
Strategies for solving constraints in program
analysis

Jurriaan Hage

Bastiaan Heeren

Department of Information and Computing Sciences, Utrecht University

Technical Report UU-CS-2006-055

www.cs.uu.nl

ISSN: 0924-3275

Abstract
Type and effect systems are typically specified as a system of
logical deduction rules, which specify what are valid types and
effects in a program. Converting such a system into an algorithm
is typically a lot of error-prone work, and usually results in an
implementation that performs its task inflexibly, leaving no room
to modify the solving strategy, without changing the algorithm.

In this paper we take a constraint-based approach to declara-
tively specify a type system. Our contribution is to enrich the type
rules by the use of a fixed set of combinators. By choosing a se-
mantics for these combinators, we obtain particular orderings of
the constraints, which can then be fed into a constraint solver. Thus
they bridge the gap between the declarative specification and a de-
terministic implementation of type systems. The main advantages
are that the issue of the order in which constraints should be solved
is factored out of the solver, making the solver simpler and more
amenable to reuse; the user of the solver can flexibly choose a par-
ticular solving strategy; and it makes the implementation of type
and effect systems a much easier and less error-prone task. Our
combinators have been implemented into a fully functional com-
piler.

1. Introduction
The Hindley-Milner type system lies at the basis of many type in-
ference algorithms and implementations that exist for polymorphic,
functional languages such as Haskell and ML. These algorithms
and implementations all rely on the unification of types, and each
implementation typically adheres to a particular strategy (or order)
in which unifications are performed.

In the literature, there is usually a distinction made between the
specification of a type system (we use the name type system for
short, but what we say in this paper applies to type and effect sys-
tems in general), often in the form of a collection of logical de-
duction rules, and an algorithm that constructs a derivation tree for
these logical deduction rules that is guaranteed to satisfy these rules
(typically, the algorithm even constructs the “best” possible deriva-
tion tree). A standard text on the subject [13] illustrates the dis-
tinction well, e.g., compare Table 5.2 with Table 5.8. These tables
also illustrate that obtaining an algorithm from a specification is,
even for this relatively simple example, a lot error-prone of work,
because it is easy to forget a substitution or to compose them in
the wrong order. Note also that the algorithm traverses the abstract
syntax tree in a fixed manner, and there is no room to change the
order in which unifications are performed.

Over the last ten years, this situation has improved quite a bit,
because many researchers choose to specify the type system in
terms of constraints. This effectively maps the analysis problem,
performed on what might be a complex programming language
with many language constructs, onto a much simpler language of
constraints, cf. the book by Pierce [14] and the description of the
essence of ML type inference by Pottier and Rémy [15]. Deriving
an algorithm that generates these constraints is not so hard, and
attention can be focused on the implementation of a solver. A
pleasant side-effect is that typically only a few different types of
constraints are used, and solvers are much more likely to be re-
used.

However, the description of the essence of ML type inference
by Pottier and Ŕemy [15] also reveals a limitation. The constraint
solver they describe in Section 10.6 is unnecessarily complicated,
because it deals not only with solving (parts of) constraints, but
also in which order this should happen. A further motivation of our
work comes from the fact that the solving strategy is now hard-
coded inside the rules, and there is no possibility to influence this
order, without actually changing the solver (with the danger that
other, unwanted changes are introduced).

A question that now may arise, is why the solving strategy mat-
ters at all. There are a few reasons. In many cases, it is much easier
to construct an efficient solver if we know that some constraints will
be fed into the solver in a specific order (an example of this will be
given in this paper). This already holds for relatively simple analy-
ses such as type inference for a polymorphic functional languages,
but becomes even more important if more language features are
added. For example, the rank-n extension to Haskell proposed by
Peyton Jones et al. crucially depends on the order in which uni-
fications are performed [8]. In some systems for generating type
inference algorithms for high-level specifications, such as Tinker-
Type [11] and Ruler [3], the order in which unifications are per-
formed is either fixed, or it has to be hard-coded by means of com-
posing the correct substitutions, similar to the construction of type
inference algorithms as described in the textbook mentioned ear-
lier [13]. We think our work can serve as a source of inspiration to
increase the level of abstraction for these systems.

Furthermore, in many type inferencers, the order of performing
unifications (i.e., solving constraints) crucially determines which
unification shall be blamed for an inconsistency, and through it,
what error message will be given. The result of using different solv-
ing strategies in that case gives different views on what might be

2

the reason for the inconsistency. The kind of system we propose
allows different solving strategies to be applied in parallel. The re-
sulting information can be used in various ways: When different
solving strategies blame the same unification, then this gives addi-
tional evidence that that unification is indeed to blame. The inherent
flexibility of our approach can also be used in a compiler that can
learn to apply the “best” ordering, based on a training session with
a programmer. Thus our ideas open up a host of new possiblities for
future implementations of program analyses, that we think ought to
be investigated.

Concretely, we present a set of (high-level) combinators that
can be used to specify inside the type rules (which specify which
constraints should be generated), what are valid and invalid order-
ings for solving the constraints. We illustrate our combinators by
specifying a variant of the Hindley-Milner type system, but stress
that the combinators are not in any way tailored towards this ap-
plication. Indeed, they are even fully independent from the cho-
sen constraint language. We then illustrate the flexibility of our
approach by showing how many of the existing implementations
of the Hindley-Milner type system can be obtained by a suitable
choice of semantics for the combinators.

To summarize, the main contribution of this paper is the mes-
sage that it makes sense to cleanly decouple the specification (col-
lecting constraints), the ordering of unifications (ordering con-
straints), and performing the unifications (solving constraints)
when developing program analyses as type and effect systems. We
give the beginnings of a framework that can handle this in a declar-
ative manner, and show how such a system may be implemented
and used.

The combinators have been used to implement a type system
for a fully functional compiler, which shows that our approach
scales well in practice. The compiler allows the programmer to
choose from a fixed range of semantics for the combinators, which
allows him to experiment with various well-known type inference
algorithms such asW andM.

This paper is closely related to previously submitted, unrefereed
work [1]. The main differences lie in the focus of the paper. In the
case of the earlier version, the focus was on generating alternative,
“improved” error messages using our combinators. In this paper,
we focus on the concept of having a separate ordering phase,
and how that would help program analyses in general. The type
system mainly serves as a vehicle for explaining and illustrating our
combinators. Furthermore, our discussion of phasing and spreading
is now more elaborate, and we have added a version of the Hindley-
Milner algorithm without combinators, to be able to contrast it to
the version which does use our combinators.

The paper is structured as follows. After some preliminaries to
settle on notation for types and constraints, we consider a variant
of the Hindley-Milner type system, which uses assumption sets
and sets of constraints. In Section 4 we introduce a modified type
system which uses many of our combinators, and then consider
these combinators in detail. Then we show how we can emulate
various well-known algorithms for type inferencing by choosing
a suitable semantics for our operators as an illustration of the
flexibility of our framework. In the last two sections, we discuss
related work and present our conclusions.

This is a (rather strongly) revised version of an earlier technical
report[5]

2. Preliminaries
The running example of this paper describes type inference for the
Hindley-Milner type system, and we assume the reader has some
familiarity with this type system [2]. We use a three layer type
language: besides mono types(τ) we have type schemes(σ), and
ρ’s, which are either type schemes or type scheme variables(σv).

τ ::= a | Int | Bool | τ1 → τ2

σ ::= τ | ∀a.σ
ρ ::= σ | σv

The functionftv(σ) returns the free type variable of its argu-
ment, and is defined in the usual way: bound variables inσ are
omitted from the set of free type variables. For notational conve-
nience, we represent∀a1. · · · ∀an.τ by ∀a1 . . . an.τ , and abbrevi-
atea1 . . . an by a vector of type variablesa; we insist that allai are
different. We assume to have an unlimited supply of fresh type vari-
ables, denoted byβ, β′, β1 etcetera. We usev0, v1, . . . for concrete
type variables.

A substitutionS is a mapping from type variables to types.
Application of a substitutionS to typeτ is denotedSτ . All our
substitutions are idempotent, i.e.,S(Sτ) = Sτ , andid denotes the
empty substitution. We use[a1 := τ1, . . . , an := τn] to denote a
substitution that mapsai to τi (we insist that allai are different).
Again, vector notation abbreviates this to[a := τ].

We can generalize a type to a type scheme while excluding the
free type variables of some setM, which are to remain monomor-
phic. Dually, we instantiate a type scheme by replacing the bound
type variables with fresh type variables:

gen(M, τ) =def ∀a.τ wherea = ftv(τ)− ftv(M)
inst(∀a.τ) =def Sτ whereS = [a := β] and all inβ are fresh

A type is an instance of a type scheme, written asτ1 < ∀a.τ2, if
there exists a substitutionS such thatτ1 = Sτ2 anddomain(S) ⊆
a. For example,a → Int < ∀ab.a → b by choosingS = [b :=
Int].

Types can be related by means of constraints. The following
constraints express type equivalence for monomorphic types, gen-
eralization and instantiation, respectively.

c ::= τ1 ≡ τ2 | σv := GEN(M, τ) | τ � ρ

With a generalization constraint we can generalize a type with re-
spect to a set of monomorphic type variablesM, and associate the
resulting type scheme with a type scheme variableσv. Instantia-
tion constraints express that a type should be an instance of a type
scheme, or the type scheme associated with a type scheme variable.
The generalization and instance constraints are used to handle the
polymorphism introduced by let expressions.

It is possible to use only equivalence constraints, but that comes
at a price: for each occurrence of a let-defined identifier, we must
then duplicate sets of constraints, and thus much of our work. If
such a set is itself inconsistent, then the inconsistency is duplicated
as well. We use type scheme variables to function as placeholders
for unknown type scheme because we do not want to solve con-
straints during the constraint generation phase. We shall see shortly
that this choice has some implications for the order in which some
constraints can be solved.

Both instance and equality constraints can be lifted to work on
lists of pairs, where each pair consists of an identifier and a type (or
type scheme). For instance,

A ≡ B =def {τ1 ≡ τ2 | (x : τ1) ∈ A, (x : τ2) ∈ B} .

Our solution space for solving constraints consists of a pair of
mappings(S, Σ), whereS is a substitution on type variables, andΣ
a substitution on type scheme variables. Next, we define semantics
for these constraints: the judgement(S, Σ) s̀ c expresses that

3

constraintc is satisfied by the substitutions(S, Σ).

(S, Σ) s̀ τ1 ≡ τ2 =def Sτ1 = Sτ2

(S, Σ) s̀ σv := GEN(M, τ) =def S(Σσv) = gen(SM, Sτ)
(S, Σ) s̀ τ � ρ =def Sτ < S(Σρ)

We explain how each of the constraints can be solved, formu-
lated as a rewrite system. In addition to the solution itself, we add
the set of constraints to be solved as the first element, and update it
along the way.

({τ1 ≡ τ2} ∪ C, S, Σ) → (S′C, S′ ◦ S, Σ)
whereS′ = mgu(τ1, τ2)

({σv := GEN(M, τ)} ∪ C, S, Σ) → (Σ′C, S, Σ′ ◦ Σ)
whereΣ′ = [σv := gen(M, τ)]
only if ftv(τ) ∩ actives(C) ⊆ ftv(M)

({τ � σ} ∪ C, S, Σ) → ({τ ≡ inst(σ)} ∪ C, S, Σ)
(∅, S, Σ) → (S, Σ)
(, S, Σ) → (>,>)

where the standard algorithmmgu is used to find a most general
unifier of two types [16] and the functionactives can be defined as
follows:

actives(C) = {active(c) | c ∈ C}, where

active(τ1 ≡ τ2) = ftv(τ1) ∪ ftv(τ2)
active(σv := GEN(M, τ)) = ftv(M) ∩ ftv(τ)
active(τ � σ) = ftv(τ) ∪ ftv(σ)

We already mentioned that our solving process imposes a cer-
tain order on when constraints can be solved. This fact is now ap-
parent in the side conditions for the generalization and instantiation
constraints. Observe the implicit side condition for solving an in-
stantiation constraint: we insist that the right hand side is a type
schemeand not a type scheme variable. This implies that the cor-
responding generalization constraint has been solved, and the type
scheme variable was replaced by a type scheme. When we solve
a generalization constraint, the polymorphic type variables in that
type are quantified so that their former identity is lost. Hence, these
type variables should play no further role in the future, which can
be checked simply by inspecting the positions in which they occur
in the constraint set. This property is the one that is checked with
the help of the functionactives.

The final two rules specify the termination of the rewriting
process. When the constraint is empty, then we quit and return
the obtained substitutions, and if the constraint set is non-empty
and none of the other rules can be applied, then this implies that
the constraint set was inconsistent and the error solution(>,>) is
returned.

3. An example type system
Before we actually discuss our combinators in detail, we give
by way of example a specification of the Hindley-Milner type
system based on the collection of constraints, and assumptions for
identifiers. The set of constraints generated for an expression can be
used as input to the solver defined as a rewrite system in Section 2.

Type rules for the following expression language (with a non-
recursive let) are presented in Figure 1.

e ::= x | e1 e2 | λx → e | let x = e1 in e2

These rules specify how to construct a constraint tree for a given
expression, and are formulated in terms of judgements of the form
M,A, C ` e : τ . Such a judgement should be read as: “given a
set of typesM that are to remain monomorphic, we can assign

type τ to expressione if the type constraints inC are satisfied,
and ifA enumerates all the types that have been assigned to the
identifiers that are free ine”. The setM of monomorphic types
is provided by the context: it keeps track of all the type variables
that were introduced in a lambda binding (which in our language
are monomorphic). The assumption setA contains an assumption
(x : β) for each unboundoccurrenceof x (hereβ is a fresh type
variable). Hence,A can have multiple assertions for the same iden-
tifier. These occurrences are propagated upwards until they arrive
at the corresponding binding site, where constraints on their types
can be generated, and the assumptions dismissed. Ordinarily, the
Hindley-Milner type system uses type environments to communi-
cate the type of a binding to its occurrences. We have chosen to
deviate from this, because it turned out to be easier to emulate the
type environments in a type system based on assumption, then vice
versa (see the discussion on spreading later in this paper). The op-
erator∪ is ordinary set union, andA\x denotes the removal of all
assumptions aboutx fromA.

All our type rules maintain the invariant that each subexpression
is assigned a fresh type variable (similar to the unique labels that
are introduced to be able to refer to analysis data computed for
a specific expression [13]). For example, consider the type rule
(APP). Here,τ1 is a placeholder for the type ofe1, and is used
in the constraintτ1 ≡ β1 → β2. Because of the invariant, we know
thatτ1 is actually a type variable, and at this point we have no clue
about the type it will become; this will become apparent during the
solving process.

We could have replacedci (i = 1, 2, 3) in the type rule (APP)
with a single constraintτ1 ≡ τ2 → β3. Decomposing this con-
straint, however, opens the way for fine-grained control over when
a certain fact is checked. Something similar has been done in the
conditional rule, where we have explicitly associated the constraint
that the condition is of boolean type with the constraints generated
for the condition. As we shall see later, there is a good reason for
that.

For any given expressione we can, based on the rules of Fig-
ure 1, determine the set of constraints that need to be satisfied to
ensure type correctness ofe. The rewrite rules of Section 2 can then
be used to determine whether the set is indeed consistent, and if so,
the substitution will allow us to reconstruct the types of all the iden-
tifiers and subexpressions ine. The specification of this solver is
highly non-deterministic, and in an actual implementation, choices
will be made to make the process deterministic. Indeed, in many
implementations these choices are made once and for all, while in
our case we want to be able to choose the order for every expression
independently.

4. The constraint-tree combinators
In the previous section we have given a version of the Hindley-
Milner type system that uses sets of constraints and assumptions
to declaratively specify the type system. We are now ready to
introduce the combinators that we can use in these type rules to
give extra structure to these sets of constraints.

Simply put, the combinators we introduce form an additional
layer of syntax on top of the syntax of constraints. In this way,
we are able to buildconstraint trees(instead of constraint sets), of
which we can exploit the additional structure. The type system that
results can be found in Figure 2, where the only differences are that
we construct constraint treesTc, instead of constraint setsC, and
use special combinators for building the various kinds of constraint
trees. In the remainder of this section, we shall explain the notation
used in these type rules, but comparing Figure 1 to Figure 2 already
indicates the “price” that needs to be paid for the added flexibility
that comes from using the combinators. We feel this price is not
very high.

4

M,A, C ` e : τ

M, [x : β], ∅ ` x : β
(VAR)

c1 = (τ1 ≡ β1 → β2) c2 = (β1 ≡ τ2) c3 = (β2 ≡ β3)

M,A1, C1 ` e1 : τ1 M,A2, C2 ` e2 : τ2

M,A1 ∪ A2, C1 ∪ C2 ∪ {c1, c2, c3} ` e1 e2 : β3

(APP)

c1 = (τ1 ≡ Bool) c2 = (τ2 ≡ β) c3 = (τ3 ≡ β)

M,A1, C1 ` e1 : τ1 M,A2, C2 ` e2 : τ2 M,A3, Tc3 ` e3 : τ3

M,A1 ∪ A2 ∪ A3, C1 ∪ C2 ∪ C3 ∪ {c1, c2, c3} ` if e1 then e2 else e3 : β
(COND)

C` = ([x : β1] ≡ A) c1 = (β3 ≡ β1 → β2) c2 = (τ ≡ β2)

M++ ftv(C`),A, C ` e : τ

M,A\x , C ∪ C` ∪ {c1, c2} ` λx → e : β3

(ABS)

c1 = (σv := GEN(M, τ1)) C` = (A2 � [x : σv]) c2 = (β ≡ τ2)

M,A1, C1 ` e1 : τ1 M,A2, C2 ` e2 : τ2

M,A1 ∪ (A2\x), C1 ∪ C2 ∪ C` ∪ {c1, c2} ` let x = e1 in e2 : β
(LET)

Figure 1. Type rules for a simple expression language

M,A, Tc ` e : τ

M, [x : β], β◦ ` x : β
(VAR)

c1 = (τ1 ≡ β1 → β2) c2 = (β1 ≡ τ2) c3 = (β2 ≡ β3)

M,A1, Tc1 ` e1 : τ1 M,A2, Tc2 ` e2 : τ2

M,A1 ∪ A2, c3 ♦ [• c1 O Tc1, c2 O Tc2]• ` e1 e2 : β3

(APP)

Tc = [• c1 O Tc1, c2 O Tc2, c3 O Tc3]•
c1 = (τ1 ≡ Bool) c2 = (τ2 ≡ β) c3 = (τ3 ≡ β)

M,A1, Tc1 ` e1 : τ1 M,A2, Tc2 ` e2 : τ2 M,A3, Tc3 ` e3 : τ3

M,A1 ∪ A2 ∪ A3, Tc ` if e1 then e2 else e3 : β
(COND)

C` = ([x : β1] ≡ A) c1 = (β3 ≡ β1 → β2) c2 = (τ ≡ β2)

M++ ftv(C`),A, Tc ` e : τ

M,A\x , c1 ♦ C` ♦◦ [• c2 O Tc]• ` λx → e : β3

(ABS)

Tc = (c2 ♦ [• Tc1� [c1]
•� (C`�◦ Tc2)]•)

c1 = (σv := GEN(M, τ1)) C` = (A2 � [x : σv]) c2 = (β ≡ τ2)

M,A1, Tc1 ` e1 : τ1 M,A2, Tc2 ` e2 : τ2

M,A1 ∪ (A2\x), Tc ` let x = e1 in e2 : β
(LET)

Figure 2. Type rules for a simple expression language

Typically, the constraint tree has the same shape as the abstract
syntax tree of the expression for which the constraints are gener-
ated. A constraint isattachedto the nodeN where it is generated.
Furthermore, we may choose toassociateit explicitly with one of
the subtrees ofN . Some language constructs demand that some

constraintsmustbe solved before others, and we can encode this in
the constraint tree as well.

5

This results in the four main alternatives for constructing a
constraint tree.

Tc ::= [• Tc1, . . . , Tcn]• | c ♦ Tc | c O Tc | Tc1�Tc2

Note that to minimize the use of parentheses, all combinators to
build constraint trees are right associative. With the first alternative
we combine a list of constraint trees into a single tree with a root
andTci as subtrees. The second and third alternatives add a single
constraint to a tree. The casec ♦ Tc makes constraintc part of the
constraint set associated with the root ofTc. The constraint that the
type of the body of the let equals the type of the let (see (LET) in
Figure 2) is a typical example of this.

However, some of the constraints are more naturally associated
with a subtree of a given node, such as the constraint that the
condition of an if-then-else expression must have typeBool . For
this reason, we wroteci O Tci (i = 1, 2, 3) in the rule (COND)
in Figure 1, instead ofc1 ♦ c2 ♦ c3 ♦ [• Tc1, Tc2, Tc3]•. In both
cases, the constraints are generated by the conditional node, but in
the former case the constraints are associated with the respective
subtree, and in the latter case with the conditional node itself. This
choice will give improved flexibility later on.

The last case (Tc1 � Tc2) combines two trees in a strict way:
all constraints inTc1 should be considered before the constraints
in Tc2. The typical example is that of the constraints for the defini-
tion of a let and those for the body. When one considers the rewrite
rules for our constraint language in Section 2, this is not neces-
sary, because the solver can determine that a given generalization
constraint may be solved. However, this gives extra work for the
solver, and by insisting that the constraints from the definition are
solved before the generalization constraints, we can omit to verify
this property altogether and speed up the solving process consider-
ably. This is an example where a combinator can be used to forbid
certain orderings of the constraints to preserve soundness and com-
pleteness of a (simplified) solver.

For brevity, we introduce the underlined version of♦ andO,
which we use for adding lists of constraints. For instance,

[c1, . . . , cn] ♦ Tc =def c1 ♦ . . . ♦ cn ♦ Tc.

This also applies to similar combinators to be defined later in this
paper. We writeC• for a constraint tree with only one node: this
abbreviatesC ♦ [•]•.

In the remaining part of this section, we discuss various con-
straint ordering strategies: the flattening of constraint trees, speci-
fied by means of a tree walk, and spreading and phasing for trans-
forming constraint trees.

4.1 Flattening a constraint tree

At some point, a constraint tree has to be turned into a constraint
list, in order to be fed into a solver of some kind. This is done by
choosing a particular semantics for the combinators (except� and
its variants which have a fixed semantics). The flexibility of our
work derives from the fact that we can vary the semantics of the
combinators, yielding different but equally valid solving orders. It
is important to note that to obtain this, we do not need to change
either the constraint generating process, or the solving process.

Therefore, our first concern is how to convert a constraint tree
into a list: for this, we use the functionflatten (note that we
use Haskell code in this section to define the semantics of our
operators). How a tree is converted depends on the tree walk of our
choice, which is a parameter offlatten. A tree walk specifies the
order in which the constraints generated for a single node should
be solved.

data TreeWalk = TW (∀ a.[a]→ [([a], [a])]→ [a])

flatten :: TreeWalk → ConstraintTree → [Constraint]
flatten (TW f) = flattenTop

where
flattenTop :: ConstraintTree → [Constraint]
flattenTop tree =

let pair = flattenRec [] tree
in f [] [pair]

flattenRec :: [Constraint]→ ConstraintTree
→ ([Constraint], [Constraint])

flattenRec down tree =
case tree of

[• t1, . . . , tn]• → let pairs = map (flattenRec []) [t1, . . . , tn]
in (f down pairs, [])

c ♦ t → flattenRec (down ++ [c]) t
c O t → let (C, up) = flattenRec down t

in (C, up ++ [c])
t1� t2 → let cs1 = flattenTop t1

cs2 = flattenTop t2
in (f down [(cs1 ++ cs2, [])], [])

The first argument of the tree walk function corresponds to the con-
straints belonging to the node itself, the second argument contains
pairs of lists of constraints, one for each child of the node. The
first element of such a pair contains the constraints for the (recur-
sively flattened) subtree, the second element those constraints that
the node associates with the subtree. Note that if we did not have
both♦ andO, then a treewalk would only take the constraints as-
sociated with the node itself, and a list containing the lists of con-
straints coming from the children as a parameter.

The functionflatten simply traverses the constraint tree, and
lets theTreeWalk determine how the constraints attached to the
node itself, the constraints attached to the various subtrees and the
lists of constraints from the subtrees themselves, should be turned
into a single list. Of course, the constraint ordering for the strict
combinator� is fixed and does not depend on the tree walk.

Our first example tree walk is truly bottom-up.

bottomUp = TW (λdown list → f (unzip list) ++ down)
where f (csets, ups) = concat csets ++ concat ups

This tree walk puts the recursively flattened constraint subtrees up
front, while preserving the order of the trees. These are followed
by the constraints associated with each subtree in turn. Finally, we
append the constraints attached to the node itself. In a similar way,
we define the dual tree walk, which is a top-down approach.

topDown = TW (λdown list → down ++ f (unzip list))
where f (csets, ups) = concat ups ++ concat csets

EXAMPLE 4.1. Let t bec3 ♦ [• c1 O C•1 , c2 O C•2]•. Flattening this
constraint tree with our two tree walks gives us:

flatten bottomUp t = C1 ++ C2 ++ [c1] ++ [c2] ++ [c3]
flatten topDown t = [c3] ++ [c1] ++ [c2] ++ C1 ++ C2

Other useful tree walks interleave the associated constraints and
the recursively flattened constraint trees for each subexpression of
a node. Here, we have two choices to make: do the associated con-
straints precede or follow the constraints from the corresponding
child, and do we put the remaining constraints (those that are not
associated with a subexpression) in front or at the end of the list?
These two options lead to the following helper-function.

variation :: (∀ a.[a]→ [a]→ [a])→
(∀ a.[a]→ [a]→ [a])→ TreeWalk

variation f g =
TW (λdown list → f down (concatMap (uncurry g) list))

6

c8, c9, c10, c11

c5O c6O
c7O

c3c1

c2 c4

Figure 3. The constraint tree

For both arguments ofvariation, we consider two alternatives:
combine the lists in the order given (++), or flip the order of the
lists (flip (++)). For instance, the constraint tree from Example 4.1
can now be flattened in the following way:

flatten (variation (++) (++)) t = [c3]++C1++[c1]++C2++[c2]

Our next, and final, example is a tree walk transformer: at each
node in the constraint tree, the children are inspected in reversed
order. Of course, this reversal is not applied to nodes with a strict
ordering. With this transformer, we can inspect a program from
right-to-left, instead of the standard left-to-right order.

reversed :: TreeWalk → TreeWalk
reversed (TW f) = TW (λdown list → f down (reverse list))

We conclude our discussion on flattening constraint trees with
an example, which illustrates the impact of the constraint order.

EXAMPLE 4.2. We generate constraints for the expression given
below. For this, we use type rules similar to the ones defined in
Figure 2, and take the liberty of including a conditional in the
example. Various parts of the expression are annotated with their
assigned type variable. Furthermore,v9 is assigned to the if-then-
else expression, andv10 to the complete expression.

λ f v0 → λ b v1 → if b v2

then (f v3 1 v4) v5

else (f v6 True v7) v8

The constructed constraint treet for this expression is shown in
Figure 3, and the constraints are given in Figure 4. The constraints
in this tree are inconsistent: the constraints in the only minimal
inconsistent subset are marked with a star. Hence, a sequential
constraint solver will report the last of the marked constraints in
the list as incorrect. We consider three flattening strategies, and
underline the constraints where the inconsistency is detected.

flatten bottomUp t
= [c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11]

flatten topDown t
= [c8, c9, c10, c11, c5, c6, c7, c2, c1, c4, c3]

flatten (reversed topDown) t
= [c8, c9, c10, c11, c7, c6, c5, c4, c3, c2, c1]

For each of the tree walks, the inconsistency shows up while solv-
ing a different constraint. These constraints originated from the root
of the expression, the subexpressionTrue, and the subexpression1,
respectively.

If a constraint tree retains information about the names of the
constructors of the abstract syntax tree, then the definition offlatten
can straightforwardly be generalized to treat different language
constructs differently:

flatten :: (String → TreeWalk)→

c1
∗ = v4 ≡ Int

c2
∗ = v3 ≡ v4 → v5

c3
∗ = v7 ≡ Bool

c4
∗ = v6 ≡ v7 → v8

c5 = v2 ≡ Bool
c6 = v5 ≡ v9

c7 = v8 ≡ v9

c8
∗ = v0 ≡ v3

c9
∗ = v0 ≡ v6

c10 = v1 ≡ v2

c11 = v10 ≡ v0 → v1 → v9

Figure 4. The constraints

ConstraintTree → [Constraint].

This extension enables us to model inference processes such as
the one of Hugs [7], which infers tuples from right to left, while
most other constructs are inferred left-to-right. It also allows us to
emulate all instances ofG [10], such as exhibitingM-like behavior
for one construct andW-like behavior for another. Of course, we
could generalizeflatten even further to include other orderings.
For example, a tree walk that visits the subtree with the most type
constraints first.

4.2 Spreading type constraints

We present a technique to move type constraints from one place
in the constraint tree to a different location. This can be useful if
constraints generated at a certain place in the abstract syntax tree
are also related to a second location. In particular, we will consider
constraints that relate the definition site and the use site of an identi-
fier. The advantage is that we get more ways to reorganize the type
constraints after constraint generation, without changing the type
rules themselves. More specifically, by spreading constraints we
can also emulate algorithms that use a top-down type environment
(usually denoted byΓ), even though our rules may use a bottom-up
assumption set to collect the constraints.

The grammar for constraint trees is extended with three cases.

Tc ::= (. . .) | (`, c) O◦ Tc | (`, c)�◦ Tc | `◦

The first two cases serve to spread a constraint, whereas the third
marks a position in the tree to receive such a constraint. Labels`
are used only to find matching spread-receive pairs. The scope of
spreading a constraint is limited to the right argument ofO◦ (and
�◦). We expect for every constraint that is spread to have exactly
one receiver in its scope. In our particular case, we enforce this
by using the generated fresh type variable (see the rule (VAR) in
Figure 2) as the receiver, and the fact that the let and lambda rules
remove assumptions for identifiers bound at that point.

The function spread is responsible for moving constraints
deeper into the tree, until they end up at their destination label.
It can be implemented straightforwardly:

spread :: ConstraintTree → ConstraintTree
spread = spreadRec []

where
spreadRec :: [(Label ,Constraint)]→

ConstraintTree → ConstraintTree
spreadRec list tree =

case tree of
[• t1, . . . , tn]• → [•map (spreadRec list) [t1, . . . , tn]]•
c ♦ t → c ♦ spreadRec list t
c O t → c O spreadRec list t
t1� t2 → spreadRec list t1� spreadRec list t2

7

c5O
c10

v◦3 v◦6

v◦2

c3c1

c4c2 c9

c8

c11

c6O
c7O

Figure 5. Constraint tree with type constraints that have been
spread

(`, c) O◦ t → spreadRec ((`, c) : list) t
(`, c)�◦ t → spreadRec ((`, c) : list) t
`◦ → [c | (lab1 , c)← list , ` == lab1]•

The type rules specify whether a certain constraint can poten-
tially be spread. To actually perform spreading is a decision that is
made by the person who uses the type inferencer. This implies that
we have to define howflattenhandles bothO◦ and�◦. The flat-
ten function distinguishes between the non-strictO◦ and the strict
version�◦, essentially by forgetting the◦.

EXAMPLE 4.3. Consider the constraint treet in Figure 3. We
spread the type constraints introduced for the pattern variablesf
andb to their use sites. Hence, the constraintsc8, c9, andc10 are
moved to a different location in the constraint tree. We put a re-
ceiver at the three nodes of the variables (two forf , one forb). The
type variable that is assigned to an occurrence of a variable (which
is unique) is also used as the label for the receiver. Hence, we get
the receiversv◦2 , v◦3 , andv◦6 . The constraint tree after spreading is
displayed in Figure 5.

flatten bottomUp (spread t)
= [c10, c8, c1, c2, c9, c3, c4, c5, c6, c7, c11]

flatten topDown (spread t)
= [c11, c5, c6, c7, c10, c2, c8, c1, c4, c9, c3]

flatten (reversed bottomUp) (spread t)
= [c3, c9, c4, c1, c8, c2, c10, c7, c6, c5, c11]

The bottomUp tree walk after spreading leads to reporting the
constraintc4: without spreading type constraints,c9 is reported.

Spreading undoes the bottom-up construction of assumption
sets for the free identifiers, and instead applies the more standard
approach to pass down a type environment. One might argue that
the dual approach could be taken: to use type environments by
default and to emulate assumption sets by means of a combinator.
However, spreading downwards turned out to be easier to handle
than spreading upwards.

Spreading type constraints gives constraint orderings that corre-
spond more closely to the type inference process of Hugs [7] and
GHC [4]. Regarding the inference process for a conditional expres-
sion, both compilers constrain the type of the condition to be of
typeBool before continuing with the then and else branches. GHC
constrains the type of the condition even before its type is inferred:
Hugs constrains this type afterwards. Therefore, the inference pro-
cess of Hugs for a conditional expression corresponds to an inorder
bottom-up tree walk. The behavior of GHC can be mimicked by an
inorder top-down tree walk.

c7O

phase 7

phase 7

phase 3

c11

c10

c5O

c8 c1

c2

c6O

c9 c3

c4

Figure 6. The constraint tree before phasing

c6O

�
�

c5O

c8 c1 c9

c7O

c4c2

c10

c11

c3

Figure 7. The constraint tree after phasing

4.3 Phasing constraint trees

The essence of phased type inference, a concept introduced in [6],
is assigning phase numbers to type constraints. Constraints with
a low phase number are solved before those with a high phase
number. With phasing we can (conceptually) visit nodes of an
abstract syntax tree more than once.

The original motivation for phased type inference was to depart
from the fixed unification order for programs that use a domain-
specific combinator library. For instance, we could first type the
“normal” expressions between the combinators, and check in sub-
sequent phases whether the types of the operands actually match
with the combinator types. Other examples of phasing constraints
are propagating type signatures by first “pushing down” an ex-
pected type, and assigning low phase numbers to constraints that
were generated during an earlier compilation. This has the effect of
putting the blame on more recently developed pieces of code.

To support phasing, we introduce one new constructor,Phase i Tc,
and a functionphase that transforms a constraint tree such that it
respects the policy of the (�) combinator. The implementation
of phase is omitted for reasons of space, but we can illustrate its
effects by means of an example.
Consider again the expression

(λf b → if b then f 1 else f True)
and its constraint tree after spreading type constraints, shown in
Figure 6. Suppose that we want to treat the subexpressions of condi-
tionals in a special way. For example, we consider the constraints of
the condition (including the constraint that this expression should
have typeBool) before all the other type constraints, so we assign
phase3 to this part of the constraint tree. In a similar way, we post-
pone the constraints for the two branches, and use phase number
7 for these parts. The remaining type constraints are assigned to
the default phase (which is5). The right part of Figure 7 shows the
constraint tree after phasing. The two strict nodes combine the three
constraint trees of phase3, 5, and7 (from left to right). Note that a

8

number of empty constraint trees have been omitted to simplify the
presentation of the tree.

As an aside, note that traditional type inference algorithms can
hardly be extended with support for phasing. The use of constraints
makes this a lot easier to do.

5. Emulating inferencing algorithms
To further illustrate the flexibility of the (small) set of combinators
we have introduced, we show how we can emulate some of the
existing algorithms in the literature, in the sense that the list of
constraints for a given flattening corresponds to the unifications
performed by such an algorithm. We consider hereW [2] and
M [9], algorithmG and one of its instances calledH [10].

AlgorithmW proceeds in a bottom-up fashion, and considers
the children from left-to-right. Second, it treats the let-expression
in exactly the same way as we do: first the definition, followed by
generalization, and finally the body. This behavior corresponds to
the bottomUp tree walk introduced earlier. Furthermore, we see
that a type environment is passed down, which means that we
have to spread constraints. The combination of thebottomUp tree
walk and spreading ensures that our solver only fails for constraints
generated at applications.

Folklore algorithmM, on the other hand, is a top-down infer-
ence algorithm for which we should select thetopDown tree walk.
Spreading with this tree walk implies that we no longer fail at ap-
plication nodes, but for identifiers and lambda abstractions.

Algorithm G by Lee and Yi [10] defines a set of algorithms.
The unifications ofW andM are broken into pieces so that some
of these can be performed when arriving at a certain node, some
between two subtree visits, and some before going back up. This
decomposition can be chosen independently for each non-terminal.

To see how we can model the choices ofG, we focus on the case
for applicationse1 e2. We start with choosingθ1 equal to either
a fresh type variable, a function type in which the argument and
result types are fresh, or a function type in which the argument is
fresh and the result type is the expected typeρ (see constraint(2)
in Fig. 3 of [10]). Next, we can decide to strengthen our demands
on the type found fore1, or postpone this to after consideringe2

(3). Then, we decide on the expected type passed toe2: the type
β (which is now partly known from inferringe1’s type), or a fresh
type variable(4). After visiting e2, all constraints are considered
again to make sure that which was not checked before, is assuredly
taken care of.

Instead of exhaustively listing all the possibilities and show-
ing how these can be specified in our system by means of some
tree walk, we proceed by considering the application case for one
instance, namely algorithmH [10]. The corresponding tree walk
should give[c1] ++ C1 ++ [c3, c2] ++ C2, whereCi is the flattened
list of constraints for subtreeei, and theci are the constraints from
type rule (APP).

6. Related work
We are certainly not the first to consider a more flexible approach
in solving constraints (or, in most cases, perform unifications) in
various orders. AlgorithmG [10], presented by Lee and Yi, can be
instantiated with different parameters, yielding the well-known al-
gorithmsW andM (and many others). Our constraint-based ap-
proach has a number of advantages over their generalized algo-
rithm, which essentially selects a number of unifications to be per-
formed early. The soundness of their algorithm follows from the de-
cision to simply perform all unifications before the abstract syntax
tree node is left for the final time. This includes unifications which
were done during an earlier visit to the node, which is harmless,
but not very efficient. Additionally, all these moments of perform-

ing unifications add complexity to the algorithm: the application
case alone involves five substitutions that have to be propagated
carefully. Our constraint-based approach with a constraint ordering
phase circumvents this complexity. Instances of algorithmG are re-
stricted to one-pass, left-to-right traversals with a type environment
that is passed top-down: it is not straightforward to further gener-
alizeG to have support for phased type inference strategies (Sec-
tion 4.3), or algorithms that remove the left-to-right bias [19, 12].

Sulzmann presents constraint propagation policies [17] for
modelingW andM in the HM(X) framework [18]. First, gen-
eral type rules are formulated that mention partial solutions of the
constraint problem: later, these rules are specialized to obtainW
andM. While interesting soundness and completeness results are
discussed for his system, he makes no attempt at defining one im-
plementation that can handle all kinds of propagation policies.

Hindley-Milner’s type system has been formulated with con-
straints several times. Typically, the constraint-based type rules use
logical conjunction (e.g., the HM(X) framework [18]), or an un-
ordered set of constraints is collected (e.g., Pierce’s first textbook
on type systems [14]). Type rules are primarily intended as a declar-
ative specification of the type system, and from this point of view
our combinators are nothing but generalizations of (∧). However,
when it comes to implementing the type rules, our special combina-
tors also bridge the gap between the specification of the constraints
and the implementation, which is the solver.

Finally, Pottier and Ŕemy present constraint-based type rules for
ML [15]. Their constraint language contains conjunction (where we
use the comma) andlet constraints (where we use generalization
and instantiation constraints). The main drawback of their setup is
the specified solver uses a stack, essentially to traverse the con-
straint, making the specification of the solver as a rewrite system
overly complex and rigid (see Figure 10-11 in [15]). Our combina-
tors could help here to decouple the traversal of the constraint from
the constraint semantics.

7. Conclusion and future work
In this paper we have advocated the introduction of a separate con-
straint reordering phase between the phase that generates the con-
straints and the phase that solves constraints. We have made a be-
ginning in this respect by presenting a number of combinators that
can be used directly in the constraint generation rules (which are
very similar to the logical deduction rules used in the literature). By
way of example, we have given a specification of a constraint based
type inferencer for the Hindley-Milner type system, and showed
that many well-known algorithms that implement this type system
can be effectively emulated by choosing a suitable semantics for
our combinators.

The main benefit of our work is the decoupling between the
three phases, making each of them much simpler than when consid-
ered combined. Other benefits are the higher flexibility, increased
re-use of constraint solvers and the possibility to construct sim-
plified or more efficient solvers that can be used if constraints are
known to be supplied to the solver in a specific order, e.g., the use
of the� combinator in the let rule. Finally, our combinators, and
others like them, can play a large role in the development of do-
main specific languages for specifying executable program anal-
yses, such as envisioned in systems such as TinkerType [11] and
Ruler [3].

The combinators we described are indeed only the beginning.
Once the realization is made that the ordering of constraints is an
issue, it is not difficult to come up with a host of new combinators,
each with their own special characteristics and uses, and that can
be used in combination with existing solvers. For example, combi-
nators can be defined that specify that certain parts of the constraint

9

solving process can be performed in parallel, guaranteeing that the
results of these parallel executions can be easily integrated.

References
[1] Anonymous. Anonymous unrefereed workshop 2006. Details omitted

for double blind reviewing.

[2] L. Damas and R. Milner. Principal type schemes for functional
programs. InPrinciples of Programming Languages (POPL ’82),
pages 207–212, 1982.

[3] A. Dijkstra and S. D. Swierstra. Ruler: Programming type rules. In
FLOPS, pages 30 – 46, 2006.

[4] GHC Team. The Glasgow Haskell Compiler. http://www.
haskell.org/ghc.

[5] J. Hage and B. Heeren. Ordering type constraints: A structured ap-
proach. Technical Report UU-CS-2005-016, Institute of Information
and Computing Science, Utrecht University, Netherlands, April 2005.
Technical Report.

[6] B. Heeren, J. Hage, and S. D. Swierstra. Scripting the type inference
process. InEighth ACM Sigplan International Conference on
Functional Programming, pages 3 – 13, New York, 2003. ACM
Press.

[7] Mark P Jones et al. The Hugs 98 system. OGI and Yale,
http://www.haskell.org/hugs.

[8] S. Peyton Jones, D. Vytiniotis, S. Weirich, and M. Shields. Practical
type inference for arbitrary-rank types.Journal of Functional
Programming, To appear.

[9] O. Lee and K. Yi. Proofs about a folklore let-polymorphic type
inference algorithm.ACM Transanctions on Programming Languages
and Systems, 20(4):707–723, July 1998.

[10] Oukseh Lee and Kwangkeun Yi. A generalized let-polymorphic
type inference algorithm. Technical Memorandum ROPAS-2000-5,
Research on Program Analysis System, Korea Advanced Institute of
Science and Technology, March 2000.

[11] M. Y. Levin and B. C. Pierce. Tinkertype: A language for playing
with formal systems.Journal of Functional Programming, 13(2):295
– 316, March 2003.

[12] B. J. McAdam. On the Unification of Substitutions in Type Inference.
In Kevin Hammond, Anthony J.T. Davie, and Chris Clack, editors,
Implementation of Functional Languages (IFL ’98), London, UK,
volume 1595 ofLNCS, pages 139–154. Springer-Verlag, September
1998.

[13] F. Nielson, H.R. Nielson, and C. Hankin.Principles of Program
Analysis. Springer Verlag, second printing edition, 2005.

[14] Benjamin C. Pierce.Types and Programming Languages. MIT Press,
Cambridge, MA, 2002.

[15] F. Pottier and D. Ŕemy. The essence of ML type inference. In
B. C. Pierce, editor,Advanced Topics in Types and Programming
Languages, pages 389 – 489. MIT Press, 2005.

[16] J. A. Robinson. A machine-oriented logic based on the resolution
principle. Journal of the ACM, 12(1):23–41, 1965.

[17] Martin Sulzmann. A general type inference framework for hind-
ley/milner style systems. InFLOPS, pages 248–263, 2001.

[18] Martin Sulzmann, Martin Odersky, and Martin Wehr. Type inference
with constrained types. Research Report YALEU/DCS/RR-1129,
Yale University, Department of Computer Science, April 1997.

[19] J. Yang. Explaining type errors by finding the sources of type
conflicts. In Greg Michaelson, Phil Trindler, and Hans-Wolfgang
Loidl, editors,Trends in Functional Programming, pages 58–66.
Intellect Books, 2000.

10

