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Abstract
In September 2006, the Second International Workshop on Parameterized and
Exact Computation was held in Ziirich, Switzerland, as part of ALGO 2006. At the
end of IWPEC 2006, a problem session was held. (Most of) the problems mentioned
at this problem session, and some other problems, contributed by the participants of
IWPEC 2006 are listed here.

1 Introduction

In September 2006, the Second International Workshop on Parameterized and Exact Com-
putation was held in Ziirich, Switzerland, as part of ALGO 2006. At the end of IWPEC
2006, a problem session was held. Below, you find (most of) the open problems, mentioned
by the participants of IWPEC in this problem session, and a few other open problems
in the field of parameterized and exact algorithms. The problems have sometimes been
edited, to provide some additional backgrounds.

2 The problems

2.1 Polynomial Kernels

Let Poly(k) be the class of problems that have a polynomial size kernel. For the precise
definition of Poly(k), and more discussion on kernelizability, see e.g., [14]. For the next
three problems, it is open whether they belong to Poly(k).

2.1.1 Clique Cover (contributed by Mike Fellows)

CLIQUE COVER is the problem, given a graph G and a parameter k, to find at most k
cliques in G, such that each edge belongs to a clique. This problem belongs to FPT [30].
Does this problem have a polynomial kernel?
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2.1.2 Multicut in Trees (contributed by Mike Fellows)

In the MULTICUT IN TREES problem, we are given an undirected tree T'= (V, E)j and a
collection H of h pairs of vertices in V, and a parameter k. We ask for a set of at most
k edges, whose removal separates each pair of vertices in H. This problem generalizes the
VERTEX COVER problem. For a discussion, see [32].

Guo [32] gives a set of kernelization rules that give a kernel with O(k3*) vertices. Does
this problem have a polynomial kernel?

2.1.3 Deleting edges to obtain an H-free graph (contributed by Leizhen Cai)

Let H be a fixed graph with h vertices. Determine whether the following problem has a
polynomial-size kernel: can we delete at most k edges from a graph GG to make G an H-free
graph?

We note that the problem is FPT by Cai [15], and that a similar problem of deleting
k vertices to make G an H-free graph has a kernel of size O(k"™!) as the problem is
easily transformed into the h-HITTING SET problem, which has a kernel of size O(k"!)
by Nishimura, Ragde and Thilikos [39].

2.2 Polynomial kernels for degree-bounded graphs (contributed
by Leizhen Cai)

Recently, Cai, Chan and Chan [17] have put a wide range of problems on degree-bounded
graphs into FPT by using their random separation method. Roughly speaking, the problem
of finding k vertices (edges) S to optimize a value ®(S) (satisfy a property P(S)) is FPT
for degree-bounded graphs if for any two disjoint sets V; and V5 of vertices, ¢(V; U Vy) =
d(V1) + ¢(Va) (respectively, P(V; U Vy) = P(V}) A P(V,)) when Vi and V4 are a certain
distance apart.

Is there a general method to construct polynomial-size kernels for such problems on
degree-bounded graphs? In particular, find polynomial-size kernels for the problems of
finding an induced H-subgraph, where H is a fixed graph with £k vertices, in a degree-
bounded graph.

2.3 Linear Kernels

For some problems, polynomial size kernels are known. Are there kernels of smaller, e.g.,
linear size.

2.3.1 Feedback Vertex Set (contributed by Mike Fellows)

In the FEEDBACK VERTEX SET problem, we are given an undirected graph, and a pa-
rameter k, and ask if there is a set S of at most k vertices, such that each cycle in the
graph contains a vertex in S. A kernel with O(k'') vertices was given in [14], which was



improved to a kernel with O(k3) vertices in [9]. Does this problem have a linear size (or
quadratic size) kernel?

2.3.2 Convex Recoloring of Trees (contributed by Mike Fellows)

In the CONVEX RECOLORING OF TREES problem, we are given a tree 7' = (V, E), a
coloring of the vertices V' — C, and a parameter k. We must decide if we can change
the colors of at most k vertices, such for each color ¢, the set of vertices with color ¢ is
connected. See [45, 10, 38, 7]. A kernel with O(k?) vertices was recently obtained by
Bodlaender et al. Is there a linear size kernel?

2.3.3 Edge Dominating Set (contributed by Mike Fellows)

An edge dominating set in an undirected graph G = (V| F) is a set of edges D C E such
that each edge in F belongs to D or has an endpoint in common with an edge in D. In
the EDGE DOMINATING SET problem, we are given a graph G and parameter k, and ask
if there is an edge dominating set of size at most k.

The best known bound on a kernel for EDGE DOMINATING SET is O(k?), which follows
directly from the quadratic kernel for MINIMUM MAXIMAL MATCHING by Prieto [41]. See
e.g., also [26]. Is there a linear size kernel?

2.4 Membership in FPT

The following problems are not known to have an FPT algorithm, but are also not known

to be W[1]-hard.

2.4.1 Cluster editing with don’t care edges (contributed by Mike Fellows)

In the CLUSTER EDITING problem, we are given a graph G = (V, E) and a parameter k.
We ask if we can obtain a disjoint union of cliques, by at most k editing operations: each
editing operation adds or deletes an edge. This problem is known to be in FPT; see e.g.,
[29].

Consider the variant with don’t care edges; i.e., for some edges, the cost of editing these
is zero. Does this problem belong to FPT? Possibly, the technique of iterative compression
can be applied here.

2.5 Exactly k-Edge Subgraph (contributed by Leizhen Cai)

Consider the following problem:

EXACTLY k-EDGE SUBGRAPH

INSTANCE: Graph G = (V, E) and parameter k.

QUESTION: Is there V' C V such that G[V’] contains exactly k edges?
Does this problem belong to FPT?



The problem is FPT if k = (;) for some integer ¢ or the clique number of GG is bounded
by a constant, but NP-complete if £k is part of input. Furthermore, its parametric dual
EXACTLY (m — k)-EDGE SUBGRAPH is equivalent to the problem of finding k vertices V'
to cover exactly k edges, which is FPT by the random separation method of Cai, Chan
and Chan [17] but is unknown whether it admits a polynomial-size kernel.

2.6 Maximum #ki-Edge Multicomponent Cut (contributed by
Leizhen Cai)

Does the following problem belong to FPT?
MAXIMUM k-EDGE MULTICOMPONENT CUT
INSTANCE: Graph G = (V, E), integer [, and parameter k.
QUESTION: Are there k edges E’ in G such that G — E’ has at least [ components?
We note that Cai [16] has shown that the parametric dual MAXIMUM (m — k)-EDGE
MULTICOMPONENT CuUT is W/[1]-hard, and so are their corresponding vertex versions.

2.7 Computing Treewidth
2.7.1 Treewidth-k recognition (contributed by Jan Arne Telle)

Arnborg, Corneil, and Proskurowski gave a polynomial (O(n**?)) time algorithm for the
problem to determine if a given graph has treewidth at most k, for fixed k& [6]. Using graph
minor theory, Robertson and Seymour [43] showed (non-constructively) that the problem
can be solved in O(n?) time (and thus belongs to FPT.) This was improved to O(n log®n)
time by Lagergren [35], and to O(nlogn) time by Reed [42]; and turned into a constructive
result by Lagergren and Arnborg [36] and Bodlaender and Kloks [11]. A (constructive)
linear time algorithm was given in [8]. As written at the end of Section 6 of [8], this linear
time algorithm uses time O(c*’n) for some (large) ¢. The version of this algorithm in [40]
has the same type of running time. In both cases, this is because these algorithms use
an algorithm from [11] as a subroutine, and that algorithm has this function of k in its
running time.

Is there an algorithm for the fixed parameter case of treewidth whose running time as
a function of k is better? E.g., is there an algorithm for TREEWIDTH whose running time
is O(c*p(n)) for some constant ¢ and a polynomial p?

2.7.2 Treewidth of planar graphs (contributed by Hans Bodlaender)

The famous ratcatcher algorithm by Seymour and Thomas [44], see also the implementation
work by Hicks [33, 34] and the constructive version by Gu and Tamaki [31], computes in
polynomial time the branchwidth of a planar graph. This gives an 1.5-approximation for
the treewidth of planar graphs. However, it is a long outstanding and probably difficult
open problem what the complexity is of computing the treewidth of planar graphs.



2.7.3 Approximation of treewidth (contributed by Hans Bodlaender)

A problem that is already open for a long time is whether there is a polynomial time
approximation algorithm for treewidth with a constant performance ratio. The current
best known result is that one can find in polynomial time for graphs of treewidth k a tree
decomposition of width O(k+/logk), using an algorithm by Feige et al. [25]. Also, there
are several algorithms that are exponential in k& (but polynomial in n), that, given a graph,
either decide that the treewidth is more than £, or give a tree decomposition of width at
most ck for some constant ¢, e.g., [35, 5, 42].

2.7.4 Enumeration of potential maximal cliques (contributed by Hans Bod-
laender)

In 2004, Fomin, Todinca, and Kratsch [27] gave an exact algorithm for treewidth that
uses 0(1.9601™) time. This algorithm was based upon the algorithm by Bouchitté and
Todinca [13, 12] for computing the treewidth in time, polynomial in the number of minimal
separators. The algorithm was improved by Villanger to O(1.8899") time [46]. These
algorithms list the collection of potential maximal cliques and then use time, linear in the
number of potential maximal cliques. Villanger also has shown that the number of potential
maximal cliques in a graph G is O(1.8135™).

A set of vertices S C V is a potential mazimal clique in a graph G = (V| E), if there is
a minimal triangulation H = (V, F') of G where S is a maximal clique. (H is a minimal
triangulation of G, if H is chordal, contains GG as a subgraph, and there is no chordal graph
K that contains G as a subgraph, and is a proper subgraph of K.) Potential maximal
cliques can be seen as the building blocks of tree decompositions: there is always a tree
decomposition of optimal width ({X; | i € I},T = (I, F')) such that each X; is a potential
maximal clique.

Is there an algorithm that lists all the potential maximal cliques of a graph G in
O(p(n) - r) time, if G has r potential maximal cliques?

Such an algorithm would imply a faster exponential time algorithm for TREEWIDTH.
Also, it might be of use for practical algorithms to compute the treewidth, as the listing
of potential maximal cliques seem the practical bottleneck for the algorithms of [27, 46].

2.8 Subexponential time solutions for graph problems without
topological constraints (contributed by Jianer Chen)

Several graph problems restricted to graphs with some topological constraint have subex-
ponential time solutions. E.g., Alber et al. [1] have shown that DOMINATING SET can
be solved in O(¢V*p(n)) time on planar graphs; many problems have O(cV™p(n)) time
algorithms on planar graphs [37]; see e.g., [3, 2, 28, 20, 24].

Algorithms with a similar type of running time have been obtained for problems on
other classes with a topological constraint, e.g., for graphs on a fixed surface, or graphs
avoiding a given graph as minor. See e.g., 22, 21, 23].



At the moment, all NP-hard graph problems that are known to have subexponential
time algorithms have certain topological constraints on graphs. Topological constraints
seem necessary for some graph problems to have subexponential time algorithms. For ex-
ample, consider the problems Independent Set, Vertex Cover, Dominating Set (and other
related problems) on graphs of genus g(n). It is known that these problems have subexpo-
nential time algorithms IF AND ONLY IF g(n) = o(n), see [19].

Are there examples of (natural) problems on graphs, that have not such a topological
constraint, and also have subexponential running time, i.e., can be solved in O(c®™p(n))
time?

2.9 The Exponential Time Hypothesis and Subgraph Problems
(contributed by Daniel Marx)

Consider the SUBGRAPH problem: given are graphs G = (Vi, Eg) and H = (Vg, Eg),
and the question is whether G is isomorphic to a subgraph of H. Consider the version of
this problem, where the parameter is |Vg|. MAxiMUM CLIQUE is a special case of this
problem, thus SUBGRAPH is clearly W[1]-hard. It is known that there is no f(k)n°® time
algorithm for finding a k-clique, unless the Exponential Time Hypothesis (ETH) fails [18];
therefore, there is no f(|Vg|)n°VeD time algorithm for SUBGRAPH unless ETH fails.

Does the same result hold when we take as parameter |Eg|? Le., prove that the following
problem has no f(|Eg|)n°(¥el time algorithm, unless ETH fails:

SUBGRAPH

Input: Graphs G = (Vg, Eg), H = (Vu, Ey).
Question: Is GG isomorphic to a subgraph of H?
Parameter: |Eg]|.

Note that if the treewidth of G is o(|E¢g|), then the problem can be solved in time
f(|Eg|)n°U¥eD) using color-coding [4]. Therefore, a positive answer to the question should
rely on sparse graphs having treewidth linear in the number of vertices, e.g., expander
graphs.

3 Conclusion

Many other interesting open problem can be found in current papers, of which we want to
explicitly mention the overview of Woeginger on open problems in exact computation [47]
from IWPEC 2004.

We hope to see answers to the problems, and more open problems in the literature in
the coming years, perhaps in IWPEC 2008.
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