ contains
edges si1 for all minimal points xi, and edges j2t for all maximal points xj. The edges
i1i2 ∈ E′ are assigned lower capacities wi and upper capacities +∞. All remaining edges
of E′ are assigned lower capacities of zero and upper capacities of +∞.

To illustrate this transportation network construction, we consider the data de-
picted in Figure 1. The set of lines E connecting the points indicate the monotonic-

6

4
1x

5
1x

7
1x

4
2x

5
2x

1

s t
7
2x

6
1x 6

2x

2
1x 2

2x

1
1x 1

2x

1

1

1

0

0

0 1

1

0

0

0

0

3
1x 3

2x
10

0

0

0

0

0

Figure 2: Transportation network based on the non-monotone data in Figure 1

ity violations; the corresponding monotonicity violation graph is G = (V,E) with
V = {1, 2, 3, 4, 5, 6, 7}, and E = {(4, 1), (7, 1), (5, 2), (7, 2), (7, 3), (6, 3)}. Figure 2 depicts
the transportation network associated with G. Each of the seven points is represented
by an edge with a lower capacity of one (all data points happen to be unique in this
example), and a upper capacity of +∞. The connections to the source and the sink,
and the edges representing the monotonicity violations are assigned lower capacities of
zero and upper capacities of +∞.

The problem of finding the maximum weight independent set in G can now be solved
by finding the minimum flow value fmin

val in G′. Furthermore, by the min-flow max-cut
theorem (Ford and Fulkerson 1962; Lawler 1976) fmin

val equals the maximum capacity of
an s, t-cut (or maximum cut) in G′, that is,

fmin
val = max

S,T




∑
ab∈E′

a∈S,b∈T

lc(ab) −
∑

ab∈E′
a∈T,b∈S

uc(ab)


 ,

where S, T is an s, t-cut of G′ = (V ′, E′), i.e., V ′ = S ∪ T , S ∩ T = ∅, s ∈ S, t ∈ T , and
where lc(ab) and uc(ab) denote the lower and upper capacity of edge ab ∈ E′.

As Möhring (1985) remarks, fmin
val must obviously be positive, and therefore an opti-

mal cut S, T contains no edges ab ∈ E′ with a ∈ T and b ∈ S, since uc(ab) = +∞ for each
such edge. This implies that the set of vertices A = {i ∈ V | i1i2 ∈ E′, i1 ∈ S, i2 ∈ T}
corresponding to an optimal cut, is an antichain of G. To see this, suppose that A is
not an antichain, that is, it contains comparable points i and j. Then, by the definition
of A, we have i1, j1 ∈ S and i2, j2 ∈ T . Since i and j are comparable, we have either
i2j1 ∈ E′ or j2i1 ∈ E′ which means we would have an edge from T to S in E′. But this
contradicts our observation that fmin

val must be positive.
Furthermore, since each antichain A in G induces an S, T cut in G′ by putting

S = {v ∈ V ′ | there is a directed path in G′ from v to i2 for some i ∈ A}

7

we have that the minimum flow value in G′ equals the maximum weight of an antichain
in G (Möhring 1985).

Finally, the set complement to the maximum weight independent set is the set of
points that need to be relabeled to get monotone data. For the network flow in Figure 2,
we find fmin

val = 4, i.e., the weight of the maximum weight independent set M is 4. This set
is obtained by the S, T -cut, where S = {s, 41, 51, 61, 71}, T = V ′\S, and M = {4, 5, 6, 7}.
Hence, we find that the set of points that need to be relabeled to make D monotone is
V \M = {1, 2, 3}. The relabeling algorithm can now be described as follows:

1. Find a maximum weight independent set M ⊆ V of G.

2. For all i ∈ M , set y∗i = yi.

3. Set R = V \ M

4. For each j ∈ R

(a) Let
y∗ = max{y∗i |i ∈ ↓(j,M)} and ȳ∗ = min{y∗i |i ∈ ↑(j,M)}

Pick y∗j ∈ [y∗, ȳ∗] and set M = M ∪ {j}, and R = R \ {j}.
Replace (xj , yj) by (xj , y

∗
j) in U .

(b) Stop when R is empty.

4 Experiments

First we conduct experiments with artificial data to compare the results from the appli-
cation of the greedy algorithm for relabeling and the minimum flow algorithm. To obtain
more sound assessment of the results, we generate a number of data sets by combining
the following characteristics:

• Number of points: 100 or 500,

• Number of attributes: 2 or 6,

• Number of class categories: 2 or 6,

• Noise level: up to 10%, 30%, or 60%.

Thus we obtain 24 different data sets in total. The attributes (independent variables)
in all data sets are drawn from the uniform distribution on [0,1]. The dependent variable
is generated by applying monotone functions on all independent variables as follows.

• For data sets with 2 independent variables, we use

z = x1 sin
(π

2
x2

)

8

• For data sets with 6 independent variables, we use

z = x1 + x2 + x3 + sin
(π

2
x4x5x6

)

Next we discretize the continuous dependent variable into a finite number of classes.
To do so, we split the z-values into a number of intervals corresponding to the required
number Ncl (2 or 6) of classes. Each interval i, i = 1, 2, . . . Ncl, is defined by

[
lb(i), lb(i+

1)
)
; lb(i) is the lower bound of the interval computed by

lb(i) =
i − 1
Ncl

· zmax,

where zmax is the maximum z-value.
In the next step, we turn the monotone data set into a non-monotone set by adding

random noise to the discrete labels. This is done by changing randomly the labels with
certain probabilities; for example, label y = 2 does not change with a probability of 90%
and change to either y = 1 or y = 3 with a probability of 5%.

On the non-monotone data thus generated, we apply both the greedy algorithm for
relabeling and the minimum flow algorithm to make the data monotone. The results
from the experiments with all data sets are reported in Table 1.

The results show that for 18 out of 24 data sets both algorithms make the data
monotone with the same number of label changes. We observe differences in this number
only for data sets with a high percentage of noise level (see the results in bold in Table 1).
For five data sets, the greedy algorithm for relabeling tends to make only from 1 to 3
additional label changes. Exceptionally, in the one case where nearly half of the data
points are relabeled, we have a difference of 10 label changes between the algorithms.
Based on these results we conjecture that the greedy algorithm for relabeling makes a
number of label changes that is close to the minimum.

Next we assess the performance of the both algorithms on real data sets, which
represent monotone classification problems. The characteristics of the data sets are
given in Table 2. The bond rating data has been used in previous studies (Daniels and
Kamp 1999; Daniels and Velikova 2006), whereas the other four data sets are publicly
available from the UCI data repository (Newman, Hettich, Blake, and Merz 1998). The
original AutoMpg data set represents a monotone regression problem, and to transform
it into a classification problem we discretized the dependent variable into two classes: a
car has low (≤ 28) or high (> 28) mileage per gallon (mpg).

Next, for all data sets we check the direction of influence of each attribute with re-
spect to the class variable. The correlation coefficients reveal that for the Pima Indian
data all the attributes have a positive influence, whereas for the other data sets we ob-
serve both attributes with positive and negative influences. Since we consider increasing
monotonicity in this study, we synchronize the direction of influence to be positive of
all the attributes with respect to the class variable. To do so, we perform the following
linear transformation on each attribute x with a negative correlation coefficient:

xi = xmax − xi + xmin, for i = 1, . . . , N,

9

Table 1: Results from the experiments with the greedy algorithm for relabeling and the
minimum flow algorithm applied on artificial data sets

Number of label changes
#

points
#

attributes
class

categories

Noise
level

(up to)
Greedy

algorithm for
relabeling

Minimum
flow

algorithm

10 % 3 3

30 % 24 242

60 % 40 40

10 % 7 7

30 % 19 19

2

6

60 % 43 41

10 % 1 1

30 % 7 72

60 % 12 12

10 % 3 3

30 % 7 7

100

6

6

60 % 14 13

10 % 31 31

30 % 113 1132

60 % 214 212

10 % 39 39

30 % 134 131

2

6

60 % 247 237

10 % 5 5

30 % 42 422

60 % 94 93

10 % 8 8

30 % 31 31

500

6

6

60 % 68 68

where N is the number of data points in a data set, and xmax, xmin are the maximum
and minimum values of x in the data, respectively. This transformation has been applied
to the following attributes:

• Bond rating: cf/d, cf, and cov;

• AutoMpg: Cylinders, Displacement, Horsepower, and Weight;

• Breast Cancer Ljubljana: Menopause, Tumor-size, Inv-nodes, Deg-malig, and Ir-
radiat;

• Haberman’s survival: Year of operation.

10

Table 2: Characteristics of real data sets with their degree of monotonicity

Data set
Number
of points

Number
class categ.

Number of
attributes

Number of
comparable pairs

Degree of
monotonicity

AutoMpg 392 2 7 30 727 99.9 %

Breast
Cancer L.

277 2 9 7 586 93.5 %

Bond
rating

256 7 5 9 685 98.9%

Hab 306 2 3 14 575 87.7 %

Pima 768 2 8 21 553 97.7 %

Table 3: Results from the experiments with the greedy algorithm for relabeling and the
minimum flow algorithm applied on real data sets

Number of label changes

Data set
Greedy algorithm

for relabeling
Minimum flow

algorithm

AutoMpg 7 7

Breast
Cancer L.

42 41

Bond
rating

28 28

Hab 56 55

Pima 54 53

Furthermore, for each data set the measure for the degree of monotonicity (DgrMon)
of the data is computed as the fraction of monotone pairs of all comparable pairs in the
data. Although the problems they are derived from are monotone, it is clear that all
data sets contain inconsistencies. Therefore we apply the greedy algorithm for relabeling
and the minimum flow algorithm to resolve them. The number of label changes made
by both algorithms are presented in Table 3. The results clearly indicate that both
algorithms make the same or very close number of label changes–the difference in the
number is one point only.

11

5 Conclusions

We have discussed two polynomial algorithms for turning non-monotone into monotone
data by changing the labels of as few points as possible. The greedy algorithm is based on
previous studies and works by reducing the number of non-monotone pairs by relabeling
only one data point in each step. Although the algorithm does not guarantee a solution
with a minimum number of label changes, it makes the data monotone in a small number
of steps. The second algorithm is based on finding a maximum weight independent set
in the monotonicity violation graph. This can be done in polynomial time, because the
monotonicity violation graph is the graph of a partial order. Relabeling the complement
of the maximum weight independent set gives a monotone data set with a minimum
number of label changes. Experiments on artificial and real data show that the number
of points relabeled by the greedy algorithm in general is very close to the minimum. On
the real data sets, the difference was shown to be at most one point.

References

Daniels, H. and B. Kamp (1999). Application of MLP networks to bond rating and
house pricing. Neural Computing & Applications 8 (3), 226–234.

Daniels, H. and M. Velikova (2003). Derivation of monotone decision models from
non-monotone data. Center Internal Report 2003–30, Tilburg University.

Daniels, H. and M. Velikova (2006). Derivation of monotone decision models from
noisy data. To appear in IEEE Transactions on Systems, Man and Cybernetics,
Part C .

Ford, L. R. and D. R. Fulkerson (1962). Flows in networks. Princeton, NJ: Princeton
University Press.

Garey, M. and D. Johnson (1979). Computers and Intractability: a Guide to the Theory
of NP-Completeness. New York: Freeman.

Lawler, E. L. (1976). Combinatorial optimization: networks and matroids. New York:
Holt, Rinehart and Winston.

Möhring, R. H. (1985). Algorithmic aspects of comparability graphs and interval
graphs. In Graphs and Order, pp. 41–101. Dordrecht: Reidel.

Newman, D. J., S. Hettich, C. L. Blake, and C. J. Merz (1998). UCI Repository of Ma-
chine Learning Databases. http://www.ics.uci.edu/~mlearn/MLRepository.
html.

Rademaker, M., B. De Baets, and H. De Meyer (2006). Data sets for supervised
ranking: to clean or not to clean. In Proceedings of the fifteenth Annual Ma-
chine Learning Conference of Belgium and The Netherlands: BENELEARN 2006,
Ghent, Belgium, pp. 139–146.

Velikova, M. and H. Daniels (2004). Decision trees for monotone price models. Com-
putational Management Science 1 (3–4), 231–244.

12

