FAT-miner: Mining Frequent Attribute Trees

Jeroen De Knuf

Department of Information and Computing Sciences,
Utrecht University

Technical Report UU-CS-2006-053

www.cs.uu.nl

ISSN: 0924-3275

FAT-miner: Mining Frequent Attribute Trees

Jeroen De Knijf
October 24, 2006

Abstract

Data that can conceptually be viewed as tree structures abounds in domains
such as bio-informatics, web logs, XML databases and multi-relational databases.
Besides structural information such as nodes and edges, tree structured data also
often contains attributes, that represent properties of nodes. Current algorithms for
finding frequent patterns in structured data, do not take these attributes into account,
and hence potentially useful information is neglected. We present FAT-miner, an
algorithm for frequent pattern discovery in tree structured data with attributes. To
illustrate the applicability of FAT-miner, we use it to explore the properties of good
and bad loans in a well-known multi-relational financial database.

1 Introduction

Frequent tree mining has become an important and popular problem in the field of knowl-
edge discovery and data mining. The main reasons for the increase in interest are the
growing amount of semi-structured data (e.g. XML databases) and the urge to analyze
and mine these databases. Furthermore, the availability of tree mining algorithms such as
[2, 13, 16] to exploit these databases, without losing information on the structure of the
data, has increased the interest of the research community. Briefly, given a set of tree data,
the problem is to find all subtrees that satisfy the minimum support constraint, that is,
all subtrees that occur in at least n% of the data records.
Applications of frequent tree mining include the following:

e Web log mining: Frequent access trees from a database of web logs, where each
record corresponds to the entire forward access of a user, are explored in [16]. These
frequent access trees can be used to improve the design of the web site.

e Classification and clustering: The work presented in [17] uses a frequent tree mining
algorithm to extract frequent substructures of XML data, the data is then classified
according to its structure.

e Database indexing: In [15] a frequent tree mining algorithm is used to extract frequent
tree query patterns out of a large collection of XML queries. The answers to the
frequent tree query patterns are then stored and indexed for faster retrieval.

e Exploration of the data source: When confronted with a large unknown data source,
frequent tree mining can be used to help a user understand the data, because fre-
quently occurring structures give insight in the dataset. This idea is used in the work
of Wang and Liu [13], on a subset of the Internet Movie Database (IMDB).

Without doubt the most commonly used tree structured datasets are XML data, but
also multi-relational datasets often have a star-shaped or snowflake structure: OLAP-
databases are well known examples. These structures are essentially trees and hence tree
mining algorithms should be suited to analyze this type of data. However, current tree
mining algorithms neglect the existence of attribute values in XML data and are not
applicable to multi-relational datasets. In this work, we consider the frequent tree mining
problem, where the attributes associated with each node in the tree play a crucial role in
the mining algorithm.

This paper is organized as follows: In the next section we motivate the assumptions
we made. In section 3 we discusses the basic concepts necessary for frequent attribute
tree mining. The following section discuss the frequent tree mining algorithms which
will later be used in FAT-miner. In section 5 two different variants of FAT-miner are
proposed: first for the induced subtree relation and secondly for the embedded subtree
relation. Furthermore, these algorithms are theoretically compared with a straightforward
approach to attribute tree mining. In section 6 we apply our algorithms to a well known
multi-relational financial dataset and discuss the results. Furthermore, an experimentally
comparison is made between FAT-miner and the straightforward approach to attribute
tree mining. In section 7 we relate frequent attribute tree mining with multi-relational
mining and mention some advantages of the first approach. In the final section we draw
conclusions and give directions for further research.

2 Motivation

We define an attribute tree to be a labeled rooted ordered tree, with a non-empty attribute
set assigned to each node. The motivation behind this constraint is twofold:

1) Informativeness: When considering tree structured data containing attributes,
a pattern where each node has some attributes attached to it is more informative than
its counterpart without attributes, that is, the attributes attached to the nodes reveal
additional information about this node. In fact, the “at least one attribute” constraint
can be viewed as insisting on more specialized patterns. Consequently, from a frequent
pattern attribute tree we can also derive all combinations of this frequent pattern without
attributes. As an example of non-informative patterns without attributes consider the
multi-relational dataset described in subsection 6.1. From the database scheme we apriori
know that every loan has an account, and hence it is uninteresting to ‘discover’ this type of
patterns. However, allowing nodes without attributes results in a large number of this type
of uninteresting patterns. In semi-structured data we usually do not apriori know that a

node occurs in the tree. Although in such cases nodes without attributes are not entirely
uninformative, they are still less informative than their counterparts with attributes. For
example, consider the Wikipedia XML dataset as described in subsection 6.2, almost every
XML document has a couple of nodes of type Wikipedia link; for finding discriminating
patterns this information is not very helpful. However, attributes assigned to this node
describe to which document the link points, and hence finding patterns with the attributes
associated to the collection link nodes, results in very discriminative patterns.

2) Complexity: As theoretically argued in subsection 5.1 and experimentally shown
in subsection 6.2 mining frequent tree patterns without the constraint is unfeasible from a
computational point of view, even for small data sets.

Although it make no sense to use FAT-miner for tree structured data without attributes,
the previously mentioned advantages also apply when some of the nodes contain attributes
and others not; a typical example is XML data. When mining semi-structured data,
a pre-processing step is needed to transform these data trees into attribute data trees.
Practically, when the data is loaded a special (dummy) attribute is assigned to the nodes
in the data trees without any attributes.

The reader should note that our definition differs from the definition used by Termier
et. al [12], who use the term attribute tree to denote a rooted (ordered or unordered) tree
where no two children of a node have the same label.

3 Preliminaries

In this section we provide the basic concepts and notation used in this paper. A labeled
rooted ordered attribute tree T' = {V, E, <, L, v, M } is an acyclic directed connected graph
which contains a set of nodes V', and an edge set E. The labeling function L is defined as
L :V — X ie., L assigns labels from alphabet ¥ to nodes in V. The special node vq is
called the root of the tree. If (u,v) € E then u is the parent of v and v is a child of u. For
a node v, any node u on the path from the root node to v is called an ancestor of v. If u is
an ancestor of v then v is called a descendant of u. Furthermore there is a binary relation
‘<’ C V2 that represents an ordering among siblings. The size of a tree is defined as the
number of nodes it contains; we refer to a tree of size k as a k-tree. The set of attributes is
denoted by : A = {ay,...,a,}, where each attribute takes its value from a finite domain.
We further assume that there is an ordering among the attributes; i.e., a; < a;. To each
node v in V', a non-empty subset of A is assigned; we call this set the attributes of v. More
formally: M :V — P(A) \ {@}.

Rooted ordered attribute trees are an extension of rooted ordered trees. Since mining
rooted ordered trees is well explored [2, 16], we recall here some definitions which we will
later extend for attribute trees.

Definition 1 Given two labeled rooted trees Ty and Ty we call Ty an induced subtree of T}
and T1 an induced supertree of Ty, denoted by Ty =; T}, if there exists an injective matching

function ® of Vi, into Vi, satisfying the following conditions for any v, vy, vy € Vp,:

1. ® preserves the labels: Lr,(v) = Ly, (®(v)).
2. ® preserves the order among the siblings: if vi <r, ve then ®(vy) <p, P(v2).

3. ® preserves the parent-child relation: (vi,vs) € Er, iff (®(vy), P(vq)) € Eny.

Besides the induced subtree relation, another subtree relation is also often used in
frequent tree mining:

Definition 2 Given two labeled rooted trees Ty and Ty we call T5 an embedded subtree
of T1 and T} an embedded supertree of Ty, denoted by Ty <. T}, if there exists an injective
matching function ® of Vrp, into Vi, satisfying the conditions 1 and 2 of definition 1.
Additionally, ® has the following property for any vi,vy € Vi, :

3’. @ preserves the ancestor-descendant relation: if (vi,v9) € Ep, then ®(vq1) is an an-
cestor of ®(vy) in Tj.

In the remainder of this paper we use 77 < T, to denote that T is either an induced
or an embedded subtree of T5.

Let D = {dy,...,d,} denote a database where each record d; € D, is a labeled rooted
ordered tree. For a given labeled rooted ordered tree T we say 1" occurs in a transaction
d; if T is a subtree of d;. Let 04 (T) = 1 if T < d; and 0 otherwise. The support of a
tree T in the database D is then defined as ¥)(T') = >, 04(T), that is the number of
records in which T occurs one or more times. T is called frequent if ¢(T")/|D| is greater
than or equal to a user defined minimum support (minsup) value. The goal of frequent
tree mining is to find all frequently occurring subtrees in a given database. Notice that
is an anti-monotone function: T; < T; = ¢(T;) > ¢(1};). The anti-monotonicity property
of v is used to efficiently compute all the frequent subtrees of a database.

4 Mining Frequent Trees

In this section we briefly discuss frequent tree mining without attributes. Enumeration of
all frequent induced subtrees is accomplished by using the rightmost extension techniques
described in [2]: a (k — 1)-tree is expanded to a k-tree by adding a new node only to a
node on the rightmost branch of the (k — 1)-tree. The rightmost branch of a tree is the
unique path from the root to the rightmost leaf. Note that for each k-tree its parent is
uniquely defined by removing the rightmost node. This procedure of extending pattern
trees ensures that each pattern tree is counted exactly once. The algorithm starts by first
computing the frequent 1-patterns. Then each previously found pattern is extended until no
more frequent extensions are possible. For support counting and extension of the frequent
pattern tree, occurrence lists are used. For each subtree T, there is an occurrence list of
T where all mappings from the nodes of T' to the database are recorded. More formally,

occ(T, D) = Ugep{{®L(v1), ..., ®L(vi)}, ..., {®4(v1), ..., P (vi)}} where (vy,...,v) € Vp
and |T| = k; with ®} ... ®! the distinct matching functions from T into d.

Zaki [16] introduces methods to enumerate all embedded subtrees. Trees are encoded
as strings: the labels of the tree are added in depth first order to the string. Whenever the
depth first search backtracks, a special symbol (—1 with —1 ¢ X)) is added to the string,
to preserve the topological structure of the tree. The string encoding of a tree T has an
interesting property: if either the last or second last label from the string is removed, the
resulting string is an embedded subtree of T'. This property is used to enumerate all fre-
quent subtrees: a candidate (k+1)-tree is generated by joining two frequent k-subtrees that
share the same k& — 1 prefix. Starting from the frequent 1-patterns, all frequent trees are
enumerated by performing a depth first search. For support counting and joining of trees a
scope list representation of the database is used. For each frequent subtree T of size k, the
corresponding scopelist of T" records all occurrences of T'. Per occurrence a triple (¢, m, s)
is used , where t is a tree id of d;; i.e., the identifier of the database tree in which T occurs,
m the (pre-order) positions of the nodes in d; of the first £ — 1 nodes from 7’ finally s the
scope of the rightmost node of T'. The scopes of the rightmost nodes are used when two
k-trees are joined: one can compute from it whether one node is an ancestor/descendant
of the other. Formally the scopelist of a tree is defined as L(T, D) = Ugep
{(id(d), {OY (1), .., (v 1)}, Scope(@L())), . ., (id(d) {B(vr); .., B (v 1)}, Scope(@(vx)))}
where (vq,...,v;) € Vp and |T| = k; with ®}, ... ®! the distinct matching functions from
T into d; id(d) the unique identifier of a database record and Scope(v) the scope of the
node.

5 Mining Frequent Attribute Trees

To mine attribute trees we first need to define the subtree relations for attribute trees.
An intuitive and simple additional criterion to the definitions 1 and 2 is that the subtree
relation should preserve the attributes; i.e., we add to definitions 1 and 2:

4. Yv € Vg, : M(v) C M(P(v)).

5.1 Naive Approach

A straightforward approach to mine attribute trees is to create a new node for every
attribute-value pair of a node v and add these newly created nodes as child nodes of v.
Since there is an ordering among the attributes, these newly created nodes can be added
according to that order and by convention all get an ordering before (or after) the original
children of v.

The advantage of this encoding is that one needs to only slightly modify the existing
rooted ordered tree mining algorithms discussed in the previous section to be able to
mine attribute trees. The disadvantage is however that the algorithms may return trees
containing nodes without any attributes; as we have argued in section 2 such trees are

unlikely to be interesting. A possible solution is to post-prune the output such that all non-
attribute trees (that is, trees having empty attribute sets) are thrown away. A drawback
of the naive approach with post-pruning is that the algorithm spends effort in computing
trees that will later be removed. The question arises, how many trees the naive algorithm
would produce that turn out not to be attribute trees. To answer this question we compute
both a lower and an upper-bound for the number of non-attribute trees the naive approach
would generate.

To compute the upper-bound, we give an analysis of the worst case scenario of the
naive mining algorithm. Suppose we have a tree T" with n nodes, and m attribute-value
pairs assigned to each node. For our analysis we require T to have the maximal number
of induced subtrees possible. This is the case when we have a root with n — 1 children
attached to it. Then the number of trees reported with the naive approach can be derived
as follows:

1. The number of trees of size one = n and since each tree has m attribute-value pairs
there are n x 2™ different trees of size one.

2. The number of trees of size two equals , that is, if we pick the root node we

n J—
1
still have to choose one node out of n — 1. Each of these trees has m attribute-value

-1 x (2™)? different trees of

pairs associated with each node; hence there are 1

size two.

Generalizing this we get:

N (naive) = n2™ +:§ (" L L) (2m)*) (1)

While the number of attribute trees A (ideal) equals:

¢ n—1
,—/H _
N (ideal) =n2™ — n + E < n—1) (2m — 1>(k+1)
k=1

k
n—1 " — 1
[p:=2m—1)=C— T +T Z (I) (x)k 1(n=1)—k
k=0

o 1mg = n2™ — 2™ — 2mnm) _om 4 (2)

If we subtract equation 2 from equation 1, we get the number of non-attribute trees

the naive approach produces in the worst case. We observe that: N (naive) — N (ideal) >
2m(n—1)'

To determine the lower-bound, we give an analysis of the (non-trivial) best case scenario
of the naive mining algorithm. Suppose T is a tree with n nodes and to each node one
attribute-value pair is assigned. For the induced subtree relation, the best possible case is
achieved when all nodes of T are on a single path in 7. Suppose 7" has a frequent pattern
of size k > 0, then the number of trees reported with the naive approach is at least:

N
—_

M(naive) =Y (k —)20+, (3)

3

Il
o

While the number of attribute trees equals:

k—1

M(ideal) = > (k). (4)

1=0

Hence, if we subtract equation 4 from equation 3 we get the total number of non-
attribute trees the naive algorithm produces. As a result, M(naive) — M(ideal) > 2F — 1.

We omit the worst and best case scenarios for the naive embedded tree mining al-
gorithm, but it can be done similarly to the analysis for induced subtrees. Since every
embedded subtree is also an induced subtree, the upper-bound is also a least upper-bound,
of the naive embedded tree mining algorithm. Likewise, the stated lower-bound is also the
least lower-bound of the naive embedded tree mining algorithm. In fact they both are of
the same order.

Combining the lower and upper-bound previously determined, the number of attribute
trees #(ideal) compared with the numbers of trees generated by the naive algorithm
#(naive) is bounded by the following formula:

(28 — 1) + #(ideal) < #(naive) < 2™"~Y 4 L (ideal).

Where k denotes the size of the largest attribute tree, m denotes the number of attribute-
value pairs of each node and n the number of nodes in the tree. Our conclusion from
this analysis is as follows. Although, as the analysis shows, the complexity of the naive
approach and the ideal approach only differs by an additive term, this term increases
at least exponentially with the size of the largest attribute tree. Furthermore, as the
experiments in subsection 6.2 show this difference is of considerable practical importance.
Hence it is worthwhile to develop a mining algorithm that directly computes the desired
trees, rather than generates trees with empty attribute sets that have to be post-pruned,
as the naive approach does.

5.2 Global and Local Mining

In the previous section we determined the advantage of an “ideal” algorithm, in this section
we present such an algorithm. The main idea for the ideal attribute tree mining algorithm
is to split the mining process in a global mining stage and a local one. Loosely speaking the

Function LocMine (X, OCL)
if X=0
then
[—1
else
l—k+1
do . Function ComputeOcc(X, OCL)
while [< n oul — &
if support(X Ua;) > minsup for each d; € OCL
then j
for each ¢, € d;
(X = X U {a}) if X C M(®) (ve11))
return(X,ComputeOcc(X,O0CL)) then i
elsel 141 out < out U @fli
Ve X return out
if X +£ o
then
X = X\ {ar}
l—k+1
while Y # @
return (&, &)

Figure 1: The local mining algorithm

global mining part consist of a slightly modified rooted tree mining algorithm as described
in section 4. The local mining must be done for every node of the subtrees. It boils down
to the computation of frequent attribute sets from all the attributes to which the node
of the subtree is mapped in the database. In this setting, the local mining algorithm is
slightly different from the work done on frequent itemset mining [1, 3]. This difference is
mainly due the fact that the node labels can occur multiple times in a tree. These two
mining methods have to be combined: the idea is that whenever a candidate tree T' (of
size k) is generated, the local mining algorithm determines the first frequent attribute set
of vy, say Ay. If there is none, then T" must be pruned. Otherwise all supertrees of T’
are computed, where the attributes of vy equals A;. When there are no more frequent
extensions of T left, the next frequent itemset of vy is computed and this frequent pattern
is then further extended. For both the global and local mining a depth-first search through
the enumeration lattice is used.

Function Expand-Trees(7T, D)

out «—
do
(Aset, Nocc) <+ LocMine(M(T'), occ(T, D))
Algorithm FAT-miner(database D) if |Noce| > minsup
out «— @ then
C1 < candidate one patterns M (vg41) «— Aset
for each T' € (} oce(T, D) < Nocc
out — outU Expand-Trees(T, D) out «— out UT
return out Cjy1 < candidates generated from T

for each ¢;1 € Cpiq
out «— outU Expand-Trees (c1)
while | Noce| > minsup
return out

Figure 2: The global mining algorithm.

Consider a candidate (k + 1)-tree, that is generated from the frequent k-tree T'. Then
the local mining for node v, consists of determining all frequent itemsets of the following
transaction database T'D,:

%

tid = id(d;) M(® (vk41)) .. M(PL (vk41))

tid = id(d;) M(®5 (xsr)) ... M(®L (v41))

J

So each d € D for which both T" < d and T can be extended in d with a node v 4
according to definition 1 or 2—hence ignoring the attributes of node v, for the moment—
is considered as a transaction in the local mining setting. Since a node label can occur
multiple times in a tree, each transaction can contain multiple attribute sets. In this setting
the support of an attribute set X is the number of transactions in which X occurs, where
X is said to occur in a transaction T D {Aq,..., A,} if X is a subset of at least one of
the attribute sets of T'Dy; i.e. 4A; € TD, : X C A;. Since the local mining is interleaved
with the global mining, we don’t compute all frequent attribute sets at once when we start
the local mining for the rightmost node of the candidate (k 4 1)-tree. The reason is that
even though computing all the frequent attribute sets at once leads to the generation of
fewer candidates, it is expensive in memory usage. So the local mining algorithm gets as
input a frequent attribute set (which can be possible empty), computes the next one, and
returns all nodes in the transaction database that cover the newly computed attribute set.
In figure 1 the pseudo code for the local mining algorithm is given. Notice that in the

pseudo code the computation of the occurrences that match the frequent attribute set is
done naively; this is mainly done for clarity and simplicity. In the implementation of the
algorithm, whenever a frequent attribute set is computed also the nodes that cover the
frequent attribute set are known. In the function LocMine in case of a non-empty attribute
set X, we represent with ay the attribute which comes last in the ordering of the attributes
in X. Recall that we earlier defined that the set of attributes has as element with the
highest order a,. First, for every possible extension of X with a higher ordered attribute
than ay, the frequency is determined. If one of these extensions is frequent, the function
ComputeOcc is called. This function determines all mappings in the occurrence list (or
scopelist), for which the rightmost node of the mapping covers the frequent extension. If
none of the previous extensions is frequent, ay is removed from X and X is again extended
with attributes.

In the global mining algorithm, as described in figure 2, candidate trees are generated by
the induced or embedded rooted tree mining algorithm used. For the candidate generation
the attributes are ignored. Notice that in the pseudo code oce(T, D) should be replaced
with £(7, D) in case of embedded subtrees. For each candidate one-pattern the function
Expand-Trees is called. This function first calls the local mining function, which determines
the next frequent attribute set. If there is one, this attribute set is assigned to the right-
most node of the current tree, and the result is added to the solution. Then the occurrence
list (or scopelist) is updated and this tree, with the updated occurrence list, is further
extended. Otherwise the current tree is pruned.

6 Experimental Results

The goal of the experiments is twofold: first to show the applicability of FAT-miner, and
second to compare the runtime behavior of FAT-miner and the naive approach. To demon-
strate the applicability of FAT-miner, we analyzed a multi-relational financial dataset and
found interesting discriminating patterns. For the behavior of FAT-miner in comparison
with the naive algorithm we used two real datasets. These experiments support our theo-
retical observations made in subsection 5.1.

6.1 Interesting rules in a financial database

We applied FAT-miner to a financial multi-relational database, provided for the PKDD1999
and PKDD2000 discovery challenge [4]. The database contains data from a Czech bank,
and describes the operations of 5369 clients holding 4500 accounts. The data is distributed
over eight tables, which are shown together with the database scheme in the left part of
figure 3.

The clients with a granted loan are divided into two subgroups: the first with a good
loan status; the second with a bad loan status. A good loan is defined as one where the
contract is finished and the loan has been paid back or the contract is still running and
there are no payment problems so far. A loan is defined as bad if the contract is finished

10

Loan

-

o
s}
2
o
®
5
o
i
o

@

Figure 3: Left the database scheme is given. Right the corresponding tree is shown, where
bold lines denotes that there can be multiple occurrences of that node; the dotted line
denotes that the node labeled ‘CC’ can occur zero or more times. Note that the node
labels are abbreviations of the table names.

and the loan has not been paid back or the contract is still running and the client is in
debt. The objective of the experiments is to find discriminating patterns that describe the
clients with good and bad loan respectively.

The database was restricted to the part relevant for the analysis (this was done by
Krogel [4]), all accounts, clients and transactions that have no associated loans were re-
moved. Furthermore, all transactions that occurred after a loan was granted were removed.
After the data cleaning, we aggregated the transaction relation. This was done because of
the huge number of transactions and because it is questionable whether many individual
transaction-patterns leads to interesting results. The aggregation was done as follows: for
each client the number of transactions was counted and divided by the time period (in
days) in which these transactions took place. Furthermore, for every nominal attribute
(like mode of transaction, type of transaction and characterization of the transaction) the
values were counted per client and divided by the time period. These extra attributes were
added to the dataset. Finally for the numeric attributes, the average values over the time
period were computed per client.

The resulting dataset consists of 682 records in the relations loan, transaction and
account, 827 records in the relation clients and disposition, 36 records in the relation
credit card and 1513 records in the relation permanent orders. The demograph table was
not modified. The next step was to discretize numeric attributes, this was done with
the ProSaffarii [9] preprocessing toolkit. For each relation the numeric attributes of this
relation are divided into five consecutively numbered intervals containing approximately
the same number of records. Each attribute is then changed into a nominal attribute where
the value equals the number of the interval.

Finally the database was transformed to a rooted ordered attribute tree. Strictly speak-
ing the financial database structure is not a tree: there is a cycle connecting the tables
account,demograph, disposition and client. However, because demograph is a static back-

11

ground table, this cycle can be removed without loss of information. Further we need to
choose a root node and define an order among the siblings. Because the primary interest
of the analysis is to describe properties of good and bad loans, the loan table is chosen as
the root of the tree. The order among the siblings is chosen arbitrarily, because for the
analysis the particular order used is irrelevant. The resulting tree is shown in figure 3.
The primary measure of interest is the support of a pattern within a class, i.e., P(T|class).
Given our classes of bad and good loans (¢y and ¢; respectively), let D,, denote the se-
lection of all d € D for which it holds that d € cq, equivalently D, is the selection of all
d € D that satisfy d € ¢;. Note that for each d; € D either d; € ¢y or d; € ¢; holds.
Then the support of 17" within class ¢; is defined as: V. (T) = > . D., 04(T) and its relative

support within class ¢; as: V. (T)/|D.,|. Another measure of interest is by what factor
observing a pattern changes the class probability, compared to the class prior probability,
i.e., P(class|T)/P(class) also known as the lift of a rule ' — class.

We conducted two experiments on the dataset. In the first experiment the subtree
inclusion relation in FAT-miner was set to induced subtrees, in the second run we used the
embedded subtree relation. In both experiments the minimum relative-support for both
good and bad loans was set to 5%. The database proportion of good versus bad loans in
the database is 606 vs. 76, hence 11.1% of the records in the database describe bad loans.

Some examples of discovered patterns for the induced subtree relation are shown in
figure 4, in this figure FG stands for the relative support of the pattern within the class
of good loans, FB for the relative support within the class of bad loans and finally the
rule and the lift of the rule are given. The patterns with a high relative support within
the class of good loans (numbers 1-3), have a relatively low lift. This is mainly because
the prior probability of the class of good loans equals 0.89. As a consequence of the prior
probability, the patterns with a high relative support within the class of bad loan (numbers
4-6) have a relative high lift value.

For the embedded subtree relation some example-results are shown in figure 5. Note
that we show here examples of patterns that are embedded trees only. As in the case of
the induced patterns, here also the lift of the rules varies a lot between the two classes. A
typical type of pattern found is best illustrated with an example. Consider patterns two,
three and five; these patterns start with the node labeled ‘loan’ followed by children of the
node ‘account’. In these cases the pattern describes subgroups that have the same values
for the attributes of loan, and for the children of the account node but, that may not have
a common value for one of the attributes of the intermediate relation account.

12

1. FG 2145 %, FB 3.95%, LIFT(T — G)=1.10
Loan where monthly payments is in range (304-2051) while the overall range = (304-9910)
Account where frequency of issuance statements=‘monthly’
Permanent Order where characterization of the payment =‘loan payment’.

2. FG 19.97%, FB 0% , LIFT(T — G)=1.13
Account where frequency of issuance statements=‘monthly’
Permanent Order where characterization of the payment =‘loan payment’
Disposition where type of disposition="‘owner’
Disposition where type of disposition="‘user’.

3. FG 28.22%, FB 3.95% , LIFT(T — G)=1.11
Account where frequency of issuance statements=‘monthly’
Permanent Order where characterization of the payment =‘household payment’
Permanent Order where characterization of the payment =‘loan payment’
Transaction where the average number of transactions a day of type = ‘credit’ is in range (0.081—
0.098), while the overall range = (0.0224-0.157)
Disposition where type =‘owner’.

4. FB 39.47%, FG 16%, LIFT(T — B)=2.12
Accountwhere frequency of issuance statements=‘monthly’
Permanent Order where characterization of the payment =‘loan payment’
Transaction where the average number of transactions a day with characterization =
credited’ is in range (0.033-0.1), while the overall range = (0-0.1)
Disposition where type of disposition=°‘owner’.

5. FB 18.42%, FG 4.78%, LIFT(T — B)=2.92
Account where frequency of issuance statements=‘monthly’
Permanent Order where characterization of the payment =‘loan payment’ & debited amount is
in range (6630-14882), while the overall range = (2-14882)
Transaction where the average number of transactions a day of type = ‘credit’ is in range
(0.081-0.098), while the overall range = (0.022-0.157)
Disposition where type of disposition="‘owner’
Client where sex =‘female’ .

<

interest

6. FB 13.16% ,FG 1.48%, LIFT(T — B)=4.72
Account where frequency of issuance statements=‘monthly’
Permanent Order where characterization of the payment =‘loan payment’
Transaction where the average number of transactions a day with characterization =
credited’ is in range (0.033-0.1), while the overall range = (0-0.1)
Disposition where type of disposition="‘owner’
Client where sex =‘Male’
District where number of municipalities with inhabitants 2000-9999 is in range (0-3), while the
overall range = (0-20).

<

interest

Figure 4: Example patterns returned by FAT-miner for the class of good loans (1 — —3)
and the class of bad loans (4 — —6). The minimum relative-support for both classes was
set to 5% and the induced subtree relation was used.

13

1. FG 31.19%, FB 5.26% , LIFT(T — G)=1.11
Account where frequency of issuance statements=‘monthly’
Permanent Order where characterization of the payment =‘household payment’
Transaction where the average number of transactions a day of type = ‘credit’ is in range (0.081—
0.098), while the overall range = (0.022-0.157)
Client where sex =‘Male’.

2. FG 22%, FB 3.95% , LIFT(T — G)=1.10
Loan where the amount that is monthly payed is in range (304-2051), while the overall range =
(304-9910)
Permanent Order where characterization of the payment =‘loan payment’
Transaction where the average number of transactions a day of type =‘credit’ is in range (0.033—
0.1), while the overall range = (0-0.1)
Disposition where type of disposition=°‘owner’.

3. FG 19.14%, FB 2.63% , LIFT(T — G)=1.11
Loan where the amount of money borrowed is in range (4980-52788), while the overall range =
(4980-590820)
Permanent Order where characterization of the payment =‘loan payment’
Transaction where the average number of transactions a day of type =‘credit’ is in range (0.033—
0.1), while the overall range = (0-0.1)
Disposition where type of disposition=°‘owner’.

4. FB 25%,FG 6.76%, LIFT(T — B)=341
Account where frequency of issuance statements=‘monthly’
Permanent Order where characterization of the payment =‘loan payment’
Transaction where the average number of transactions a day with characterization =° interest
credited’ is in range (0.033-0.1), while the overall range = (0-0.1)
Disposition where type of disposition="‘owner’
District where the number of municipalities with inhabitants > 1000 = 2, with the overall range
= (0-5).

5. FB 19.74%,FG 8.74%, LIFT(T — B)=1.98
Loan where duration of the loan =‘24 months’
Permanent Order where characterization of the payment =‘loan payment’
Transaction where the average number of transactions a day of type =‘credit’ is in range (0.033—
0.1), while the overall range = (0-0.1) & where the average number of transactions a day with type
= ‘withdrawal’ is in range (0.075-0.101), while the overall range = (0-0.26)
Disposition where type of disposition=°‘owner’.

6. FB 21.05%, FG 4.95%,LIFT(T — B)=3.12
Account where frequency of issuance statements=‘monthly’
Permanent Order where characterization of the payment =‘loan payment’
Transaction where the average number of transactions a day with characterization =
credited’ is in range (0.033-0.1), while the overall range = (0-0.1)
Disposition where type of disposition="‘owner’
District where the number of committed crimes in 1995 are in range (5179-85677), while the overall
range = (818-85677) & the number of committed crimes in 1996 are in range (4987-99107), while
the overall range = (888-99107).

<

interest

Figure 5: Example patterns returned by FAT-miner for the class of good loans (1 — —3)
and the class of bad loans (4 — —6). The minimum relative-support for both classes was
set to 5% and the embedded subtree relation was used.

14

107

10°
L

10°
L

10*
L

10%
L

runtime in seconds
of frequent trees

10?
L

10t
L

10° 100 102 10° 10* 10° 10° 10" 108
L

10°
L

T T T T T T T T T T T T T
5 10 15 20 25 30 35 5 10 15 20 25 30

minimum support minimum support

Figure 6: The running time (left) and the number of frequent trees reported (right), com-
pared for FAT-miner (dotted line) and the naive approach (solid line). These experiments
were done on the Wikipedia XML dataset with the induced subtree relation. Note the log
scale on the y-axis.

6.2 Performance Experiments

In this subsection, both the run time and the number of frequent trees generated by FAT-
miner and the naive approach are experimentally compared. All algorithms were imple-
mented in C++ and were evaluated on a 2.8GHz PC with 500 MB of RAM. The comparison
was done on two real datasets: the first is the financial multi-relational dataset, as described
in the previous subsection, but without the class labels. The second is the Wikipedia XML
corpus [7], which is an XML collection based upon Wikipedia. The collection consist of
75,047 documents and 60 classes. For our experiments we discarded the class labels and
performed the experiments on a random sample of approximately one third of the original
collection.

A sample was taken such that both algorithms that use the induced subtree relation
were able to run this dataset on a desktop computer with 500MB of main memory. Besides
the memory constraint, the run time for the naive algorithm already took quite some time,
which should have been worse for a larger collection. Unfortunately, the algorithms that
use the embedded subtree relation could not run on a server having 2GB of main memory
available. The reason for this is described in [5]: in the worst case, for the embedded
subtree mining algorithm [16] the scopelist size is exponential in the size of the data tree.
Since FAT-miner with the embedded subtree relation is built upon treeminer [16] it has
the same memory requirements.

The XML sample consist of 25, 127 trees and 8, 310 distinct node labels; of these nodes
389 contained attributes. When the data was loaded into FAT-miner, each node in the
database that had no attribute was assigned a dummy attribute. The average number of
nodes in the trees equals 85, with each attribute counted as a single node, the average size

15

35

107

104 10° 10°
L L L

runtime in seconds
10°
L

of frequent trees

10?
L

10*
L

10°
L
«

10 20 30 40 50 60 10 20 30 40 50 60

minimum support minimum support

Figure 7: The running time (left) and the number of frequent trees reported (right), com-
pared for FAT-miner(dotted line) and the naive approach (solid line). These experiments
were done on the financial multi-relational dataset with the induced subtree relation. Note
the log scale on the y-axis.

of the trees was 128. Both FAT-miner and the naive approach where run with different
minimum support values; the run time and the number of frequent trees for different sup-
port values are shown in figure 6. Due to the long execution time of the naive algorithm at
the lowest minimum support level, this run was terminated after two weeks. Remarkable is
that the difference between FAT-miner and the naive approach for both the execution time
and the number of frequent trees initially is relatively small, but is increasing drastically
at the lowest levels of support. This is likely caused by the fact that only a relatively small
part of the data contained attributes, and hence the speedup of FAT-miner is only based on
this small part. However, with lower support the attributes that become frequent are dom-
inating both the run time and the number of frequent trees, and hence FAT-miner achieves
a better reduction in the number of frequent trees and consequently a better speedup.
The financial multi-relational dataset consist of 682 trees and 9 distinct node labels,
each of these nodes contained attributes. The average number of nodes in the trees equals
9, with each attribute counted as a single node, the average size of the trees was 65.
Comparing the statistics of the financial and the XML dataset, reveals that the financial
dataset is small, but has a large number of attributes per tree in the database. Also
in these experiments, both FAT-miner and the naive approach where run with different
minimum support values and with the two different subtree relations. The amount of main
memory used for both FAT-miner and the naive approach was 8MB for the runs with
the induced subtree relation and 31MB for the runs with the embedded subtree relation.
The results are shown in figure 7 for the induced subtree relation and in figure 8 for the
embedded one. Note that for the latter, the run of the naive algorithm with the lowest
minimum support was terminated after more than two weeks of execution time. Both The
number of additional trees and the additional run time of the naive approach over FAT-

16

runtime in seconds

10t 102 10° 10* 105 10° 107

10°

«

v

20

T
30

T
40

minimum support

50

60

of frequent trees

10° 10%°

10 102 10° 10 10° 10° 107 10°

10°

«

20

30

40

minimum support

50

60

Figure 8: The running time (left) and the number of frequent trees reported (right), com-
pared for FAT-miner(dotted line) and the naive approach (solid line). These experiments
were done on the financial multi-relational dataset with the embedded subtree relation.
Note the log scale on the y-axis.

miner is initially large and increase drastically as the minimum support drops. However,
the difference is a slowly increasing factor for the higher minimum support values, and
increased drastically for the lower minimum support values.

To conclude, the experimental results show that when mining frequent attribute trees
FAT-miner reduces the run time drastically in comparison with a straightforward approach.
Even for the relative small financial dataset the execution time is reduced from more
then eleven days in less then fifteen minutes. This conclusion is in accordance with the
theoretical comparison in subsection 5.1.

7 Related Work

Besides the tree mining algorithms of which FAT-miner is an extension [2, 16|, there are
some more algorithms available to mine frequent trees. They mostly differ in what type
of tree is handled (ordered,unordered or free trees) or use subtly different enumeration
techniques; for a detailed overview see [5]. Further generalization are algorithms that
mine frequent graph patterns such as [14, 8]. A common property of these algorithms to
mine structured data is that there is no proper way to handle attributes. This in contrast
with the multi-relational data mining field, where attribute values are included into the
mining algorithms. Related work in the multi-relational data mining field, includes the
following. The work done by Ng et. al [11] describes an algorithm to mine association
rules from star-shaped databases. While their algorithm is limited to database schemes
that are star shaped, Safarii [10] and Warmr [6] can both mine graph-structured data.
However, Safarii uses a heuristic search to mine multi-relational databases, in contrast

17

with the complete search done by FAT-miner. Like FAT-miner Warmr also performs a
complete search, but Warmr faces a high computational complexity due to equivalence
checking under #-subsumption. In addition, FAT-miner has the following advantages:

e The ability to find hidden patterns: our algorithm is able to mine for both induced
and embedded subtrees. With the embedded subtree relation it is not necessary that
there is a direct link between different parts of the pattern; an ancestor/descendant
relation is sufficient. This in contrast to multi-relational data mining algorithms.

e Exclusive pattern matching: whenever two parts of a pattern are present, it is as-
sumed that these two parts are distinct. In multi-relational mining, on the contrary,
multiple parts of the pattern can map on the same part of the data. That is, as
opposed to FAT-miner, multi-relational data mining algorithms can not differentiate
between the following two example patterns: a node labeled ‘account’ that has two
children labeled ‘disposition’ of type ‘user’ and a node labeled ‘account’ that has one
child ‘disposition’ of type ‘user’.

8 Conclusion

In this work we developed FAT-miner, a frequent tree mining algorithm that takes at-
tributes of tree structured data into account. As a result FAT-miner is able to mine
multi-relational databases with tree structured database schemes, as well as XML data.
We compared the complexity of FAT-miner with a naive approach both theoretically as
well as experimentally. Both analyses revealed that the execution time is reduced drasti-
cally by FAT-miner. Furthermore, the usability of FAT-miner was shown on a well known
financial database. Further research includes the development of condensed representa-
tions for attribute trees and algorithms to mine these directly. In addition we intend to
investigate the incorporation of user defined constraints to assist mining process. Finally,
building classifiers from frequent attribute trees is a topic we plan to investigate in the
near future.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc.
20th Int. Conf. Very Large Data Bases, VLDB, pages 487-499, 1994.

[2] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto, and S. Arikawa. Efficient
substructure discovery from large semi-structured data. In Proceedings of the Second
SIAM International Conference on Data Mining, 2002.

[3] R. Bayardo. Efficiently mining long patterns from databases. In A. T. Laura and
M. Haas, editors, SIGMOD 1998, Proceedings ACM SIGMOD International Con-
ference on Management of Data, June 2-4, 1998, Seattle, Washington, USA, pages
85-93, 1998.

18

[4]

CONNES)

[15]

[16]

[17]

P. Berka. Guide to the financial data set. http://lisp.vse.cz/challenge/. Workshop
notes on Discovery Challenge PKDD2000.

Y. Chi, R. Muntz, S. Nijssen, and J. Kok. Frequent subtree mining - an overview.
Fundamenta Informaticae., 66(1-2):161-198, 2005.

L. Dehaspe and L. De Raedt. Mining association rules in multiple relations. In Pro-
ceedings of the 7th International Workshop on Inductive Logic Programming, volume
1297, pages 125-132. Springer-Verlag, 1997.

L. Denoyer and P. Gallinari. The Wikipedia XML Corpus. SIGIR Forum, 2006.

A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining
frequent substructures from graph data. In D. A. Zighed, H. J. Komorowski, and
J. M. Zytkow, editors, Principles of Data Mining and Knowledge Discovery (PKDD
2000), pages 13-23, 2000.

A. Knobbe. Prosafarii. http://www.kiminkii.com /safarii.html.
A. Knobbe. Multi-Relational Data Mining. PhD thesis, Universiteit Utrecht, 2004.

E. Ng, A. Fu, and K. Wang. Mining association rules from stars. In Proceedings of the
2002 IEEE International Conference on Data Mining (ICDM 2002), pages 322-329,
2002.

A. Termier, M. Rousset, M. Sebag, K. Ohara, T. Washio, and H. Motoda. Efficient
mining of high branching factor attribute trees. In Proceedings of the 5th IEEE Inter-
national Conference on Data Mining (ICDM 2005), pages 785-788, 2005.

K. Wang and H. Liu. Discovering structural association of semistructured data.
Knowledge and Data Engineering, 12(2):353-371, 2000.

X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In Proceedings
of the 2002 IEEE International Conference on Data Mining (ICDM 2002), pages
721-724, 2002.

L. H. Yang, M. Lee, W. Hsu, and S. Acharya. Mining frequent query patterns from
XML queries. In Fighth International Conference on Database Systems for Advanced
Applications (DASFAA ’03), pages 355-362, 2003.

M. J. Zaki. Efficiently mining frequent trees in a forest. In Proceedings of the Eighth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 71-80, 2002.

M. J. Zaki and C. C. Aggarwal. Xrules: an effective structural classifier for XML data.

In L. Getoor, T. E. Senator, P. Domingos, and C. Faloutsos, editors, Proceedings of
the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 316-325, 2003.

19

