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Abstract

We introduce the family of multi-dimensional Bayesian network classifiers which in-
clude one or more class variables and multiple feature variables. The family does not
require that every feature variable is modelled as being dependent on every class vari-
able, which results in better modelling capabilities than families of models with a single
class variable. Yet, our family of multi-dimensional classifiers includes as special cases
the well-known naive Bayesian and tree-augmented classifiers. We describe the learning
problem for a subfamily of multi-dimensional classifiers and show that the complexity of
the solution algorithm is polynomial in the number of variables involved. Preliminary
experimental results illustrate the benefits of the multi-dimensionality of our classifiers.

1 Introduction

Bayesian network classifiers have gained considerable popularity for solving classification prob-
lems. Many real-life problems can be viewed as a classification problem, where an instance
described by a number of features has to be classified in one of several distinct classes. The
success of especially naive Bayesian classifiers and the more expressive tree-augmented net-
work classifiers then is readily explained from their ease of construction from data and their
generally good classification performance.

Many application domains, however, include classification problems where an instance has
to be assigned to a most likely combination of classes. Since the number of class variables
in a Bayesian network classifier is restricted to one, such classification problems cannot be
modelled straightforwardly. One approach is to construct a compound class variable that
models all possible combinations of classes. The class variable may then easily end up with
an inhibitively large number of values. Moreover, the structure of the classification problem is
not reflected in the model. Another approach is to develop multiple classifiers, one for each of
the original classes. Multiple classifiers, however, cannot model interaction effects among the
various classes and may not properly reflect the problem. Also, even if the classifiers indicate
multiple classes, the implied combination of classes may not be the most likely explanation
of the observed features.

We now introduce the concept of multi-dimensionality in Bayesian network classifiers to
provide for modelling classification problems in which instances can be classified in multiple
classes. A multi-dimensional Bayesian network classifier includes one or more class variables
and one or more feature variables. It models the relationships between the variables by
acyclic directed graphs over the class variables and over the feature variables separately, and
further connects the two sets of variables by means of a bi-partite directed graph. An example



Figure 1: An example multi-dimensional Bayesian network classifier with class variables C}
and feature variables F.

multi-dimensional classifier is depicted in Figure 1. As for one-dimensional Bayesian network
classifiers, we distinguish between different types of multi-dimensional classifier by imposing
restrictions on their graphical structure.

For the subfamily of fully tree-augmented multi-dimensional classifiers, which have di-
rected trees over their class variables as well as over their feature variables, we study the
learning problem, that is, the problem of finding a classifier that best fits a set of available
data. We show that the learning problem can be decomposed into optimisation problems for
the set of class variables and for the set of feature variables separately, which can both be
solved in polynomial time. Our learning algorithm assumes a fixed selection of feature vari-
ables per class, yet is easily combined with existing approaches to feature subset selection.

Preliminary experiments have hinted at the benefits of multi-dimensional classifiers. In a
test on a small data set the multi-dimensional classifiers provided higher accuracy than their
one-dimensional counterparts. In combination with feature selection they also led to classifiers
with fewer parameters for the conditional probability tables. This is a desirable property for
classifiers, as these parameters need to be estimated as part of the learning process.

The paper is organised as follows. In Section 2, we briefly review Bayesian network
classifiers in general. In Section 3, we define the family of multi-dimensional classifiers and
review the computational complexity of finding a joint value assignment of highest probability
for the class variables of such a classifier. In Section 4, we address the learning problem
for fully tree-augmented multi-dimensional classifiers and present polynomial algorithms for
solving the problem. We report some preliminary results from an application in the biomedical
domain in Section 5. The paper is rounded off with our concluding observations in Section
6.

2 Preliminaries

Before reviewing standard naive Bayesian and tree-augmented network classifiers, we intro-
duce our notational conventions.

We consider Bayesian networks over a finite set V' = {Xy,..., Xy}, k& > 1, of discrete
random variables, where each X; takes a value in a finite set Val(X;). For a subset of variables
Y CV we use Val(Y) = xx,ey Val(X;) to denote the set of joint value assignments to Y.
A Bayesian network now is a pair B = (G, ©), where G is an acyclic directed graph whose
vertices correspond to the random variables and O is a set of parameters; the set © includes



a parameter 0, r,, for each value x; € Val(X;) and each value assignment Ilz; € Val(ILX;)
to the set I1.X; of parents of X; in G. The network B defines a joint probability distribution
Pp over V given by

k
Pp(X1,..., Xi) = [ [ Oxnx, (1)
i=1

Bayesian network classifiers are Bayesian networks of restricted topology that are tailored
to solving classification problems in which instances described by a number of features have
to be classified in one of several distinct predefined classes. The set of random variable V' of
a Bayesian network classifier is partitioned into a set Vp = {Fi,..., F,,}, m > 1, of feature
variables and a singleton set {C'} with the class variable. A naive Bayesian classifier has a
directed tree for its graph G, in which the class variable C' is the unique root and each feature
variable F; has C for its only parent. Since its graph is fixed, learning a naive Bayesian
classifier amounts to establishing maximum-likelihood estimates from the available data for
its parameters 0c and Op,c, i = 1,...,m. A TAN classifier has for its graph G a directed
acyclic graph in which the class variable C' is the unique root and each feature variable F; has
C and at most one other feature variable for its parents; the subgraph induced by the set V,
moreover, is a directed tree, termed the feature tree of the classifier. Learning a TAN classifier
amounts to determining a graphical structure of maximum likelihood given the available data
and establishing estimates for its parameters. For constructing a maximume-likelihood feature
tree, an efficient algorithm is available from Friedman, Geiger and Goldszmidt (1997).

We would like to note that a classifier over VxU{C'} in essence is a function C: Val(Vr) —
Val(C). Bayesian network classifiers typically build for this purpose upon the winner-takes-
all rule. Using this rule, they associate with each value assignment f € Val(Vp), a class value
¢ with Pg(c| f) > Pg(c | f) for all ¢ € Val(C), breaking ties at random.

3 Introducing multi-dimensional classifiers

Naive Bayesian and tree-augmented network classifiers include a single class variable and as
such are one-dimensional. We now introduce the concept of multi-dimensionality in Bayesian
network classifiers by defining a family of classifiers that may include multiple class variables.

A multi-dimensional Bayesian network classifier is a Bayesian network of which the graph
G = (V, A) has the set V of random variables partitioned into the sets Vo = {C1,...,Cy},
n > 1, of class variables and the set Vp = {F1,...,Fy}, m > 1, of feature variables; the
graph further has a restricted topology in which the set of arcs A is partitioned into the three
sets A¢, Ap and Aop with the following properties:

e the set Ac C Vi x Vi is composed of the arcs between the class variables, that is, the
subgraph of G induced by Vi equals Go = (Vi Ac);

e the set Ap C Vg x Vi is composed of the arcs between the feature variables, that is,
the subgraph of G induced by Vi equals Gp = (Vr, Ar);

e the set Agp C Ve x Vi includes the arcs from the class variables to the feature variables
such that for each F; € Vp there is a C; € Vi with (C}, F;) € Acr and for each C; € Vi
there is an Fj € Vp with (C;, F}) € Acr.



The subgraph G¢ of G is called the classifier’s class subgraph; the subgraph G is called its
feature subgraph. The subgraph G op = (V, Acp) is called the feature selection subgraph of the
classifier since it represents the selection of features that are deemed relevant for classification
in view of the variables C1,...,C),.

Within the family of multi-dimensional classifiers various different types of classifier can
be distinguished based upon their graphical structures. An example is the fully naive multi-
dimensional classifier in which both the class subgraph and the feature subgraph are empty.
Note that this subfamily of bi-partite classifiers includes the one-dimensional naive Bayesian
classifier as a special case. Further note that, reversely, any such bi-partite classifier has an
equivalent naive Bayesian classifier with a single compound class variable. Another type of
multi-dimensional classifier is the subfamily of classifiers in which both the class subgraph
and the feature subgraph are directed trees. In the remainder of the paper, we will focus on
this subfamily of fully tree-augmented multi-dimensional classifiers.

A multi-dimensional classifier in essence serves to find a joint value assignment of highest
posterior probability for its set of class variables. Finding such an assignment given values
for all feature variables involved, is equivalent to solving the MPA problem. This problem
is known to be NP-hard in general, yet can be solved in polynomial time for networks of
bounded treewidth (Bodlaender, Van den Eijkhof, and Van der Gaag, 2002). In the pres-
ence of unobserved feature variables, the problem of finding assignments of highest posterior
probability remains intractable even for these restricted networks (Park, 2002). In view of
the unfavourable computational complexity involved, we note that the practicability of multi-
dimensional classifiers is limited to models with restricted class subgraphs, such as the fully
naive and fully tree-augmented classifiers reviewed above.

4 Learning fully tree-augmented multi-dimensional classifiers

In this section we define the problem of learning a fully tree-augmented multi-dimensional
classifier from data and show that this problem can be decomposed into two optimisation
problems that have polynomial complexity.

4.1 Defining the learning problem

The general problem of learning a Bayesian network is to find a network B that matches the
available set D = {uy,...,un} of samples as closely as possible. In the most general setting,
this optimisation problem is intractable. For restricted classes of networks, however, the prob-
lem becomes tractable, that is, solvable in polynomial time. Examples include the standard
naive Bayesian and tree-augmented network classifiers and the one-dimensional classifiers of
which the feature subgraph is a directed forest (Lucas, 2002). For other classes of networks,
researchers have presented heuristics which provide good, though not optimal, solutions (Sa-
hami, 1996; Keogh and Pazzani, 1999). In this section, we show that for the class of fully
tree-augmented multi-dimensional classifiers, the learning problem is tractable.

Before formally defining the problem of learning a fully tree-augmented multi-dimensional
classifier from data, we would like to note that the results mentioned above all relate to
learning a network for a fixed set of relevant feature variables. To the best of our knowledge,
the selection of an optimal set of features has not been solved as yet. We therefore formulate
our learning problem as an optimisation problem for the subfamily of classifiers for which the



feature selection subgraph is fixed. We will return to the issue of feature subset selection in
Section 4.3.

We begin by defining the subfamily of fully tree-augmented multi-dimensional classifiers
with a fixed feature selection subgraph. The classifiers in this subfamily are considered ad-
missible for the learning problem.

Definition 4.1 (Admissible Classifier). Let V = Vo U Ve with Vo = {C1,...,C,} and
Ve ={F1,...,Ey,} be as before. Let Aqp be a given subset of Vo x Vi such that (V, Aop) is
a feature selection subgraph for V.. A multi-dimensional classifier B with graph G = (V, A)
with A = Ac U Ap U Acr s called admissible for A p if

o Go = (Vo,Ac) is a directed tree,
o Gp = (Vp,Ap) is a directed tree, and
o Acp = ACF-

The set of admissible multi-dimensional classifiers for Aqp is denoted as By,

The learning problem now is to select from the set of admissible multi-dimensional classifiers,
a model that best fits the available data. As a measure of how well a model describes the
given set of samples, we propose to use the minimum description length (MDL) principle.
The MDL score of a network B given the data D gives the amount of information needed to
store the model and the data (Rissanen, 1978), and is defined as

log N
2

The first term in the score captures the optimal number of bits to represent the network’s
parameters, where |B| is used to denote its number of parameters. This term prohibits
overfitting of the data, since it penalises networks that contain many parameters. In our
approach this is taken care of by the structural requirements as formulated for the admissible
classifiers in Definition 4.1.

The second term is the negation of the log-likelihood of the network B given the data D,
which by the factorisation (1) equals

MDL(B | D) = |B| — LL(B | D). 2)

N
LL(B | D) =Y log (Pa(u;)). (3)
=1

This term represents the optimal number of bits needed to represent the data D with the
probability distribution Pg.

We now formally define the learning problem for fully tree-augmented multi-dimensional
classifiers with a fixed feature selection subgraph.

Problem 4.2 (Learning Problem). Let V = Vo U Vg with Vo = {C1,...,C,} and Vp =
{F1,...,FEy} be as before. Let Aop C Vo X Vi be such that (V, Acp) is a feature selection
subgraph for V.. Let By, be the set of admissible multi-dimensional classifiers for Acp. The
learning problem is to find a classifier B in Ba , that mazimises the log-likelihood LL(B | D).



4.2 Solving the learning problem

In this subsection we show how the learning problem, defined as Problem 4.2, can be solved
in polynomial time. For convenience we first extend the notation for parents of variables. For
any variable X we let IIo X denote the class parents of X in G, i.e. lIoc X = 11X N V. We
let IIx X denote the feature parents of X in G, i.e. lIp X = IIX N Vr. Note that with this
notation for any class variable C; we have IIpC; = @ and lIoC; = I1C;.

Assume that we have a set Vo of class variables and Vg of feature variables. Assume
also that we have a fixed feature selection subgraph (Vo U Vi, Agp), so Ba,, is completely
specified as in Definition 4.1.

We let Pp denote the empirical distribution as defined by the frequencies of occurrences
in the data set D. It is well-known that, if the graph G of a network B is fixed, then the
maximum likelihood estimators of the parameters in ©, which by definition optimise the
LL(B|D) term in (2), are given by

O, 10, = Pp(illlz;) (4)
It can be shown (Friedman, Geiger and Goldszmidt, 1997) that by substitution of (4) into

(3) and changing the order of summations the log-likelihood term can be rewritten as

—N> Hp (GITIC;) + N Y Hp (Fj|IF))
=1

j=1
i=1 i=1
+N Y Iy (FjTIF) = N> Hp (Fj).
j=1 J=1

Here Hp(X) = — ), P(x)log P(x) denotes the entropy of a random variable X with proba-
bility distribution P, Hp(X|Y) = —3_,  P(z,y)log P(z|y) denotes the conditional entropy
of X given Y, and

P(z,y)

Tp(X3Y) = 3 Plo.)1og 5 ypr s

x’y

denotes the mutual information of X and Y.

The terms Hp (C;) and Hp (Fj) on the right-hand side of (5) represent entropies of
marginals of the empirical distribution. They depend only on the empirical distribution and
not on the graph of the network. This implies that the admissible classifier that maximises the
log-likelihood is the classifier in By, that maximises the two sums of the mutual information
terms. The mutual information I (Pj;IIF;) can be rewritten further as follows. For any
feature variable F}, j = 1,...,m, its parents are given by IIF; = IIcF; UIlpF;. Using the
chain law for mutual information (Cover and Thomas, 1991)) the term I (F};I1F;) can now
be rewritten as

> {IPD<FJ‘3 LoFj) +1p, (Fj; HFFj!Hch)} (6)
j=1



In this expression Ip(X;Y|Z) is the conditional mutual information of X and Y, given Z:

Ip(X;Y|Z) = Z P(z,y,z) log%

Since A is fixed, the class parent set Il F; for feature Fj is the same for every admissible
classifier. Thus the conditional mutual information I (Fj;IcFj|IIpF}) is the same for all
classifiers in By ,. We can summarise the results of the above derivation in the following
lemma.

x7y72

Lemma 4.3. The admassible classifier in Ba,, that solves Problem 4.2 is the classifier that
MaTIMISes

n m
D s (CiTIC) + Y Ip (FyTpF;[ToFy) (7)
i=1 j=1

We now proceed by showing that the learning problem can be solved as two separable
optimisation problems. Since class variables only have parents in Vi, the first term in (7)
depends only on the arc set Ac. The second term in (7) depends on Ay, which is fixed, and
on Ap. This implies that the two terms can be maximised separately. The maximisation of
the first term was solved in Chow and Liu (1968). The solution is obtained as follows.

1. Construct a complete undirected graph by taking Vi as the set of vertices.
2. Let the weight of the edge between C; and Cj, i # j, be given by Ip, (C;,C)).
3. Build a maximum weighted spanning tree, for instance using the algorithm of Kruskal (1956).

4. Transform the undirected tree into a directed tree, by choosing an arbitrary vertex as
root and setting all the arc directions outward from the root.

The second term in (7) depends on the structure of Ap and Aop. Since Aop (and thus
IIc for Fj) is fixed, and the term is independent of Ac, this subproblem can be solved
by finding the arc set Ap that makes (Vp, Ar) a directed spanning tree that maximises
> 1p, (Fj,IlpF; | llcF}). This can be accomplished as follows.

1. Construct a complete directed graph on the set of vertices V.
2. Let the weight of the arc from Fj to F}, i # j, be given by Ip, (Fy; Fy |11 Fy).

3. Build a maximum weighted directed spanning tree, for instance using the algorithm of
Chu and Liu (1968) or Edmonds (1967).

This spanning tree is the optimal arc set Ap. Note that for this subproblem we need
to solve for a directed spanning tree, while for the first subproblem we need to compute an
undirected spanning tree. This is due to Ip (Ci;Cj) = Ip (C5; Cy) and Ip (Fy; Fj [ Fy) #
Ip (Fj; BN F).

We may now conclude that the learning problem for fully tree-augmented multidimensional
classifiers is tractable.

Lemma 4.4. The computational complexity of the solution to Problem 4.2 is polynomial in
the number of variables.



Proof. Solving Problem 4.2 amounts to computing an undirected maximum weighted span-
ning tree on the class variables and a directed maximum weighted spanning tree on the feature
variables. The computation of the weight coefficients for the first subproblem has complexity
of O(n?N), while the computation of the spanning tree has complexity of O(n?logn) accord-
ing to Kruskal (1956). The computation of the weight coefficients for the second subproblem
has complexity of O(m?N), and the computation of the directed spanning tree has complexity
of O(m?). Since a typical data set will satisfy N > logn and N > m, this completes the
proof. O

We conclude this subsection with the remark that we can formulate the learning problem
also for classifiers in which we require that the arc set A¢ or the arc set Ap is empty. The
above described solution method can readily be adapted to this situation. If A = &, then
we need only solve the second subproblem, i.e. maximise the second term in (7). For the case
Ap = @, we need only solve the first subproblem.

4.3 Feature selection

We already mentioned in Section 4.1 that we defined the learning problem for a given feature
selection subgraph. We conclude this section with some remarks on how the learning algorithm
can be combined with a feature selection algorithm. We propose to use a feature selection
algorithm with a wrapper approach based on accuracy (Kohavi and John, 1997)). Typically
in such an approach an algorithm similar to the following is used.

1. Choose an initial feature selection subgraph. Denote this as the current subgraph.
2. Generate a number of new subgraphs by applying small changes to the current subgraph.

3. Compute the accuracy of the best classifier — the one that solves Problem 4.2 — for
each new subgraph.

4. Determine the best new subgraph, that is the new subgraph with the highest accuracy.

5. If the accuracy of the best new subgraph is higher than that of the current classifier,
then denote the best new subgraph as the new current subgraph and go to Step 2. If
not, then stop and propose the best classifier for the current subgraph as the overall
best.

Two approaches are popular. The forward feature selection approach starts with an
empty subgraph (i.e. no features selected) and changes to the current subgraph are obtained
by addition of an edge. The backward feature selection approach starts with all features
selected as relevant for all class variables and changes to the current subgraph are obtained
by removal of an edge.

5 Numerical Results

In this section we present some preliminary numerical results to illustrate the benefits of multi-
dimensional Bayesian network classifiers. Since the established benchmark data repository in
Newman et al. (1998) does not provide data sets with multiple class variables, we generated
a data set to test the learning algorithm.



size of data set: 100
classifier type ‘ acc. ‘ param.
Compound naive | 0.46 695
Multi-dim naive 0.54 136
Compound TAN 0.35 1869
Multi-dim FTAN | 0.41 740

size of data set: 200
classifier type ‘ acc. ‘ param.

Compound naive | 0.420 661
Multi-dim naive | 0.555 179
Compound TAN | 0.305 3060
Multi-dim FTAN | 0.475 1092
size of data set: 400
classifier type ‘ acc. ‘ param.
Compound naive | 0.550 732
Multi-dim naive | 0.605 276
Compound TAN | 0.505 4604
Multi-dim FTAN | 0.585 386

Table 1: Numerical results for different classifier types on the Oesophagus data set.

The data set was generated from the Oesophagus network as described in van der Gaag
et al. (2002), which is a network for diagnosis of Oesophageal cancer. We generated three
data sets of 100, 200 and 400 samples, respectively, using logic sampling. From these samples
we removed the values for all non-observable variables, except for three variables, which were
used as class variables. In the original Oesophagus network these three variables can be
considered as natural candidates for this role.

We ran the learning algorithm on these data sets for two classifier types, namely naive
and fully tree augmented. The accuracy of the classifiers was calculated using tenfold cross-
validation, combined with a forward feature selection wrapper approach. In the multidi-
mensional case we defined accuracy as the proportion of cases where all class variables were
simultaneously classified correctly. We compared the accuracy performance of the two types
of classifiers using a compound (one-dimensional) class variable and using a three-dimensional
class variable.

The results are presented in Table 1. The accuracy of the best learned classifier is given in
the second column. The number in the third column gives the number of parameters (entries
in the conditional probability tables) that needed to be estimated for the learned network
with the highest accuracy.

From the table we may conclude that the two multi-dimensional classifiers outperform
their compound counterparts on accuracy. The number of estimated parameters is consid-
erably smaller for the multi-dimensional classifiers. This difference is particularly striking
for the case of naive classifiers with a small data set, where the multi-dimensional classifier
needs only one fifth of the number of parameters of the compound naive classifier. Consid-
ering the small size of the data set from which these parameters must be estimated, this is a



considerable advantage.
These preliminary results look promising, but further experiments are necessary to sub-
stantiate any claims about better performance.

6 Conclusion

In this paper we introduced a new class of Bayesian network classifiers that include one or
more class variables and multiple feature variables. We introduced a learning problem for
this class of networks and showed how this problem can be solved with an algorithm that has
a complexity that is polynomial in the number of variables. Preliminary numerical results for
this class look promising.

In the future we foresee to test the performance of multi-dimensional classifiers on other
data sets and with other feature selection strategies. We also consider to investigate the
performance of classifiers where the restrictions of the spanning tree on the class subgraph or
on the feature subgraph are relaxed. Possible less restrictive alternatives include forests or
k-dependence-like classifiers. Since the number of class variables is usually small, we may also
consider more complex class subgraphs than trees (or variants thereof) without the complexity
becoming too prohibitive.
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